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Fluorescence lifetime imaging
ophthalmoscopy adds the retina
to cortical pathology for visual
dysfunction in neurodegenerative
diseases
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Because neurodegenerative diseases such as Parkinson’s and Alzheimer’s Diseases
[AD and PD] as well as the progressive forms of multiple sclerosis [MS] are invariably
associated with clinically significant cortical symptoms such as language difficulties,
motor skill deficits and cognitive impairments, especially memory, a tacit assumption
evolved that visual disorders related to cortical dysfunction must localize only to
the temporal, parietal and occipital lobes. Based upon our current understanding,
retinal changes in MS are most likely secondary to optic neuropathy, whereas in
AD and PD, they appear to represent primary retinal changes. The paradigm was
reinforced by the lack of retinal findings using ophthalmoscopy. Spectral domain
optical coherence tomography [OCT], optical coherence angiography [OCT-A], and
fundus autofluorescence [FAF] have challenged this creed by uncovering structural
changes within the retina over and above what can occur as a consequence of
optic neuropathy in the case of MS. Still, definitive diagnostic and prognostic data
have yet to emerge. Fluorescence lifetime imaging ophthalmoscopy [FLIO], a non-
invasive, non-contact, painless imaging technology, measures nanosecond lifetimes
of endogenous retinal fluorophores, some of which are linked to mitochondrial
activity. Therefore, FLIO is a metabolic, not a structural imaging modality. Because
mitochondrial dysfunction occurs in many neurodegenerative diseases, FLIO offers
a unique strategy for investigating retinal metabolism in AD, PD, and MS. This article
reviews the basic biomedical engineering of FLIO and reports preliminary data
from these diseases, correlated with disease duration. These functional in vivo
data are consistent with retinal metabolic changes in AD, PD, and progressive MS
that were “hiding in plain sight” from structural examinations.

KEYWORDS

fluorescence lifetime imaging ophthalmoscopy, neurodegenerative diseases,
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis

Introduction

Certainly, in its earliest clinical stages and sometimes with more advanced
neurodegenerative diseases, cortical visual dysfunction remains an elusive diagnosis. Despite
precise localization through advanced magnetic resonance imaging [MRI] technologies (1-4),
patients’ presenting symptoms are quite imprecise, simulating common ophthalmic disorders
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including refractive errors, keratitis sicca, cataracts, glaucoma, and
maculopathies  including  macular ~ degeneration  and
diabetic retinopathy.

In comparison to acute cerebral infarctions, both common and
rare neurodegenerative conditions are associated with non-specific,
non-diagnostic MRI findings of cortical atrophy often reported as
“age-related” (1-5). Moreover, recent questions have emerged asking
if the cortical dysfunction correlates with all the patients’ visual
symptoms, especially decreased low contrast visual acuity.

Localizing and diagnosing the cause of visual symptoms can
be challenging when the optic nerves and retinas appear normal on
direct and indirect ophthalmoscopy, as well as on intravenous
fluorescein angiography. However, a normal fundus does not exclude
significant retinal and optic nerve dysfunction.

Spectral domain optical coherence tomography [SD-OCT] has
generated many reports of abnormalities in both Alzheimer’s and
Parkinson’s Diseases (6-19), but no definitive, easily identified, retinal
structural imaging biomarkers have emerged to establish an
authoritative diagnosis prior to clinically obvious dementia or
impaired motor function. Promises for an earlier, more straightforward
diagnosis are emerging with both blood and cerebrospinal fluid assays
for abnormal proteins (20-26), but costs are a deterrent to widespread
evaluation of large numbers of patients. Positron emission tomography
[PET] scanning does offer definitive results (23, 27-30), however,
accessibility is often restricted due to cost, insurance coverage
limitations, and availability, so most patients continue to receive
diagnoses primarily based on cognitive testing.

