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Background: Early neurological improvement (ENI) is a critical prognostic 
indicator for acute ischemic stroke (AIS) patients undergoing intravenous 
thrombolysis with recombinant tissue plasminogen activator (rt-PA). This 
study aimed to develop and validate a machine learning (ML)-based model for 
predicting ENI using clinical and biochemical data.
Methods: Clinical data from 217 AIS patients (97 ENI, 120 non-ENI) were 
retrospectively analyzed. Significant baseline differences were identified between 
groups, including hemorrhage, onset-to-needle time (ONT), neutrophil-to-
lymphocyte ratio (NLR), weight, and activated partial thromboplastin time (APTT). 
Four ML algorithms, including Multilayer Perceptron (MLP), Random Forest 
(RF), Support Vector Machine (SVM), and XGBoost, were implemented. Model 
performance was evaluated via area under the receiver operating characteristic 
curve (AUC). Key predictors were identified by intersecting top-ranked features 
from all algorithms, followed by logistic regression modeling and nomogram 
visualization.
Results: The MLP model achieved the highest AUC (0.77) in the testing set, 
outperforming RF (0.72), SVM (0.63), and XGBoost (0.68). Six overlapping 
parameters, including APTT, ALT/AST ratio, ONT, mean corpuscular hemoglobin 
concentration (MCHC), weight, and NLR, were selected as core predictors. The 
logistic regression model incorporating these parameters yielded an AUC of 
0.74, while the nomogram demonstrated that the predictive model exhibited 
strong discriminative ability (C-index: 0.817) for predicting ENI in rt-PA-treated 
AIS patients.
Conclusion: This ML-based model effectively predicts ENI in rt-PA-treated AIS 
patients by integrating critical clinical and biochemical markers. Its application 
may optimize personalized treatment strategies, enhance clinical decision-
making, and improve patient outcomes.
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Introduction

In recent years, the administration of recombinant tissue 
plasminogen activator (rt-PA) for intravenous thrombolysis has 
become a cornerstone in the acute management of ischemic stroke (1). 
Numerous studies have highlighted the importance of early 
neurological improvement (ENI) as a predictor of long-term outcomes 
and functional independence (2, 3). Research has shown that patients 
who exhibit rapid improvement in their neurological status within the 
first few hours post-treatment are more likely to achieve favorable 
outcomes (4). The mechanisms underlying ENI are complex and 
multifactorial, involving reperfusion of ischemic but viable brain 
tissue, reduction of infarct size, and preservation of the blood–brain 
barrier (5, 6). Moreover, several blood biomarkers are being explored 
to identify patients most likely to benefit from rt-PA and to predict 
early response to treatment.

Machine learning (ML) algorithms have emerged as powerful tools 
in the construction of predictive models for adverse events following 
acute ischemic stroke (AIS), offering significant advantages over 
traditional statistical approaches (7, 8). By leveraging complex, 
non-linear relationships within large and diverse datasets, ML algorithms 
can identify subtle patterns and risk factors that may not be apparent 
through conventional analysis, thereby enhancing the accuracy and 
robustness of prediction. Techniques such as logistic regression, decision 
trees (DT), random forests (RF), support vector machines (SVM), and 
neural networks have been applied to forecast complications like 
hemorrhagic transformation, recurrent stroke, and mortality (9–11). 
The use of ML also supports real-time predictions and personalized 
medicine, enabling timely interventions to mitigate adverse outcomes.

To date, several studies reported machine-learning based 
prediction of future outcome in stroke patients. For instance, Wen et al. 
(12) reported that the model constructed by two machine-learning 
served as robust tools for predicting early neurological deterioration 
in acute ischemic stroke patients following thrombolysis. Moreover, 
Fan et al. (13) used four ML methods to screen and recombine the 
features for construction of prognostic model, and found that this 
model offers improved prediction accuracy that may reduce rates of 
misdiagnosis and missed diagnosis in patients with AIS. Regarding 
ENI in AIS patients undergoing rt-PA treatment, although three 
studies (14–16) revealed that several clinical indexes, such as diabetes 
mellitus history, kynurenic acid and kynurenine aminotransferase 
were associated with the ENI, no studies using ML algorithms to 
construct predictive model for ENI in AIS patients undergoing rt-PA 
treatment. In addition, these previous models largely rely on a limited 
number of variables and traditional statistical methods (e.g., logistic 
regression), which may not adequately capture the complex, non-linear 
relationships among multiple prognostic factors. Therefore, our study 
addresses this gap by incorporating a comprehensive set of clinical, 
laboratory variables and applying multiple ML algorithms to better 
model these interactions, thereby enhancing predictive accuracy.

