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Background: Prolonged neurological symptoms following COVID-19 are
common, yet few longitudinal studies describe brain MRI findings in this
patient group. The use of contrast enhanced sequences is particularly lacking.
We address this knowledge gap by reporting the frequency and longitudinal
changes in brain MRI findings among patients with post COVID-19 condition
exhibiting neurological symptoms.

Methods: This prospective multicenter study included 140 adult patients
referred for persistent neurological symptoms following COVID-19. Brain MRI
was performed at both 6 and 12 months after infection onset, reporting white
matter hyperintensities, cerebral microbleeds, and additional pathological
findings including contrast enhancement. White matter hyperintensities were
compared with a healthy control group.

Results: The prevalence of white matter hyperintensities was comparable
to healthy controls, and microbleeds were found at rates comparable to
population studies, with longitudinal changes being infrequent. Lesions
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consistent with inflammation or demyelination were present in 4% (5/120) of
patients at 6 months. Cranial nerve enhancement was found in 7% (7/94) of
patients, persisting up to 12 months, predominantly affecting the oculomotor
nerve. However, enhancement occurred without clinically detected ocular
muscle paresis.

Conclusion: Our findings indicate that brain MRI primarily serves to exclude
differential diagnoses in post COVID-19 condition, with limited clinical benefit
of repeated imaging in the absence of new symptoms. However, signs of long-
term inflammatory processes can be observed, and detection is improved by

contrast enhanced sequences.

KEYWORDS

post COVID-19 condition, long COVID, brain MRI, neuroimaging, neurological
symptomes, cranial nerve enhancement, longitudinal

1 Introduction

The emergence of long COVID, formally termed post COVID-19
condition (PCC), highlights the persistent post-infectious symptoms
experienced by approximately 10% of adults who have contracted
COVID-19 (1, 2). According to the World Health Organization, PCC
is defined as symptoms that start within 3 months of a SARS-CoV-2
infection, persist for at least 2 months, and cannot be explained by
another condition (3). Neurological and neuropsychiatric symptoms
such as cognitive impairment, headaches, sleep disturbances,
anosmia/hyposmia, and fatigue are among the most common
complaints (4).

Brain MRI serves as a valuable tool for detecting abnormalities
that may explain neurological or cognitive symptoms in individuals
with PCC and excluding other potential causes. Despite the significant
number of people experiencing neurological symptoms associated
with PCC, comprehensive studies examining routine brain MRI
findings, such as structural changes or signs of inflammation, are
sparse and yield inconsistent results. A scoping review from July 2023
identified only seven relevant studies comprising a total of 451
participants, with only six participants undergoing imaging at multiple
time points, highlighting the scarcity of longitudinal data (5). The
most common MRI findings were perivascular spaces (PVS), cerebral
microbleeds (CMBs), and white matter hyperintensities (WMHs).
These non-specific changes are not unique to PCC, and their
frequency differed considerably across studies, offering limited utility
for the research findings. Notably, none of the studies included
sequences with intravenous contrast agents, limiting the detection of
inflammatory changes and leaving significant gaps in our
understanding. Additionally, 53% (240/451) of the participants were
hospitalized during their infection, with many requiring intensive care
unit (ICU) treatment. This may introduce bias due to the
underrepresentation of non-hospitalized participants, who constitute
the majority of people with PCC (1). PCC study populations are
heterogeneous, including participants with and without neurological
symptoms, as well as those with symptoms from other organ systems,
such as the cardiovascular or respiratory systems.

The disparity and lack of existing data present challenges for
clinicians and radiologists in determining the appropriate
indications and methods for diagnostic imaging when assessing
PCC patients with neurological symptoms. A global expert
consensus advises to perform brain MRI but lacks specific
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recommendations regarding sequence selection and the use of
intravenous contrast agents (6). Consequently, findings from
longitudinal studies examining brain MRI in this patient group are
essential for developing guidelines. Our study aims to address these
gaps by reporting the frequency and longitudinal changes in brain
MRI findings among patients with persistent neurological
complaints 6 months after COVID-19, in a cohort where the
majority were not hospitalized during infection.

