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Objective: To explore and compare the effectiveness of various non-invasive 
brain stimulations (NiBS) on poststroke lower extremity disorders.
Methods: We searched for and gathered studies from Embase, PubMed, Web 
of Science, and Cochrane databases, with the most recent search carried out 
on 5 October 2024. All published studies meeting the eligibility criteria and 
investigating the effectiveness of NiBS in patients with poststroke lower limb 
disorders were included. A total of 29 studies involving 1,319 participants were 
reviewed. Two independent researchers extracted clinical characteristics and 
research data. Outcome measures included the Fugl–Meyer lower extremity 
scale, Barthel index, Berg balance scale (BBS), and timed up and go test. Standard 
pairwise meta-analysis results and treatment network geometry were generated 
using Stata MP version 15.0. Bayesian network analysis was conducted using R 
version 4.4.1 with the “BUGSnet” package.
Conclusion: The meta-analysis shows that low-frequency repetitive transcranial 
magnetic stimulation (LF-rTMS) and rTMS + transcranial direct current 
stimulation (tDCS) are effective neurostimulation therapies for enhancing 
poststroke lower limb motor function. Probability rankings indicate that, among 
all NiBS interventions examined, rTMS + tDCS may be  the most effective. In 
terms of body balance, intermittent theta burst stimulation (iTBS) and LF-rTMS 
improved poststroke balance, with iTBS possibly being the most effective. For 
activities of daily living, iTBS, LF-rTMS, and rTMS + tDCS demonstrated beneficial 
effects, with LF-rTMS potentially being the most effective among them.
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1 Introduction

As the population ages, the incidence of stroke continues to rise 
(1). Lower extremity dysfunction is a common post-stroke functional 
impairment. This dyskinesia persists for a long time, hindering daily 
activities, reducing muscle strength, and limiting work-related 
activities and social participation (2). Current rehabilitation 
approaches for post-stroke lower limb motor dysfunction mainly 
include repetitive task-oriented training, walking exercises, treadmill 
training, orthotics, and functional electrical stimulation (3). However, 
these traditional therapies are time-consuming and produce 
inconsistent results. Therefore, developing innovative treatment 
methods that enhance balance, walking ability, and performance of 
daily living activities is vital in stroke rehabilitation research.

Non-invasive brain stimulation (NiBS) includes emerging 
techniques used in neurorehabilitation to restore motor function 
after stroke by modulating the excitability of motor control centers 
(4). NiBS techniques include transcranial ultrasound stimulation, 
transcranial direct current stimulation (tDCS), and transcranial 
magnetic stimulation (TMS) (5). However, relatively few clinical 
studies have explored the effectiveness of transcranial ultrasound 
stimulation for poststroke motor function recovery (6). Based on 
various stimulation patterns, TMS techniques are classified into 
single-pulse TMS, dual-pulse TMS, repetitive TMS (rTMS), and the 
derived rTMS mode (theta burst stimulation, TBS) (7).

A considerable number of clinical studies have been published on 
treating poststroke lower limb movement disorders using NiBS 
techniques. These studies utilise different stimulation modes, including 
low-frequency rTMS (LF-rTMS), high-frequency rTMS (HF-rTMS), 
combined rTMS and transcranial direct current stimulation 
(rTMS + tDCS), intermittent TBS (iTBS), continuous TBS (cTBS), 
anodal tDCS (A-tDCS), dual-tDCS, and cathodal tDCS (C-tDCS). 
Reported outcomes include the Fugl–Meyer assessment for the lower 
extremity (FMA-LE), the Barthel index (BI), the Berg balance scale 
(BBS), and the timed up and go test (TUG) (8, 9). Based on these 
studies, several meta-analyses have evaluated the effectiveness of 
various NiBS therapies in treating post-stroke motor disorders (10, 11). 
Traditional meta-analyses, however, are limited to pairwise comparisons 
and cannot establish a comprehensive treatment hierarchy (network 
evidence), as their results are based on direct comparisons of relevant 
treatments. In contrast, network meta-analysis (NMA) is a relatively 
new statistical method that combines, compares, and integrates multiple 
interventions within a single analysis. Although a large number of 
traditional pairwise comparisons are needed to support such 
integration, NMA enables ranking of all interventions using both direct 
trial data and indirect evidence from cross-comparisons (12). To 
evaluate and compare the effectiveness of various NiBS treatments for 
lower extremity disorders in post-stroke patients, we  conducted a 
literature search and synthesized the available evidence in this review.