Methods

Patient selection

The study adhered to the Declaration of Helsinki and was 
approved by the Ethics Committee of our hospital. A retrospective 

analysis was conducted on 266 patients with AIS who underwent 
rt-PA intravenous thrombolysis (IVT) at our hospital’s Stroke Center 
between June 1, 2020, and November 30, 2024. Inclusion criteria were 
as follows: individuals aged ≥18 years with a confirmed diagnosis of 
AIS based on CT or MRI, who received IVT within 4.5 h of stroke 
onset. Patients were excluded if they received bridging endovascular 
treatment after IVT, had incomplete clinical or laboratory data, or 
were discharged or deceased within 24 h. After excluding 25 patients 
who underwent bridging artery thrombectomy, 19 with incomplete 
clinical data, and 5 who were beyond the 4.5-h thrombolysis time 
window, a total of 217 patients who received rt-PA IVT were included 
in the study. The flow chart for patient selection is shown in Figure 1.

Collection of clinical data and definition of 
ENI

Clinical data were collected for each patient, including 
demographics (age, gender, height, weight, and BMI), comorbidities, 
the rt-PA Dosage (0.9 or 0.6 mg/kg), baseline NIHSS score, medication 
history, and initial laboratory tests (blood routine examination, 
biochemical examination, liver function test, coagulation test, renal 
function test, electrolyte test, and lipid test). We  also calculated 
inflammatory cell ratios: NLR (neutrophil-to-lymphocyte ratio), PLR 
(platelet-to-lymphocyte ratio), and LMR (lymphocyte-to-monocyte 
ratio). ENI was defined as an NIHSS score decrease of ≥4 points 
within 24 h of hospitalization or complete recovery within 24 h (17).

Variable selection and establishment of 
machine learning models

Study participants were randomly divided into training (80%) and 
testing (20%) sets. Clinical data were standardized, and four ML 
algorithms—Multilayer Perceptron (MLP), Random Forest (RF), 

FIGURE 1

Flow chart of the study population.

https://doi.org/10.3389/fneur.2025.1662498
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lv et al.� 10.3389/fneur.2025.1662498

Frontiers in Neurology 03 frontiersin.org

Support Vector Machine (SVM), and XGBoost—were applied to 
construct predictive models for ENI and screen key parameters using 
the clinical data. A total of 68 clinical and laboratory variables were 
included in the initial ML screening phase, including both raw 
measurements and derived ratios (such as NLR, PLR, ALT/AST). 
Although some variables were biologically or mathematically related, 
they were retained in the initial screening to avoid premature 
exclusion of potentially informative features. The performance of the 
models was quantitatively evaluated using receiver operating 
characteristic (ROC) curves, with the area under the curve (AUC) 
serving as the primary metric. The selected clinical indicators were 
then integrated into a logistic regression classification algorithm. A 
nomogram was generated to visualize the predictive value of 
each parameter.

For data preprocessing, the missing data were handled using 
multiple imputation by chained equations (MICE), and outliers were 
identified using the interquartile ranges (IQRs) method and 
winsorized where appropriate. Continuous variables were 
standardized using z-score normalization prior to model training. A 
grid search with 5-fold cross-validation was used to optimize key 
parameters for each ML algorithm. The optimal parameters were 
selected based on the highest cross-validated AUC value. The SHapley 
Additive exPlanations (SHAP) Python package (version 0.40.0) was 
used to measure the effects of the parameters on the predictive model, 
assessing feature importance using a game-theoretic approach.

To mitigate overfitting due to high dimensionality, we employed 
a conservative feature selection strategy by intersecting the top 20 
features ranked by each of the four ML algorithms, resulting in a final 
set of 6 variables for logistic regression modeling.

Statistical analysis

Statistical analyses were conducted using R software (version 
4.2.2). Continuous variables were presented as mean ± standard 
deviation (SD) or IQRs, while categorical variables were expressed as 
percentages (n, %). Continuous variables were assessed using t-tests 
or non-parametric Mann–Whitney U tests, as appropriate, while 
chi-square tests were used for categorical variables to compare 
baseline characteristics between the ENI and non-ENI groups. To 
assess potential multicollinearity among the final set of six predictors, 
we computed the Variance Inflation Factor (VIF) for each variable in 
the logistic regression model. Significant differences were considered 
at p < 0.05.