2 Methods
2.1 Study design

The Norwegian NeuroCOVID (NNC) study is a prospective,
observational, multicenter study assessing patients referred to
neurology departments for persistent neurological symptoms after
COVID-19. For a targeted analysis of WMHs, healthy individuals with
pre-pandemic MRI scans serve as a control group. The study received
approval from the South-Eastern Norway Regional Committee for
Medical Research Ethics (no. 152727) and institutional data protection
services and was registered a priori with ClinicalTrials.gov
(NCT04576351). The study was conducted in accordance with the
Declaration of Helsinki. All participants provided written
informed consent.

2.2 Participant selection

Between April 2020 and June 2023, adults above 18 years of age
who developed neurological, neuropsychological, or neuropsychiatric
symptoms temporally linked to a confirmed SARS-CoV-2 infection—
verified via polymerase chain reaction (PCR) or antibody testing—
were recruited from 10 neurological departments across Norway.
Referrals were made by general practitioners or other medical
specialists. Participants were included in this dataset only if their
symptoms persisted for more than 2 months after COVID-19 onset
and they completed MRI at least once during either the 6- or
12-month follow-up. Additional reasons for exclusion are provided in
Figure 1. The control group for WMH comparison comprises healthy
volunteers from a prior study conducted between August 2016 and
March 2019 (7), all of whom provided renewed consent for inclusion.

frontiersin.org


https://doi.org/10.3389/fneur.2025.1662263
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://ClinicalTrials.gov

Furevik et al. 10.3389/fneur.2025.1662263
COVID-19 patients
referred to the study
n =247
[ Inclusion criteria not met
'l n=72
Y
Total study population
n=175
Excluded n = 35
Neurological symptoms lasting < 2 months (n = 21)
No MRI scan or only MRI at baseline (n = 10)
> Progression of pre-existing neurological disease (n = 2)
Other neuroinfection (n = 1)
v Other (n = 1)
Finally enrolled
n =140
Imaged at 12
months only
n=19
Y \/
6-months MRI 12-months MRI
n=121 n =107
FIGURE 1

Flowchart showing inclusion and follow-up of PCC participants. Clinical evaluations were conducted concurrently with MRI examinations. The control
group (n = 64) was derived from a prior study, detailed in the Methods section.

2.3 Clinical and laboratory data collection

Participants underwent comprehensive evaluations by a
neurologist at 6 and 12 months after infection, including a
standardized neurological examination and other assessments, with
results from the latter reported in manuscripts currently under
review. Demographic characteristics and comorbidities were
collected, alongside information about neurological manifestations
during the acute phase of the infection. COVID-19 vaccination
status was obtained from the Norwegian Immunization Registry.
Cerebrospinal fluid (CSF) samples were collected by lumbar
puncture at the 6- or 12-month follow-up as a supplementary
examination when clinically required. Indications for lumbar
puncture included ongoing neurological symptoms, such as chronic
headache, or MRI findings suggesting inflammation. Brain MRIs
scanners located at each

were performed using MRI

participating center.
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2.4 Brain imaging protocol and outcome
measures

The study employed a standardized MRI protocol to accommodate
scanners from two different MRI system vendors. Specific protocol
details are available in Supplementary Table 1. Two neuroradiologists
independently assessed the MRI scans for the PCC group; both were
blinded to clinical data and each other’s evaluations. The first rater
(LLF) interpreted all examinations, whereas the second rater (OL)
interpreted those from the main recruitment center, encompassing 80
out of 140 participants.

Nonspecific WMHs on T2-weighted fluid attenuated inversion
recovery (FLAIR) images were graded using the commonly used
Fazekas scale (8), ranging from 0 to 3 based on the size and confluence
of WMHs located in the deep white matter, and with lesion count. The
lesion count method categorized WMHs into intervals: No lesions,
1-9 lesions, 10-20 lesions, and >20 lesions (9), with the exact number
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also recorded. For the PCC group, lesion counts were performed by
rater LLE while a third neuroradiologist (ESL) assessed this for the
control group. Both LLF and ESL applied the Fazekas scale in controls.