The era of metabolic imaging of the retina using fluorescence
lifetime imaging ophthalmoscopy [FLIO] is developing rapidly.
Although not yet widely available, FLIO performs non-invasive,
painless, rapid imaging to produce both qualitative and quantitative
data about the metabolic health of the retina (31-40). FLIO offers
insights into visual symptoms and holds promise as potential
biomarkers for earlier diagnosis and disease monitoring, even before
clinical symptoms appear (34, 35, 37, 38). Since the brain and retina
are linked in utero by a common neuro-ectodermal origin, specifically
the diencephalon, a valid rationale emerges that pathological processes
in the brain may also involve the retina (10, 41-44).

Because more and more data are emerging about FLIO and
neurodegenerative diseases (35, 45-48), this article will review the
technology behind FLIO and report longitudinal data with FLIO
correlated with disease duration in relapsing-remitting and secondary
progressive multiple sclerosis, Parkinson’s, and Alzheimer’s Diseases.

Patient report of the effect of Alzheimer’s
disease on visual function: cortical or
retinal or both?

Born in South Philadelphia in 1933, William Utermohlen, an
artist, created self-portraits each year after his diagnosis of Alzheimer’s
Disease until he was no longer able to draw (49). His serial drawings
in Figure 1 reveal a constellation of visual disturbances, some of
which are certainly cortical in origin, with distortion of perspective
and a lack of stereopsis. However, some details of his face disappear
over the years in a pattern that may be consistent with central and
paracentral scotomas but not resembling a homonymous hemianopia.
These scotomas possibly localize to the maculae, plus his portraits
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reveal loss of some color perception, a finding that may localize to
macular cone dysfunction as well as cortical involvement with the
perception of color. Mr. Utermohlen died in London in 2007, no
longer being able to draw his self-portrait for the last 6 years of his
life (50).

In standard diagrams of the regions of the brain affected by
Alzheimer’s, the retinas are never included, likely because of the lack of
ophthalmoscopic findings in the retina and optic nerve. However, not
seeing a process in the ophthalmoscope does not exclude pathological
changes below the level of resolution of the ophthalmoscope.

Figure 2 provides precise neurological localization for pathological
changes for the “what is it” symptom [ventral pathways] and the
“where/how” symptoms [dorsal pathways], both originating from the
occipital lobes. But do these areas of the afferent visual system explain
all of the abnormalities in Mr. Utermohlen’s portraits and other
patients suffering from Alzheimer’s Disease?

Retinal structural findings in Alzheimer's
disease

In recent years, clinicians and clinical researchers are reporting
more and more retinal structural abnormalities in patients with
Alzheimer’s Disease (AD).

The retinal findings in patients with Alzheimer’s Disease follows:

1. Amyloid Beta (Ap) Deposition (7, 12, 13, 17, 18, 35, 51-57):

a. AP plaques, a hallmark of AD in the brain, are also found
in the retina of AD patients.

b. These deposits are often observed in the ganglion cell layer
(GCL), inner nuclear layer (INL), and inner plexiform
layer (IPL).

c. The presence of retinal Af deposits can correlate with brain
AP accumulation and disease severity.

2. Retinal Nerve Fiber Layer (RNFL) Thinning (6-10, 12, 55-57):

a. The RNFL, composed of axons of retinal ganglion cells,
shows thinning in AD patients, particularly in the superior
and inferior quadrants.

b. This thinning suggests loss of retinal ganglion cells and their
axons, which may contribute to abnormal visual
information to the temporal, parietal, and occipital lobes.

3. Ganglion Cell Layer (GCL) Thinning (10-13, 55-57):

o The GCL is also observed to be thinner in AD patients.

o This thinning reflects the loss of retinal ganglion cells, which
are crucial for transmitting visual information to the brain.

4. Microglial Activation (53, 58-60):

0 Microglia, the immune cells of the central nervous system,
are activated in the retinas of AD patients.

o Activated microglia can contribute to neuroinflammation
and potentially exacerbate neuronal damage.

5. Vascular Changes (13-19, 61):

o Alterations in the retinal vasculature, including reduced
vessel density and increased foveal avascular zone (FAZ),
have been reported in AD patients.

o These vascular changes may reflect similar changes
occurring in the brain’s microvasculature.

o Dr. Fekrat and Dilraj S. Grewal, MD, also at Duke
University, recently reported on OCT and OCTA findings
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FIGURE 1
After being diagnosed with Alzheimer's Disease, artist William Utermohlen, at the urging of his nurse, created a self-portrait each year until he was no
longer able to draw. The first portrait on the upper left was drawn in 1995, and the last on the lower right was in 2001. He died in 2007. Adapted from
Crutch et al. (49).