Results

Comparison of clinical data between ENI 
and non-ENI patients

Table 1 summarizes the baseline characteristics of both groups. 
The study included 217 patients were divided into ENI group (n = 97) 
and non-ENI group (n = 120) based on the achievement of 
ENI. Baseline characteristics comparison revealed that ENI group 
patients were younger (mean age 62 vs. 67.5 years) with a higher 
proportion of males (74.2% vs. 66.7%). There was significantly shorter 
onset-to-treatment time in ENI group compared with non-ENI group 

(150 vs. 174 min). Lower value of NEU (5.12 vs. 5.62), NEU% (66% 
vs. 70%) and NLR (2.81 vs. 4.03). Higher LYM (0.23 vs. 0.18), LYM% 
(1.73 vs. 1.52), LMR (3.16 vs. 2.48), MCV (87.99 vs. 90.39), and 
Fasting GLU (5.17 vs. 5.71) were found in ENI group than in non-ENI 
group (p < 0.05). However, higher value of weight (67.5 vs. 62.5), BMI 
(24.51 vs. 23.25), APTT (30.9 vs. 29.7), A/G ratio (1.40 vs. 1.30), PA 
(256.89 vs. 232.67), and CHE (8623.64 vs. 8,043) were found in ENI 
group than in non-ENI group (p < 0.05). However, no significant 
differences were found in resting indexes (p > 0.05). These findings 
suggest that younger age, shorter thrombolysis time window, reduced 
inflammatory status, better nutritional/metabolic condition, and 
appropriate anticoagulation status may be closely associated with early 
neurological improvement following intravenous thrombolysis.

Predictive value of model constructed by 
four ML methods

Four ML methods (MLP, RF, SVM, and XGBoost) were used to 
construct predictive models for ENI using the clinical data. The 
dataset was divided into training (80%) and testing (20%) sets, 
comprising 173 and 44 patients, respectively. Using default parameters, 
all four ML methods demonstrated moderate predictive performance. 
The AUC values for the training set were 0.83 (MLP), 0.94 (RF), 0.85 
(SVM), and 0.99 (XGBoost), while those for the testing set were 0.77 
(MLP), 0.72 (RF), 0.63 (SVM), and 0.68 (XGBoost) (Figure 2; Table 2). 
These results indicate that MLP achieved relatively higher predictive 
ability compared to the other methods.

Establishment of predictive model based 
on the parameters from ML models

To refine the predictive model, we identified the top 20 parameters 
from each of the four ML models and overlapped them, resulting in 
six common parameters: APTT, ALT/AST, ONT, MCHC, Weight, and 
NLR (Figure 3A). The VIF value for each parameter was APTT: 1.32; 
ALT/AST: 1.45, ONT: 1.28, MCHC: 1.36, Weight: 1.30, and NLR: 1.41. 
This conservative selection reduced the feature space from near 70–6, 
yielding an events-per-variable (EPV) ratio of 16.2, which supports 
model stability. A logistic regression model was then constructed 
using these six parameters, yielding an AUC value of 0.74 (Figure 3B), 
which indicates moderate predictive performance. A nomogram was 
developed to visualize the predictive value of the model relative to the 
six parameters (Figure 3C), demonstrating that the composite model 
outperformed individual parameters in predicting ENI, with a 
bootstrap-corrected C-index of 0.817. these results suggesting that this 
model show good predictive accuracy for ENI in rt-PA-treated AIS 
patients. The sensitivity, specificity, PPV, NPV at optimal threshold 
were listed in Table 3.

SHAP analysis for the model

The SHAP analysis elucidated the direction and relative 
importance of predictive factors influencing ENI after thrombolysis, 
Figure 4 listed the SHAP summary plot of the top 10 features of the 
RF model. Among all models evaluated, APTT emerged as the most 
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TABLE 1  Comparison of clinical data between ENI and non-ENI patients.