CMBs, defined as small (<10 mm) intracerebral hemorrhages
identified on hemorrhage-sensitive sequences (10), primarily
susceptibility-weighted imaging (SWTI), were noted if >1 was visually
detected. The occurrence of new CMBs during follow-up, as well as
the total number of CMBs for each participant, was recorded.

Pathological gadolinium enhancement of the meninges, brain
parenchyma, cranial nerves (CN), and vessel walls was registered (yes/
no), alongside any additional findings. For vessel wall analysis, a
dedicated contrast enhanced T1-space black-blood imaging sequence
was employed.

2.5 Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics
(version 30). Interrater reliability was assessed with Cohen’s Kappa for
CMBs and contrast enhancement, and Cohen’s Weighted Kappa for
Fazekas score. For group comparisons, normally distributed
continuous variables were analyzed with independent ¢-tests, while
categorical variables used chi-squared or Fisher’s exact tests. Binary
matched-pairs data were analyzed using the McNemar mid-p test, and
ordinal matched-pairs data using the Wilcoxon signed-rank test. The
Mann-Whitney U test was used for analyzing WMHs between the
PCC and control groups, and for analyzing differences in MRI time
intervals between groups. Adjusted p-values were derived from
ordinal logistic regression with a logit link, incorporating age as a
covariate. Statistical significance was set at a two-sided p-value of 0.05.

5 Results
3.1 Participant characteristics
Of the 175 participants assessed for eligibility, 140 were included

in the final analysis (Figure 1). The study population consisted of 59%
females (83/140). The mean age was 46.7 years (SD = 13.8 years, range

10.3389/fneur.2025.1662263

18-83 years). Hospitalization was required for 41% (57/140) of
participants during their infection, including 11% (15/140) admitted
to the ICU. Detailed demographic and baseline data are presented in
Table 1. Compared to non-hospitalized participants, those hospitalized
were older and had more comorbidities such as hypertension and
diabetes. Acute neurological symptoms, including ischemic stroke and
encephalitis, manifested in 16% (23/140) of participants during the
infection. The remaining 84% (117/140) experienced less acute
manifestations, such as cognitive impairment or persistent headache.
Six-month clinical assessments for 128 participants revealed
predominant symptoms like fatigue (71%), cognitive impairment
(65%), hyposmia (49%), and persistent headache (43%). A total of
24% (34/140) of participants underwent lumbar puncture during
follow-up, on average 10.7 (SD = 4.3) months after infection onset.
The control group, consisting of 64 individuals, 55% females (35/64),
had a mean age of 57.5 years (SD = 12.9 years, range 26-81 years).
While both groups had similar sex distributions (p = 0.54), analyses
were adjusted for age due to significant differences, with the control
group being older (mean difference 9.8 years, 95% CI 5.8-13.8,
p <0.001).

3.2 Brain MRI findings and longitudinal
changes

MRI scans at 6- and 12-month follow-ups were conducted in 86%
(121/140) and 76% (107/140) of participants, respectively, at a median
(interquartile range) of 201 (174-244) days and 377 (358-430) days
since COVID-19 symptom onset. Overall, 63% (88/140) underwent
MRI at both 6- and 12-month follow-ups. An intravenous contrast
agent was administered to 80% (112/140) of participants at any time
point, with 54% (75/140) receiving it at both 6 and 12 months. In
comparison, 97% (62/64) of the control group completed MRI scans
at two time points, with a median interval of 210 (196-217) days
between scans, while the corresponding interval for the PCC group
was 182 (168-196) days (p <0.001). Interrater reliability for
assessments of WMHSs, CMBs, and contrast enhancement is presented
in Supplementary Table 2, showing substantial (kappa = 0.61-0.80) to
almost perfect (kappa = 0.81-1.00) agreement (11).

TABLE 1 Demographic and clinical characteristics of patients stratified by disease severity.

