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Purpose: The hemodynamic mechanisms underlying revascularization 
efficacy in moyamoya angiopathy (MMA) and their prognostic implications 
remain incompletely characterized. This study leverages four-dimensional 
flow magnetic resonance imaging (4D Flow MRI) to investigate longitudinal 
hemodynamic changes at the carotid siphons of MMA patients undergoing 
revascularization, and to evaluate their association with surgical outcomes.
Methods: A prospective cohort of 35 consecutive MMA patients undergoing 
unilateral revascularization was enrolled at West China Hospital from July 2018 
to January 2020. Using 4D Flow MRI, hemodynamic parameters, including 
mean/maximum flow, velocity, and wall shear stress, were quantified in the 
ipsilateral and contralateral carotid siphons at three timepoints: baseline, 1-week 
postoperative, and 1-year follow-up. Repeated-measures analysis of variance 
with Bonferroni correction was employed to compare longitudinal changes and 
correlate findings with 1-year clinical (excellent, good, and poor) and imaging 
(cerebral perfusion status and Matsushima collateralization grade) outcomes.
Results: Baseline and 1-week postoperative assessments revealed that only 
velocity within contralateral carotid siphon significantly increased (mean velocity: 
from 20.52 [15.34–28.78] cm/s to 23.70 [16.01–39.06] cm/s, p = 0.026; maximum 
velocity: from 29.26 [19.68–38.39] cm/s to 33.22 [20.99–50.95] cm/s, p = 0.001). 
However, both carotid siphons demonstrated significant reductions in mean and 
maximum flow (ipsilateral: mean flow from 1.92 [0.65–3.53] mL/s to 1.31 [0.58–
2.87] mL/s, p = 0.043, maximum flow from 2.61 [0.93–4.95] mL/s to 1.97 [0.89–
3.90] mL/s, p = 0.036; contralateral: mean flow from 2.87 [0.91–4.12] mL/s to 
2.14 [0.81–3.78] mL/s, p = 0.010) at 1-year follow-up. Lower contralateral siphon 
flow at follow-up correlated with “good” (but not “excellent”) clinical outcomes. 
Reduced flow in both siphons was associated with improved cerebral perfusion 
and robust collateralization (Matsushima grades A/B), whereas no changes were 
observed in patients with poor collaterals (Matsushima grade C).
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Conclusion: 4D Flow MRI reveals delayed, bilateral hemodynamic remodeling 
in MMA at 1-year post-revascularization. These changes correlate with clinical 
improvement, enhanced perfusion, and collateral development, underscoring 
the technique utility in monitoring long-term cerebrovascular adaptation.

KEYWORDS

moyamoya angiopathy, 4D Flow MRI, hemodynamics, revascularization, prognostic 
relevance

1 Introduction

Moyamoya angiopathy (MMA) is a rare, chronic cerebrovascular 
disease, characterized by progressive stenosis or occlusion of the 
internal carotid arteries (ICAs) and compensatory collateral vessel 
formation, which is typically staged using conventional angiography-
based systems (e.g., the Suzuki scale) to classify its severity (1, 2). The 
etiology of MMA remains poorly understood, but abnormal 
hemodynamics are considered to play a crucial role in its pathogenesis 
(3, 4). Studies have shown that wall shear stress (WSS) in the distal 
region of ICAs is relatively low in MMA patients, suggesting that 
reduced WSS may contribute to the arterial pathology. Computational 
fluid dynamics studies of MMA have further demonstrated altered 
flow patterns in ICAs and adjacent communicating arteries (5), 
although these findings have been inconsistent across studies (6). 
Surgical revascularization, involving anastomosis of extracranial 
arteries to cortical vessels or indirect bypass techniques, aims to 
restore cerebral perfusion. The primary goal of revascularization is to 
improve cerebral hemodynamics, a crucial outcome that is often 
assessed by the presence or absence of perfusion improvement on 
postoperative imaging studies. However, the hemodynamic 
mechanisms underlying its therapeutic effects is unclear (7, 8).