2 Methods

The study protocol was registered in PROSPERO 
(CRD42024521395) on May 20, 2024.1 We  prepared the NMA 

1  http://www.crd.york.ac.uk/prospero/

following the Preferred Reporting Items for Systematic Review and 
Meta-analysis Protocols (PRISMA-P) statement (13).

2.1 Eligibility criteria

Studies meeting the following criteria were included in the meta-
analysis: (1) participants diagnosed with lower limb paralysis after 
stroke; (2) intervention involving NiBS, including rTMS, tDCS, 
specialized modes of rTMS, and the combined use of multiple NiBS 
techniques (no relevant studies identified for other NiBS modalities); 
(3) comparison using placebo conditions, such as sham stimulation or 
blank controls; (4) outcomes measured with TUG, FMA-LE, BI, and 
BBS; and (5) research limited to randomized controlled trials (RCTs).

Studies were excluded for the following reasons: (1) recruiting 
ineligible participants, such as healthy populations or animals; (2) 
using unrelated interventions, like invasive deep brain stimulation; (3) 
having unclear stimulation patterns; (4) when research data was 
inaccessible or incomplete; (5) being published as meetings, case 
reports, or reviews; and (6) duplicate publications.

2.2 Data sources and searches

We searched for relevant literature in the following databases, with 
the last search ending on October 5, 2024: PubMed, Embase, the 
Cochrane Library, and Web of Science. The keywords, including 
MeSH terms related to the lower extremities, stroke, tDCS, and TMS, 
are listed in the Supplementary file.

2.3 Data collection and analysis

Two independent researchers (DEL and LJY) screened potentially 
relevant studies based on titles, abstracts, and full texts. In cases of 
disagreements, a third researcher was consulted to make the final 
decision. After scanning the included studies, the following 
information was extracted: publication date, author names, 
stimulation area, stroke subtype (ischemic/hemorrhagic), time of 
onset, sex, sample size, age, and adverse effects.

2.3.1 Quality assessment
We used Review Manager (version 5.4), based on the Cochrane 

risk of bias assessment tool, to assess risk of bias in RCTs across seven 
domains (14). Two independent researchers (DEL and LJY) assessed 
the studies according to these domains, which are listed in 
Supplementary file 2. To determine potential publication bias among 
the included studies, we applied Egger’s test using Stata MP (version 
15). A p-value <0.05 was considered to indicate that the results of the 
meta-analysis were unreliable (15).

2.3.2 Outcomes and effect measures
Four outcomes were used to evaluate the effectiveness of NiBS 

for poststroke lower extremity movement disorders: FMA-LE, 
TUG, BI, and BBS. For a thorough assessment of lower extremity 
motor recovery, the primary outcome was the FMA-LE, a tool 
commonly used to assess motor function in patients with stroke or 
other central nervous system diseases. This scale thoroughly 
evaluates lower limb function, with higher scores indicating better 
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recovery. Secondary outcomes included the TUG, BI, and BBS. The 
TUG is a quick assessment test that measures walking ability by 
recording the time needed to complete the test. Shorter times reflect 
better walking function. The BBS is a detailed scale used to assess 
body balance function, with higher scores indicating better balance 
performance. The BI is a widely used tool to evaluate activities of 
daily living and is mainly useful for detecting changes in 
independent living abilities of elderly individuals before and after 
treatment. Higher BI scores suggest better performance in activities 
of daily living.

For all outcomes treated as continuous variables, we set the mean 
difference (MD) as the effect size, with a 95% confidence interval (CI). 
To calculate the effect measures for continuous outcomes, the 
outcomes before and after NiBS were recorded as means and 
standard deviations.

2.3.3 Geometry of the network
Network graphs were established to visualize the characteristics of 

the included NiBS techniques and to compare them with the placebo 
group. Each node in the network graph represents an NiBS technique. 
Node size indicates the number of subjects, and the lines between 
nodes represent random comparisons between intervention measures.

2.4 Statistical analysis

2.4.1 Methods for direct treatment comparisons
Based on the results of statistical heterogeneity, we  applied a 

random-effects model to assess the direct relative effects between 
competing NiBS techniques and the placebo using Stata MP 
version 15.0.

2.4.2 Methods for indirect and mixed 
comparisons

Bayesian network analysis, based on the Markov chain Monte 
Carlo algorithm, was applied to assess the effectiveness of each 
NiBS therapy by R version 4.4.1 with the “BUGSnet” package. 
We  applied the deviance information criterion (DIC) to guide 
model selection between fixed- and random-effects approaches, 
and the model with the lower DIC was chosen to ensure a better 
fit. All NiBS techniques were ranked according to their P-scores, 
which ranged from 0 to 1. The results are shown in a surface 
under the cumulative ranking curve (SUCRA) plot. Comparison 
results are reported as MD with 95% credible intervals, presented 
in a league table.