Variables All patients n = 140 Outpatients n = 83 Hospitalized n = 57 p-value
Sex, female, 1 (%) 83 (59.3) 55 (66.3) 28 (49.1) 0.043%*
Age, years, mean (SD) 46.7 (13.8) 42.5(12.7) 52.7 (13.1) <0.001*
ICU admission 15 (10.7) 0(0) 15 (26.3)

Current smoker, 7 (%) 8 (5.7) 6(7.2) 2(3.5) 0.352
Vaccinated before COVID-19 onset, 1 (%) 33(23.6) 25(30.1) 8(14.0) 0.028%*
Hypertension, n (%) 26 (18.6) 5(6.0) 21(36.8) <0.001*
Diabetes, 1 (%) 6(4.3) 0(0) 6(10.5) 0.003*
Cardiovascular disease, 7 (%) 7 (5.0) 1(1.2) 6(10.5) 0.013*
Kidney disease, n (%) 1(0.7) 0(0) 1(1.8) 0.226
Asthma or COPD, n (%) 25(17.9) 12 (14.5) 13 (22.8) 0.205
Malignancy, 1 (%) 3(2.1) 0(0) 3(5.3) 0.035%

*Denotes statistical significance. COPD, chronic obstructive pulmonary disease.
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MRI findings are listed in Table 2, with further details on WMHs
in PCC and control groups provided in Supplementary Table 3.
Collected findings from 6- and 12-month MRIs showed that most
PCC participants had Fazekas scores of 0 or 1, while 8% (11/139) had
scores of 2 or 3. The Fazekas score did not significantly differ from the
control group (p =0.128). Comparing WMH lesion count score
between groups revealed controls had more WMHs (p < 0.001 at
6 months); however, this difference disappeared after adjusting for age
(p =0.295). CMBs were present in a total of 16% (21/131) of PCC
participants, with 4% (5/131) having more than 3 CMBs. There was a
trend toward a higher lesion burden in hospitalized individuals
(p = 0.052 for WMH lesion count score and p = 0.036 for CMBs).

At 6 months, distinct high intensity lesions on native
(non-contrast) T2 FLAIR images, consistent with inflammation and/
or demyelination, were identified in 4% (5/120) of participants.
Notable findings included one participant with trigeminal symptoms
exhibiting hyperintensity along the pontine segment of CN V. Two
participants showed signs indicative of prior encephalitis, manifested
as persistent hyperintensities: one in the hippocampus, and the other
in the splenium, pons, and medulla oblongata. Two participants had
lesions with a pattern suggestive of demyelination, one of which
initially displayed a pattern interpreted as acute disseminated
encephalomyelitis (ADEM). Additionally, hemorrhages in the

TABLE 2 Pathological MRI findings at 6 and 12 months after infection.

MRI findings 6 months 12 months
(n =121) (n =107)
WMH lesion count®
0 56 (46.7) 50 (46.7)
1 50 (41.7) 44 (41.1)
2 7 (5.8) 7 (6.5)
3 7(5.8) 6(5.6)
CMB
CMB > 0° 18 (16.2) 16 (15.5)
CMB >3 5(4.5) 3(29)
Inflammatory lesion 5(4.2) 4(3.8)
Contrast enhancement*
Meninges 0(0) 0(0)
Parenchyma 0(0) 1(1.1)
Cranial nerves 5(5.4) 7(7.4)
Vessel wall 0(0) 0(0)
Incidental findings
Sinusitis 5(4.1) 5(4.7)
Global cortical atrophy 9(7.4) 7 (6.5)
Lacunes/infarcts 5(4.1) 5(4.7)
Other? 14 (11.6) 15 (14.0)

Values in cells indicate the number (%) of participants with the corresponding MRI finding.
No statistically significant differences were observed between MRI findings at 6 and

12 months (all p-values > 0.05).

120/121 and 107/107 with T2 FLAIR imaging at 6 and 12 months, respectively.