Conventional imaging techniques for assessing hemodynamics (e.g., 
digital subtraction angiography [DSA] and computed tomography [CT]) 
typically involve radiation exposure, invasiveness, or indirect blood flow 
measurements (7). While DSA excellently depicts vascular anatomy and 
staging, and CT perfusion can quantify perfusion improvement, they 
lack the ability to comprehensively visualize complex flow patterns. 
Four-dimensional flow magnetic resonance imaging (4D Flow MRI) 
offers a non-invasive, direct technique for quantifying hemodynamic 
parameters throughout the cardiac cycle (9). This technique has been 
used to study various cerebrovascular and neurodegenerative conditions 
(10–14), demonstrating correlations between 4D Flow MRI-derived 
hemodynamic biomarkers and clinical features or outcomes. However, 
4D Flow MRI has not been systematically explored in MMA.

Given the potential of 4D Flow MRI to provide detailed 
hemodynamic information, we aimed to apply this technique to MMA 
patients. Specifically, the carotid siphons, critical segments adjacent to 
the stenotic/occluded part of the ICAs in MMA, exhibit unique 
physiological flow characteristics essential to understanding disease 
pathophysiology. Their unique S-shaped geometry inherently 
generates complex helical flow patterns and flow separation, which 

predispose to pathologically low and oscillatory WSS (15, 16). These 
hemodynamic alterations create a vulnerable microenvironment that 
promotes endothelial dysfunction and atherosclerotic changes. In 
MMA, progressive morphological remodeling of the carotid siphons 
(e.g., luminal narrowing and tortuosity) further amplifies these 
disturbances, manifesting as elevated pressure drops and impaired 
cerebrovascular reserve (6, 7, 15, 17). Such hemodynamic parameters 
directly correlate with disease severity and clinical outcomes, 
providing mechanistic insights into why carotid siphon hemodynamics 
serve as critical biomarkers for assessing revascularization efficacy and 
long-term prognosis.

Therefore, we sought to investigate whether 4D Flow MRI could 
elucidate abnormal blood flow patterns through the carotid siphons. 
Furthermore, we  aimed to determine whether the hemodynamic 
parameters measured by 4D Flow MRI are useful for assessing the 
outcomes of revascularization surgery.

2 Methods

2.1 Participants

This prospective observational study enrolled 35 patients with 
MMA from July 2018 to January 2020 at West China Hospital, 
Sichuan University. The study protocol was approved by the local 
institutional review board (No. 2018-219). Inclusion criteria were as 
follows: (1) diagnosis of moyamoya disease or moyamoya syndrome 
based on DSA according to established guidelines (18); (2) no prior 
revascularization; and (3) scheduled for unilateral revascularization 
surgery at the same hospital. Patients were required to undergo head 
imaging with 4D Flow MRI, CT perfusion, and DSA at three time 
points: before revascularization (baseline), 1 week after surgery, and 
1 year after surgery (follow-up). Exclusion criteria included: (1) 
recent stroke (<3 months); (2) complete occlusion of bilateral carotid 
siphon based on DSA or 4D Flow MRI; (3) inadequate imaging 
quality; or (4) refusal of revascularization surgery. After enrollment, 
patients underwent unilateral combined revascularization surgery 
(details in Supplemental Materials). A power analysis based on our 
preliminary data from 20 patients indicated a minimum sample size 
of 26 to achieve 80% power (α = 0.05) using G*Power software 
(version 3.1.9.6, German).

