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Background: Lower extremity deep venous thrombosis (LEDVT) is a frequent
and serious complication after aneurysmal subarachnoid hemorrhage (aSAH).
Existing risk scores poorly discriminate LEDVT risk in this population.

Objective: To develop and externally validate machine learning (ML) models for
early prediction of LEDVT in aSAH patients treated with endovascular therapy.
Methods: We performed a retrospective multicenter study including an internal
cohort (n = 593) for model development and internal validation and an
external cohort (n = 142) for external validation. Thirty-seven clinical and
laboratory variables were considered. Variable selection used LASSO followed
by multivariable logistic regression. Seven ML algorithms (XGBoost, LightGBM,
random forest, logistic regression, SVM, KNN, MLP) were trained with 5x5-fold
cross-validation; AUC was the primary metric. Model interpretability used SHAP.
An online risk calculator was implemented.

Results: Six predictors were selected (age, alboumin, D-dimer, GCS, AlSI, and
MCA aneurysm). XGBoost achieved the best discrimination (internal AUC 0.88;
external AUC 0.80). Decision curve analysis showed clinical net benefit across
relevant thresholds. SHAP analysis highlighted D-dimer, albumin, and GCS as key
contributors. A web-based calculator was deployed to facilitate clinical use.
Conclusions: An XGBoost-based model incorporating six routinely available
variables accurately predicts LEDVT risk after aSAH and generalized to an external
cohort. The web tool may help target preventive strategies for high-risk patients.

KEYWORDS

aneurysmal subarachnoid hemorrhage (aSAH), lower extremity deep venous thrombosis
(LEDVT), machine learning (ML), prediction, XGBoost (extreme gradient boosting)

1 Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) caused by intracranial aneurysm
rupture is a severe neurologic emergency with devastating effects and unfavorable
outcomes. It is demonstrated that the case fatality of aSAH can be as high as 30%—50%
and at least 20% of those who do survive are unable to regain functional independence (1-
4). Since the International Subarachnoid Aneurysm Trial (ISAT), endovascular treatment
(EVT) has become the preferred first-line therapy for intracranial aneurysms, as it is less
invasive and improves postoperative quality of life (5-7). Despite advances in aneurysm
treatment, complications such as lower extremity deep vein thrombosis (LEDVT) remain
difficult to prevent. LEDVT can cause limb swelling, pain, and varicose veins, and
may even lead to pulmonary embolism (PE), posing a serious risk for aSAH patients.
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Therefore, it is urgently necessary to identify and predict
aSAH patients who are at the highest risk of developing lower
extremity DVT as early as possible. The pathogenesis of LEDVT
is well understood, and scores are now available to predict its
occurrence; for example, the Caprini score can assess the risk of
DVT based on patient age, BMI, and medical history (8). However,
according to the criteria of this scoring system, all patients with
aSAH are classified as extremely high-risk DVT patients. This
limitation makes it difficult to distinguish which patients are truly
at higher risk and therefore in greater need of targeted preventive
strategies. On the other hand, the Caprini score are not very
suitable for aSAH patients. For instance, since aSAH patients
are often bedridden for prolonged periods, accurately measuring
their BMI is challenging, which compromises the precision of
their Caprini risk assessment. Moreover, critical indicators such as
the GCS, Hunt-Hess, and Fisher grades—used to evaluate aSAH
severity—are not incorporated into the Caprini scoring system.
Therefore, In 2023, our team pioneered the development of a
prognostic nomogram to predict LEDVT risk in aSAH patients
undergoing endovascular treatment, demonstrating promising
preliminary results. In addition, recent studies have identified
several hematologic and inflammatory markers, such as neutrophil-
to-lymphocyte ratio (NLR) (9), the inflammatory burden index
(IBI) (10), systemic immune inflammation index (SII) (11),
systemic inflammatory response index (SIRI); aggregate index of
systemic inflammation (AISI), and hemoglobin concentration (12),
as significant predictors of DVT. These advancements highlight the
need to further refine predictive models by incorporating additional
inflammatory and clinical markers.

In addition, recent research has underscored the potential of
machine learning (ML) algorithms in predicting stroke-related
complications (13, 14). While conventional logistic regression
(LR) offers interpretable models for clinical prediction, it often
struggles with complex, non-linear, and multivariate relationships
due to issues such as multicollinearity and low robustness—
requiring extensive data transformations (15). As ML techniques
gain popularity and research into LEDVT prediction deepens,
several ML-based models have been successfully developed for
this purpose. LEDVT prediction models based on various ML
techniques have been successfully constructed and developed (16).
Previously, Li et al. (15) utilized machine learning models for
predicting postoperative pneumonia, and they achieved better
prediction results than traditional modeling. Thus, in this study, we
conducted six ML prediction model, which contains Linear models
[logistic regression (LR), support vector machine (SVM)] and Non-
linear models (XGBoost, k-nearest neighbor (KNN), random forest
(RF), light gradient boosting machine (LightGBM) and multilayer
perceptron (MLP) for the prediction of LEDVT within 30 days in
aSAH patients.

