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Background: Early neurological improvement (ENI) is a critical prognostic
indicator for acute ischemic stroke (AIS) patients undergoing intravenous
thrombolysis with recombinant tissue plasminogen activator (rt-PA). This
study aimed to develop and validate a machine learning (ML)-based model for
predicting ENI using clinical and biochemical data.

Methods: Clinical data from 217 AIS patients (97 ENI, 120 non-ENI) were
retrospectively analyzed. Significant baseline differences were identified between
groups, including hemorrhage, onset-to-needle time (ONT), neutrophil-to-
lymphocyte ratio (NLR), weight, and activated partial thromboplastin time (APTT).
Four ML algorithms, including Multilayer Perceptron (MLP), Random Forest
(RF), Support Vector Machine (SVM), and XGBoost, were implemented. Model
performance was evaluated via area under the receiver operating characteristic
curve (AUC). Key predictors were identified by intersecting top-ranked features
from all algorithms, followed by logistic regression modeling and nomogram
visualization.

Results: The MLP model achieved the highest AUC (0.77) in the testing set,
outperforming RF (0.72), SVYM (0.63), and XGBoost (0.68). Six overlapping
parameters, including APTT, ALT/AST ratio, ONT, mean corpuscular hemoglobin
concentration (MCHC), weight, and NLR, were selected as core predictors. The
logistic regression model incorporating these parameters yielded an AUC of
0.74, while the nomogram demonstrated that the predictive model exhibited
strong discriminative ability (C-index: 0.817) for predicting ENI in rt-PA-treated
AlS patients.

Conclusion: This ML-based model effectively predicts ENI in rt-PA-treated AIS
patients by integrating critical clinical and biochemical markers. Its application
may optimize personalized treatment strategies, enhance clinical decision-
making, and improve patient outcomes.
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Introduction

In recent years, the administration of recombinant tissue
plasminogen activator (rt-PA) for intravenous thrombolysis has
become a cornerstone in the acute management of ischemic stroke (1).
Numerous studies have highlighted the importance of early
neurological improvement (ENI) as a predictor of long-term outcomes
and functional independence (2, 3). Research has shown that patients
who exhibit rapid improvement in their neurological status within the
first few hours post-treatment are more likely to achieve favorable
outcomes (4). The mechanisms underlying ENI are complex and
multifactorial, involving reperfusion of ischemic but viable brain
tissue, reduction of infarct size, and preservation of the blood-brain
barrier (5, 6). Moreover, several blood biomarkers are being explored
to identify patients most likely to benefit from rt-PA and to predict
early response to treatment.

Machine learning (ML) algorithms have emerged as powerful tools
in the construction of predictive models for adverse events following
acute ischemic stroke (AIS), offering significant advantages over
traditional statistical approaches (7, 8). By leveraging complex,
non-linear relationships within large and diverse datasets, ML algorithms
can identify subtle patterns and risk factors that may not be apparent
through conventional analysis, thereby enhancing the accuracy and
robustness of prediction. Techniques such as logistic regression, decision
trees (DT), random forests (RF), support vector machines (SVM), and
neural networks have been applied to forecast complications like
hemorrhagic transformation, recurrent stroke, and mortality (9-11).
The use of ML also supports real-time predictions and personalized
medicine, enabling timely interventions to mitigate adverse outcomes.

To date, several studies reported machine-learning based
prediction of future outcome in stroke patients. For instance, Wen et al.
(12) reported that the model constructed by two machine-learning
served as robust tools for predicting early neurological deterioration
in acute ischemic stroke patients following thrombolysis. Moreover,
Fan et al. (13) used four ML methods to screen and recombine the
features for construction of prognostic model, and found that this
model offers improved prediction accuracy that may reduce rates of
misdiagnosis and missed diagnosis in patients with AIS. Regarding
ENI in AIS patients undergoing rt-PA treatment, although three
studies (14-16) revealed that several clinical indexes, such as diabetes
mellitus history, kynurenic acid and kynurenine aminotransferase
were associated with the ENI, no studies using ML algorithms to
construct predictive model for ENT in AIS patients undergoing rt-PA
treatment. In addition, these previous models largely rely on a limited
number of variables and traditional statistical methods (e.g., logistic
regression), which may not adequately capture the complex, non-linear
relationships among multiple prognostic factors. Therefore, our study
addresses this gap by incorporating a comprehensive set of clinical,
laboratory variables and applying multiple ML algorithms to better
model these interactions, thereby enhancing predictive accuracy.

