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extremity motor function in
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review and network
meta-analysis
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Objective: To explore and compare the effectiveness of various non-invasive
brain stimulations (NiBS) on poststroke lower extremity disorders.

Methods: We searched for and gathered studies from Embase, PubMed, Web
of Science, and Cochrane databases, with the most recent search carried out
on 5 October 2024. All published studies meeting the eligibility criteria and
investigating the effectiveness of NiBS in patients with poststroke lower limb
disorders were included. A total of 29 studies involving 1,319 participants were
reviewed. Two independent researchers extracted clinical characteristics and
research data. Outcome measures included the Fugl-Meyer lower extremity
scale, Barthelindex, Berg balance scale (BBS), and timed up and go test. Standard
pairwise meta-analysis results and treatment network geometry were generated
using Stata MP version 15.0. Bayesian network analysis was conducted using R
version 4.4.1 with the "BUGSnet” package.

Conclusion: The meta-analysis shows that low-frequency repetitive transcranial
magnetic stimulation (LF-rTMS) and rTMS + transcranial direct current
stimulation (tDCS) are effective neurostimulation therapies for enhancing
poststroke lower limb motor function. Probability rankings indicate that, among
all NiBS interventions examined, rTMS + tDCS may be the most effective. In
terms of body balance, intermittent theta burst stimulation (iTBS) and LF-rTMS
improved poststroke balance, with iTBS possibly being the most effective. For
activities of daily living, iTBS, LF-rTMS, and rTMS + tDCS demonstrated beneficial
effects, with LF-rTMS potentially being the most effective among them.

KEYWORDS

rTMS (repetitive transcranial magnetic stimulation), tDCS, stroke—diagnosis, lower
limb and rehabilitation, NIBS (non-invasive brain stimulation)
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1 Introduction

As the population ages, the incidence of stroke continues to rise
(1). Lower extremity dysfunction is a common post-stroke functional
impairment. This dyskinesia persists for a long time, hindering daily
activities, reducing muscle strength, and limiting work-related
activities and social participation (2). Current rehabilitation
approaches for post-stroke lower limb motor dysfunction mainly
include repetitive task-oriented training, walking exercises, treadmill
training, orthotics, and functional electrical stimulation (3). However,
these traditional therapies are time-consuming and produce
inconsistent results. Therefore, developing innovative treatment
methods that enhance balance, walking ability, and performance of
daily living activities is vital in stroke rehabilitation research.

Non-invasive brain stimulation (NiBS) includes emerging
techniques used in neurorehabilitation to restore motor function
after stroke by modulating the excitability of motor control centers
(4). NiBS techniques include transcranial ultrasound stimulation,
transcranial direct current stimulation (tDCS), and transcranial
magnetic stimulation (TMS) (5). However, relatively few clinical
studies have explored the effectiveness of transcranial ultrasound
stimulation for poststroke motor function recovery (6). Based on
various stimulation patterns, TMS techniques are classified into
single-pulse TMS, dual-pulse TMS, repetitive TMS (rTMS), and the
derived rTMS mode (theta burst stimulation, TBS) (7).

A considerable number of clinical studies have been published on
treating poststroke lower limb movement disorders using NiBS
techniques. These studies utilise different stimulation modes, including
low-frequency rTMS (LF-rTMS), high-frequency rTMS (HF-rTMS),
combined rTMS and transcranial direct current stimulation
(rTMS + tDCS), intermittent TBS (iTBS), continuous TBS (cTBS),
anodal tDCS (A-tDCS), dual-tDCS, and cathodal tDCS (C-tDCS).
Reported outcomes include the Fugl-Meyer assessment for the lower
extremity (FMA-LE), the Barthel index (BI), the Berg balance scale
(BBS), and the timed up and go test (TUG) (8, 9). Based on these
studies, several meta-analyses have evaluated the effectiveness of
various NiBS therapies in treating post-stroke motor disorders (10, 11).
Traditional meta-analyses, however, are limited to pairwise comparisons
and cannot establish a comprehensive treatment hierarchy (network
evidence), as their results are based on direct comparisons of relevant
treatments. In contrast, network meta-analysis (NMA) is a relatively
new statistical method that combines, compares, and integrates multiple
interventions within a single analysis. Although a large number of
traditional pairwise comparisons are needed to support such
integration, NMA enables ranking of all interventions using both direct
trial data and indirect evidence from cross-comparisons (12). To
evaluate and compare the effectiveness of various NiBS treatments for
lower extremity disorders in post-stroke patients, we conducted a
literature search and synthesized the available evidence in this review.

2 Methods

The study protocol was registered in PROSPERO
(CRD42024521395) on May 20, 2024." We prepared the NMA

1 http://www.crd.york.ac.uk/prospero/
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following the Preferred Reporting Items for Systematic Review and
Meta-analysis Protocols (PRISMA-P) statement (13).

2.1 Eligibility criteria

Studies meeting the following criteria were included in the meta-
analysis: (1) participants diagnosed with lower limb paralysis after
stroke; (2) intervention involving NiBS, including rTMS, tDCS,
specialized modes of rTMS, and the combined use of multiple NiBS
techniques (no relevant studies identified for other NiBS modalities);
(3) comparison using placebo conditions, such as sham stimulation or
blank controls; (4) outcomes measured with TUG, FMA-LE, BI, and
BBS; and (5) research limited to randomized controlled trials (RCTs).