FIGURE 2
Originating in the occipital lobes, the green, dorsal pathway goes to the parietal lobe and is associated with spatial processing. In a similar way, the
purple, ventral pathway connects the occipital lobes and the temporal lobe and is linked to object recognition. Selket/Wikimedia Commons, GNU Free
Documentation License, CC BY-SA 3.0. https://solportal.ibe-unesco.org/articles/building-a-brain-that-can-read-part-1-sound-and-sight/.
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in the superficial capillary plexus in eyes of patients with
mild cognitive impairment (MCI) and AD (16). They found
reduced macular vessel density, perfusion density, and
ganglion cell-inner plexiform layer thickness in eyes with
AD compared to those with MCI and normal controls.
6. Melanopsin-containing Retinal Ganglion Cell (mRGC) Loss
(62-64):

o A specific subpopulation of retinal ganglion cells, the
mRGCs, appear to be vulnerable in AD.

o These cells play a role in regulating circadian rhythms, and
their loss may contribute to sleep disturbances and
circadian dysfunction observed in AD.

7. Tau Pathology (8, 54, 65-67):

o Hyperphosphorylated tau, another hallmark of AD, has also
been found in the retina of AD patients.

o The role and distribution of tau pathology in the retina, as well
as its relationship to Amyloid-/ (Ap) accumulation, have been
identified in the retina for neurodegeneration-associated
disorders like Alzheimer’s disease (AD) and glaucoma.

FLIO-metabolic imaging of the retina and
the principles of fluorescence lifetimes

Over the past decade, university researchers have collaborated
with industry to prototype and refine methods for assessing the
metabolic environment of the retina, one of which is fluorescence
lifetime imaging ophthalmoscopy [FLIO]. FLIO is the in vivo, clinical
application of the well-validated research technology called
fluorescence lifetime imaging microscopy [FLIM]. While most of the
currently published FLIO data have been generated to date using the
Heidelberg Engineering Spectralis-based device to measure
fluorescence lifetimes, other groups have developed different in vivo
retinal imaging systems to measure metabolic activity (36, 40, 68-73).
The growing interest in retinal metabolic imaging will add a functional
dimension of imaging and understanding of disease to established
structural imaging modalities in a clinical setting.

The in vivo metabolic imaging method of FLIO complements
high-resolution optical coherence tomography in a similar way that
positron emission tomography [PET] scanning uses radioactive
tracers to evaluate tissue function, thereby adding metabolic data to
magnetic resonance imaging [MRI] scanning. However, compared to
PET scanning, FLIO leverages the endogenous fluorophores of the
retina to make the previously invisible metabolic functions visible.
Therefore, FLIO fulfills many criteria for an ideal imaging biomarker
because it is non-invasive, non-contact, painless, and performed
quickly, producing data that is immediately available for analysis, and
without requiring radioactive materials or imaging contrast agents.
Dilation of the pupils is the only “invasive” part of FLIO.

Fluorescence lifetimes

G. G. Stokes, the Lucasian Professor of Mathematics at Cambridge
University, where he spent his entire career, including graduation from
Pembroke College, discovered the property of fluorescence, the ability
of certain materials to convert invisible ultraviolet light into light of
longer wavelengths within the visible spectrum (74-76). FLIM and
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FLIO apply Stokes magnificent discovery made in 1852 to the real
world of medicine in the 21st century.

From Stokes elegant work, the concepts of fluorescence
intensity and fluorescence lifetimes were born. Fluorescence
intensity refers to the brightness of fluorescence or the amount of
light emitted by a molecule or compound when it is excited by
another light. Greater intensity usually means a greater
concentration of a molecule or a fluorescently labeled target.
Fluorescence intensity is one of the principles of flow cytometry.
However, intensity measurements are subject to a variety of
artifacts, including uneven illumination and photobleaching, as
well as motion and optical aberrations (74-76).