2.2 Head imaging

All MRI examinations were performed by experienced 
technologists (>5 years of MRI experience) using a 3.0-T Skyra 
scanner (Siemens Medical Systems, Erlangen, Germany) with a 

Abbreviations: MMA, Moyamoya angiopathy; ICA, Internal carotid artery; WSS, 

Wall shear stress; MRI, Magnetic resonance imaging; DSA, digital subtraction 

angiography; CT, computed tomography; 4D Flow MRI, Four-dimensional flow 

magnetic resonance imaging.
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20-channel head coil. Scout imaging was initially performed to 
estimate blood flow velocity in the carotid siphons and the circle of 
Willis. The following parameters were used during Scout acquisition: 
echo time, 3.4 ms; repetition time, 21 ms; slice thickness, 6 mm; flip 
angle, 20°; field of view read, 208 mm; field of view phase, 100.0%; 
resolution matrix, 272 × 275; baseline velocity encoding, 
80–100 cm/s; and acquisition time, 65 s. Based on Scout 
measurements, an optimally personalized “velocity encoding” value 
was defined for each patient for 4D Flow MRI of the carotid siphons. 
MRI was performed using a free-breathing, peripheral pulse-gated, 
multi-shot turbo field echo sequence, with the following parameters: 
echo time, 2.7 ms; repetition time, 45 ms; slice thickness, 1 mm; slice 
gap, 0 mm; flip angle, 10°; field of view read, 200 mm; field of view 
phase, 100.0%; resolution matrix, 256 × 216; and acquisition time, 
19 min 50 s.

CT perfusion was performed using a 256-slice Revolution Apex 
scanner (GE Medical Systems, Brookfield, WI, USA) after injection of 
the contrast agent Iomeron® (Bracco, Milan, Italy) via a power injector 
at 4.5–5.0 mL/s. Imaging parameters were as follows: tube voltage, 
80 kV; tube current, 300 mA; slice thickness, 5 mm; delay after 
injection of contrast agent, 5 s; cycle time, 2 s; number of slices, 640; 
and scan time, 50–55 s.

2.3 Analysis of 4D Flow MRI

Raw data from 4D Flow MRI were imported into VesselExplorer2 
(V1.0.4.1, TSimaging Healthcare Co., Ltd., Beijing, China1). This 
software enables comprehensive analysis of 4D Flow MRI data, 
yielding key hemodynamic parameters and three-dimensionally 
dynamic visualization of blood flow patterns through streamline and 
pathline representations. Filtering thresholds were adjusted to 
maximize blood flow signal and minimize background noise. Velocity 
aliasing was minimized using anti-aliasing techniques. Following 
precise demarcation of carotid siphon segment boundaries, 
hemodynamic parameters (flow, velocity, and WSS) were 
systematically quantified within cross-sectional planes at the posterior 
siphon bend, with both mean and maximum values recorded for 
comprehensive hemodynamic profiling. WSS, which accounts for 
both circumferential and axial components, reflects the tangential 
force exerted on vascular endothelial cells by blood flow (19). All 
blood flow measurements were independently performed by an 
experienced neuroradiologist (CX) and an experienced neurosurgeon 
(YTR). Discrepancies were resolved through consultation with a 
senior neuroradiologist (SL).

2.4 Assessment of revascularization 
outcomes at follow-up

Clinical outcomes were evaluated through standardized 
preoperative and postoperative assessments conducted by experienced 
neurologists. At 1-year follow-up, clinical outcomes were evaluated 
using a three-tiered classification system: (1) “excellent” indicated 

1  http://www.tsimaging.net

complete resolution of preoperative neurological symptoms/signs 
(including dizziness, headache, limb weakness, memory impairment, 
and so on); (2) “good” referred to partial improvement with persistent 
but attenuated symptoms or signs; and (3) “poor” denoted unchanged 
or aggravated clinical manifestations compared to preoperative status. 
This evaluation combined patient self-reported symptom diaries with 
clinical examination findings, per established protocols referenced in 
prior literature (20). To ensure consistency, all assessments were 
performed blinded to imaging results, with discrepancies resolved 
through consensus discussions involving senior clinicians. This 
approach balances patient-centered outcomes with clinical objectivity 
while maintaining methodological rigor.

Imaging outcomes at 1-year follow-up were assessed 
independently by two experienced neuroradiologists (CX and MZF) 
under blinded conditions regarding clinical information. 
Discrepancies were resolved through consultation rounds with a 
senior neuroradiologist (SL). Cerebral perfusion was analyzed 
through serial CT perfusion scans (baseline vs. follow-up), quantified 
using the preinfarction staging system (21), with lower preinfarction 
stages reflecting improved perfusion. Collateral circulation was 
assessed by DSA and graded as A, B, or C using the Matsushima scale 
(Supplementary Figure S1) (22).