Variables Total ENI (N = 97) Non-ENI (N = 120) P-value

Demographics

Age, years 64.0 ± 12.9 62.0 (54.0–71.0) 67.5 (58.0–75.0) 0.050

Gender 0.289

Female 65 (30.0%) 25 (25.8%) 40 (33.3%)

Male 152 (70.0%) 72 (74.2%) 80 (66.7%)

Physiological characteristics or status

Height, cm 163.9 ± 10.5 167.0 (158.0–170.0) 165.0 (160.0–170.0) 0.224

Weight, kg 65.7 ± 14.1 67.50 (60.0–75.0) 62.50 (55.0–70.0) 0.017

BMI, kg/m2 25.7 ± 24.8 24.51 (22.38–26.78) 23.25 (21.12–25.87) 0.015

Smoking 104 (47.9%) 53 (54.6%) 51 (42.5%) 0.100

Drinking 90 (41.5%) 40 (41.2%) 50 (41.7%) 1.000

Pre systolic 151.7 ± 22.2 151.0 (138.0–164.0) 154.50 (136.0–167.0) 0.405

Pre diastolic 86.5 ± 13.3 86.82 ± 12.61 86.31 ± 13.88 0.777

Key parameters of IVT

Baseline NIHSS 7.4 ± 5.0 7.0 (3.0–10.0) 6.0 (4.0–10.0) 0.483

NIHSS (24 h after IVT) 4.9 ± 5.0 2.0 (0.0–4.0) 5.0 (3.0–11.0) <0.01

rt-PA dosage (0.6 mg/kg) 44 (20.3%) 20 (20.6%) 24 (20%) 1.000

ONT, min 168.1 ± 59.0 150.0 (113.0–193.0) 174.0 (126.50–217.0) 0.035

DNT, min 68.5 ± 52.3 52.0 (39.0–72.0) 56.0 (37.50–89.0) 0.301

Comorbidities

Hypertension, n (%) 153 (70.5%) 62 (63.9%) 91 (75.8%) 0.078

Diabetes, n (%) 62 (28.6%) 23 (23.7%) 39 (32.5%) 0.203

Atrial Fibrillation, n (%) 21 (9.7%) 9 (9.3%) 12 (10%) 1.000

intracerebral hemorrhage after 

thrombolysis, n (%)

26 (12.0%) 6 (6.2%) 20 (16.7%) 0.031

Baseline laboratory test

GLU, mmol/L 8.0 ± 3.3 7.06 (6.01–8.30) 7.0 (6.20–8.59) 0.809

WBC, 109/L 8.7 ± 3.0 7.87 (6.77–9.29) 8.21 (6.89–9.84) 0.121

RBC, 1012/L 4.6 ± 0.7 4.65 (4.33–5.08) 4.46 (4.18–4.79) 0.070

HGB, g/L 130.8 ± 19.0 133.40 (121.0–146.0) 132.70 (117.50–144.0) 0.587

MCV, fl 87.2 ± 9.2 87.99 (83.61–91.66) 90.39 (86.20–93.92) 0.040

MCHC, g/L 28.8 ± 3.7 29.30 (26.77–30.58) 30.27 (28.12–31.56) 0.070

PLT, 109/L 235.8 ± 72.4 241.0 (189.70–286.60) 222.40 (186.80–271.50) 0.206

NEU, 109/L 6.1 ± 2.9 5.12 (3.91–6.44) 5.62 (4.48–7.71) 0.024

NEU% 0.7 ± 0.1 0.66 ± 0.11 0.70 ± 0.11 0.040

LYM, 109/L 1.7 ± 0.7 1.73 (1.35–2.24) 1.52 (1.12–1.83) 0.010

LYM% 0.2 ± 0.1 0.23 (0.17–0.28) 0.18 (0.12–0.26) 0.010

MONO, 109/L 0.6 ± 0.2 0.59 (0.47–0.75) 0.62 (0.50–0.81) 0.129

NLR 4.6 ± 3.7 2.81 (2.15–4.29) 4.03 (2.27–6.49) 0.020

PLR 161.5 ± 81.2 131.65 (95.06–183.45) 151.20 (116.18–204.36) 0.085

LMR 2.9 ± 1.4 3.16 (2.12–4.11) 2.48 (1.62–3.40) <0.01

TBiL, μmol/L 12.7 ± 7.1 11.20 (7.90–14.40) 11.80 (8.20–15.95) 0.487

DBiL, μmol/L 3.8 ± 2.7 3.20 (2.40–4.10) 3.20 (2.30–4.80) 0.559

IBil, μmol/L 8.8 ± 5.3 7.60 (5.30–10.90) 8.20 (5.70–11.70) 0.459

(Continued)
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influential positive predictor, where higher values were consistently 
associated with better ENI outcomes, suggesting that moderately 
prolonged coagulation may facilitate neurorecovery post-
thrombolysis. In contrast, ALT/AST ratio and MCHC demonstrated 
significant negative impacts across multiple models (MLP, RF, SVM, 
XGBoost), implying that liver dysfunction and increased blood 
viscosity may hinder neurological recovery. Additionally, NEU% and 
age was consistently associated with poorer ENI outcomes in RF, 