In contrast, fluorescence lifetime imaging avoids many of the
previously mentioned artifacts and records the average time a
molecule spends in the excited state before returning to the ground
state. These lifetimes are in the nanosecond range (107’ s). Every
molecule has a unique fluorescence lifetime signature so that
individual molecules can be detected at different time points in a
physiological or pathophysiological process. The current FLIO setup,
which is only for investigational, not medical, care, purposes, is
shown in Figure 3. In this system, the retinal fluorophores are excited
by a 473-nm pulsed laser and the emitted fluorescence is
simultaneously detected in two distinct wavelength channels: a short
spectral channel (498-560 nm) and a long spectral channel
(560-720 nm). Table 1 from Professor Christine Curcio’s research
laboratory at the University of Alabama Birmingham Heersink
School of Medicine clearly describes the compounds imaged in the
short and long wavelength channels (77). The current FLIO version
does not record the fluorescence signature of individual molecules;
however, future generations of FLIO may use two-photon imaging,
enabling detection of specific fluorophores involved in normal and
abnormal mitochondrial, endoplasmic reticulum, and lysosomal
functions (77).

Normal FLIO and proof of concept with
macular telangiectasia type 2

Figure 4 illustrates the normal FLIO images for the short and long
spectral channels performed in a healthy control (45). FLIO data must
be analyzed with control data for both gender and age, and possibly
for ethnicity.

Professor Paul Bernstein and his team at the University of Utah
have pioneered FLIO for macular telangiectasia type 2, a rare disease,
to establish this technology as an imaging biomarker whose diagnostic
and longitudinal signals far exceed fundus photography, intravenous
fluorescein angiography, fundus autofluorescence, and optical
coherence tomography. The data from Professor Bernstein’s group is
illustrated in Figure 5 (34, 37, 38).

Analyzing FLIO data from Parkinson’s and
Alzheimer’s diseases and multiple sclerosis
Because FLIO captures fluorescence lifetimes in a 256 by 256-pixel

area covering a 9 by 9 mm area (35 pm x 35 pm/pixel) of the retina,
targeting the macula or other areas of the retina, analyzing FLIO data
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Retinal fluorophores are excited by a 473-nm pulsed laser. Emitted fluorescence is simultaneously detected in two distinct wavelength channels: a
short spectral channel (SSC) between 498 and 560 nm and a long spectral channel (LSC) between 560 and 720 nm. The lifetime images are color-

TABLE 1 Retinal signal sources for fluorescence lifetime imaging ophthalmoscopy.

Fluorophore Cell/Compartment Captured by
Tryptophane Membranes of photoreceptors, amacrine cells, and bipolar cells LSC/SSC
Nicotinamide adenine dinucleotide (NADH, NADPH) Mitochondria; in particular in the ellipsoid zone, basal RPE, and OPL LSC/SSC
FAD Mitochondria; in particular in the ellipsoid zone, basal RPE, and OPL LSC/SSC
Melanin RPE melanosomes, melanopolipofuscin, and choroidal melanocytes LSC/SSC
Bisretinoid derivatives of vitamin A intermediates Lysosome-related organelles (lipofuscin and melanopolipofuscin) in RPE LSC > SSC
Collagen, elastin Internal limiting membrane, vitreous cortex, vessels, retinal nerve fiber layer, ganglion cell = LSC/SSC

layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer,

vessels, Bruch’s membrane
Macular xanthophyll carotenoids Membranes of Miiller glia, photoreceptors, RPE SSC

Adapted from Goerdt et al. (77).

is quite complex and still a work in progress. SPCImage (Becker &
Hickl GmbH) is the most commonly used software for analyzing FLIO
data currently. This software uses a triexponential approach to fit
fluorescence decay curves at each pixel because each pixel has
thousands of datum points, one data point for each time point (31-33,
39, 78, 79). The triexponential approach fits all data points into three
lifetime components, each with its respective amplitude, reflecting the
percent contribution of the fluorescence lifetimes in the fit model. The
final output of the triexponential decay model is plotted with a
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color-coded heat map, representing the mean fluorescence lifetime at
each pixel. This process produces colorful images of the area of the
retina, where one can quickly identify areas of shorter or longer
fluorescence lifetimes, providing qualitative information about the
metabolic function in different regions. Each pixel from the fit model
in SPCImage displays the mean fluorescence lifetime, which is useful
for further quantitative analysis.