Methods
Patient selection

The study adhered to the Declaration of Helsinki and was
approved by the Ethics Committee of our hospital. A retrospective
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analysis was conducted on 266 patients with AIS who underwent
rt-PA intravenous thrombolysis (IVT) at our hospital’s Stroke Center
between June 1, 2020, and November 30, 2024. Inclusion criteria were
as follows: individuals aged >18 years with a confirmed diagnosis of
AIS based on CT or MRI, who received IVT within 4.5 h of stroke
onset. Patients were excluded if they received bridging endovascular
treatment after IVT, had incomplete clinical or laboratory data, or
were discharged or deceased within 24 h. After excluding 25 patients
who underwent bridging artery thrombectomy, 19 with incomplete
clinical data, and 5 who were beyond the 4.5-h thrombolysis time
window, a total of 217 patients who received rt-PA IVT were included
in the study. The flow chart for patient selection is shown in Figure 1.

Collection of clinical data and definition of
ENI

Clinical data were collected for each patient, including
demographics (age, gender, height, weight, and BMI), comorbidities,
the rt-PA Dosage (0.9 or 0.6 mg/kg), baseline NTHSS score, medication
history, and initial laboratory tests (blood routine examination,
biochemical examination, liver function test, coagulation test, renal
function test, electrolyte test, and lipid test). We also calculated
inflammatory cell ratios: NLR (neutrophil-to-lymphocyte ratio), PLR
(platelet-to-lymphocyte ratio), and LMR (lymphocyte-to-monocyte
ratio). ENI was defined as an NIHSS score decrease of >4 points
within 24 h of hospitalization or complete recovery within 24 h (17).

Variable selection and establishment of
machine learning models

Study participants were randomly divided into training (80%) and
testing (20%) sets. Clinical data were standardized, and four ML
algorithms—Multilayer Perceptron (MLP), Random Forest (RF),

Patients with AIS underwent IVT
(N=266)

Bridging artery thrombectomy
=25

)
)
)

Missing data
(N=19)

Beyond the time window
(N=5)

L1

Patients included
(N=217)

ENI
(N=97)

Non-ENI
(N=120)

FIGURE 1
Flow chart of the study population.
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Support Vector Machine (SVM), and XGBoost—were applied to
construct predictive models for ENI and screen key parameters using
the clinical data. A total of 68 clinical and laboratory variables were
included in the initial ML screening phase, including both raw
measurements and derived ratios (such as NLR, PLR, ALT/AST).
Although some variables were biologically or mathematically related,
they were retained in the initial screening to avoid premature
exclusion of potentially informative features. The performance of the
models was quantitatively evaluated using receiver operating
characteristic (ROC) curves, with the area under the curve (AUC)
serving as the primary metric. The selected clinical indicators were
then integrated into a logistic regression classification algorithm. A
nomogram was generated to visualize the predictive value of
each parameter.

For data preprocessing, the missing data were handled using
multiple imputation by chained equations (MICE), and outliers were
identified using the interquartile ranges (IQRs) method and
winsorized where appropriate. Continuous variables were
standardized using z-score normalization prior to model training. A
grid search with 5-fold cross-validation was used to optimize key
parameters for each ML algorithm. The optimal parameters were
selected based on the highest cross-validated AUC value. The SHapley
Additive exPlanations (SHAP) Python package (version 0.40.0) was
used to measure the effects of the parameters on the predictive model,
assessing feature importance using a game-theoretic approach.

To mitigate overfitting due to high dimensionality, we employed
a conservative feature selection strategy by intersecting the top 20
features ranked by each of the four ML algorithms, resulting in a final

set of 6 variables for logistic regression modeling.

Statistical analysis

Statistical analyses were conducted using R software (version
4.2.2). Continuous variables were presented as mean + standard
deviation (SD) or IQRs, while categorical variables were expressed as
percentages (n, %). Continuous variables were assessed using t-tests
or non-parametric Mann-Whitney U tests, as appropriate, while
chi-square tests were used for categorical variables to compare
baseline characteristics between the ENI and non-ENIT groups. To
assess potential multicollinearity among the final set of six predictors,
we computed the Variance Inflation Factor (VIF) for each variable in
the logistic regression model. Significant differences were considered
atp < 0.05.