2.4.3 Assessment of statistical heterogeneity and 
inconsistency

For standard pairwise meta-analysis, we used the I2 statistic to 
assess statistical heterogeneity, with values over 50% indicating 
significant heterogeneity. For indirect and mixed comparisons, 
inconsistencies were assessed at both global and local levels. At the 
global level, inconsistency was evaluated by calculating the DIC from 
the inconsistency model and comparing it to the consistency model. 
A difference of less than 5 between the two models was deemed 
insufficient to indicate network inconsistency. To assess local 
inconsistency, leverage plots were created, and the scatter of data 
points was examined.

3 Results

3.1 Study selection

We collected 1,683 studies from four electronic databases: 
PubMed (n = 415), Embase (n = 352), WOS (n = 618), and Cochrane 
(n = 298). Additionally, two studies were included after reviewing 
other reviews. A total of 722 duplicate studies identified using 
Endnote’s duplicate citation checker were excluded. After reading and 
screening the titles and abstracts, 925 studies were excluded. Following 
full-text review of the remaining 38 studies, we excluded nine studies 
for the following reasons: other outcomes = 7 and unavailable outcome 
data = 2. Finally, 29 studies were included in the quantitative analysis. 
The PRISMA flow diagram for study selection is shown in Figure 1.

3.2 Study characteristics

A comprehensive summary of the characteristics of the included 
studies is presented in Table 1. Of the 29 included studies, 28 were 
RCTs, except for 1 crossover trial (16). For the 29 studies involving 
1,319 participants, LF-rTMS was used in 9 studies (8, 9, 17–23), 
HF-rTMS in 4 studies (18, 24–26), bil-rTMS in 1 study (8), iTBS in 5 
studies (7, 27–30), cTBS in 1 study (8), C-tDCS in 1 study (31), 
A-tDCS in 6 studies (32–37), dual-tDCS in 4 studies (16, 38–40), and 
rTMS + tDCS in 2 studies (9, 41).

3.3 Quality assessment

Among all the 29 selected studies included, 52% reported random 
sequence generation, 86% reported allocation concealment, 86% 
implemented blinding of participants and personnel, 83% 
implemented blinding of outcome assessment, and 90% provided 
incomplete outcome data (Figures  2A,B). Egger’s test results for 
different outcomes—FMA-LE (p = 0.586), TUG (p = 0.072), BBS 
(p = 0.542), and MBI (p = 0.298)—suggested a lack of evidence of 
publication bias.

3.4 Network geometry of interventions

A network graph illustrating different NiBS treatments for 
improving lower extremity motor function is presented in Figure 3.

3.5 Synthesis of results

3.5.1 FMA-LE
The NMA of NiBS treatments for lower extremity motor recovery, 

using FMA-LE as the outcome measure, included 23 studies. Pairwise 
meta-analysis suggested that LF-rTMS (MD, 2.58; 95% CI, 1.23 to 
3.93), C-tDCS (MD, 2.00; 95% CI, 0.74 to 3.26), and dual-tDCS (MD, 
2.30; 95% CI, 1.32 to 3.28) were significantly more effective than 
placebo (Figure 4A).

Regarding the NMA results, we compared the DIC of the fixed 
and random models. The DIC of the random model was lower than 
that of the fixed model (86.88 vs. 149.77) (Figure 5A1). We chose to 
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use the random model for the NMA. The results indicated that 
LF-rTMS (MD, 2.36; 95% CI, 0.16 to 4.49) and rTMS + tDCS (MD, 
5.26; 95% CI, 0.96 to 9.50) were significantly more effective than 
placebo (Figure 6A).

The SUCRA plot ranked rTMS + tDCS as the most effective 
treatment for improving lower extremity motor function after stroke, 
followed by LF-rTMS, iTBS, A-tDCS, dual-tDCS, C-tDCS, and 
HF-rTMS (Figure 7A).

3.5.2 TUG
The NMA of NiBS treatments for improving walking function, 

using the TUG test as the outcome, included 15 studies. Pairwise 
meta-analysis suggested that no NiBS treatment was significantly 
more effective than placebo (Figure 4B).