Studies were excluded for the following reasons: (1) recruiting
ineligible participants, such as healthy populations or animals; (2)
using unrelated interventions, like invasive deep brain stimulation; (3)
having unclear stimulation patterns; (4) when research data was
inaccessible or incomplete; (5) being published as meetings, case
reports, or reviews; and (6) duplicate publications.

2.2 Data sources and searches

We searched for relevant literature in the following databases, with
the last search ending on October 5, 2024: PubMed, Embase, the
Cochrane Library, and Web of Science. The keywords, including
MeSH terms related to the lower extremities, stroke, tDCS, and TMS,
are listed in the Supplementary file.

2.3 Data collection and analysis

Two independent researchers (DEL and L]Y) screened potentially
relevant studies based on titles, abstracts, and full texts. In cases of
disagreements, a third researcher was consulted to make the final
decision. After scanning the included studies, the following
information was extracted: publication date, author names,
stimulation area, stroke subtype (ischemic/hemorrhagic), time of
onset, sex, sample size, age, and adverse effects.

2.3.1 Quality assessment

We used Review Manager (version 5.4), based on the Cochrane
risk of bias assessment tool, to assess risk of bias in RCTs across seven
domains (14). Two independent researchers (DEL and L]Y) assessed
the studies according to these domains, which are listed in
Supplementary file 2. To determine potential publication bias among
the included studies, we applied Egger’s test using Stata MP (version
15). A p-value <0.05 was considered to indicate that the results of the
meta-analysis were unreliable (15).

2.3.2 Outcomes and effect measures

Four outcomes were used to evaluate the effectiveness of NiBS
for poststroke lower extremity movement disorders: FMA-LE,
TUG, BI, and BBS. For a thorough assessment of lower extremity
motor recovery, the primary outcome was the FMA-LE, a tool
commonly used to assess motor function in patients with stroke or
other central nervous system diseases. This scale thoroughly
evaluates lower limb function, with higher scores indicating better

frontiersin.org


https://doi.org/10.3389/fneur.2025.1664707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.crd.york.ac.uk/prospero/

Deng et al.

recovery. Secondary outcomes included the TUG, BI, and BBS. The
TUG is a quick assessment test that measures walking ability by
recording the time needed to complete the test. Shorter times reflect
better walking function. The BBS is a detailed scale used to assess
body balance function, with higher scores indicating better balance
performance. The BI is a widely used tool to evaluate activities of
daily living and is mainly useful for detecting changes in
independent living abilities of elderly individuals before and after
treatment. Higher BI scores suggest better performance in activities
of daily living.

For all outcomes treated as continuous variables, we set the mean
difference (MD) as the effect size, with a 95% confidence interval (CI).
To calculate the effect measures for continuous outcomes, the
outcomes before and after NiBS were recorded as means and
standard deviations.

2.3.3 Geometry of the network

Network graphs were established to visualize the characteristics of
the included NiBS techniques and to compare them with the placebo
group. Each node in the network graph represents an NiBS technique.
Node size indicates the number of subjects, and the lines between
nodes represent random comparisons between intervention measures.

2.4 Statistical analysis

2.4.1 Methods for direct treatment comparisons

Based on the results of statistical heterogeneity, we applied a
random-effects model to assess the direct relative effects between
competing NiBS techniques and the placebo using Stata MP
version 15.0.

2.4.2 Methods for indirect and mixed
comparisons

Bayesian network analysis, based on the Markov chain Monte
Carlo algorithm, was applied to assess the effectiveness of each
NiBS therapy by R version 4.4.1 with the “BUGSnet” package.
We applied the deviance information criterion (DIC) to guide
model selection between fixed- and random-effects approaches,
and the model with the lower DIC was chosen to ensure a better
fit. All NiBS techniques were ranked according to their P-scores,
which ranged from 0 to 1. The results are shown in a surface
under the cumulative ranking curve (SUCRA) plot. Comparison
results are reported as MD with 95% credible intervals, presented
in a league table.

2.4.3 Assessment of statistical heterogeneity and
inconsistency

For standard pairwise meta-analysis, we used the I? statistic to
assess statistical heterogeneity, with values over 50% indicating
significant heterogeneity. For indirect and mixed comparisons,
inconsistencies were assessed at both global and local levels. At the
global level, inconsistency was evaluated by calculating the DIC from
the inconsistency model and comparing it to the consistency model.
A difference of less than 5 between the two models was deemed
insufficient to indicate network inconsistency. To assess local
inconsistency, leverage plots were created, and the scatter of data
points was examined.
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3 Results
3.1 Study selection

We collected 1,683 studies from four electronic databases:
PubMed (n = 415), Embase (n = 352), WOS (n = 618), and Cochrane
(n =298). Additionally, two studies were included after reviewing
other reviews. A total of 722 duplicate studies identified using
Endnote’s duplicate citation checker were excluded. After reading and
screening the titles and abstracts, 925 studies were excluded. Following
full-text review of the remaining 38 studies, we excluded nine studies
for the following reasons: other outcomes = 7 and unavailable outcome
data = 2. Finally, 29 studies were included in the quantitative analysis.
The PRISMA flow diagram for study selection is shown in Figure 1.