Results

Comparison of clinical data between ENI
and non-ENI patients

Table 1 summarizes the baseline characteristics of both groups.
The study included 217 patients were divided into ENI group (1 = 97)
and non-ENI group (n=120) based on the achievement of
ENI. Baseline characteristics comparison revealed that ENI group
patients were younger (mean age 62 vs. 67.5 years) with a higher
proportion of males (74.2% vs. 66.7%). There was significantly shorter
onset-to-treatment time in ENT group compared with non-ENI group
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(150 vs. 174 min). Lower value of NEU (5.12 vs. 5.62), NEU% (66%
vs. 70%) and NLR (2.81 vs. 4.03). Higher LYM (0.23 vs. 0.18), LYM%
(1.73 vs. 1.52), LMR (3.16 vs. 2.48), MCV (87.99 vs. 90.39), and
Fasting GLU (5.17 vs. 5.71) were found in ENI group than in non-ENI
group (p < 0.05). However, higher value of weight (67.5 vs. 62.5), BMI
(24.51 vs. 23.25), APTT (30.9 vs. 29.7), A/G ratio (1.40 vs. 1.30), PA
(256.89 vs. 232.67), and CHE (8623.64 vs. 8,043) were found in ENI
group than in non-ENI group (p < 0.05). However, no significant
differences were found in resting indexes (p > 0.05). These findings
suggest that younger age, shorter thrombolysis time window, reduced
inflammatory status, better nutritional/metabolic condition, and
appropriate anticoagulation status may be closely associated with early
neurological improvement following intravenous thrombolysis.

Predictive value of model constructed by
four ML methods

Four ML methods (MLP, RE, SVM, and XGBoost) were used to
construct predictive models for ENI using the clinical data. The
dataset was divided into training (80%) and testing (20%) sets,
comprising 173 and 44 patients, respectively. Using default parameters,
all four ML methods demonstrated moderate predictive performance.
The AUC values for the training set were 0.83 (MLP), 0.94 (RF), 0.85
(SVM), and 0.99 (XGBoost), while those for the testing set were 0.77
(MLP), 0.72 (RF), 0.63 (SVM), and 0.68 (XGBoost) (Figure 2; Table 2).
These results indicate that MLP achieved relatively higher predictive
ability compared to the other methods.

Establishment of predictive model based
on the parameters from ML models

To refine the predictive model, we identified the top 20 parameters
from each of the four ML models and overlapped them, resulting in
six common parameters: APTT, ALT/AST, ONT, MCHC, Weight, and
NLR (Figure 3A). The VIF value for each parameter was APTT: 1.32;
ALT/AST: 1.45, ONT: 1.28, MCHC: 1.36, Weight: 1.30, and NLR: 1.41.
This conservative selection reduced the feature space from near 70-6,
yielding an events-per-variable (EPV) ratio of 16.2, which supports
model stability. A logistic regression model was then constructed
using these six parameters, yielding an AUC value of 0.74 (Figure 3B),
which indicates moderate predictive performance. A nomogram was
developed to visualize the predictive value of the model relative to the
six parameters (Figure 3C), demonstrating that the composite model
outperformed individual parameters in predicting ENI, with a
bootstrap-corrected C-index of 0.817. these results suggesting that this
model show good predictive accuracy for ENI in rt-PA-treated AIS
patients. The sensitivity, specificity, PPV, NPV at optimal threshold
were listed in Table 3.

SHAP analysis for the model

The SHAP analysis elucidated the direction and relative
importance of predictive factors influencing ENT after thrombolysis,
Figure 4 listed the SHAP summary plot of the top 10 features of the
RF model. Among all models evaluated, APTT emerged as the most
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TABLE 1 Comparison of clinical data between ENI and non-ENI patients.