2.5 Statistical analysis

Data were statistically analyzed using SPSS 26.0 (IBM, Armonk, 
NY, USA), with results considered significant if associated with 
two-sided p < 0.05. Shapiro–Wilk test was performed before applying 
repeated-measures analysis of variance. Hemodynamic parameters 
in the ipsi- and contralateral carotid siphons were compared across 
three time points using repeated-measures analysis of variance for 
normally distributed data or Friedman test for non-normally 
distributed data, with Bonferroni corrections for multiple 
comparisons. Mauchly’s tests of sphericity were conducted to check 
assumptions. Parameters were also analyzed in subgroups defined by 
sex, age category (< or ≥18 years), or disease stage (categorized as 
“early” if in Suzuki stages I-II, “intermediate” if in Suzuki stages 
III-IV, or “advanced” if in Suzuki stages V-VI) (18, 23, 24). 
Associations of hemodynamic parameters with clinicodemographic 
characteristics or outcomes at follow-up were explored using 
repeated-measures analysis of variance with Bonferroni correction 
for multiple comparisons. The interclass correlation coefficient was 
used to evaluate interobserver consistency of blood 
flow measurements.

3 Results

We analyzed 35 patients (15 males; mean age, 34.3 ± 17.7 years; 
range, 6–69 years), including 10 pediatric patients (<18 years) 
(Figure  1 and Table  1). All patients underwent unilateral 
revascularization and completed 1-year postoperative follow-up. At 
follow-up, 19 patients (54.3%) achieved “excellent” clinical outcomes 
(complete resolution of preoperative symptoms), while 16 (45.7%) 
were classified as “good” (persistent but attenuated symptoms) 
(Table 2). A representative case was shown in Figure 2.
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3.1 Hemodynamic parameters via 4D Flow 
MRI

Baseline and 1-week postoperative assessments revealed that only 
velocity within contralateral carotid siphon significantly increased 
(mean: from 20.52 [15.34–28.78] cm/s to 23.70 [16.01–39.06] cm/s, 
p = 0.026; maximum: from 29.26 [19.68–38.39] cm/s to 33.22 [20.99–
50.95] cm/s, p = 0.001) (Figure  3 and Supplementary Table S1). 
However, significant reductions were observed between baseline and 
1 year postoperatively: (1) Ipsilateral siphon: Mean flow decreased from 
1.92 (0.65–3.53) mL/s to 1.31 (0.58–2.87) mL/s (p = 0.043), and 
maximum flow decreased from 2.61 (0.93–4.95) mL/s to 1.97 (0.89–
3.90) mL/s (p = 0.036); and (2) Contralateral siphon: Mean flow 
decreased from 2.87 (0.91–4.12) mL/s to 2.14 (0.81–3.78) mL/s 
(p = 0.010). Additionally, significant reductions were found between 
1 week and 1 year postoperatively: (1) Ipsilateral siphon: Maximum flow 
decreased from 2.58 (0.93–4.83) mL/s to 1.97 (0.89–3.90) mL/s 
(p = 0.036); and (2) Contralateral siphon: Mean flow decreased from 
3.29 (0.99–4.34) mL/s to 2.14 (0.81–3.78) mL/s (p = 0.001), and 
maximum flow decreased from 4.36 (1.40–5.80) mL/s to 3.06 

(0.96–5.14) mL/s (p = 0.018). Interobserver reproducibility was 
excellent for flow measurements (interclass correlation coefficient 
> 0.83).