2 Materials and methods

2.1 Study population
The retrospective study was conducted according to STROBE

guidelines and all procedures adhered to relevant ethical and
regulatory standards (17). The aSAH data were derived from two
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hospital databases: Internal cohort for training and testing model,
and external cohort for validating model. Internal data were derived
from the First Affiliated Hospital of Wenzhou Medical University
from January 1, 2020 to December 31, 2022. The external cohort
was extracted from the Aneurysm Data Center of Hangzhou First
People’s Hospital from January 1, 2022 to December 31, 2022. Study
samples and treatment data were retrieved from the respective
surgical department databases. All included aSAH patients had
symptom onset within 72h and were diagnosed using computed
tomography (CT), computed tomography angiography (CTA), or
digital subtraction angiography (DSA) (8, 18, 19).

Patients in the internal cohort were excluded if they met any
of the following criteria: (1) Age < 18 (N = 4); (2) Presence of
intracranial vascular malformations or moyamoya disease (N =
29); (3) Patients with preoperative unexpected events that could
affect the outcome: preoperative cardiac arrest (N = 1), severe head
trauma (N = 2); (4) Intraoperative or postoperative rebleeding
(N = 14); (5) Missing critical information (N = 4); (6) Positive
SARS-CoV-2 PCR result (N = 0). Patients with any missing data
for the analyzed variables were excluded to ensure a complete-case
analysis. Finally, the internal cohort (n = 593) was randomly split
into a training set (n = 474, 80%) and an internal testing/validation
set (n =119, 20%).

Patients in the external cohort were excluded based on the
following criteria: (1) Age < 18 (N = 1); (2) complicated with
intracranial vascular malformations or moyamoya disease (N =
10); (3) Patients with preoperative unexpected events that could
affect the outcome: preoperative cardiac arrest (N = 2), severe head
trauma (N = 0); (4) Bleeding during Surgery or rebleeding after
Surgery (N = 2); (5) Missing critical information (N = 1); (6) The
SARS-CoV-2 PCR results were positive (N = 0). Finally, a total of
142 cases were enrolled for validating cohort. Figure I shows the
flow diagram of the data processing in detail.

2.2 Ethical approval

The data used in this study were approved by the
Biomedical Research Ethics Committee of Wenzhou Medical
University (BR/NGGI-2412031) and Medical Ethics Review
(ME/IXGS6-
105). Informed consent was waived due to the retrospective

Board of Hangzhou First Peoples Hospital
design of the study and the absence of personal identifiers,
in accordance with the principles of the Declaration of

Helsinki (20).

2.3 Variable definition and selection

The diagnostic criteria for LEDVT were based on Doppler
ultrasound (DUS) findings of intravascular shadows in the
deep veins of the lower limbs. Examinations included B-mode
imaging and color Doppler flow imaging, with or without probe
compression, performed within 2 weeks post-surgery (21, 22).
Given the high incidence of lower extremity DVT, each patient
was examined weekly by DUS following hospital admission.
Collected variables included: (1) patients demographics (age,
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B

Patients with diagnosis of aSAH in our

hospital by DSA

Exclusion (n=54)

1. Age<18 (N=4)

2. Complicated with intracranial vascular
malformations or moyamoya disease (n=29)

3. Patients with preoperative unexpected events that
could affect the outcome: preoperative cardiac arrest
(N=1), severe head trauma (N=2)

4. Bleeding during Surgery or rebleeding after Surgery
(n=14)

5. Missing critical information (N=5)

<
Preprocessing

(Jan.1.2020---Dec.31.2022) (n=647)

Internal aSAH cohort for creating

Patients whose diagnosis aSAH among
other hospital
(Jan.1.2022---Dec.31.2022) (n=158)

Exclusion (n=16)

1. Age<18 (N=1)

2. Complicated with intracranial vascular
malformations or moyamoya disease (n=10)

3. Patients with preoperative unexpected events that
could affect the outcome: preoperative cardiac arrest
(N=2), severe head trauma (N=0)

4. Bleeding during Surgery or rebleeding after Surgery
(n=2)

5. Missing critical information (N=1)

External aSAH cohort for Validating
model (n=142)

— model (n=593)
e = - - ————
1 Training folds ~ Testing folds
5 Random shuffles I First iteration
| Second iteration
—~

I Third iteration

| Fourth iteration

I Fifth iteration

Training aSAH cohort
(80%, N=474)

Machine
learning S

Training

1. Linear models

N\ »  logistic regression (LR)
2. Nonlinear models
»  Random forest (RF),

GBM)

»  K-nearest neighbor (KNN)
»  multilayer perceptron (MLP)

Algorithm of Machine learning:

______ Validation
Internal testing aSAH cohort
(20%, N=119)
Testing
Compare AUC,
The best ML model was selected

> Support vector machine(SVM),

> light gradient boosting machine (Light

»  extreme gradient boosting (XGBoost),

FIGURE 1
Flowchart of the internal cohort (A) and external cohort (B)

gender, history of smoking, history of alcohol use); (2) GCS,
Hunt-Hess grades, modified Fisher (mFS) grade and WENS grade
on admission; (3) past medical history (hypertension, diabetes
mellitus, coronary heart disease (CHD), infection; (4) aneurysm
(ACoA),
carotid artery (ICA), middle cerebral artery (MCA), posterior

location [anterior communicating artery internal
communicating artery (PCoA), vertebrobasilar artery (VBA)J;
(5) laboratory results were obtained within 24 h after admission
in the context of a first examination (albumin, hemoglobin,
neutrophils, monocytes, lymphocytes, uric acid, total cholesterol,
triglycerides, neutrophils, monocytes, mean corpuscular volumec-
reactive (MCV), C-reactive protein (CRP), and the composite
index calculated by these laboratory results: Inflammatory
Index (IBI) CRP x

(23), SII = total number of neutrophils x total number of

Burden = neutrophils/lymphocytes
platelets/total number of lymphocytes, SIRI = total number
of monocytes x total number of platelets)/total number of
lymphocytes, AISI = total number of neutrophils x total number
of monocytes x total number of platelets)/total number of
lymphocytes (24).

The machine learning model developed to predict LEDVT
risk in aSAH patients relies on statistically significant factors
identified through multivariate logistic regression analysis
(p < 0.05) (25).
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2.4 ML model construction

The patients were randomly divided into a training cohort (n
= 474) and a validation cohort (n = 119) in an 80:20 ratio. The
training cohort was used to develop both linear models [logistic
regression (LR), support vector machine (SVM)] and non-linear
models [XGBoost, k-nearest neighbors (KNN), random forest
(RF), light gradient boosting machine (LightGBM), and multilayer
perceptron (MLP)] (26-28). XGBoost model was constructed
using the xgboost package (https://xgboost.readthedocs.io/en/
latest/python/index.html). The remaining five models were
established via Scikit-learn package (https://github.com/scikit-
learn/scikit-learn). The best hyperparameter combination for
each model (provided in Supplementary Table S1) was determined
using a grid search strategy with 5-fold cross-validation on the
training cohort, employing the area under the curve (AUC) as the
primary optimization metric. To develop an unbiased assessment
of model performance, we performed 5 random shuftles of 5-fold
cross-validation, as shown in Figure 1. Each iteration used a
different stratified fold for model evaluation, and the remaining
folds were used for model training (29). Subsequently, we recorded
area under the curve (AUC) accuracy, sensitivity, specificity, F1
score, and Kappa to compare each ML model. AUC was used as the
primary metric for model selection. The best-performing model
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was then validated using the external dataset. Then it is tested on
external data. Data processing and the ML process are summarized
in Figure 1.

To investigate the impact of class imbalance (10.8% LEDVT-
positive cases) on model performance, a sensitivity analysis was
conducted using the Synthetic Minority Over-sampling Technique
(SMOTE) (30). This method was applied to the training data
to generate synthetic samples for the minority class, creating a
balanced 1:1 class distribution for model training.

After the model was established, the SHapley Additive
exPlanations (SHAP) package in Python was used to explain the
model by analyzing two cases. The SHAP package interpreted
the output of the machine learning model using a game-theoretic
approach (31). SHAP values quantify the association of a variable
with the outcome of a single patient, and the mean absolute
SHAP value across all patients is reported as the SHAP value
of variable (32). The overall importance of each feature was
determined by ranking them according to their mean absolute
SHAP value, which represents the average magnitude of each
feature’s impact on the model output across all samples. This
approach provides a consistent and theoretically grounded method
for feature importance assessment.

2.5 Statistical analysis

Categorical variables were analyzed using the Chi-square test.
For continuous variables, if the distribution is normal and the
variance is homogeneous, the t-test would be used. The Welch’s
t-test would be used when the normal distribution was met but
the variance was not homogeneous. For non-normally distributed
variables, the Mann-Whitney U test was used. Logistic regression
analysis was used to estimate univariate and multivariate odds
ratios and 95% confidence intervals. A p-value < 0.05 was
considered statistically significant. The concordance index (C-
index) was used to assess the discriminative ability of the model.
The optimal probability threshold for classifying LEDVT risk
was determined by maximizing Youden’s index (J = sensitivity
+ specificity - 1) based on the ROC curve of the training set.
Calibration curves were used to assess the agreement between
predicted and observed risks. Model calibration was further
evaluated using the Hosmer-Lemeshow goodness-of-fit test (33).
Clinical utility and net benefits were determined by decision
curve analysis (DCA) (34). 1,000 bootstrap resamples were used
for external validation, and the relative corrected C-index was
calculated to ensure the stability of the nomogram in the external
validation cohort. All tests of significance were two-sided, and
a p value of < 0.05 was considered statistically significant. All
statistical analyses were performed using R version 3.6.3 and
python version 3.7.