10.3389/fneur.2025.1662498

Variables Total ENI (N = 97) Non-ENI (N = 120) P-value
Demographics
Age, years 64.0 +12.9 62.0 (54.0-71.0) 67.5 (58.0-75.0) 0.050
Gender 0.289
Female 65 (30.0%) 25 (25.8%) 40 (33.3%)
Male 152 (70.0%) 72 (74.2%) 80 (66.7%)
Physiological characteristics or status
Height, cm 163.9 £10.5 167.0 (158.0-170.0) 165.0 (160.0-170.0) 0.224
Weight, kg 65.7 + 14.1 67.50 (60.0-75.0) 62.50 (55.0-70.0) 0.017
BMI, kg/m? 2574248 24.51 (22.38-26.78) 23.25 (21.12-25.87) 0.015
Smoking 104 (47.9%) 53 (54.6%) 51 (42.5%) 0.100
Drinking 90 (41.5%) 40 (41.2%) 50 (41.7%) 1.000
Pre systolic 151.7 £22.2 151.0 (138.0-164.0) 154.50 (136.0-167.0) 0.405
Pre diastolic 86.5+ 13.3 86.82 + 12.61 86.31 + 13.88 0.777
Key parameters of IVT
Baseline NTHSS 74+50 7.0 (3.0-10.0) 6.0 (4.0-10.0) 0.483
NIHSS (24 h after IVT) 49£5.0 2.0 (0.0-4.0) 5.0 (3.0-11.0) <0.01
rt-PA dosage (0.6 mg/kg) 44 (20.3%) 20 (20.6%) 24 (20%) 1.000
ONT, min 168.1 + 59.0 150.0 (113.0-193.0) 174.0 (126.50-217.0) 0.035
DNT, min 68.5+52.3 52.0 (39.0-72.0) 56.0 (37.50-89.0) 0.301
Comorbidities
Hypertension, n (%) 153 (70.5%) 62 (63.9%) 91 (75.8%) 0.078
Diabetes, n (%) 62 (28.6%) 23 (23.7%) 39 (32.5%) 0.203
Atrial Fibrillation, n (%) 21 (9.7%) 9(9.3%) 12 (10%) 1.000
intracerebral hemorrhage after 26 (12.0%) 6(6.2%) 20 (16.7%) 0.031
thrombolysis, n (%)
Baseline laboratory test
GLU, mmol/L 8.0+3.3 7.06 (6.01-8.30) 7.0 (6.20-8.59) 0.809
WBC, 10°/L 8.7+3.0 7.87 (6.77-9.29) 8.21 (6.89-9.84) 0.121
RBC, 10"%/L 4.6£0.7 4.65 (4.33-5.08) 4.46 (4.18-4.79) 0.070
HGB, g/L 130.8 £19.0 133.40 (121.0-146.0) 132.70 (117.50-144.0) 0.587
MCV, fl 87.2+9.2 87.99 (83.61-91.66) 90.39 (86.20-93.92) 0.040
MCHGC, g/L 288+3.7 29.30 (26.77-30.58) 30.27 (28.12-31.56) 0.070
PLT, 10°/L 235.8 £72.4 241.0 (189.70-286.60) 222.40 (186.80-271.50) 0.206
NEU, 10°/L 6.1+29 5.12 (3.91-6.44) 5.62 (4.48-7.71) 0.024
NEU% 0.7 £0.1 0.66 +0.11 0.70 £ 0.11 0.040
LYM, 10°/L 1.7+07 1.73 (1.35-2.24) 1.52 (1.12-1.83) 0.010
LYM% 02+0.1 0.23 (0.17-0.28) 0.18 (0.12-0.26) 0.010
MONO, 10°/L 0.6 0.2 0.59 (0.47-0.75) 0.62 (0.50-0.81) 0.129
NLR 4.6+37 2.81 (2.15-4.29) 4.03 (2.27-6.49) 0.020
PLR 161.5 £81.2 131.65 (95.06-183.45) 151.20 (116.18-204.36) 0.085
LMR 29+14 3.16 (2.12-4.11) 2.48 (1.62-3.40) <0.01
TBiL, pmol/L 127+7.1 11.20 (7.90-14.40) 11.80 (8.20-15.95) 0.487
DBIL, pmol/L 3.8+27 3.20 (2.40-4.10) 3.20 (2.30-4.80) 0.559
IBil, pmol/L 8.8+53 7.60 (5.30-10.90) 8.20 (5.70-11.70) 0.459
(Continued)
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TABLE 1 (Continued)