For the NMA results, we compared the DIC of the fixed and 
random models. The DIC of the random model was lower than that 
of the fixed model (53.32 vs. 55.81) (Figure  5B1). We  used the 
random model for the NMA. Results from the NMA suggested that 
no NiBS treatment was significantly more effective than placebo 
(Figure 6B).

The SUCRA plot indicated that LF-rTMS ranked highest for 
improving walking function in stroke, followed by HF-rTMS, C-tDCS, 
iTBS, dual-tDCS, and A-tDCS (Figure 7B).

3.5.3 BBS
The NMA of NiBS treatments for enhancing body balance function, 

using the BBS as the outcome, included 11 studies. Pairwise 

meta-analysis indicated that iTBS (MD, 6.34; 95% CI, 0.97 to 11.71), 
LF-rTMS (MD, 7.06; 95% CI, 3.55 to 10.57), and HF-rTMS (MD, 5.26; 
95% CI, 3.61 to 6.90) were significantly more effective than placebo 
(Figure 4C).

For the NMA results, we compared the DIC of the fixed and 
random models. The DIC of the random model was lower than that 
of the fixed model (44.21 vs. 61.06) (Figure 5C1). We used the random 
model for the NMA. Results from the NMA showed that iTBS (MD, 
6.74; 95% CI, 1.62 to 11.25) and LF-rTMS (MD, 7.15; 95% CI, 0.96 to 
13.55) were significantly more effective than placebo (Figure 6C).

The SUCRA plot suggested that iTBS was the highest-ranked 
treatment for improving body balance function in stroke, followed by 
LF-rTMS, HF-rTMS, and A-tDCS (Figure 7C).

3.5.4 BI
The NMA of NiBS treatments for improving activities of daily 

living, using the BI as the outcome, included 13 studies. Pairwise 
meta-analysis showed that iTBS (MD, 9.48; 95% CI, 3.56 to 15.41), 
A-tDCS (MD, 11.45; 95% CI, 9.05 to 13.85), rTMS + tDCS (MD, 
11.66; 95% CI, 0.38 to 22.94), and LF-rTMS (MD, 10.10; 95% CI, 
3.07 to 17.13) were significantly more effective than placebo 
(Figure 4D).

For the NMA results, we compared the DIC values of the fixed 
and random models. The DIC of the random model was lower than 
that of the fixed model (55.26 vs. 88.36) (Figure 5D1). We selected the 
random model for the NMA. Results from the NMA indicated that 
iTBS (MD, 9.47; 95% CI, 1.43 to 17.59), LF-rTMS (MD, 10.17; 95% 

FIGURE 1

PRISMA flow diagram for study selection.
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TABLE 1  Summary of the characteristics of included studies.

Study Intervention Area of 
stimulation

Stroke 
subtype 

(ischemic/
hemorrhagic)

Time of onset 
(mean ± SD)

Sex (M/F) Sample size 
(E/C)

Age (years) 
(mean ± SD)

Outcome Adverse 
events

Zhu et al. (7) iTBS Ipsilesional 

cerebellum

8/28 56.94 ± 47.23 (days) 27/9 18/18 60.5 ± 8.15 FMA-LE, BBS, TUG, 

BI

No

Xie et al. (3) iTBS Contralesional 

cerebellum

20/16 NA 24/12 18/18 53.38 ± 7.81 FMA-LE, TUG No

Wang et al. (24) LF-rTMS Contralesional 

motor area

35/17 14.32 ± 5.82 (days) 19/33 27/25 61.34 ± 4.55 FMA-LE, BBS, BI No

Qurat-ul-ain et a. 

(23)

A-tDCS Ipsilesional motor 

area, cerebellum

44/22 14.72 ± 10.22 52/14 22/22/22 57.57 ± 5.58 TUG, BBS Both sham and real 

tDCS groups 

reported mild 

adverse events 

including headache, 

tingling, itching, and 

skin redness

Choa et al. (41) rTMS + tDCS HF-rTMS on 

ipsilesional motor 

area

tDCS on 

contralesional motor 

area

5/25 13.7 ± 5.62 (days) 17/13 15/15 59.43 ± 10.91 FMA-LE No

Duan et al. (31) C-tDCS Contralesional 

motor area

91/0 NA 41/50 46/45 66.20 ± 9.53 FMA-LE, TUG NA

Tahtis et al. (38) dual-tDCS The anode on the 

ipsilesional leg motor 

area

The cathode on the 

contralesional leg 

motor area

14/0 22.5 ± 8.70 (days) 11/3 7/7 61.85 ± 12.89 TUG No

Klomjai et al. (16) dual-tDCS The anode on the 

ipsilesional motor 

area

The cathode on the 

contralesional motor 

area

19/0 3.5 ± 2.36 (months) 14/5 NA 57.2 ± 2.8 TUG Both sham and real 

tDCS groups 

reported mild 

adverse events 

including cutaneous 

sensations, tingling, 

and mild headache

(Continued)
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TABLE 1  (Continued)