3 Results

3.1 Demographic characteristics

Table 1 shows the clinical characteristics of the study
population. A total of 593 aSAH patients were included in this
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study. The number of patients with LEDVT was 106 (16%),
and men comprised 108 (34%) and 54 (40%) patients in the
two groups, respectively. The median ages of the non-LEDVT
and LEDVT cohorts were 55 and 64 years, respectively. The
LEDVT cohort had a longer length of hospital stay (LOS)
compared to the non-LEDVT cohort (19 vs. 14 days, p =
0.003).

3.2 Feature selection

Of the 37 variables initially collected, 6 were selected using
least absolute shrinkage and selection operator (LASSO) regression
based on non-zero coefficients (Figure 2). These six variables
were subsequently entered into a multivariable logistic regression
model, and all were found to be independently associated with
LEDVT. These predictors were used to construct the final risk
scoring model (Table 2). These variables include age (OR, 1.05;
95% CI, 1.02-1.09; p = 0.002), albumin level (OR, 0.89; 95%
CIL, 0.83-0.96; p = 0.001), D-dimer level (OR, 1.28; 95% CI,
1.17-1.42; p < 0.001), GCS score (OR, 0.82; 95% CI, 0.74-
0.91; p < 0.001), Middle cerebral artery (MCA) aneurysm (OR,
3.16; 95% CI, 1.38-7.18; p = 0.006), AISI (OR, 1.02; 95% CI,
1.01-1.04; p = 0.017). To determine the individual predictive
values, we used ROC curve analysis in Supplementary Table S3 to
identify the cut-off values for the five continuous variables: GCS,
14; Albumin, 37.2 g/L; Age, 54 years; AISI, 1,386.37; D-dimer,
2.48 pg/ml.

3.3 Machine learning model performance

Based on the six features selected through LASSO regression
and multivariable logistic regression screening, we built seven
machine learning models: XGBoost, LR, LightGBM, RE, SVM,
KNN, and MLP. Supplementary Table SI and Figure 3 showed
the best hyperparameter combination for each model and their
AUCG:s in predicting LEDVT. The AUC values for XGBoost (0.88),
LightGBM (0.86), logistic regression (0.84), and random forest
(0.84) were notably higher than those for SVM (0.64), KNN
(0.63), and MLP (0.45). Among them, XGBoost exhibited the
best performance for the prediction of LEDVT risk. As the
primary metric, the AUC for XGBoost was 0.88 (95% confidence
interval: 0.78-0.98). XGBoost also exhibited the best performance
based on the average precision of the precision-recall curve
(AP = 0.65, 95% confidence interval: 0.45-0.67) and F1 score
(0.46, 95% confidence interval: 0.36-0.56). The Hosmer-Lemeshow
goodness of fit test (Supplementary Figure S1) shows a good
fit between the XGBoost predicted probabilities and the actual
probabilities. Decision curve analysis (Supplementary Figure S2)
showed that the XGBoost model provided a greater net clinical
benefit than the treat-all or treat-none strategies within the
threshold probability ranges of 6%—81% in the training set and
4%—86% in the validation set. Detailed performance metrics,
including precision-recall curves and average precision values
for all models, are presented in Figure 4 and Table 3. While the
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TABLE 1 Characteristics of the study population.
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Patient characteristics
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No LEDVT