3.2 Subgroup analyses

Hemodynamic responses varied by sex, age, and disease stage. 
Females exhibited reductions in contralateral mean/maximum flow 
from 1 week to 1 year postoperatively (mean: from 3.25 [1.11–4.02] 
mL/s to 2.12 [0.65–3.20] mL/s, p = 0.008; maximum: from 4.18 
[1.44–5.45] mL/s to 2.89 [0.97–4.51] mL/s, p = 0.013) and increases 
in contralateral maximum velocity from baseline to 1 week 
postoperatively (from 29.18 [18.28–29.23] cm/s to 31.55 [20.83–
49.18] cm/s, p = 0.013). However, no significant changes were 
observed in males (Supplementary Table S2). Adults (>18 years) 
demonstrated significant reductions in bilateral mean flow (surgical 
side: from 1.89 [0.86–4.06] mL/s to 1.48 [0.90–2.92] mL/s, p = 0.049; 
contralateral side: from 3.59 [1.00–4.50] mL/s to 3.07 [1.32–3.85] 
mL/s, p = 0.006), ipsilateral maximum flow (from 2.82 [1.30–5.65] 

FIGURE 1

Flowchart of patient selection. DSA, digital subtraction angiography.
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mL/s to 2.07 [1.33–4.04] mL/s, p = 0.033), and ipsilateral mean 
velocity (from 22.20 [15.07–30.21] cm/s to 16.19 [10.72–23.75] cm/s, 
p = 0.006), whereas pediatric patients showed no significant changes 
(Supplementary Table S3). For early-stage disease (Suzuki I-II), 
significant reductions were observed in mean/maximum ipsilateral 
flow (mean: from 4.40 [3.75–4.90] mL/s to 3.80 [2.89–4.12] mL/s, 
p = 0.034; maximum: from 5.95 [5.22–6.95] mL/s to 5.34 [3.67–5.90] 
mL/s, p = 0.034); for intermediate-stage disease (Suzuki III-IV), 
significant decreases in ipsilateral maximum flow (from 2.87 [2.08–
4.83] mL/s to 2.38 [1.72–3.90] mL/s, p = 0.045), ipsilateral mean/
maximum velocity (mean: from 22.20 [20.30–25.02] cm/s to 16.64 

[11.20–22.61] cm/s, p = 0.006; maximum: from 30.45 [26.23–34.54] 
cm/s to 24.78 [15.55–30.54] cm/s, p = 0.028), and contralateral mean 
flow (from 3.10 [1.17–3.65] mL/s to 2.05 [1.25–3.20] mL/s, p = 0.014); 
and for advanced-stage disease (Suzuki V-VI), no hemodynamic 
changes detected (Supplementary Table S4–S6).

3.3 Surgical outcomes

Hemodynamic improvements correlated with clinical and 
imaging outcomes. Ipsilateral mean/maximum flow decreased 
significantly in both “excellent” and “good” outcome groups, while 
contralateral mean/maximum flow reductions were exclusive to the 
“good” outcome group (Figure  4 and Supplementary Table S7). 
Among 23 patients with improved preinfarction staging, ipsilateral 
flow/velocity decreased significantly; no changes were observed in the 
12 patients without perfusion improvement (Figure  5 and 
Supplementary Table S8). Patients with robust collateralization 
(Matsushima grades A/B; n = 25) exhibited bilateral flow reductions, 
whereas those with poor collaterals (grade C; n = 10) showed no 
changes in flow or velocity (Figure 6 and Supplementary Table S9).

4 Discussion

Our study demonstrates that unilateral revascularization induces 
progressive, bilateral hemodynamic adaptation in MMA, with 
significant reductions in mean and maximum flow observed in both 
ipsi- and contralateral carotid siphons at 1-year follow-up. These 
changes were absent at 1 week postoperatively, suggesting delayed 
cerebrovascular remodeling rather than immediate flow redistribution. 
The association between reduced flow parameters and improved 
clinical outcomes, cerebral perfusion, and collateralization 
underscores the therapeutic relevance of these hemodynamic shifts. 
Notably, 4D Flow MRI enabled visualization of bilateral flow 
dynamics, offering mechanistic insights into revascularization efficacy 
and supporting its integration into postoperative surveillance protocols.