Study Intervention Area of 
stimulation

Stroke 
subtype 

(ischemic/
hemorrhagic)

Time of onset 
(mean ± SD)

Sex (M/F) Sample size 
(E/C)

Age (years) 
(mean ± SD)

Outcome Adverse 
events

Toktas e al. (33) A-tDCS Ipsilesional motor 

area

NA 7.47 ± 4.34 (months) NA 14/14 60.68 ± 9.42 FMA-LE, BBS, TUG NA

Guan et al. (24) HF-rTMS Ipsilesional motor 

area

42/0 4.3 ± 3.75 (months) 30/12 21/21 58.55 ± 10.93 FMA-LE, BI NA

Prathum et al. (39) dual tDCS A-tDCS on the 

ipsilesional motor 

area

C-tDCS on the 

contralesional motor 

area

24/0 15.92 ± 2.94 (days) 16/8 12/12 57.75 ± 3.68 FMA-LE, TUG Both sham and real 

tDCS groups 

reported mild 

adverse events 

including tingling, 

itching, burning 

sensation, and 

headache

Wang et al. (18) LF-rTMS, HF-rTMS LF-rTMS on the 

contralesional motor 

area

HF-rTMS on the 

ipsilesional motor 

area

240/0 21.33 ± 3.07 (days) 157/83 80/80/80 63.96 ± 9.89 FMA-LE, BBS, BI NA

Li et al. (8) LF-rTMS, cTBS, 

bil-rTMS

LF-rTMS on the 

contralesional motor 

area

cTBS on the right 

cerebellar 

hemisphere

71/19 3.7 ± 1.78 (months) 57/23 30/30/30 56.5 ± 7.95 BI NA

Gong et al. (9) LF-rTMS, 

rTMS + tDCS

LF-rTMS on the 

contralesional motor 

area

ctDCS on the 

contralesional motor 

area

52/18 16.49 ± 5.55 (days) 44/16 15/15/15/15 62.11 ± 13.16 FMA-LE, BI No

Lin et al. (19) LF-rTMS Contralesional 

motor area

22/10 37.05 ± 26.40 (days) 21/11 16/16 60.3 ± 11.26 FMA-LE, BI One patient reported 

dizziness, one patient 

reported tingling and 

scalp pain

(Continued)
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TABLE 1  (Continued)

Study Intervention Area of 
stimulation

Stroke 
subtype 

(ischemic/
hemorrhagic)

Time of onset 
(mean ± SD)

Sex (M/F) Sample size 
(E/C)

Age (years) 
(mean ± SD)

Outcome Adverse 
events

Yu et al. (25) HF-rTMS Left dorsolateral 

prefrontal cortex

10/8 1.18 ± 0.33 (months) 15/3 9/9 55.99 ± 12.03 FMA-LE, BBS, TUG NA

Manjia et al. (34) A-tDCS Supplementary 

motor area

17/13 142.1 ± 42.90 (days) 17/13 15/15 62.95 ± 10.40 FMA-LE, TUG NA

Sharma et al. (20) LF-rTMS Contralesional 

motor area

96/0 NA 67/29 47/49 53.85 ± 14.17 FMA-LE, BI One participant in 

the real TMS group 

reported seizure

Chang et al. (35) A-tDCS Tibialis anterior area 

of the ipsilesional 

precentral gyrus

24/0 16.3 ± 5.6 (days) NA 12/12 62.85 ± 10.61 FMA-LE, BBS NA

Aneksan et al. (40) dual-tDCS The anode on the 

ipsilesional motor 

area

The cathode on the 

contralesional motor 

area

25/0 95.52 ± 45.13 (days) 17/8 13/12 54.36 ± 12.35 TUG Both sham and real 

tDCS groups 

reported mild 

adverse events 

including tingling 

sensation, skin 

redness, and 

headache

Wanga et al. (26) HF-rTMS Tibialis anterior area 

of the ipsilesional 

precentral gyrus

6/8 29.01 ± 20.4 

(months)