3.2 Study characteristics

A comprehensive summary of the characteristics of the included
studies is presented in Table 1. Of the 29 included studies, 28 were
RCTs, except for 1 crossover trial (16). For the 29 studies involving
1,319 participants, LE-rTMS was used in 9 studies (8, 9, 17-23),
HE-rTMS in 4 studies (18, 24-26), bil-rTMS in 1 study (8), iTBS in 5
studies (7, 27-30), ¢TBS in 1 study (8), C-tDCS in 1 study (31),
A-tDCS in 6 studies (32-37), dual-tDCS in 4 studies (16, 38-40), and
rTMS + tDCS in 2 studies (9, 41).

3.3 Quality assessment

Among all the 29 selected studies included, 52% reported random
sequence generation, 86% reported allocation concealment, 86%
implemented blinding of participants and personnel, 83%
implemented blinding of outcome assessment, and 90% provided
incomplete outcome data (Figures 2A,B). Egger’s test results for
different outcomes—FMA-LE (p = 0.586), TUG (p = 0.072), BBS
(p =0.542), and MBI (p = 0.298)—suggested a lack of evidence of
publication bias.

3.4 Network geometry of interventions

A network graph illustrating different NiBS treatments for
improving lower extremity motor function is presented in Figure 3.

3.5 Synthesis of results

3.5.1 FMA-LE

The NMA of NiBS treatments for lower extremity motor recovery,
using FMA-LE as the outcome measure, included 23 studies. Pairwise
meta-analysis suggested that LF-rTMS (MD, 2.58; 95% CI, 1.23 to
3.93), C-tDCS (MD, 2.00; 95% CI, 0.74 to 3.26), and dual-tDCS (MD,
2.30; 95% CI, 1.32 to 3.28) were significantly more effective than
placebo (Figure 4A).

Regarding the NMA results, we compared the DIC of the fixed
and random models. The DIC of the random model was lower than
that of the fixed model (86.88 vs. 149.77) (Figure 5A1). We chose to
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PRISMA flow diagram for study selection.

use the random model for the NMA. The results indicated that
LE-rTMS (MD, 2.36; 95% CI, 0.16 to 4.49) and rTMS + tDCS (MD,
5.26; 95% CI, 0.96 to 9.50) were significantly more effective than
placebo (Figure 6A).

The SUCRA plot ranked rTMS + tDCS as the most effective
treatment for improving lower extremity motor function after stroke,
followed by LF-rTMS, iTBS, A-tDCS, dual-tDCS, C-tDCS, and
HE-rTMS (Figure 7A).

3.5.2TUG

The NMA of NiBS treatments for improving walking function,
using the TUG test as the outcome, included 15 studies. Pairwise
meta-analysis suggested that no NiBS treatment was significantly
more effective than placebo (Figure 4B).

For the NMA results, we compared the DIC of the fixed and
random models. The DIC of the random model was lower than that
of the fixed model (53.32 vs. 55.81) (Figure 5B1). We used the
random model for the NMA. Results from the NMA suggested that
no NiBS treatment was significantly more effective than placebo
(Figure 6B).

The SUCRA plot indicated that LF-rTMS ranked highest for
improving walking function in stroke, followed by HF-rTMS, C-tDCS,
iTBS, dual-tDCS, and A-tDCS (Figure 7B).

3.5.3BBS
The NMA of NiBS treatments for enhancing body balance function,
using the BBS as the outcome, included 11 studies. Pairwise
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meta-analysis indicated that iTBS (MD, 6.34; 95% CI, 0.97 to 11.71),
LE-rTMS (MD, 7.06; 95% CI, 3.55 to 10.57), and HF-rTMS (MD, 5.26;
95% CI, 3.61 to 6.90) were significantly more effective than placebo
(Figure 4C).

For the NMA results, we compared the DIC of the fixed and
random models. The DIC of the random model was lower than that
of the fixed model (44.21 vs. 61.06) (Figure 5C1). We used the random
model for the NMA. Results from the NMA showed that iTBS (MD,
6.74;95% CI, 1.62 to 11.25) and LF-rTMS (MD, 7.15; 95% CI, 0.96 to
13.55) were significantly more effective than placebo (Figure 6C).

The SUCRA plot suggested that iTBS was the highest-ranked
treatment for improving body balance function in stroke, followed by
LF-rTMS, HE-rTMS, and A-tDCS (Figure 7C).

3.54 Bl

The NMA of NiBS treatments for improving activities of daily
living, using the BI as the outcome, included 13 studies. Pairwise
meta-analysis showed that iTBS (MD, 9.48; 95% CI, 3.56 to 15.41),
A-tDCS (MD, 11.45; 95% CI, 9.05 to 13.85), rTMS + tDCS (MD,
11.66; 95% CI, 0.38 to 22.94), and LF-rTMS (MD, 10.10; 95% CI,
3.07 to 17.13) were significantly more effective than placebo
(Figure 4D).

For the NMA results, we compared the DIC values of the fixed
and random models. The DIC of the random model was lower than
that of the fixed model (55.26 vs. 88.36) (Figure 5D1). We selected the
random model for the NMA. Results from the NMA indicated that
iTBS (MD, 9.47; 95% CI, 1.43 to 17.59), LE-rTMS (MD, 10.17; 95%
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TABLE 1 Summary of the characteristics of included studies.