While SPCImage is the software used for calculating and fitting
mean fluorescence lifetimes, post-processing analysis is helpful for
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investigating specific areas of each FLIO lifetime image. Additional
software packages, such as FLIMX (M. Klemm, Ilmenau, Germany)
and FLIO-reader (ARTORG Center for Biomedical Engineering
Research, University of Bern, Switzerland), can also analyze and
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post-process the fluorescence lifetime data. These programs provide
statistical analyses of lifetimes across and within groups of eyes. Most
importantly, these programs can apply a standardized region of
interest (ROI) to the FLIO images, such as the Early Treatment
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Illustrates how FLIO detects pathological changes in macular
telangiectasia type 2 before any of the other retinal imaging
modalities. Please compare the FLIO images in this figure to the
normal FLIO images for the short spectral channel in Figure 4.
Adapted from Sauer et al. (34).

Diabetic Retinopathy Study (ETDRS) grid. After overlaying an ROI,
such as the ETDRS grid, to each FLIO image, it is possible to quantify
the means of individual lifetime components within each of the pixels
that fall in a specific zone of the grid. This post-processing also allows
for combining multiple areas of the ETDRS grid to identify
quantitative regional fluorescence lifetime patterns from specifically
defined ETDRS zones. This process, along with additional analyses,
creates a more standardized and detailed approach to analyzing
in various

fluorescence lifetime data across patient eyes

disease conditions.

Parkinson's disease

Regardless of whether Parkinson’s develops from a variety of
genetic mutations or environmental toxic exposures, such as MPTP,
rotenone, and paraquat, or sporadically, the final common pathway
involves dysfunction in mitochondrial ATP production, impaired
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mitophagy, and abnormal protein aggregation (80-84). Since
one-photon FLIO captures a combination of signals that emanate in
large part from FAD, NAD, and NADHP, endogenous fluorophores
known to be associated with oxidative phosphorylation and
mitochondrial generation of ATP, we studied a cohort of patients with
Parkinson’s Disease stratified by time from the initial diagnosis.
Figure 6 illustrates FLIO changes in two Parkinson’s disease patients,
one 12 years after the time of diagnosis and the other 18 years after the
time of diagnosis (45, 46). FLIO data in Parkinsons Disease
demonstrates prolonged fluorescence lifetimes in both the short and
long spectral channels (46, 47).

Alzheimer’s disease

One-photon FLIO data in Alzheimer’s Disease demonstrates
prolonged fluorescence lifetimes in both the short and long spectral
channels, as seen in the comparison of Alzheimer’s disease patients
with two- and four-year histories of the disease (Figure 7). Two-photon
FLIO, which is now under consideration for development, may be able
to determine the molecular basis for these differences in the retinal
microenvironment. More and more data implicate mitochondrial
dysfunction as the possible origin of Alzheimer’s Disease (85-87).
Specifically, the “Mitochondrial Cascade Hypothesis” postulates that
abnormal mitochondrial function impacts the processing of amyloid
precursor protein (APP), a transmembrane protein, and increases A
oligomer production and accumulation, possibly promoting the
formation of neurofibrillary tangles (88).

Multiple sclerosis — progression
independent of relapse activity “smoldering
MS”

During the past 4 years, the concept and validation of progression
independent of relapse activity [PIRA] or “smoldering MS” has
received increasing attention in both multiple sclerosis treatment and
research (89-94). PIRA asks and answers the important questions
about increasing disability and transition from relapsing-remitting
MS [RRMS] to secondary progressive MS [SPMS] and what
serological or imaging biomarkers might predict this transition.
PIRA or smoldering MS represents a distinct, disabling component
of this disease, not addressed by the currently available MS
medications designed to reduce clinical relapses and MRI
disease activity.