11/3 8/6 54.01 ± 12.60 FMA-LE No

Ling et al. (28) iTBS Ipsilesional motor 

area, contralesional 

cerebellum

12/24 59.28 ± 48.42 (days) 26/10 12/12/12 57.5 ± 12.25 FMA-LE, BBS, BI Real iTBS group 

reported mild 

adverse events 

including headache 

and mild vertigo

Huang et al. (21) LF-rTMS Contralesional 

motor area

25/13 28.45 ± 21.78 (days) 23/15 18/20 61.67 ± 9.76 FMA-LE, TUG, BI NA

Wang et al. (22) LF-rTMS Contralesional 

motor area

NA 1.92 ± 1.17 (years) 15/9 12/12 63.94 ± 11.43 FMA-LE No

Lin et al. (29) iTBS Bilateral motor area 16/4 371.5 ± 220.33 (days) 17/13 10/10 60.95 ± 8.70 FMA-LE, BBS, TUG, 

BI

NA

(Continued)
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TABLE 1  (Continued)

Study Intervention Area of 
stimulation

Stroke 
subtype 

(ischemic/
hemorrhagic)

Time of onset 
(mean ± SD)

Sex (M/F) Sample size 
(E/C)

Age (years) 
(mean ± SD)

Outcome Adverse 
events

Bornheim et al. (36) A-tDCS Ipsilesional motor 

area

50/0 NA 33/17 25/25 62.98 ± 12.29 FMA-LE, BI Both sham and real 

tDCS groups 

reported mild 

adverse events 

including a slight 

tingling, itching, 

burning sensation, 

and slight headache

Madhavan et al. (37) A-tDCS Ipsilesional motor 

area

18/12 5.16 ± 3.95 (years) 14/16 19/21 58 ± 10.40 FMA-LE, BBS, TUG No

Koch et al. (30) iTBS Cerebellar 34/0 13.09 ± 17.19 

(months)

23/11 17/17 64 ± 11.39 BBS, BI No

Rastgoo et al. (23) LF-rTMS Ipsilesional motor 

area

15/5 28.8 ± 18.76 16/4 10/10 52.15 ± 11.36 FMA-LE, TUG No
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FIGURE 2

Assessment of the risk of bias in the included studies.

https://doi.org/10.3389/fneur.2025.1664707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al.� 10.3389/fneur.2025.1664707

Frontiers in Neurology 10 frontiersin.org

CI, 2.77 to 16.94), and rTMS + tDCS (MD, 17.17; 95% CI, 0.80 to 
32.84) were significantly more effective than placebo (Figure 6D).

The SUCRA plot indicated that LF-rTMS was the most effective 
treatment for enhancing activities of daily living in stroke patients, 
followed by iTBS, rTMS + tDCS, dual-rTMS, A-tDCS, cTBS, and 
HF-rTMS (Figure 7D).

3.6 Assessment of statistical inconsistency

To evaluate global-level consistency, we compared the DIC between 
the consistency and inconsistency models. The results indicated that the 
difference in DIC was less than 5, with the consistency model showing 
a lower DIC than the inconsistency model across all selected outcomes 
(Figure 5). For local inconsistency, the leverage plots demonstrated that 
the data points were distributed along the slanting stitch, suggesting no 

evidence of inconsistency within any loop. Overall, the statistical 
assessment revealed no indication of inconsistency within the network.

3.7 Adverse effects

Only one case of seizure occurred after rTMS (20). No severe 
adverse events related to NiBS were reported in any of the included 
studies. Some studies reported mild adverse reactions, such as 
headaches, burning sensations, slight tingling, and itching, which 
resolved quickly after treatment and caused no long-term effects.

4 Discussion

To the best of our knowledge, this study represents the first NMA 
to examine the effectiveness of NiBS on poststroke lower extremity 

FIGURE 3

Network geometry of different outcome measures. Nodes are connected by a line when treatments are directly comparable. The width of each line is 
proportional to the number of randomized controlled trials, and the size of each node is proportional to the number of patients (sample size).
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motor function. The analysis evaluated the efficacy of nine different 
NiBS treatments compared with placebo in 1319 participants with 
poststroke lower extremity disorders. For the primary outcome, 
measured using the FMA-LE, the NMA found that LF-rTMS and 
rTMS + tDCS were more effective than placebo. Pairwise meta-
analysis also indicated that LF-rTMS, C-tDCS, and dual-tDCS were 
significantly more effective than placebo. Regarding walking function, 
assessed by the TUG test, both direct and indirect evidence showed 
that no NiBS intervention was more effective than placebo. The NMA 

assessment of body balance function revealed that iTBS and LF-rTMS 
were more effective than placebo. Pairwise meta-analysis suggested 
that iTBS, LF-rTMS, and HF-rTMS exceeded placebo in effectiveness. 
For activities of daily living, evaluated using the BI, direct evidence 
indicated that iTBS, A-tDCS, rTMS + tDCS, and LF-rTMS were more 
effective than placebo. The NMA results for BI demonstrated that 
iTBS, LF-rTMS, and rTMS + tDCS outperformed placebo.