Adverse
events

Stroke
subtype
(ischemic/
hemorrhagic)

Area of Time of onset Sex (M/F) Outcome

stimulation

Intervention Sample size Age (years)

(mean + SD)

(mean + SD) (E/C)

‘le 12 buaq

ABoj0INaN Ul s191uU0I4

S0

610" uISIa1U0L

ipsilesional motor
area

The cathode on the
contralesional motor

area

Zhu et al. (7) iTBS Ipsilesional 8/28 56.94 + 47.23 (days) 27/9 18/18 60.5 + 8.15 FMA-LE, BBS, TUG, @ No
cerebellum BI
Xieetal. (3) iTBS Contralesional 20/16 NA 24/12 18/18 53.38+7.81 FMA-LE, TUG No
cerebellum
Wang et al. (24) LE-rTMS Contralesional 35/17 14.32 + 5.82 (days) 19/33 27/25 61.34 +4.55 FMA-LE, BBS, BI No
motor area
Qurat-ul-ain et a. A-tDCS Ipsilesional motor 44/22 14.72 £10.22 52/14 22/22/22 57.57 +5.58 TUG, BBS Both sham and real
(23) area, cerebellum tDCS groups
reported mild
adverse events
including headache,
tingling, itching, and
skin redness
Choaetal. (41) rTMS + tDCS HF-rTMS on 5/25 13.7 + 5.62 (days) 17/13 15/15 59.43 +£10.91 FMA-LE No
ipsilesional motor
area
tDCS on
contralesional motor
area
Duan etal. (31) C-tDCS Contralesional 91/0 NA 41/50 46/45 66.20 £ 9.53 FMA-LE, TUG NA
motor area
Tahtis et al. (38) dual-tDCS The anode on the 14/0 22.5 + 8.70 (days) 11/3 717 61.85 +12.89 TUG No
ipsilesional leg motor
area
The cathode on the
contralesional leg
motor area
Klomjai et al. (16) dual-tDCS The anode on the 19/0 3.5 + 2.36 (months) 14/5 NA 572+28 TUG Both sham and real

tDCS groups
reported mild
adverse events
including cutaneous
sensations, tingling,
and mild headache

(Continued)
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TABLE 1 (Continued)

Intervention

Area of
stimulation

Stroke
subtype
(ischemic/
hemorrhagic)

Time of onset
(mean + SD)

Sex (M/F)

Sample size

(E/C)

Age (years)
(mean + SD)

Outcome

Adverse
events

Toktas e al. (33) A-tDCS Ipsilesional motor NA 7.47 + 4.34 (months) NA 14/14 60.68 +9.42 FMA-LE, BBS, TUG NA
area
Guan et al. (24) HF-rTMS Ipsilesional motor 42/0 4.3 + 3.75 (months) 30/12 21/21 58.55 +10.93 FMA-LE, BI NA
area
Prathum et al. (39) dual tDCS A-tDCS on the 24/0 15.92 + 2.94 (days) 16/8 12/12 57.75 + 3.68 FMA-LE, TUG Both sham and real
ipsilesional motor tDCS groups
area reported mild
C-tDCS on the adverse events
contralesional motor including tingling,
area itching, burning
sensation, and
headache
Wang et al. (18) LE-rTMS, HF-rTMS LE-rTMS on the 240/0 21.33 + 3.07 (days) 157/83 80/80/80 63.96 £ 9.89 FMA-LE, BBS, BI NA
contralesional motor
area
HE-rTMS on the
ipsilesional motor
area
Lietal. (8) LF-rTMS, cTBS, LF-rTMS on the 71/19 3.7 £ 1.78 (months) 57/23 30/30/30 56.5+7.95 BI NA
bil-rTMS contralesional motor
area
cTBS on the right
cerebellar
hemisphere
Gongetal. (9) LF-rTMS, LF-rTMS on the 52/18 16.49 + 5.55 (days) 44/16 15/15/15/15 62.11 £ 13.16 FMA-LE, BI No
rTMS + tDCS contralesional motor
area
ctDCS on the
contralesional motor
area
Lin etal. (19) LE-rTMS Contralesional 22/10 37.05 + 26.40 (days) 21/11 16/16 60.3 £ 11.26 FMA-LE, BI One patient reported
motor area dizziness, one patient

reported tingling and

scalp pain

(Continued)
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TABLE 1 (Continued)

Intervention

Area of
stimulation

Stroke
subtype
(ischemic/
hemorrhagic)

Time of onset
(mean + SD)

Sex (M/F)

Sample size
(E/C)

Age (years)
(mean + SD)