Patients are classified as PIRA when they experience progressive
disability without experiencing any clinical relapses, or new
inflammatory lesions with MRI scanning.

Chronic neuroinflammation, which is below the resolution of
MRI scanning, has been suggested as a pathophysiological mechanism
for PIRA (90-94). Data from our group presented at the 2025
Americas Committee for Treatment and Research in Multiple Sclerosis
[ACTRIMS] annual meeting suggests that mitochondrial dysfunction
may also be involved (48). Figure 8 illustrates FLIO changes of a
patient with RRMS and SPMS (48). FLIO data in both MS patients
demonstrates prolonged fluorescence lifetimes mainly in the short
spectral channel.
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FIGURE 6
FLIO images of a patient with a 12-year diagnosis of PD showing both the (a) SSC and (b) LSC. Also shown is a patient with an 18-year diagnosis of PD
showing both the (C) SSC and (D) LSC. Adapted from Markowitz et al. (45). and Shivok et al. (46).
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FIGURE 7
FLIO images of a patient with a 2-year diagnosis of AD showing both the (a) SSC and (b) LSC. Also shown is a patient with a 4-year diagnosis of AD
showing both the (c) SSC and (d) LSC. Adapted from Markowitz et al. (45).
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FIGURE 8

FLIO images of a patient with RRMS and 8 years of disease duration showing both the (a) SSC and (b) LSC. Also shown is a patient with SPMS and
38 years of disease duration, showing both the (c) SSC and (d) LSC. Adapted from Markowitz et al. (46).
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Conclusion—- FLIO insights and
two-photon future

FLIO adds the new imaging, biomarker dimension of retinal
metabolism and mitochondrial function to the existing arsenal of
MRI, PET, and OCT scanning, to investigate the origins of punishing
neurodegenerative syndromes, as well as a method to monitor a
previously unseen disease activity.

The current one-photon FLIO setup may transition to a
two-photon setup pending complete safety evaluations. Therefore,
FLIO will follow the same course of MRI, CT, PET, and OCT with the
images and data improving as physicists, biomedical engineers and
clinical researchers unite to develop two-photon FLIO.

We anticipate that FLIO will earn an important position in the
following dimensions of neurodegenerative diseases, especially when
merged powerful in vitro methods of focused ion beam scanning
electron microscopy [FIB-SEM, 3-dimensional images with 3
nanometer resolution] and fluorescence lifetime imaging microscopy
[FLIM] studying retinoids and brain organoids derived from inducible
pluripotential stem cells.

We foresee the following meaningful FLIO advances for
patients and their families: [1] enabling an early diagnosis of
disease activity especially in genetically at-risk populations or
patients with early stage tremor for Parkinson’s Disease and
patients with mild cognitive impairment [MCI] for Alzheimer’s
Disease; [2] following the clinical course of the diseases with
of other
pathologically important molecules for an early imaging biomarker

mitochondrial fluorophores and fluorophores

of disease progression for many neurodegenerative diseases before

Frontiers in Neurology

worsening clinical symptoms and signs; and [3] discovering and
evaluating in clinical trials molecules that specifically target
mitochondrial dysfunction; thereby, addressing the metabolic
abnormalities revealed by FLIO, as the process of “making the
invisible visible” produces real-world benefits for patients, their
caregivers, and their families.

Limitations

FLIO currently faces several limitations. High cost and limited
accessibility restrict its use, with fewer than 30 centers worldwide
operating FLIO systems. Standardization across centers is needed, as
current measurements and results cannot be directly compared
between sites. Greater understanding of FLIO results, including test—
retest variability, is required. The current one-photon FLIO setup does
not resolve fluorescence signatures of individual molecules; however,
future two-photon versions may enable detection of specific
fluorophores involved in mitochondrial, endoplasmic reticulum, and
lysosomal functions.

Future directions

Future studies should be designed to observe FLIO changes
longitudinally across disease stages, duration and subtypes, using
larger patient cohorts and healthy controls stratified by age and sex.
Developing disease-specific and healthy control reference databases,
combined with Al-based analysis, will improve automated,
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reproducible detection of disease-related fluorescence abnormalities
and enhance FLIO’s clinical utility.
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