Variables ENI (N = 97) Non-ENI (N = 120) P-value
DB/TB ratio 0.3+0.1 0.30 (0.24-0.37) 0.29 (0.23-0.37) 0.841
TP, g/L 68.8+6.0 69.26 +5.91 68.49 +5.99 0.348
ALB, g/L 38.6+ 4.6 39.20 (36.80-42.10) 38.35 (34.90-41.15) 0.061
GLO, g/L 29.9 + 4.4 29.10 (26.50-31.60) 29.50 (26.90-33.30) 0.189
A/G ratio 13403 1.40 (1.20-1.50) 1.30 (1.10-1.45) 0.020
GGT, U/L 39.6 +53.7 26.0 (20.0-37.0) 28.0 (16.50-44.50) 0.377
TBA, pmol/L 6.7+10.7 4.10 (2.50-6.70) 3.85 (2.20-7.55) 0.905
AST, U/L 25.9+19.5 20.0 (17.0-26.0) 23.0 (18.0-28.0) 0.105
ALT, U/L 23.6+27.7 18.0 (13.0-23.0) 15.50 (12.0-26.0) 0.244
ALT/AST 14408 1.10 (0.90-1.40) 1.40 (0.90-1.90) 0.090
ALP, U/L 77.1+243 74.0 (57.0-86.0) 74.75 (61.0-91.50) 0.312
PA, mg/L 2435 +69.2 256.89 + 65.95 232.67 +70.16 0.010
CHE, U/L 8302.9 +2025.7 8623.64 + 1980.39 8043.66 + 2032.98 0.036
CREA, pmol/L 87.2+68.3 80.0 (65.0-93.0) 76.0 (65.50-96.0) 0.369
UA, pmol/L 329.7 +105.2 332.44 +97.90 327.44 +111.04 0.728
K, mmol/L 39404 3.85 (3.69-4.07) 3.84 (3.69-4.12) 0.900
Na, mmol/L 140.1 + 4.2 140.0 (138.50-141.30) 140.0 (137.15-141.90) 0912
CL, mmol/L 106.6 + 4.7 106.50 (104.4-108.60) 106.15 (104.40-108.60) 0.612
Ca, mmol/L 22+0.1 2.20 (2.12-2.28) 2.21(2.13-2.28) 0.393
Mg, mmol/L 0.8+0.1 0.83 (0.77-0.88) 0.82 (0.77-0.88) 0.742
P, mmol/L 1.0+02 1.01+0.24 0.99+0.26 0.551
APTT, s 303+3.9 30.90 (28.10-33.10) 29.70 (27.15-32.30) 0.049
PT,s 115+ 1.0 11.20 (10.80-12.0) 11.50 (10.90-12.35) 0.070
FIB, g/L 35+1.2 3.25(2.67-3.83) 3.42 (2.78-4.30) 0.109
TT, s 13.2+238 12.50 (11.50-13.70) 12.45 (11.45-14.30) 0.695
INR 1.0+0.1 0.99 (0.94-1.05) 1.01 (0.94-1.08) 0.189
PTA, % 98.6+ 14.7 100.32 + 13.83 97.20 + 15.30 0.121
T-CHO, mmol/L 48+12 4.64 (4.01-5.26) 4.77 (4.05-5.51) 0.181
TG, mmol/L 1.6+12 1.37 (1.0-1.86) 1.38 (1.06-1.86) 0.803
HDL-C, mmol/L 12403 1.13 (0.99-1.25) 1.18 (1.01-1.34) 0.107
LDL-C, mmol/L 2.9+0.9 2.75(2.25-3.52) 2.83 (2.38-3.40) 0.333
Fasting GLU, mmol/L 6.0+23 5.17 (4.69-6.08) 5.71 (4.88-6.69) 0.017
TyG index 21406 2.05 (1.67-2.35) 2.08 (1.73-2.55) 0.166