Our observation of diminished flow characteristics within the 
bilateral carotid siphons provides compelling experimental validation 
for computational fluid dynamic simulations that previously predicted 
analogous hemodynamic patterns in these vascular segments (25). 
The bilateral hemodynamic effects of unilateral revascularization 
likely reflect interconnected cerebrovascular adaptations. The circle of 
Willis and external carotid collateral networks, particularly the 
superficial temporal arteries, may mediate contralateral flow 
modulation, as hypothesized in computational models (25, 26). The 
persistent flow asymmetry (higher contralateral flow) at follow-up 
aligns with Suzuki stage-dependent stenosis severity where advanced 
ipsilateral occlusion necessitates complete perfusion shift to external 
carotid sources (15, 27). This compensatory mechanism may explain 
the lack of hemodynamic response in advanced-stage patients, as their 
cerebral circulation is already maximally redirected.

Subgroup analyses revealed critical age- and sex-related 
differences. Postmenopausal estrogen decline in females may reduce 
vascular adaptability, necessitating greater contralateral 
compensation (28). Conversely, children’s robust intrinsic collateral 
capacity likely delays postoperative hemodynamic adaptation (29), 
while adults derive clearer benefit from revascularization-induced 

TABLE 1  Clinicodemographic characteristics of the 35 participants at 
baseline.

Characteristics Patients (n = 35)

Age, yr 34.3 ± 17.7

Female 20 (57.1)

Hypertension 9 (25.7)

Diabetes mellitus 1 (2.9)

Current smoker 5 (14.3)

Current drinker 2 (5.7)

Presentation of moyamoya angiopathy

  Ischemic 30 (85.7)

  Hemorrhagic 5 (14.3)

Suzuki stage, surgical/contralateral side

  Early 5 (14.3)/12 (34.3)

  Intermediate 19 (54.3)/16 (45.7)

  Advanced 11 (31.4)/7 (20.0)

Preinfarction stage, surgical/contralateral side

  0 0 (0)/1 (2.9)

  I 10 (28.6)/20 (57.1)

  II 10 (28.6)/2 (5.7)

  III 3 (8.6)/1 (2.9)

  IV 12 (34.3)/11 (31.4)

Values are n (%) or mean ± SD.

TABLE 2  Outcomes of the 35 participants at 1-year follow-up.

Outcomes Patients (n = 35)

Clinical condition

  Excellent 19 (54.3)

  Good 16 (45.7)

  Poor 0 (0)

Cerebral perfusion

  Better than at baseline 23 (65.7)

  Not better than at baseline 12 (34.3)

Matsushima grade of collateralization

  A 12 (34.3)

  B 13 (37.1)

  C 10 (28.6)

Values are n (%).
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external carotid augmentation. These findings suggest that surgical 
timing and laterality should be individualized based on age, sex, and 
disease stage. Our analysis reveals a significant correlation between 
reduced mean and maximum flow in both ipsi- and contralateral 
carotid siphons and concurrent improvements in clinical status, 
cerebral perfusion, and adaptive intracranial vascular remodeling. 
Prior investigations with limited cohort sizes have identified 
associations between revascularization outcomes and alternate 
hemodynamic indicators, such as pressure gradients or posterior 
communicating artery flow dynamics (6, 8, 30). However, these 
findings primarily focused on isolated parameters. Future 
multicenter studies with larger patient populations should employ 
comprehensive hemodynamic profiling to elucidate the complete 
spectrum of vascular response metrics that most robustly 
characterize cerebrovascular reactivity and surgical 
revascularization efficacy.

The stability of WSS parameters observed in our cohort aligns 
with findings from a cross-sectional analysis that similarly 

reported no significant associations between WSS and incident 
cerebrovascular events (31). This discrepancy with another studies 
demonstrating links between low WSS with ICA stenosis (5, 7) 
may reflect methodological heterogeneities in outcome 
measurement or inherent differences in hemodynamic stressors 
between vascular beds. Compensatory vascular remodeling, 
including reduced carotid siphon tortuosity (32, 33), may stabilize 
endothelial shear stress, thereby mitigating maladaptive responses 
like inflammation or platelet aggregation (8, 34–36). This 
hypothesis warrants investigation through longitudinal 
histological correlation studies.