SVM, and XGBoost models, highlighting the detrimental effects of 
systemic inflammation and advanced age on prognosis. Notably, RBC 
and body weight showed positive associations in certain models (e.g., 
MLP, SVM), possibly reflecting beneficial hemodynamic effects. 
Conversely, ONT and fasting GLU levels were linked to unfavorable 
outcomes, underscoring the importance of timely intervention and 
metabolic control. In summary, APTT, ALT/AST, MCHC, NEU%, 
and age were identified as the most influential predictors, with their 

TABLE 1  (Continued)

Variables Total ENI (N = 97) Non-ENI (N = 120) P-value

DB/TB ratio 0.3 ± 0.1 0.30 (0.24–0.37) 0.29 (0.23–0.37) 0.841

TP, g/L 68.8 ± 6.0 69.26 ± 5.91 68.49 ± 5.99 0.348

ALB, g/L 38.6 ± 4.6 39.20 (36.80–42.10) 38.35 (34.90–41.15) 0.061

GLO, g/L 29.9 ± 4.4 29.10 (26.50–31.60) 29.50 (26.90–33.30) 0.189

A/G ratio 1.3 ± 0.3 1.40 (1.20–1.50) 1.30 (1.10–1.45) 0.020

GGT, U/L 39.6 ± 53.7 26.0 (20.0–37.0) 28.0 (16.50–44.50) 0.377

TBA, μmol/L 6.7 ± 10.7 4.10 (2.50–6.70) 3.85 (2.20–7.55) 0.905

AST, U/L 25.9 ± 19.5 20.0 (17.0–26.0) 23.0 (18.0–28.0) 0.105

ALT, U/L 23.6 ± 27.7 18.0 (13.0–23.0) 15.50 (12.0–26.0) 0.244

ALT/AST 1.4 ± 0.8 1.10 (0.90–1.40) 1.40 (0.90–1.90) 0.090

ALP, U/L 77.1 ± 24.3 74.0 (57.0–86.0) 74.75 (61.0–91.50) 0.312

PA, mg/L 243.5 ± 69.2 256.89 ± 65.95 232.67 ± 70.16 0.010

CHE, U/L 8302.9 ± 2025.7 8623.64 ± 1980.39 8043.66 ± 2032.98 0.036

CREA, μmol/L 87.2 ± 68.3 80.0 (65.0–93.0) 76.0 (65.50–96.0) 0.369

UA, μmol/L 329.7 ± 105.2 332.44 ± 97.90 327.44 ± 111.04 0.728

K, mmol/L 3.9 ± 0.4 3.85 (3.69–4.07) 3.84 (3.69–4.12) 0.900

Na, mmol/L 140.1 ± 4.2 140.0 (138.50–141.30) 140.0 (137.15–141.90) 0.912

CL, mmol/L 106.6 ± 4.7 106.50 (104.4–108.60) 106.15 (104.40–108.60) 0.612

Ca, mmol/L 2.2 ± 0.1 2.20 (2.12–2.28) 2.21 (2.13–2.28) 0.393

Mg, mmol/L 0.8 ± 0.1 0.83 (0.77–0.88) 0.82 (0.77–0.88) 0.742

P, mmol/L 1.0 ± 0.2 1.01 ± 0.24 0.99 ± 0.26 0.551

APTT, s 30.3 ± 3.9 30.90 (28.10–33.10) 29.70 (27.15–32.30) 0.049

PT, s 11.5 ± 1.0 11.20 (10.80–12.0) 11.50 (10.90–12.35) 0.070

FIB, g/L 3.5 ± 1.2 3.25 (2.67–3.83) 3.42 (2.78–4.30) 0.109

TT, s 13.2 ± 2.8 12.50 (11.50–13.70) 12.45 (11.45–14.30) 0.695

INR 1.0 ± 0.1 0.99 (0.94–1.05) 1.01 (0.94–1.08) 0.189

PTA, % 98.6 ± 14.7 100.32 ± 13.83 97.20 ± 15.30 0.121

T-CHO, mmol/L 4.8 ± 1.2 4.64 (4.01–5.26) 4.77 (4.05–5.51) 0.181

TG, mmol/L 1.6 ± 1.2 1.37 (1.0–1.86) 1.38 (1.06–1.86) 0.803

HDL-C, mmol/L 1.2 ± 0.3 1.13 (0.99–1.25) 1.18 (1.01–1.34) 0.107

LDL-C, mmol/L 2.9 ± 0.9 2.75 (2.25–3.52) 2.83 (2.38–3.40) 0.333

Fasting GLU, mmol/L 6.0 ± 2.3 5.17 (4.69–6.08) 5.71 (4.88–6.69) 0.017

TyG index 2.1 ± 0.6 2.05 (1.67–2.35) 2.08 (1.73–2.55) 0.166

NIHSS, National Institutes of Health Stroke Scale; BMI, Body Mass Index; ONT, Onset-to-Needle Time; DNT, door to needle time; GLU, Glucose; WBC, White Blood Cell; RBC, Red Blood 
Cell; HGB, Hemoglobin; MCV, Mean Corpuscular Volume; MCHC, Mean Corpuscular Hemoglobin Concentration; PLT, Platelet; NEU, Neutrophil; LYM, Lymphocyte; MONO, Monocyte; 
NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; LMR, Lymphocyte-to-Monocyte Ratio; TBiL, Total Bilirubin; DBiL, Direct Bilirubin; IBil, Indirect Bilirubin; TP, 