NIHSS, National Institutes of Health Stroke Scale; BMI, Body Mass Index; ON'T, Onset-to-Needle Time; DN, door to needle time; GLU, Glucose; WBC, White Blood Cell; RBC, Red Blood
Cell; HGB, Hemoglobin; MCV, Mean Corpuscular Volume; MCHC, Mean Corpuscular Hemoglobin Concentration; PLT, Platelet; NEU, Neutrophil; LYM, Lymphocyte; MONO, Monocyte;
NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; LMR, Lymphocyte-to-Monocyte Ratio; TBIL, Total Bilirubin; DBIL, Direct Bilirubin; IBil, Indirect Bilirubin; TP,
Total Protein; ALB, Albumin; GLO, Globulin; GGT, Gamma-Glutamyltransferase; TBA, Total Bile Acids; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; ALP, Alkaline
Phosphatase; PA, Prealbumin; CHE, Cholinesterase; CREA, Creatinine; UA, Uric Acid; APTT, Activated Partial Thromboplastin Time; PT, Prothrombin Time; FIB, Fibrinogen; T'T, Thrombin
Time; INR, International Normalized Ratio; PTA, Prothrombin Activity; T-CHO, Total Cholesterol; TG, Triglyceride; HDL-C, High Density Lipoprotein Cholesterol; LDL-C, Low Density

Lipoprotein Cholesterol. intracerebral hemorrhage after thrombolysis.

influential positive predictor, where higher values were consistently
associated with better ENI outcomes, suggesting that moderately
prolonged coagulation may facilitate neurorecovery post-
thrombolysis. In contrast, ALT/AST ratio and MCHC demonstrated
significant negative impacts across multiple models (MLP, RE, SVM,
XGBoost), implying that liver dysfunction and increased blood
viscosity may hinder neurological recovery. Additionally, NEU% and
age was consistently associated with poorer ENI outcomes in RF,

Frontiers in Neurology

SVM, and XGBoost models, highlighting the detrimental effects of
systemic inflammation and advanced age on prognosis. Notably, RBC
and body weight showed positive associations in certain models (e.g.,
MLP, SVM), possibly reflecting beneficial hemodynamic effects.
Conversely, ONT and fasting GLU levels were linked to unfavorable
outcomes, underscoring the importance of timely intervention and
metabolic control. In summary, APTT, ALT/AST, MCHC, NEU%,
and age were identified as the most influential predictors, with their
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TABLE 2 Predictive value of four machine learning models.

Training set (N = 173)
SVM

RF

XGBoost

Testing set (N = 44)
SVM XGBoost

RF

Accuracy 0.76 0.82 0.75 0.87 0.77 0.73 0.73 0.70

Specificty 0.79 0.89 0.78 0.92 0.75 0.75 0.79 0.83

Recall 0.71 0.75 0.72 0.81 0.80 0.70 0.65 0.55

F1-Score 0.74 0.80 0.74 0.86 0.76 0.70 0.68 0.63

AUC 0.83 0.94 0.85 0.99 0.77 0.72 0.63 0.68
Frontiers in Neurology 06 frontiersin.org


https://doi.org/10.3389/fneur.2025.1662498
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Lvetal.

10.3389/fneur.2025.1662498

A Venn Diagram of Top 20 Parameters

C B(X-m) terms
Model

B ROC Curve of Logistic Regression

1.00

o
~
o

Sensitivity
=4
3

S
N
3]

s AUC =0.74

0.001

0.00 025 0.50 0.75 1.00
1 - Specificity

APTT
ALT/AST
NLR
MCHC
ONT
Weight

Total score

-2 =1 =1

0 05 T 15

PrEN) T2 U3

FIGURE 3

parameters.

Establishment of predictive model based on the parameters from ML models. (A) Venn plot of the overlapping top 20 clinical parameters from each ML
model. (B) ROC curve of the logistic regression model using the common clinical indexes. (C) Nomogram of the predictive model and the six

05 06 077 038 0.9

TABLE 3 Sensitivity, specificity, PPV, NPV at optimal threshold.

Metric Value (95% CI)

AUC 0.77 (0.68-0.86)
Sensitivity 72.4% (58.3-83.4%)
Specificity 70.1% (58.9-79.6%)
PPV 58.3%

NPV 81.2%
Calibration slope 0.98
Hosmer-lemeshow p 0.42

directional effects providing critical insights for risk stratification and
personalized therapeutic strategies in thrombolysis management.

Discussion

Currently, limited evidence is available for the prediction of
ENI in AIS patients undergoing rt-PA treatment. The present study
conducted a comprehensive analysis by a larger sample of patients
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to identify significant differences in various clinical and
biochemical parameters between ENI and non-ENI groups. The
ENI group, consisting of 97 patients, exhibited lower levels of
Hemorrhage, ONT, MCV, NEU, NEU%, NLR, and Fasting GLU,
while higher levels of Weight, BMI, LYM, LYM%, LMR, A/G ratio,
PA, CHE, and APTT were observed compared to the non-ENI
group. These findings suggest that these indices are closely
associated with ENI, whereas resting indexes did not significantly
differ between the two groups, indicating their limited impact on
ENI development.