(n = 529)
Age, median [IQR] 56.00 [48.00,66.00] 55.00 [48.00,65.00] 64.00 [55.00,71.00] <0.001
Gender(male), n (%) 206(34.74) 180(34.03) 26(40.63) 0.295
Smoking history, 1 (%) 90(15.18) 81(15.31) 9(14.06) 0.792
LOS (day), median [IQR] 14.00[11.00,19.00] 14.00(11.00,19.00] 19.00[11.00,24.00] 0.003
In-hospital complications
Hypertension, n (%) 311 (52.45) 275 (51.98) 36 (56.25) 0.519
Heart Disease, n (%) 18 (3.04) 16 (3.02) 2(3.13) 0.965
Diabetes, 1 (%) 42 (7.08) 38(7.18) 4(6.25) 0.783
Pulmonary infection, n (%) 103 (17.37) 80 (15.12) 23 (35.94) <0.001
DCL 1 (%) 37 (6.24) 30 (5.67) 7 (10.94) 0.100
Timing to DCI (day), mean (£SD) 6.1+1.9 6.0£2.0 6.3+2.0 0.768
Aneurysm location
VBA aneurysm, 1 (%) 29 (4.89) 24 (4.54) 5(7.81) 0.251
MCA aneurysm, n (%) 115 (19.39) 89 (16.82) 26 (40.63) <0.001
ICA aneurysm, n (%) 172 (29.01) 157 (29.68) 15 (23.44) 0.299
PCoA aneurysm, 7 (%) 142 (23.95) 128 (24.20) 14 (21.88) 0.955
ACoA aneurysm, 1 (%) 190 (32.04) 163 (30.81) 27 (42.19) 0.065
Admission clinical grade
GCS, median [IQR] 15.00[15.00,15.00] 15.00[15.00,15.00] 13.00[8.00,15.00] <0.001
Hunt-Hess grades 4-5, n (%) 71(11.97) 45 (8.51) 26 (40.63) <0.001
WENS grade 4-5, n (%) 104 (17.54) 74 (13.99) 30 (46.88) <0.001
mFS grade 3-4, n (%) 178 (30.02) 146 (27.60) 32 (50.00) <0.001
Treatment modality
Surgical clipping, n (%) 76 (12.82) 59 (11.15) 17 (26.56) <0.001
Endovascular coiling, n (%) 517 (87.18) 470 (88.85) 47 (73.44) <0.001
Anticoagulation, 1 (%) 293 (49.41) 271 (51.22) 22 (34.38) 0.002
Laboratory values on admission
Albumin (g/L), median [IQR] 39.00 [36.50,41.50] 39.20 [37.00,41.50] 36.90 [31.50,40.20] <0.001
Glucose (mmlo/L), median[IQR] 6.40 [5.40,7.60] 6.30 [5.30,7.60] 6.90 [6.00,8.10] 0.007
Triglyceride (umlo/ L), median 1.10[0.83,1.69] 1.10[0.82,1.69] 1.10[0.89,1.50] 0.860
[1QR]
Uric acid (umlo/L), median [IQR] 242.00 [176.00,302.00] 242.00[176.00,301.00] 243.00 [185.00,306.00] 0.917
Total cholesterol (jumlo/L), 4.89 [4.30,5.67] 4.95 [4.37,5.67] 4.47 [4.07,5.33] 0.037
median [IQR]
Neutrophil counts (*10%L), 9.20 [6.53,12.10] 9.08 [6.52,11.78] 10.47 [7.43,14.24] 0.049
median [IQR]
Monocyte count (*10%L), median 0.49 [0.33,0.73] 0.48 [0.32,0.71] 0.62 [0.39,0.98] 0.015
[IQR]
Lymphocyte count (*10%L), 1.14 [0.84,1.57] 1.14[0.85,1.58] 1.12 [0.73,1.26] 0.091
median [IQR]
Hemoglobin (g/L), median [IQR] 132 [119,142] 132.00 [121,142] 123.00 [113,140] 0.026
MCV,(f]), median [IQR] 89.8 [86.9,92.8] 89.6 [86.8,92.7] 90.9 [88.7,94.0] 0.038
Blood platelet count (* 10°/L1), 213 [175,258] 217.00 [176,257] 192.00 [148,264] 0.063
median [IQR]

(Continued)
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TABLE 1 (Continued)

10.3389/fneur.2025.1659212

Patient characteristics No LEDVT
(n = 529)

CRP(mg/L), median [IQR] 5.00 [1.90,10.20] 5.00 [1.65,9.50] 5.80 [3.69,12.20] 0.003

D-dimer(jug/ml), median [IQR] 1.23[0.56,2.69] 1.07 [0.52,2.34] 4.30 [2.48,7.00] <0.001
IBI, median [IQR] 37.14 [13.88,79.20] 3352 [12.79,76.81] 56.46 [40.78,127.70] <0.001
SII, median [IQR] 1,298.57 [435.08, 2501.67] 1,298.57 [443.09, 2481.01] 1,355.92 [258.00, 2691.80] 0.906

SIRI, median [IQR] 3.42 [1.86, 6.93] 3.33 [1.86, 6.50] 6.96 [2.19, 9.37] 0.002

NLR, median [IQR] 25.99 [17.79, 39.13] 26.35 [17.79, 39.13] 24.10 [17.94, 35.64] 0.165

LOS, length of stay; ACoA, anterior communicating artery; PCoA, posterior communicating artery; ICA, internal carotid artery; MCA, middle cerebral artery; VBA, vertebrobasilar aneurysm;
CRP, C-reactive protein; MCV, mean corpuscular volume; GCS, Glasgow coma scale; WENS, World federation of neurosurgical societies; Stent-Assisted EV'T, stent assisted endovascular
treatment; DCI, delayed cerebral ischemia; AISI, aggregate index of systemic inflammation; NLR, neutrophil-to-lymphocyte ratio; IBI, inflammatory burden index; SII, systemic immune

inflammation index; LEDV'T, lower extremity deep vein thrombosis. Bold values indicate statistically significant differences (p < 0.05).
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FIGURE 2
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AUC-ROC values were excellent, the Area under the precision-
recall curve (AUC-PR) and F1 scores were modest (Table 3),
which is a common challenge in imbalanced datasets where
the positive class is the minority. To further investigate the
impact of class imbalance, we performed a sensitivity analysis
using resampling techniques. When the XGBoost model was re-
trained using SMOTE, the F1 score improved to 0.52 and the
AUC-PR increased to 0.70 on the internal test set, albeit with
a slight decrease in specificity (from 96% to 92%). Considering
that the primary goal of our model is to serve as a high-
specificity screening tool to reliably rule out low-risk patients
without excessive false alarms, the original model without
SMOTE was retained for its superior overall discriminative
power (AUC-ROC) and exceptional specificity. The corresponding
confusion matrix and performance metrics are provided in
Supplementary Table 4.
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3.4 Application of the model