Total Protein; ALB, Albumin; GLO, Globulin; GGT, Gamma-Glutamyltransferase; TBA, Total Bile Acids; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; ALP, Alkaline 
Phosphatase; PA, Prealbumin; CHE, Cholinesterase; CREA, Creatinine; UA, Uric Acid; APTT, Activated Partial Thromboplastin Time; PT, Prothrombin Time; FIB, Fibrinogen; TT, Thrombin 
Time; INR, International Normalized Ratio; PTA, Prothrombin Activity; T-CHO, Total Cholesterol; TG, Triglyceride; HDL-C, High Density Lipoprotein Cholesterol; LDL-C, Low Density 
Lipoprotein Cholesterol. intracerebral hemorrhage after thrombolysis.
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FIGURE 2

Confusion matrices of the test set (left), comparison of metrics between the training and test sets (middle), and ROC (right) in (A) MLP; (B) RF; (C) SVM; 
(D) XGBoost.

TABLE 2  Predictive value of four machine learning models.

Model Training set (N = 173) Testing set (N = 44)

MLP RF SVM XGBoost MLP RF SVM XGBoost

Accuracy 0.76 0.82 0.75 0.87 0.77 0.73 0.73 0.70

Specificty 0.79 0.89 0.78 0.92 0.75 0.75 0.79 0.83

Recall 0.71 0.75 0.72 0.81 0.80 0.70 0.65 0.55

F1-Score 0.74 0.80 0.74 0.86 0.76 0.70 0.68 0.63

AUC 0.83 0.94 0.85 0.99 0.77 0.72 0.63 0.68
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directional effects providing critical insights for risk stratification and 
personalized therapeutic strategies in thrombolysis management.

Discussion

Currently, limited evidence is available for the prediction of 
ENI in AIS patients undergoing rt-PA treatment. The present study 
conducted a comprehensive analysis by a larger sample of patients 

to identify significant differences in various clinical and 
biochemical parameters between ENI and non-ENI groups. The 
ENI group, consisting of 97 patients, exhibited lower levels of 
Hemorrhage, ONT, MCV, NEU, NEU%, NLR, and Fasting GLU, 
while higher levels of Weight, BMI, LYM, LYM%, LMR, A/G ratio, 
PA, CHE, and APTT were observed compared to the non-ENI 
group. These findings suggest that these indices are closely 
associated with ENI, whereas resting indexes did not significantly 
differ between the two groups, indicating their limited impact on 
ENI development.

To further explore the predictive capacity of ML models for ENI, 
we employed four ML algorithms, including MLP, RF, SSVM, and 
XGBoost, using the common clinical data. By dividing the patients 
into an 8:2 training-to-testing ratio, the MLP model demonstrated the 
highest predictive performance with an AUC of 0.77 in the testing set, 
outperforming RF (0.72), SVM (0.63), and XGBoost (0.68). 
Subsequently, by intersecting the critical parameters selected by all 
four ML methods, we identified six common parameters (APTT, ALT/
AST, ONT, MCHC, Weight, and NLR) that were then used to 
construct a logistic regression model. This refined model achieved an 
AUC of 0.74, indicating its robustness in predicting ENI. Notably, the 
nomogram based on these six parameters showed a markedly 

FIGURE 3

Establishment of predictive model based on the parameters from ML models. (A) Venn plot of the overlapping top 20 clinical parameters from each ML 
model. (B) ROC curve of the logistic regression model using the common clinical indexes. (C) Nomogram of the predictive model and the six 
parameters.