To further explore the predictive capacity of ML models for ENI,
we employed four ML algorithms, including MLP, RE, SSVM, and
XGBoost, using the common clinical data. By dividing the patients
into an 8:2 training-to-testing ratio, the MLP model demonstrated the
highest predictive performance with an AUC of 0.77 in the testing set,
outperforming RF (0.72), SVM (0.63), and XGBoost (0.68).
Subsequently, by intersecting the critical parameters selected by all
four ML methods, we identified six common parameters (APTT, ALT/
AST, ONT, MCHC, Weight, and NLR) that were then used to
construct a logistic regression model. This refined model achieved an
AUC of 0.74, indicating its robustness in predicting ENI. Notably, the
nomogram based on these six parameters showed a markedly
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improved predictive performance compared to individual parameters,
underscoring the value of this composite approach.

In the present study, we chose the intersection of top-ranked
features across multiple ML algorithms as our primary feature
selection strategy for several methodological and clinical reasons. This
is because different ML algorithms have distinct biases in feature
importance estimation. This consensus approach enhances
reproducibility. In addition, methods like LASSO are sensitive to
multicollinearity and may arbitrarily select one variable from a
SHAP values,

be computationally intensive and sensitive to model choice. Our

correlated  group. while interpretable, can
intersection method provides a model-agnostic consensus, reducing
dependency on any single algorithm’s output. Finally, we provide the
Venn diagram to visually justify the selection, enhancing
interpretability for clinicians.

The

pathophysiological plausibility. APTT reflects intrinsic coagulation

six predictors in our nomogram exhibit strong
pathway activity; prolonged APTT may indicate impaired clot lysis or
re-occlusion post-thrombolysis, increasing ENI risk. NLR is a well-
established marker of systemic inflammation, which exacerbates
blood-brain barrier disruption and cerebral edema after ischemic
stroke. ONT is a critical determinant of tissue viability; delays beyond
4.5 h are associated with reduced reperfusion success and higher
complication rates. ALT/AST ratio may reflect hepatic metabolic
capacity and redox state, potentially influencing drug metabolism and
oxidative stress. MCHC and weight may serve as proxies for
nutritional status and comorbidity burden, which are known to affect
stroke outcomes. Notably, we used the ALT/AST ratio rather than the
more conventionally reported AST/ALT (De Ritis) ratio. While these
ratios are mathematically reciprocal, their interpretability in predictive
modeling differs. In our machine learning framework, the ALT/AST
ratio demonstrated higher feature importance and better
discrimination for ENI compared to the AST/ALT ratio. A lower ALT/
AST ratio reflects relatively elevated AST levels, which may indicate
subclinical hepatic dysfunction, increased oxidative stress, or systemic
inflammation, the conditions known to impair neurovascular recovery
after ischemic stroke (18, 19). Emerging evidence suggests that an
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elevated De Ritis ratio (low ALT/AST) is associated with increased
infarct volume, hemorrhagic transformation, and poor functional
outcomes in AIS (18, 19). This aligns with our finding that a lower
ALT/AST ratio is negatively associated with ENI, reinforcing its role
as a biomarker of metabolic vulnerability. Furthermore, ALT is
predominantly expressed in hepatocytes, while AST is present in
multiple tissues including brain, heart, and skeletal muscle; thus, a
shift in this ratio may reflect multi-organ stress responses that
modulate post-stroke recovery (20).

At present, the clinical application of this ML-based predictive
model is substantial to the clinicians. It enables healthcare providers
to identify AIS patients who are more likely to experience ENI after
rt-PA treatment, thereby facilitating personalized care plans and
timely interventions (21, 22). By leveraging the predictive power of the
identified parameters, clinicians can optimize patient selection for
thrombolysis, enhance monitoring strategies, and potentially improve
outcomes. Moreover, the model’s ability to predict ENI may contribute
to reducing the risk of adverse events and improving resource
allocation in clinical settings (23, 24). Addition, the nomogram in our
study could be used in a clinical setting to aid in decision-making and
patient counseling. For example, clinicians can input this patient’s
specific variables, such as APTT, ALT/AST, ONT, MCHC, Weight, and
NLR, to generate a personalized probability of outcome. Suppose the
nomogram-predicted risk is 75%. This high estimated risk may
prompt earlier initiation of aggressive therapy or enrollment in a
clinical trial, whereas a predicted risk of 20% might support a strategy
of active surveillance. In patient counseling, this visual and
quantitative tool can help clinicians clearly communicate individual
risk, facilitating informed discussions about the potential benefits and
harms of different management options. Future studies should focus
on validating the model across diverse populations and integrating it
into clinical decision support systems to maximize its utility in real-
world practice.