Outcome

Adverse
events

Yu et al. (25) HF-rTMS Left dorsolateral 10/8 1.18 + 0.33 (months) 15/3 9/9 55.99 +12.03 FMA-LE, BBS, TUG NA
prefrontal cortex
Manjia et al. (34) A-tDCS Supplementary 17/13 142.1 + 42.90 (days) 17/13 15/15 62.95 + 10.40 FMA-LE, TUG NA
motor area
Sharma et al. (20) LF-rTMS Contralesional 96/0 NA 67/29 47149 53.85+ 14.17 FMA-LE, BI One participant in
motor area the real TMS group
reported seizure
Chang et al. (35) A-tDCS Tibialis anterior area 24/0 16.3 + 5.6 (days) NA 12/12 62.85 +10.61 FMA-LE, BBS NA
of the ipsilesional
precentral gyrus
Aneksan et al. (40) dual-tDCS The anode on the 25/0 95.52 + 45.13 (days) 17/8 13/12 54.36 +12.35 TUG Both sham and real
ipsilesional motor tDCS groups
area reported mild
The cathode on the adverse events
contralesional motor including tingling
area sensation, skin
redness, and
headache
Wanga et al. (26) HE-rTMS Tibialis anterior area 6/8 29.01 £20.4 11/3 8/6 54.01 + 12.60 FMA-LE No
of the ipsilesional (months)
precentral gyrus
Ling et al. (28) iTBS Ipsilesional motor 12/24 59.28 + 48.42 (days) 26/10 12/12/12 57.5+12.25 FMA-LE, BBS, BI Real iTBS group
area, contralesional reported mild
cerebellum adverse events
including headache
and mild vertigo
Huang et al. (21) LF-rTMS Contralesional 25/13 28.45 + 21.78 (days) 23/15 18/20 61.67 £9.76 FMA-LE, TUG, BI NA
motor area
Wang et al. (22) LE-rTMS Contralesional NA 1.92 + 1.17 (years) 15/9 12/12 63.94+11.43 FMA-LE No
motor area
Lin etal. (29) iTBS Bilateral motor area 16/4 371.5 + 220.33 (days) 17/13 10/10 60.95 + 8.70 FMA-LE, BBS, TUG, | NA
BI
(Continued)
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TABLE 1 (Continued)

Intervention

Area of
stimulation

Stroke
subtype
(ischemic/
hemorrhagic)

Time of onset
(mean + SD)

Sex (M/F)

Sample size

(E/C)

Age (years)
(mean + SD)

Outcome

Adverse
events

Bornheim et al. (36) A-tDCS Ipsilesional motor 50/0 NA 33/17 25/25 62.98 +12.29 FMA-LE, BI Both sham and real
area tDCS groups
reported mild
adverse events
including a slight
tingling, itching,
burning sensation,
and slight headache
Madhavan et al. (37) | A-tDCS Ipsilesional motor 18/12 5.16 + 3.95 (years) 14/16 19/21 58 +10.40 FMA-LE, BBS, TUG No
area
Koch et al. (30) iTBS Cerebellar 34/0 13.09 £ 17.19 23/11 17/17 64 +11.39 BBS, BI No
(months)
Rastgoo et al. (23) LF-rTMS Ipsilesional motor 15/5 28.8 +£18.76 16/4 10/10 52.15+11.36 FMA-LE, TUG No

area
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Assessment of the risk of bias in the included studies.
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FIGURE 3

Network geometry of different outcome measures. Nodes are connected by a line when treatments are directly comparable. The width of each line is
proportional to the number of randomized controlled trials, and the size of each node is proportional to the number of patients (sample size).
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HF-rTMS

A-tDCS
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HF-rTMS

cTBS

LF-rTMS

rTMS+DCS

CI, 2.77 to 16.94), and rTMS + tDCS (MD, 17.17; 95% CI, 0.80 to
32.84) were significantly more effective than placebo (Figure 6D).

The SUCRA plot indicated that LF-rTMS was the most effective
treatment for enhancing activities of daily living in stroke patients,
followed by iTBS, rTMS + tDCS, dual-rTMS, A-tDCS, cTBS, and
HE-rTMS (Figure 7D).

3.6 Assessment of statistical inconsistency

To evaluate global-level consistency, we compared the DIC between
the consistency and inconsistency models. The results indicated that the
difference in DIC was less than 5, with the consistency model showing
alower DIC than the inconsistency model across all selected outcomes
(Figure 5). For local inconsistency, the leverage plots demonstrated that
the data points were distributed along the slanting stitch, suggesting no

Frontiers in Neurology

evidence of inconsistency within any loop. Overall, the statistical
assessment revealed no indication of inconsistency within the network.

3.7 Adverse effects

Only one case of seizure occurred after rTMS (20). No severe
adverse events related to NiBS were reported in any of the included
studies. Some studies reported mild adverse reactions, such as
headaches, burning sensations, slight tingling, and itching, which
resolved quickly after treatment and caused no long-term effects.

4 Discussion

To the best of our knowledge, this study represents the first NMA
to examine the effectiveness of NiBS on poststroke lower extremity
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motor function. The analysis evaluated the efficacy of nine different
NiBS treatments compared with placebo in 1319 participants with
poststroke lower extremity disorders. For the primary outcome,
measured using the FMA-LE, the NMA found that LF-rTMS and
rTMS + tDCS were more effective than placebo. Pairwise meta-
analysis also indicated that LF-rTMS, C-tDCS, and dual-tDCS were
significantly more effective than placebo. Regarding walking function,
assessed by the TUG test, both direct and indirect evidence showed
that no NiBS intervention was more effective than placebo. The NMA

10.3389/fneur.2025.1664707

assessment of body balance function revealed that iTBS and LF-rTMS
were more effective than placebo. Pairwise meta-analysis suggested
that iTBS, LE-rTMS, and HF-rTMS exceeded placebo in effectiveness.
For activities of daily living, evaluated using the BI, direct evidence
indicated that iTBS, A-tDCS, rTMS + tDCS, and LE-rTMS were more
effective than placebo. The NMA results for BI demonstrated that
iTBS, LF-rTMS, and rTMS + tDCS outperformed placebo.