The SHAP package conducted a comprehensive analysis of the
training set, showing the impact of each variable on predicting
LEDVT (Figure 5). The patient characteristics of a patient was input
into the model: with age 65 years, the GCS score at admission
was 8, albumin level 34.6 g/L, D-dimer level 2.36 ug/ml, AISI
4589, with aneurysm located in the MCA. The model predicted
that this patient had a 50.0% risk of developing LEDV'T, indicating
a high probability and suggesting that preventive interventions
should be prioritized (Figure 6A). The another patient was input
into the model: with age 55 years, the GCS score at admission
was 13, albumin level 36.9 g/L, D-dimer lever 2.68 ug/ml,
AISI 3560, without aneurysm located in the MCA. The model
predicted a 3.6% risk of LEDVT for this patient, indicating a low
probability that does not warrant aggressive preventive measures
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TABLE 2 Multivariable logistic regression model for predicting LEDVT in
aSAH patients.

Predictor B SE P Odds ratio
(Intercept) 0.49 1.83 0.79 1.64 (0.04-57.48)
D-dimer 0.25 0.05 <0.001 1.28 (1.17-1.42)
AISI 0.02 0.01 0.017 1.02 (1.01-1.04)
GCS —-0.2 0.05 <0.001 0.82 (0.74-0.91)
Age 0.05 0.02 0.002 1.05 (1.02-1.09)
Albumin —0.12 0.04 0.001 0.89 (0.83-0.96)
MCA 1.15 0.42 0.006 3.16 (1.38-7.18)

GCS, Glasgow coma scale; AISI, aggregate index of systemic inflammation; MCA, middle
cerebral artery aneurysm.
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FIGURE 3
ROC curves for prediction of lower extremity deep vein thrombosis

(LEDVT) in the test data set. Greater AUC shows higher
discriminative ability of the model.

(Figure 6B). Notably, the threshold of the occurrence of the disease
is: 30.4%.

Furthermore, an XGBoost mode website was established
to predict LEDVT: https://www.xsmartanalysis.com/
model/list/predict/model/html?mid=29059&symbol=
8NQ1760Ar952709wO8dX.

3.5 External data validation

To further confirm the model,
we conducted external validation using data from 142

aSAH patients at

applicability of our

another hospital.  Figure 7  showed
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FIGURE 4
Precision-recall curve for prediction of lower extremity deep vein
thrombosis (LEDVT). Cl, confidence interval; LR, logistic regression;
XGBoost, extreme gradient boosting; LightGBM, light gradient
boosting machine; RF, random forest; MLP multilayer perceptron;
SVM support vector machine, KNN, K-nearest neighbor.

that the AUC of the model in the external data is 0.80
(95% 0.68-0.92), that
the model can still maintain good performance in the

confidence interval: indicating

external data.

4 Discussion

The incidence of LEDVT in aSAH patients is about 10% to
25% (8, 10, 11). This clinically significant complication increases
treatment costs, prolongs hospital stays, and elevates the risk of
mortality. As a result, neurosurgeons are increasingly attentive to
the prevention and management of LEDVT in clinical practice. In
response, this study used seven ML algorithms with clinical and
laboratory data to predict the risk of LEDVT for aSAH patients.
Ultimately, the XGBoost model was selected as our optimal
choice and subsequently validated using aSAH patient data from
external hospitals, demonstrating excellent predictive performance
for LEDVT.

This study fills an important gap by applying ML algorithms
to integrate clinical and laboratory data for LEDVT prediction
in aSAH patients. Prior to this study, most research teams relied
on traditional statistical models for LEDVT risk prediction. For
example, our team previously developed a conventional logistic
regression (LR) model to predict LEDVT in aSAH patients.
This model was constructed by integrating multiple predictors
into a single regression equation and visualizing the results
through a nomogram (35). Later, Xu et al. also developed a
similar nomogram prediction model to predict LEDVT in aSAH
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TABLE 3 Performance of the six ML models in the testing set.