Previously, there were studies using ML methods to construct
predictive model of stroke outcomes (25, 26), but no study using
ML methods to construct predictive model for ENI. In addition,
although some previous studies have identified several clinical
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variables associated with ENI (27, 28), to knowledge, our study was
firstly using multiple ML algorithms to construct predictive for ENI
in AIS patients undergoing rt-PA treatment. In addition, our results
revealed that this model showed a moderate predictive
performance, which was more accuracy than previous studies that
only present the variables associated with ENI. More importantly,
unlike some expensive tests, the clinical indexes used to construct
the model are common and cheap in clinical practice, thus it is easy
for the clinical doctors to construct the predictive model, and it
also did not add the addition burden on the patients. Finally, the
nomogram enables the clinician to easy distinguish the patients
with high risk of ENI. Therefore, our results hold promise for the
precision medicine approaches in AIS patients undergoing
rt-PA treatment.

To reduce the risk of overfitting of the model, our study used
multiple, complementary strategies throughout the modeling pipeline
to mitigate this risk. To reduce optimism in performance estimates,
we implemented a strict train-test split (80%: 20%) and reported
performance only on the held-out test set. The significant drop in
AUC from training (XGBoost: 0.99) to testing (0.68) clearly indicates
overfitting in some models, which is why we selected the MLP model
(AUC 0.77), the most stable performer across training and test sets, as
our primary ML model. In addition, rather than using all the variables
in the final model, we drastically reduced dimensionality by selecting
only 6 overlapping features from the top 20 of four diverse ML
algorithms. This conservative selection was designed precisely to
combat overfitting. Third, although we used a final logistic regression
model, the intersection-based feature selection acts as a form of
implicit regularization by selecting only features consistently ranked
high across multiple algorithms, reducing the inclusion of spurious
associations. Finally, the nomogram’s C-index (0.817) was bootstrap-
corrected, meaning it was adjusted for overfitting using internal
validation with 1,000 bootstrap resamples. This provides a more
realistic estimate of model performance on new data.

In our study, the VIF value of the six parameters were all less than
2 (range: 1.28-1.45), indicating no significant multicollinearity.
We note that although some original laboratory parameters (such as
AST, ALT, NEU, LYM) are biologically related, our feature selection
strategy prioritized composite indices (including ALT/AST ratio,
NLR) over individual components, thereby reducing redundancy and
enhancing model stability.

Nevertheless, our study also has many limitations. First, while
our model demonstrates acceptable discrimination and calibration
in internal validation, the retrospective design, single-center setting,
and lack of external validation limit its generalizability. Second, the
algorithm was built from the input features, and some hidden
relationships may have been ignored because unknown or neglected
features were not evaluated by physicians. Third, the patient’s long-
term prognosis results were not collected. Fourth, the ML algorithms
have its own limitation, which can suffer from overfitting, where
models perform well on training data but fail to generalize to new,
unseen data. Additionally, these methods often lack transparency,
making it difficult to interpret the decision-making process, which
can be a significant barrier in clinical applications where
explainability is crucial (29, 30). Finally, despite our efforts to
minimize overfitting, the relatively small sample size (n = 217) and
high-dimensional feature space pose a risk of overfitting, a common
challenge in clinical ML studies. Our findings require external
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validation in larger, multicenter cohorts to ensure generalizability.
Therefore, future study is warranted to verify our results and address
the above issues.

Conclusion

We developed and internally validated a machine learning-based
nomogram that shows promising performance in predicting ENI after
thrombolysis. The model, incorporating six clinically accessible
variables, may serve as a potential tool to support clinical decision-
making. However, Future research should focus on external validation
and integration of this model into clinical practice to maximize its
utility in clinical settings.
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