©111/121 and 103/107 with hemorrhage-sensitive sequences at 6 and 12 months, respectively.
123/131 imaged with SWI, 8/131 imaged with T2*-weighted gradient-recalled echo imaging.
93/121 and 94/107 with enhanced imaging at 6 and 12 months, respectively.

dArterial aneurism (4), meningioma (4), cavernous malformations (3), premorbid
demyelinating lesions (1), hemosiderosis (1), schwannoma (1), Chiari I (1).
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thalamus and hippocampus, likely resulting from acute necrotizing
encephalopathy, were noted in one participant.

Cranial nerve enhancement (CNE) was observed in 5% (5/93) of
the participants receiving intravenous contrast at 6 months,
predominantly bilateral in nature (80%), and most often affecting CN
IIT (50%). Enhancement was also recorded in CN VII and CN VIII,
with 3% (3/93) showing enhancement in multiple nerves. One
participant with sensorineural hearing loss exhibited enhancement of
CN VIII. However, enhancement of CN III and CN VII was
subclinical, as there were no signs of ocular muscle paresis or facial
weakness in these participants. Except for one instance of nonspecific
punctate parenchymal contrast enhancement at 12 months, no
parenchymal, meningeal, or vessel wall enhancement was observed at
6 or 12 months.

Fazekas scores remained stable across the 6- and 12-month
evaluations in all 88 PCC participants undergoing T2 FLAIR imaging
at both intervals, as well as in all 62 controls. Within the PCC group,
5% (4/88) developed one new WMH lesion, while another 5% (4/88)
showed a reduction of one lesion. The proportion of participants
exhibiting any change was lower in the PCC group compared to the
control group; however, this difference was not statistically significant
(p =0.31). Newly detected CMBs were identified in 4% (3/83) of
participants on repeated hemorrhage-sensitive sequences at
12 months, with only one participant presenting their initial CMB. No
new ischemic infarctions were identified during the follow-up period.

Among the lesions initially interpreted as encephalitic, the
hippocampal lesion resolved by 12 months, whereas the lesions in the
splenium, pons, and medulla oblongata persisted. The native signal
increase in CN V also persisted. Both participants with lesions
suggestive of demyelination showed disease progression, and
oligoclonal bands were detected in their CSF samples collected during
this study, resulting in the diagnoses of multiple sclerosis (MS). Except
for the previously mentioned oligoclonal bands, CSF samples obtained
from all five participants with lesions interpreted as inflammatory or
demyelinating were otherwise normal (white blood cells <4 x 10°/L;
mean total protein 0.37 g/L, range 0.24-0.48 g/L).

Cranial nerve enhancement persisted in all five initial participants
at the 12-month follow-up (Figure 2). Additionally, two new
participants exhibited enhancement at 12 months, including one who
had received contrast at 6 months. Among the 7% (7/94) with
persistent CNE, four were hospitalized in the acute phase, including
one admitted to the ICU, while the remaining three were outpatients.
CSF samples were obtained from four of the participants with CNE,
none indicating signs of inflammation (white blood cells <4 x 10°/L;
mean total protein 0.41 g/L, range 0.36-0.45 g/L).

4 Discussion

In this prospective multicenter study involving patients
referred for specialist evaluation due to neurological symptoms
following COVID-19, WMHs did not differ from healthy controls
when evaluated with Fazekas score and lesion count, and the
prevalence of CMBs aligned with rates observed in population
studies (12). Further, MRI changes occurring between the 6- and
12-month follow-ups were rare. Notably, a subset of patients
exhibited signs of inflammation up to 1 year after infection,
suggesting prolonged pathophysiological changes.
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FIGURE 2

Axial image reconstruction from a black-blood T1 space sequence before (left) and after (right) contrast administration, showing bilateral contrast
enhancement in the cisternal portion of the oculomotor nerve (arrows). This MRI finding was present 13.5 months after the onset of COVID-19 in a
middle-aged woman who developed a new-onset, persistent post-infectious headache.