The main stimulation modes of TMS included in this study were 
LF-rTMS and iTBS. For the recovery of hand motor function during 

FIGURE 4 (Continued)

https://doi.org/10.3389/fneur.2025.1664707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al.� 10.3389/fneur.2025.1664707

Frontiers in Neurology 12 frontiersin.org

the subacute phase of stroke, existing evidence and definite efficacy 
suggest a level A recommendation for LF-rTMS (42). A meta-analysis 
confirmed the therapeutic effect of LF-rTMS on lower limb movement 
disorders after stroke (3). Our research demonstrated that the effect 
of LF-rTMS on motor function recovery, body balance, and activities 
of daily living was superior to that of placebo in poststroke patients. 
iTBS, a novel TMS mode that functions in the opposite way of 
LF-rTMS, enhances nervous system excitability. iTBS should 
be  considered a level B recommendation for treating lower-limb 
spasticity 字段 (42). Our investigation suggests that iTBS could 
improve activities of daily living and body balance in 
poststroke patients.

Regarding tDCS, previous meta-analyses and our own research 
have demonstrated its restorative effects in poststroke patients (11, 43). 
However, the number of RCTs assessing each effective tDCS mode was 

relatively small in this systematic review. Similarly, in the NMA of the 
primary outcome, although rTMS + tDCS appeared to be the most 
effective stimulation method, only two relevant RCTs were included 
(9, 41). Additional clinical studies are needed to evaluate the effects of 
tDCS in addressing lower extremity dysfunction after stroke.

To date, NiBS treatments for poststroke motor dysfunction 
mainly follow the interhemispheric inhibition model. This model 
indicates that the two hemispheres suppress each other’s excitability 
via nerve fiber bundles in the corpus callosum, maintaining a 
dynamic balance. After a stroke, the inhibitory effect of the affected 
hemisphere diminishes, disrupting this balance. The unaffected 
hemisphere then suppresses the excitability of the affected 
hemisphere through the corpus callosum, causing a decline in 
motor function (44). Nervous system excitability is affected by 
synaptic connections and efficacy, which NiBS modulates through 

FIGURE 4 (Continued)
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mechanisms tied to long-term potentiation or depression (45, 46). 
To enhance poststroke limb dysfunction, inhibitory stimulation 
should be applied to the contralesional motor area (17, 31), whereas 
excitatory NiBS stimulation should focus on the ipsilesional motor 
area (4, 26, 36). Adhering to the interhemispheric inhibition model 
(HF-rTMS on the ipsilesional motor cortex and LF-rTMS on the 
contralesional side), one study investigated how rTMS influences 
motor function and cortical activation. Compared to the sham 
group, the real rTMS group exhibited motor improvements. fMRI 
data indicated a link between motor gains and increased cortical 
excitability caused by rTMS (47). Another study showed that 
applying A-tDCS to the primary motor cortex of stroke patients 
increased connectivity within the EEG network of the ipsilesional 
motor cortex. This heightened connectivity was linked to greater 
corticospinal excitability after A-tDCS (48). Notably, our NMA 
included a rare study exploring the effects of rTMS on the left 
dorsolateral prefrontal cortex (25), a region more commonly 

targeted to enhance cognitive function or treat depression (49). For 
poststroke motor dysfunction, the dorsolateral prefrontal cortex 
was rarely used as a stimulation target. Some included studies 
explored the improvement of poststroke lower limb dysfunction by 
using NiBS on the cerebellum (7, 27, 28, 30, 32). A study 
demonstrated that, compared to sham stimulation, cerebellar iTBS 
enhanced post-stroke body balance and lower limb function, along 
with an increase in motor-evoked potential amplitudes (28) 
regulatory center for movement. During exercise, the cerebellum 
receives and integrates information from the cerebral cortex, 
muscles, and joints. Based on this mechanism, the cerebellum 
presents a feasible target for modulating motor behavior and 
treating motor impairments caused by stroke (50). A study 
investigating poststroke dysphagia suggested that bilateral 
cerebellar iTBS can effectively enhance swallowing function (51). 
In treating post-stroke upper limb spasticity, cerebellar iTBS 
enhances the effects of conventional physical therapy (52). In a 

FIGURE 4 (Continued)
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healthy population, another study found that active cerebellar 
rTMS restores swallowing accuracy and inhibitory effects caused by 
a cortical “virtual lesion” on pharyngeal motor-evoked potentials 
(53). In speech improvement, right cerebellar tDCS was found to 
significantly enhance phonemic fluency. This improvement is also 
linked to increased functional connectivity (54). Based on these 
promising findings, the cerebellum could be a crucial target for 
NiBS interventions in poststroke motor rehabilitation. However, 
more research is needed to develop a standardized approach to 
translate small-scale experimental results into a wide range of 
clinical practices (55).