10.3389/fneur.2025.1659212

XGBoost 0.88 (0.78-0.98) 0.9 (0.88-0.91) 0.41 (0.31-0.51) 0.96 (0.95-0.97) 0.46 (0.36-0.56)
LR 0.84 (0.71-0.95) 0.77 (0.71-0.83) 0.76 (0.66-0.86) 0.77 (0.71-0.83) 0.43 (0.32-0.54)
LightGBM 0.86 (0.78-0.97) 0.91 (0.89-0.92) 0.36 (0.20-0.52) 0.97 (0.95-0.99) 0.43 (0.27-0.59)
RE 0.84 (0.72-0.97) 0.9 (0.88-0.92) 0.41 (0.25-0.56) 0.96 (0.94-0.98) 0.45 (0.34-0.56)
SVM 0.64 (0.48-0.80) 0.71 (0.66-0.77) 0.42 (0.30-0.54) 0.75 (0.68-0.82) 0.24 (0.19-0.30)
KNN 0.63 (0.48-0.78) 0.63 (0.61-0.65) 0.57 (0.34-0.80) 0.64 (0.59-0.68) 0.24 (0.16-0.32)
MLP 0.45 (0.27-0.62) 0.87 (0.85-0.89) 0.09 (0.01-0.18) 0.97 (0.96-0.98) -

LR, logistic regression; XGBoost, extreme gradient boosting; RE, random forest; MLP multilayer perceptron; SVM support vector machine, KNN, K-nearest neighbor.
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SHAP analysis of the proposed model on the testing set. The SHAP value reflected the impact of features in each sample and performed their positive
or negative effects. This figure described data from the testing set, with each point representing one patient. The color represents the value of the
variable; red represents the larger value; blue represents the smaller value. The horizontal coordinates represent a positive or negative correlation
with DVT risk, with a positive value indicating a risk of DVT and a negative value indicating no risk for DVT. The absolute value of the horizontal
coordinate indicates the degree of influence; the greater the absolute value of the horizontal coordinate, the greater the degree of influence. SHAP,

patients, achieving good results (8). Recent evidence, however,
suggests that machine learning plays a crucial role in managing
postoperative complications in aSAH patients, outperforming
conventional prediction models in terms of predictive accuracy.
For example, Li et al. applied ML models to predict postoperative
pneumonia in aSAH patients and demonstrated that these models
outperformed nomograms (AUC: 0.89 vs. 0.85) (15). Similarly,
Ping Hu et al. used ML models to predict delayed cerebral
ischemia in aSAH patients and reported that both random
forest (RF) and artificial neural network (ANN) models (AUC
= 0.86) outperformed conventional LR models (AUC = 0.82)
(27). All these indicate the significance of machine learning in
the perioperative disease management of neurosurgery. Therefore,
We used ML to develop models for the prediction of LEDVT for
aSAH patients. Model training using data from 593 patients was
followed by the 5-fold cross-internal validation. Six algorithms (LR,
XGBoost, RE, MLP, SVM, KNN) were used to develop the models,
whereas four metrics were used to evaluate their performances.
XGBoost model exhibited the best overall performance, with a

Frontiersin Neurology

specificity of 78% and a sensitivity of 94% in predicting LEDVT in
aSAH patients.

In our previous work, we established a conventional logistic
regression (LR)-based nomogram to predict LEDVT risk in
aSAH patients undergoing endovascular treatment, which achieved
an AUC of 0.85 (35). In the present study, we referenced
that previously developed LR model as a comparator to
contextualize the performance of our machine learning (XGBoost)
model. The XGBoost model demonstrated superior discriminative
ability (Supplementary Figure S3A: AUC: 0.88 vs. 0.85). This
enhancement in predictive performance is primarily attributed
to the superior capability of ML models in processing high-
dimensional data compared to traditional LR methods, thereby
enabling the effective incorporation of a broader range of predictive
features (36, 37). These findings further support the role of
ML in providing individualized risk assessments and serving as
a valuable decision-support tool in the clinical management of
aSAH. To translate this prediction model into clinical practice, we
propose a stratified intervention strategy guided by the estimated
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Receiver operating characteristic (ROC) curves for LEDVT in
aneurysmal subarachnoid hemorrhage patients in the external
validation set.

risk. For patients with a high predicted risk (>30%), the model
could support the early initiation of pharmacological prophylaxis
in the absence of contraindications, while also prompting a
careful assessment of the individual’s bleeding risk. For those at
intermediate risk, intensified mechanical prophylaxis and close
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monitoring are recommended. This tool, accessible via a web-
based calculator, can be integrated into the admission workflow
to facilitate timely, data-driven decisions that complement existing
clinical protocols for aSAH management.

Additionally, two case examples were presented to demonstrate
the predictive output of the XGBoost model and to highlight the
relative importance of each clinical variable. Given the high global
incidence of LEDVT, the implementation of such predictive tools
could assist clinicians in making timely decisions, including the use
of prophylactic anticoagulation, early tracheotomy, and infection
control strategies.