4.1 Vascular changes

WMHs and CMBs are considered indicative of cerebral small
vessel disease, and their prevalence increases with age and
comorbidities (13). Vascular changes after COVID-19 are extensively
studied, with evidence suggesting that persistent inflammation and
endothelial dysfunction can increase the risk of vascular
complications (14-16). However, the multifactorial nature of
potential brain injury in PCC should be acknowledged, including
contributions from coagulopathy, microthrombotic events, and
demyelination (17, 18). An analogous study observed new punctate
hyperintensities on T2 FLAIR sequences conducted 2 months after
infection in all participants (19). Our findings do not indicate that
these hyperintensities continue to develop beyond 6 months following
infection. WMH severity in our cohort aligned with healthy controls
and population studies (20, 21), with visual assessments showing no
significant change in observed WMHs between 6 and 12 months.
This information is relevant for clinical practice. In a scientific
context, quantitative measurements could more accurately elucidate
disease progression or reversal, recognizing the possible dynamic
nature of this process (22), potentially reflecting a broad
etiological spectrum.

No new ischemic lesions were detected during follow-up.
However, small ischemic changes obscured by existing WMHSs cannot
be ruled out. Notably, vessel wall enhancement, indicating persistent
inflammation in the brain vasculature, was not detected. This absence
is important given our use of a sensitive contrast enhanced T1 space
black-blood imaging sequence designed specifically to identify such
pathological changes at both the 6- and 12-month time points.

CMB prevalence aligned with population norms (12), with few
new occurrences during follow-up, remaining within expected ranges
(23). The frequency of CMBs is notably higher among ICU patients
compared to non-ICU patients in COVID-19 (24, 25), influenced by
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factors such as critical illness, hypoxia, age, and comorbidities.
We observed similar patterns, with hospitalized patients being older
and having more comorbidities (Table 1), which correlated with a
greater burden of WMH and CMB. The number of CMBs has not
been shown to predict cognitive dysfunction in COVID-19 patients
(24, 26). Conversely, quantitative MRI assessments reveal grey and
white matter alterations potentially linked to long-term cognitive
sequelae, with increased cortical thickness and lower fractional
anisotropy in specific brain regions correlating negatively with
memory performance (27). Such findings suggest the need for
monitoring this patient group and further exploration of the subject.

4.2 Signs of inflammation

Various brain MRI abnormalities are documented as SARS-
CoV-2 complications, including findings consistent with encephalitis
and ADEM (28, 29). In our study, findings interpreted as inflammatory
or demyelinating lesions surfaced in five patients at 6 months,
persisting in most of them at 12 months. Quantitative MRI techniques
have been utilized to identify neuroinflammatory and demyelinating
cerebral changes over a 10-month period following COVID-19 (30,
31). These studies have detected alterations in grey matter
morphometry and white matter microstructure, which show partial
recovery and correlate with disease severity and inflammatory
markers. The mechanisms and long-term implications of these
changes are under investigation and may provide insights into the
neurological symptoms seen in PCC. A national register-based study
found that hospitalization for COVID-19 was linked to increased risk
of developing MS compared to individuals without a COVID-19
diagnosis. Longer follow-up studies are warranted to establish whether
a causal association exists (32). Our finding of infrequent longitudinal
MRI changes suggests that, in a clinical context, repeated imaging
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should be reserved for patients who develop new symptoms, whereas
clinical follow-up on an individual basis is sufficient for the majority.
Inflammatory signs in relation to COVID-19 detected on MRI
include any cranial nerve involvement (33). Contrary to literature on
acute/subacute phase of COVID-19, persistent post-infectious cranial
nerve enhancement is rarely reported. However, we observed CNE in
a small subset of patients using a routine sequence, possibly indicating
long-lasting blood-nerve barrier (BNB) integrity alterations. Findings
indicating blood-brain barrier (BBB) dysfunction after COVID-19
have been reported. Elevated astrocyte plasma biomarkers peaking 4
months post-hospitalization indicate transiently elevated BBB
permeability (34). Dynamic contrast-enhanced MRI findings link
ongoing BBB dysfunction to long COVID-associated brain fog (35).
CNE is observed in varied conditions and can persist for extended
periods. BNB dysfunction can be observed in the context of
neuroinflammation such as in MS, neurosarcoidosis, autoimmune
conditions, and following several infections including herpes simplex,
varicella zoster, cytomegalovirus, Lyme neuroborreliosis, and
tuberculosis (36-38). In six of seven patients in this study, the
neuropathy was not clinically apparent, and the CSF showed no signs
of inflammation, suggesting that further investigation is needed to
comprehend the clinical implications. Subclinical CNE is not
uncommon in different diseases (39, 40). This may be attributed to
mild inflammation that does not lead to neuronal dysfunction,
residual contrast uptake following prior inflammation, or merely
increased perineural vascularization. In our cohort, one patient
developed CNE more than 6 months after infection, and a similar case
has previously been documented (41), in addition to reports of CNE
subsequent to COVID-19 vaccination (42). Delayed findings like these
should alert us to the possibility of immune-mediated mechanisms.