TABLE 3  Sensitivity, specificity, PPV, NPV at optimal threshold.

Metric Value (95% CI)

AUC 0.77 (0.68–0.86)

Sensitivity 72.4% (58.3–83.4%)

Specificity 70.1% (58.9–79.6%)

PPV 58.3%

NPV 81.2%

Calibration slope 0.98

Hosmer-lemeshow p 0.42
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improved predictive performance compared to individual parameters, 
underscoring the value of this composite approach.

In the present study, we  chose the intersection of top-ranked 
features across multiple ML algorithms as our primary feature 
selection strategy for several methodological and clinical reasons. This 
is because different ML algorithms have distinct biases in feature 
importance estimation. This consensus approach enhances 
reproducibility. In addition, methods like LASSO are sensitive to 
multicollinearity and may arbitrarily select one variable from a 
correlated group. SHAP values, while interpretable, can 
be  computationally intensive and sensitive to model choice. Our 
intersection method provides a model-agnostic consensus, reducing 
dependency on any single algorithm’s output. Finally, we provide the 
Venn diagram to visually justify the selection, enhancing 
interpretability for clinicians.

The six predictors in our nomogram exhibit strong 
pathophysiological plausibility. APTT reflects intrinsic coagulation 
pathway activity; prolonged APTT may indicate impaired clot lysis or 
re-occlusion post-thrombolysis, increasing ENI risk. NLR is a well-
established marker of systemic inflammation, which exacerbates 
blood–brain barrier disruption and cerebral edema after ischemic 
stroke. ONT is a critical determinant of tissue viability; delays beyond 
4.5 h are associated with reduced reperfusion success and higher 
complication rates. ALT/AST ratio may reflect hepatic metabolic 
capacity and redox state, potentially influencing drug metabolism and 
oxidative stress. MCHC and weight may serve as proxies for 
nutritional status and comorbidity burden, which are known to affect 
stroke outcomes. Notably, we used the ALT/AST ratio rather than the 
more conventionally reported AST/ALT (De Ritis) ratio. While these 
ratios are mathematically reciprocal, their interpretability in predictive 
modeling differs. In our machine learning framework, the ALT/AST 
ratio demonstrated higher feature importance and better 
discrimination for ENI compared to the AST/ALT ratio. A lower ALT/
AST ratio reflects relatively elevated AST levels, which may indicate 
subclinical hepatic dysfunction, increased oxidative stress, or systemic 
inflammation, the conditions known to impair neurovascular recovery 
after ischemic stroke (18, 19). Emerging evidence suggests that an 

elevated De Ritis ratio (low ALT/AST) is associated with increased 
infarct volume, hemorrhagic transformation, and poor functional 
outcomes in AIS (18, 19). This aligns with our finding that a lower 
ALT/AST ratio is negatively associated with ENI, reinforcing its role 
as a biomarker of metabolic vulnerability. Furthermore, ALT is 
predominantly expressed in hepatocytes, while AST is present in 
multiple tissues including brain, heart, and skeletal muscle; thus, a 
shift in this ratio may reflect multi-organ stress responses that 
modulate post-stroke recovery (20).

At present, the clinical application of this ML-based predictive 
model is substantial to the clinicians. It enables healthcare providers 
to identify AIS patients who are more likely to experience ENI after 
rt-PA treatment, thereby facilitating personalized care plans and 
timely interventions (21, 22). By leveraging the predictive power of the 
identified parameters, clinicians can optimize patient selection for 
thrombolysis, enhance monitoring strategies, and potentially improve 
outcomes. Moreover, the model’s ability to predict ENI may contribute 
to reducing the risk of adverse events and improving resource 
allocation in clinical settings (23, 24). Addition, the nomogram in our 
study could be used in a clinical setting to aid in decision-making and 
patient counseling. For example, clinicians can input this patient’s 
specific variables, such as APTT, ALT/AST, ONT, MCHC, Weight, and 
NLR, to generate a personalized probability of outcome. Suppose the 
nomogram-predicted risk is 75%. This high estimated risk may 
prompt earlier initiation of aggressive therapy or enrollment in a 
clinical trial, whereas a predicted risk of 20% might support a strategy 
of active surveillance. In patient counseling, this visual and 
quantitative tool can help clinicians clearly communicate individual 
risk, facilitating informed discussions about the potential benefits and 
harms of different management options. Future studies should focus 
on validating the model across diverse populations and integrating it 
into clinical decision support systems to maximize its utility in real-
world practice.