Our investigation reported only one case of a severe adverse 
reaction (seizure) related to rTMS (20), Although causality between 
the seizure and rTMS treatment was not confirmed, numerous mild 
adverse events have been reported. These mainly involve skin 

sensations, are short in duration, and have no sequelae. According to 
the published TMS safety guidelines (56), seizure induction is the 
most severe acute adverse event; however, the risk of rTMS-induced 
seizures is definitely low. A review that included 41 reports published 
up to February 2020 examined TMS-induced seizures (57). Among 
these 41 reports, 13 involved healthy individuals, and 28 involved 
patients. Due to the inconsistent distribution of TMS patterns among 
the reports (19 HF-rTMS, 1 LF-rTMS, 8 single-pulse TMS, 9 deep 
TMS, 2 iTBS, 1 cTBS, and 1 unknown), it was difficult to identify a 
correlation between TMS-induced seizure and specific populations 
or TMS patterns. Regarding tDCS, our review found no severe 
adverse events and only mild adverse events similar to those of rTMS, 
with short duration and no sequelae. Previous safety guidelines have 
confirmed the safety of tDCS (58). However, given the widespread use 
of home-based tDCS devices (39), untrained application may cause 

FIGURE 4

Forest plots of network meta-analyses for different outcome measures compared with placebo.
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burns, reduced accuracy, and other complications. Professional 
guidance is necessary before use. Theoretically, the combination of 
rTMS and tDCS could raise the incidence of severe adverse events 
(59); however, our review did not report any such cases (9, 41). 

Similarly, a study involving patients with depression reported no 
serious adverse events, except for increased scalp pain when rTMS 
was applied before tDCS (60). In a healthy population, another review 
found no serious adverse events related to combined interventions 

FIGURE 5 (Continued)
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(61). In brief, there is no current evidence questioning the safety of 
the combination of tDCS and rTMS.

This study has several limitations. First, the analysis using TUG 
as the outcome measure indicated that, compared with the placebo 

group, NiBS did not appear to improve patients’ walking function. 
This result may be due to the fact that, in some of the included 
clinical studies, the baseline walking function of the experimental 
group was weaker than that of the control group (7, 29, 33). Second, 

FIGURE 5 (Continued)
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previous studies reported varying efficacies of NiBS depending on 
the stage of stroke (5). Although our review included patients at 
different stages of stroke onset, a subgroup analysis of NiBS 
treatment effects by stroke stage was not performed due to limited 

relevant research. Additionally, the NMA did not encompass all 
NiBS interventions, such as tRNS, taVNS, and tACS. There is a lack 
of suitable studies on these interventions for lower-extremity motor 
function (11, 62).

FIGURE 5 (Continued)
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FIGURE 5

Leverage plots and fit statistics for different outcome measures. DIC, deviance information criterion.
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FIGURE 6 (Continued)

https://doi.org/10.3389/fneur.2025.1664707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deng et al.� 10.3389/fneur.2025.1664707

Frontiers in Neurology 22 frontiersin.org

FIGURE 6

League table summarizing the results of the indirect comparisons of different outcome measures. Numbers in the cells denote the mean incidence risk 
rate (95% confidence interval). ** **p-value < 0.05.
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FIGURE 7 (Continued)
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FIGURE 7

Rankings of the effects of different outcomes shown with SUCRAs.
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4.1 Conclusion

The meta-analysis suggests that LF-rTMS and rTMS + tDCS are 
effective neurostimulation therapies for enhancing poststroke lower 
limb motor function. Probability ranking indicated that, among all 
the NiBS interventions analyzed, rTMS + tDCS may be  the most 
effective. Concerning body balance function, iTBS and LF-rTMS 
improved poststroke balance, with iTBS potentially being the most 
effective. For activities of daily living, iTBS, LF-rTMS, and 
rTMS + tDCS demonstrated beneficial effects, with LF-rTMS 
possibly being the most effective among them.
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