4.3 Strengths and limitations

Our study features a large cohort, scanned at two distinct time
points using a comprehensive imaging protocol that includes contrast
enhanced sequences. This robust methodology enables a thorough
evaluation of cerebral MRI findings and their temporal changes,
effectively addressing knowledge gaps in the existing literature. By
consistently performing follow-up MRIs at 6-month intervals,
we control for time-related variables and increase data comparability.
Additionally, unlike many previous studies, we base PCC diagnoses
on thorough clinical examinations rather than questionnaires. This
combination of high diagnostic accuracy and precise timing of MRI
intervals enhances comparability with published results.

The primary limitations of this study stem from its multicenter
design. Images were acquired using different MRI scanners with field
strengths of 1.5 or 3 T, alongside some variability in MRI protocols,
potentially affecting the detection rates of pathologies such as CMBs
and contrast enhancement. While larger sample sizes increase
statistical power, technical variability may offset this advantage. The
majority (80/140) of participants, however, were scanned using the
same 3 T MRI scanner at the main recruitment center. Comparing
WMHs in the PCC group with a healthy control group was conducted,
and similar comparisons for CMBs and contrast enhancement could
further strengthen our results.

Our methodology, including lesion count and ordinal or
dichotomous scores of WMHs, CMBs, and contrast enhancement,
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may be insufficient for longitudinal assessments, as they fail to capture
subtle changes. More sensitive and quantitative MRI analyses are
required to detect fine-scale pathologies. Despite these limitations, our
findings provide valuable insights for clinical decision-making
regarding neuroimaging indications and methods in the follow-up of
PCC patients exhibiting neurological symptoms, enhancing our
understanding of how to manage these patients over time.

Clinical research indicates that PCC often follows mild illness (1),
and evidence suggests that the severity of the disease during the acute
phase may not correlate with microstructural brain abnormalities (27).
No clear distinction was observed between hospitalized and
non-hospitalized individuals with CNE in our cohort. Comparison with
a control group that experienced COVID-19 but did not develop PCC
could strengthen the suspected association between imaging findings
and PCC. Future research should focus more on the distinct neurological
phenotypes of PCC, which may arise from different or interconnected
pathophysiological mechanisms, including vascular dysfunction,
neuroinflammation, BBB disruption, and autoimmune responses (43).

A clinico-radiological gap exists between prevalent neurological
and cognitive complaints and brain findings identified through
standard imaging techniques. Advanced, quantitative neuroimaging
analyses—not yet established in clinical practice—show potential for
detecting subtle neuronal changes, thereby deepening our
understanding of underlying pathophysiological mechanisms.

5 Conclusion

Pathological brain MRI findings are infrequent in PCC patients
with neurological symptoms at 6 months, supporting the notion that
MRI primarily serves to exclude differential diagnoses in clinical
practice. Contrast-enhanced sequences may help in detecting long-
term inflammation. Our findings suggest that repeated imaging should
be performed only when new symptoms emerge. These insights will
assist in shaping future brain imaging needs and guidelines for
diagnosis and follow-up of PCC patients with neurological complaints.
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