The main stimulation modes of TMS included in this study were
LF-rTMS and iTBS. For the recovery of hand motor function during

FMA-LE
Study %
D WMD (95% CI) Weight
x
iTBS I I
zhu 2024 —_—— -0.52 (-3.96, 2.92) 3.82
Xie 2021 — 217 (-1.43,5.77) 3.68
LingYi Liao 2024 ; —— 7.92 (6.84, 9.20) 5.67
Lin 2018 4 -0.90 (-5.15, 3.35) 3.18
Subtotal {I-squared = 91.9%, p = 0.000) <i>— 2.36 (-2.78, 7.50) 16.35
& I
LFATMS !
Wang 2024 :—+— 5.1 (2.30, 7.92) 4.37
Chao Wang 2023 e 3.78 (2.49, 5.07) 5.67
Yan Gong 2020 —— 1.46 (-2.30, 5.22) 356
YenNung Lin 2015 — 1.00 (-7.36, 9.36) 1.33
Sharma 2020 —_—— 0.56 (-1.62, 2.74) 4.94
YingZu Huang 2017 -4 1.80 (-3.02, 6.62) 2.79
RayYau Wang 2012 — 1.00 (-3.81, 5.81) 2.80
Maryam Rastgoo 2016 —4- 2,14 (-2.35, 6.63) 3.01
Subtotal (I-squared = 31.8%, p = 0.174) < 2,58 (1.23, 3.93) 28.46
g 1
C-DCS |
Qian Duan 2023 —— 2,00 (0.74, 3.26) 5.69
Subtotal (l-squared = %, p =) o 2.00 (0.74, 3.26) 5.69
B I
AADCS I
Nehir Toktas 2024 —_— -0.07 (-3.01, 2.87) 4.25
Atsushi Manjia 2018 —_—— 1.20 (-2.43, 4.83) 3.66
Min Cheol Chang 2015 —— 2.10 (0.85, 3.35) 5.69
Stephen Bornheim 2019 " - 5.21(4.48,5.94) 5.99
Sangeetha Madhavan 2020 —_— -1.40 (-4.40, 1.60) 4.20
Subtotal (l-squared = 90.3%, p = 0.000) L —— 1.66 (-0.89, 4.21) 2379
) I
HF-ITMS !
YuZhou Guan 2017 —— : 0.00 (-1.49, 1.49) 552
Chao Wang 2023 —01 1.09 (0.03, 2.15) 5.82
Huixian Yu 2022 2,13 (-6.90, 11.16) 1.18
RayYau Wanga 2019 —p— 1.20 (-2.57, 4.97) 355
Subtotal (l-squared = 0.0%, p = 0.679) K> | 0.76 (-0.08, 1.60) 16.07
1
dualtDCS :
Thatchaya Prathum 2022 —— 2.30 (1.32, 3.28) 587
Sublotal (l-squared = %, p =) <> 2.30 (1.32, 3.28) 5.87
: I
TMSHDCS !
Yan Gong 2020 -f—‘— 5.13 (1.65, 8.61) 378
Subtotal (I-squared = %, p = ) e —— 5.13 (1.65, 8.61) a.78
. 1
Overall (l-squared = 85.6%, p = 0.000) <> 2.14 (1.0, 3.23) 100.00
]
NOTE: Weights are from random effects analysis 1
|
1.2 0 1.2
FIGURE 4 (Continued)
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° TUG

Study %
ID WMD (95% CI) Weight
iTBS :
Zhu 2024 —— 2.10(-8.20, 12.40) 0.57
Xie 2021 ——— -4.40 (-12.25,3.45)  0.97
Lin 2018 —l— 2.30 (-7.55, 12.15)  0.62
Subtotal (I-squared = 0.0%, p = 0.474) <> -0.78 (-6.05, 4.50) 2.15

|
A1DCS :
Qurat-ul-ain 2023 — -0.63 (-6.78, 5.52) 1.56
Nehir Toktas 2024 —— 2.00 (-3.91, 7.91) 1.68
Atsushi Manjia 2018 — 310 (8.44,224) 205
Sangeetha Madhavan 2020 —— 2.30 (-1.47, 6.07) 3.94
Subtotal (I-squared = 0.0%, p = 0.392) i) 0.58 (-1.91, 3.08) 9.22
N I
C+DCS '
Qian Duan 2023 * -1.48 (-2.93, -0.03) 18.36
Subtotal (l-squared =.%,p=.) -1.48 (-2.93,-0.03) 18.36
® |
dualtDCS ||
Vassilios 2014 -3.32(-9.93, 3.29) 1.35
Wanalee Klomjai 2018 - <0.90 (-2.80, 1.00) 12.60
Thatchaya Prathum 2022 * -1.61 (-2.71,-051)  25.07
Benchaporn Aneksan 2021 * 0.28 (-0.62, 1.18) 30.01
Subtotal (I-squared = 60.8%, p = 0.054) 0 0.78 (-2.04,0.49)  69.04
2 |
HF-rTMS I
Huixian Yu 2022 — -0.41 (-8.50, 7.68) 0.91
Subtotal (I-squared = .%, p =) " 0.41(-8.50,7.68)  0.91
x |
LF-rTMS :
YingZu Huang 2017 + y -21.20 (-47.88, 5.48) 0.09
Maryam Rastgoo 2016 B 0.84 (-17.01, 15.33) 0.23
Subtotal (l-squared = 38.9%, p = 0.201) -c:t:— -8.14 (-27.28,11.00) 0.32
2 |
Overall (I-squared = 16.2%, p = 0.272) 4 0.74 (-1.52,0.04)  100.00
NOTE: Weights are from random effects analysis :