Our findings must be  interpreted with caution given several 
methodological limitations. First, the observational study design and 
relatively small sample size inherently limit statistical generalizability. 
This necessitates replication in larger prospective cohorts with 
longitudinal follow-up. Despite these limitations, the heterogeneity 
of our sample allowed us to demonstrate differential relationships 
between hemodynamic parameters and outcomes in different patient 

FIGURE 2

Example of the determination of hemodynamic parameters in the carotid siphons of a 31-year-old woman with moyamoya angiopathy who 
underwent left-side revascularization. (A) Raw 4D Flow MRI. (B) Pathline visualization of the bilateral carotid siphons. (C) Hemodynamic parameters 
included mean flow and mean velocity through the bilateral carotid siphons at different time points within one cardiac cycle before revascularization 
(baseline), 1 week after surgery, or 1 year after surgery (follow-up).
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subgroups. Second, 4D Flow MRI’s limited spatial resolution (e.g., 
inability to assess vessels <1 mm) and potential motion artifacts may 
have influenced hemodynamic measurement. Nevertheless, our 
results substantiate the prognostic utility of this imaging modality in 
cerebrovascular disease characterization, underscoring the clinical 
imperative to advance technical development priorities. To fully 
realize its diagnostic potential in multicenter clinical trials, future 
research must emphasize the development of enhanced spatial 
resolution, accelerated acquisition protocols, and automated post-
processing pipelines (37). While the VesselExplorer2 software lacks 
direct pressure computation capabilities, our approach aligns with 
fluid dynamics principles: future studies will integrate the acquired 
velocity fields and flow rates into the Navier–Stokes equations to 
computationally derive pressure distributions. Such integration 
would advance mechanistic understanding of how flow alterations 
translate into vascular stress and surgical outcome predictors, 
bridging a key gap in current MMA hemodynamic 
assessment paradigms.

5 Conclusion

This study establishes 4D Flow MRI as a powerful tool for 
monitoring long-term hemodynamic changes after MMA 
revascularization. The bilateral flow reductions observed at 1 year 
correlate with improved clinical and perfusion outcomes, supporting 
the technique’s use in evaluating surgical efficacy and guiding 
personalized management strategies. While WSS stability requires 
further investigation, our findings collectively advocate for integrating 
advanced hemodynamic imaging into MMA care pathways to 
optimize therapeutic decision-making.
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FIGURE 4

Variation in hemodynamic parameters in (A) ipsilateral or (B) contralateral carotid siphons in subsets of patients who were in “excellent” clinical 
condition (red) or “good” condition (blue) at follow-up (see Methods). Flowmean, mean flow; Flowmax, maximum flow; Vmean, mean velocity; Vmax, 
maximum velocity; WSSmean, mean wall shear stress on vascular endothelium; WSSmax, maximum wall shear stress on vascular endothelium.
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FIGURE 5

Variation in hemodynamic parameters in (A) ipsilateral or (B) contralateral carotid siphons in subsets of patients who showed improved cerebral 
perfusion (light purple) or not (light blue) at follow-up. Flowmean, mean flow; Flowmax, maximum flow; Vmean, mean velocity; Vmax, maximum velocity; 
WSSmean, mean wall shear stress on vascular endothelium; WSSmax, maximum wall shear stress on vascular endothelium.
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FIGURE 6

Variation in hemodynamic parameters in (A) ipsilateral or (B) contralateral carotid siphons in subsets of patients who showed postoperative 
collateralization of grade A (light yellow), grade B (yellow), or grade C (dark yellow) at follow-up. Flowmean, mean flow; Flowmax, maximum flow; Vmean, 
mean velocity; Vmax, maximum velocity; WSSmean, mean wall shear stress on vascular endothelium; WSSmax, maximum wall shear stress on vascular 
endothelium.
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