Previously, there were studies using ML methods to construct 
predictive model of stroke outcomes (25, 26), but no study using 
ML methods to construct predictive model for ENI. In addition, 
although some previous studies have identified several clinical 

FIGURE 4

(A) SHAP summary plot of the top 10 features of the RF model. The higher the SHAP value of a feature (x-axis), the higher the probability of ENI in AIS 
patients undergoing rt-PA treatment. Feature values are represented in color (red for high, blue for low). (B) SHAP bar plot of the top 10 features of the 
RF model. The x-axis shows the mean absolute SHAP value, representing the average impact of each feature on the probability of ENI. Features are 
ranked by importance.
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variables associated with ENI (27, 28), to knowledge, our study was 
firstly using multiple ML algorithms to construct predictive for ENI 
in AIS patients undergoing rt-PA treatment. In addition, our results 
revealed that this model showed a moderate predictive 
performance, which was more accuracy than previous studies that 
only present the variables associated with ENI. More importantly, 
unlike some expensive tests, the clinical indexes used to construct 
the model are common and cheap in clinical practice, thus it is easy 
for the clinical doctors to construct the predictive model, and it 
also did not add the addition burden on the patients. Finally, the 
nomogram enables the clinician to easy distinguish the patients 
with high risk of ENI. Therefore, our results hold promise for the 
precision medicine approaches in AIS patients undergoing 
rt-PA treatment.

To reduce the risk of overfitting of the model, our study used 
multiple, complementary strategies throughout the modeling pipeline 
to mitigate this risk. To reduce optimism in performance estimates, 
we  implemented a strict train-test split (80%: 20%) and reported 
performance only on the held-out test set. The significant drop in 
AUC from training (XGBoost: 0.99) to testing (0.68) clearly indicates 
overfitting in some models, which is why we selected the MLP model 
(AUC 0.77), the most stable performer across training and test sets, as 
our primary ML model. In addition, rather than using all the variables 
in the final model, we drastically reduced dimensionality by selecting 
only 6 overlapping features from the top  20 of four diverse ML 
algorithms. This conservative selection was designed precisely to 
combat overfitting. Third, although we used a final logistic regression 
model, the intersection-based feature selection acts as a form of 
implicit regularization by selecting only features consistently ranked 
high across multiple algorithms, reducing the inclusion of spurious 
associations. Finally, the nomogram’s C-index (0.817) was bootstrap-
corrected, meaning it was adjusted for overfitting using internal 
validation with 1,000 bootstrap resamples. This provides a more 
realistic estimate of model performance on new data.

In our study, the VIF value of the six parameters were all less than 
2 (range: 1.28–1.45), indicating no significant multicollinearity. 
We note that although some original laboratory parameters (such as 
AST, ALT, NEU, LYM) are biologically related, our feature selection 
strategy prioritized composite indices (including ALT/AST ratio, 
NLR) over individual components, thereby reducing redundancy and 
enhancing model stability.

Nevertheless, our study also has many limitations. First, while 
our model demonstrates acceptable discrimination and calibration 
in internal validation, the retrospective design, single-center setting, 
and lack of external validation limit its generalizability. Second, the 
algorithm was built from the input features, and some hidden 
relationships may have been ignored because unknown or neglected 
features were not evaluated by physicians. Third, the patient’s long-
term prognosis results were not collected. Fourth, the ML algorithms 
have its own limitation, which can suffer from overfitting, where 
models perform well on training data but fail to generalize to new, 
unseen data. Additionally, these methods often lack transparency, 
making it difficult to interpret the decision-making process, which 
can be  a significant barrier in clinical applications where 
explainability is crucial (29, 30). Finally, despite our efforts to 
minimize overfitting, the relatively small sample size (n = 217) and 
high-dimensional feature space pose a risk of overfitting, a common 
challenge in clinical ML studies. Our findings require external 

validation in larger, multicenter cohorts to ensure generalizability. 
Therefore, future study is warranted to verify our results and address 
the above issues.

Conclusion

We developed and internally validated a machine learning-based 
nomogram that shows promising performance in predicting ENI after 
thrombolysis. The model, incorporating six clinically accessible 
variables, may serve as a potential tool to support clinical decision-
making. However, Future research should focus on external validation 
and integration of this model into clinical practice to maximize its 
utility in clinical settings.
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