| |
-47.9 0 47.9
FIGURE 4 (Continued)

the subacute phase of stroke, existing evidence and definite efficacy
suggest a level A recommendation for LE-rTMS (42). A meta-analysis
confirmed the therapeutic effect of LF-rTMS on lower limb movement
disorders after stroke (3). Our research demonstrated that the effect
of LF-rTMS on motor function recovery, body balance, and activities
of daily living was superior to that of placebo in poststroke patients.
iTBS, a novel TMS mode that functions in the opposite way of
LE-rTMS, enhances nervous system excitability. iTBS should
be considered a level B recommendation for treating lower-limb
spasticity “F*B¢ (42). Our investigation suggests that iTBS could
improve activities of daily living and body balance in
poststroke patients.

Regarding tDCS, previous meta-analyses and our own research
have demonstrated its restorative effects in poststroke patients (11, 43).

However, the number of RCTs assessing each effective tDCS mode was
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relatively small in this systematic review. Similarly, in the NMA of the
primary outcome, although rTMS + tDCS appeared to be the most
effective stimulation method, only two relevant RCTs were included
(9, 41). Additional clinical studies are needed to evaluate the effects of
tDCS in addressing lower extremity dysfunction after stroke.

To date, NiBS treatments for poststroke motor dysfunction
mainly follow the interhemispheric inhibition model. This model
indicates that the two hemispheres suppress each other’s excitability
via nerve fiber bundles in the corpus callosum, maintaining a
dynamic balance. After a stroke, the inhibitory effect of the affected
hemisphere diminishes, disrupting this balance. The unaffected
hemisphere then suppresses the excitability of the affected
hemisphere through the corpus callosum, causing a decline in
motor function (44). Nervous system excitability is affected by
synaptic connections and efficacy, which NiBS modulates through
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C
BBS
Study %
ID WMD (95% Cl) Weight
1
iTBS i
1
Zhu 2024 ~— 2.89(-3.89,9.67) 5.39
Ling-Yi Liao 2024 : —— 1256(9.72,15.40) 9.49
Lin, L. F 2018 —_— -0.40 (-4.81,4.01) 7.73
Giacomo Koch 2018 | —— 8.70 (6.26, 11.14)  9.92
Subtotal (I-squared = 88.5%, p = 0.000) <;> 6.34 (0.97,11.71) 3253
. 1
LF-TMS i
Wang 2024 | —— 9.17 (5.91,12.43) 9.04
Chao Wang 2023 - 5.54 (4.00,7.08)  10.72
Subtotal (I-squared = 74.3%, p = 0.048) - 7.06 (3.55,10.57) 19.76
" I
A1DCS :
Qurat-ul-ain 2023 - 1.91(-0.99,4.81) 9.43
Nehir Toktas 2024 —_—— 2.35(-2.63,7.33)  7.10
Min Cheol Chang 2015 —1— 1.80(-1.88,5.48)  8.56
Sangeetha Madhavan 2020 —— : 0.10(-2.79,2.99) 9.44
Subtotal (I-squared =0.0%, p =0.784) '<> 1 1.32 (-0.36,3.01) 34.54
1
. 1
HF-rTMS :
Chao Wang 2023 - 5.25(3.59,6.91)  10.63
Huixian Yu 2022 - 558 (-6.43,17.59) 254
Subtotal (I-squared = 0.0%, p = 0.957) <:> 5.26 (3.61,6.90)  13.17
. 1
Overall (I-squared = 83.7%, p =0.000) - 481(2.64,699)  100.00
1
NOTE: Weights are from random effects analysis :
T T

-17.6

FIGURE 4 (Continued)

17.6

mechanisms tied to long-term potentiation or depression (45, 46).
To enhance poststroke limb dysfunction, inhibitory stimulation
should be applied to the contralesional motor area (17, 31), whereas
excitatory NiBS stimulation should focus on the ipsilesional motor
area (4, 26, 36). Adhering to the interhemispheric inhibition model
(HF-rTMS on the ipsilesional motor cortex and LF-rTMS on the
contralesional side), one study investigated how rTMS influences
motor function and cortical activation. Compared to the sham
group, the real rTMS group exhibited motor improvements. fMRI
data indicated a link between motor gains and increased cortical
excitability caused by rTMS (47). Another study showed that
applying A-tDCS to the primary motor cortex of stroke patients
increased connectivity within the EEG network of the ipsilesional
motor cortex. This heightened connectivity was linked to greater
corticospinal excitability after A-tDCS (48). Notably, our NMA
included a rare study exploring the effects of rTMS on the left
dorsolateral prefrontal cortex (25), a region more commonly
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targeted to enhance cognitive function or treat depression (49). For
poststroke motor dysfunction, the dorsolateral prefrontal cortex
was rarely used as a stimulation target. Some included studies
explored the improvement of poststroke lower limb dysfunction by
using NiBS on the cerebellum (7, 27, 28, 30, 32). A study
demonstrated that, compared to sham stimulation, cerebellar iTBS
enhanced post-stroke body balance and lower limb function, along
with an increase in motor-evoked potential amplitudes (28)
regulatory center for movement. During exercise, the cerebellum
receives and integrates information from the cerebral cortex,
muscles, and joints. Based on this mechanism, the cerebellum
presents a feasible target for modulating motor behavior and
treating motor impairments caused by stroke (50). A study
investigating poststroke dysphagia suggested that bilateral
cerebellar iTBS can effectively enhance swallowing function (51).
In treating post-stroke upper limb spasticity, cerebellar iTBS
enhances the effects of conventional physical therapy (52). In a
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I
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Chao Wang 2023 — : 4.30 (0.69, 7.91) 9.14

Subtotal (l-squared = 7.6%, p = 0.298) < 3.24(-0.03,6.52) 16.84
I
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Yan Gong 2020 —e- 11.66 (0.38, 22.94) 4.69

Subtotal (I-squared = .%, p = .) = e 11.66 (0.38, 22.94) 4.69
I

£ I

A-tDCS !

Stephen Bornheim 2019 :-4- 11.45 (9.05, 13.85) 9.72

Subtotal (I-squared = .%, p =.) :<> 11.45 (9.05, 13.85) 9.72

. 1

Overall (I-squared = 82.5%, p = 0.000) <> 9.01(5.68, 12.33)  100.00

NOTE: Weights are from random effects analysis )

| |
-28.8 0 28.8
FIGURE 4
Forest plots of network meta-analyses for different outcome measures compared with placebo.

healthy population, another study found that active cerebellar
r'TMS restores swallowing accuracy and inhibitory effects caused by
a cortical “virtual lesion” on pharyngeal motor-evoked potentials
(53). In speech improvement, right cerebellar tDCS was found to
significantly enhance phonemic fluency. This improvement is also
linked to increased functional connectivity (54). Based on these
promising findings, the cerebellum could be a crucial target for
NiBS interventions in poststroke motor rehabilitation. However,
more research is needed to develop a standardized approach to
translate small-scale experimental results into a wide range of
clinical practices (55).

Our investigation reported only one case of a severe adverse
reaction (seizure) related to rTMS (20), Although causality between
the seizure and rTMS treatment was not confirmed, numerous mild
adverse events have been reported. These mainly involve skin
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sensations, are short in duration, and have no sequelae. According to
the published TMS safety guidelines (56), seizure induction is the
most severe acute adverse event; however, the risk of rTMS-induced
seizures is definitely low. A review that included 41 reports published
up to February 2020 examined TMS-induced seizures (57). Among
these 41 reports, 13 involved healthy individuals, and 28 involved
patients. Due to the inconsistent distribution of TMS patterns among
the reports (19 HF-rTMS, 1 LE-rTMS, 8 single-pulse TMS, 9 deep
TMS, 2 iTBS, 1 cTBS, and 1 unknown), it was difficult to identify a
correlation between TMS-induced seizure and specific populations
or TMS patterns. Regarding tDCS, our review found no severe
adverse events and only mild adverse events similar to those of rTMS,
with short duration and no sequelae. Previous safety guidelines have
confirmed the safety of tDCS (58). However, given the widespread use
of home-based tDCS devices (39), untrained application may cause
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burns, reduced accuracy, and other complications. Professional
guidance is necessary before use. Theoretically, the combination of
rTMS and tDCS could raise the incidence of severe adverse events
(59); however, our review did not report any such cases (9, 41).
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Similarly, a study involving patients with depression reported no
serious adverse events, except for increased scalp pain when rTMS
was applied before tDCS (60). In a healthy population, another review
found no serious adverse events related to combined interventions
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(61). In brief, there is no current evidence questioning the safety of
the combination of tDCS and rTMS.

This study has several limitations. First, the analysis using TUG
as the outcome measure indicated that, compared with the placebo
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group, NiBS did not appear to improve patients’ walking function.
This result may be due to the fact that, in some of the included
clinical studies, the baseline walking function of the experimental
group was weaker than that of the control group (7, 29, 33). Second,
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previous studies reported varying efficacies of NiBS depending on
the stage of stroke (5). Although our review included patients at
different stages of stroke onset, a subgroup analysis of NiBS
treatment effects by stroke stage was not performed due to limited

Frontiers in Neurology

relevant research. Additionally, the NMA did not encompass all
NiBS interventions, such as tRNS, taVNS, and tACS. There is a lack
of suitable studies on these interventions for lower-extremity motor
function (11, 62).
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4.1 Conclusion

The meta-analysis suggests that LF-rTMS and rTMS + tDCS are
effective neurostimulation therapies for enhancing poststroke lower
limb motor function. Probability ranking indicated that, among all
the NiBS interventions analyzed, rTMS + tDCS may be the most
effective. Concerning body balance function, iTBS and LF-rTMS
improved poststroke balance, with iTBS potentially being the most
effective. For activities of daily living, iTBS, LF-rTMS, and
rTMS + tDCS demonstrated beneficial effects, with LF-rTMS
possibly being the most effective among them.
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