Furthermore, we noted that prior studies primarily relied
on internal validation to assess model performance, which
may overestimate generalizability. While internal validation
is convenient, it often produces overly optimistic results and
exaggerates model performance. Hence, external validation is
essential before implementing a predictive model in clinical
practice (38). However, current research reveals that most
predictive models remain at the development stage, with
insufficient emphasis on external validation (39-41). To address
this limitation, we conducted external validation using data from
another hospital. Although the AUC decreased from 0.88 to 0.80,
the model retained acceptable predictive accuracy, supporting
its generalizability across institutions. Future efforts should
focus on incorporating multi-center data to enhance external
validation and improve the model’s applicability across diverse
patient populations. To promote clinical use and facilitate further
validation, we developed an online prediction platform. This
tool allows clinicians to estimate LEDVT risk in real-time and
contributes external data for ongoing model refinement.

Beyond constructing high-performance predictive models,
selecting the right variables is also a critical factor in ensuring
the model’s effectiveness in practical applications. Clinicians
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often prefer the simplicity and interpretability of the binning
method when applying models in practice (38). However, ML
models may become difficult to implement and less practical
when they involve too many input variables. Moreover, an
excessive number of variables also leads to a decline in the
interpretability of the model (42). Therefore, while developing the
ML prediction model, we also prioritized the clinical relevance
of each selected variable. Many previous studies have conducted
extensive research on these predictive variables. Several studies
have highlighted the predictive value of these variables. For
instance, Wang et al. reported that patients with serum albumin
<35 g/L were more likely to develop preoperative DVT (43).
Qin et al. found increased systemic immune-inflammatory index
(SII) was correlated with the formation of aSAH-associated
DVT after endovascular treatment (11). To avoid missing any
valuable predictive variables, we included a total of 37 variables.
Comparative analysis revealed that MCA involvement, lower GCS
scores, reduced albumin levels, older age, elevated D-dimer levels,
and increased AISI were significantly associated with thrombotic
events in aSAH patients. Among them, with MCA, lower GCS
and albumin level, higher age and D-dimer level have been
extensively discussed in many previous articles, and we will not
elaborate on them here. Notably, our study introduces a novel
composite inflammatory index—the Aggregate Index of Systemic
Inflammation (AISI)—which demonstrates a strong correlation
with LEDVT. AISI, also termed the pan-immune-inflammation
value (PIV), quantifies systemic inflammation by integrating four
key complete blood count (CBC) parameters: neutrophils (NEU),
platelets (PLT), monocytes (MONO), and lymphocytes (LYM) (44—
46). Aneurysmal rupture triggers an intense neuro-inflammatory
cascade and a subsequent systemic inflammatory response
syndrome (SIRS), characterized by the activation of neutrophils
and monocytes, which release pro-coagulant factors and promote
platelet adhesion (47, 48). Concurrently, relative lymphopenia
indicates immune dysregulation. AISI, by integrating neutrophils,
monocytes, platelets, and lymphocytes into a single metric (AISI
= neutrophils x monocytes x platelets/lymphocytes), effectively
captures this multifaceted interplay of cellular inflammation
more holistically than any single cell type or ratio (45). This
synergistic dysregulation of multiple cell lineages contributes to
endothelial injury and hypercoagulability, creating a fertile ground
for venous thrombosis.

While the pathophysiology of aneurysmal subarachnoid
hemorrhage (aSAH) remains incompletely understood, emerging
evidence implicates dysregulation of immune cells—particularly
lymphocytes, neutrophils, and monocytes. Previous studies have
reported altered lymphocyte and neutrophil levels in aSAH (11, 49),
as well as associations between elevated monocyte counts and
adverse outcomes (50). Given these findings, composite indices like
AISI, which concurrently evaluate multiple immune components
(lymphocytes, neutrophils, platelets, and monocytes), may surpass
conventional single-marker indices in clinical utility, as they better
capture the complexity of disease-specific inflammatory states.

In most studies, SHAP analyses rely primarily on ranking
feature importance, without further exploration of their clinical
relevance or translational implications (51). In this study, we
first employed LASSO regression to reduce multicollinearity and
narrow down the number of candidate variables. We also employed
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multivariate logistic regression to ensure that each indicator
had independent clinical predictive value. Supplementary Table S3
provides cut-off values for each variable to help clinicians better
stratify patients by LEDVT risk. Such as the D-dimer level for
predicting the LEDVT was 2.48pug/ml, so we need to be more
vigilant in preventing DVT for patients with a D-dimer level
higher than 2.48. In practice, this value could serve as a red flag,
prompting clinicians to intensify monitoring (e.g., more frequent
lower extremity Doppler ultrasounds) or to re-evaluate the benefit-
risk ratio of initiating or escalating prophylactic anticoagulation,
especially when other risk factors are present. However, AISI
alone yielded an AUC of only 0.60, indicating limited standalone
predictive value. Notably, removing AISI from the model—
even due to its modest individual AUC—would reduce overall
model performance from 0.88 to 0.74 (Supplementary Figure S3A).
To further validate the independent value of AISI beyond its
individual components, we conducted a sensitivity analysis. We
constructed an alternative XGBoost model wherein AISI was
replaced by its constituent parts (neutrophil count, monocyte
count, platelet count, lymphocyte count) and other common
inflammatory markers (NLR, SII, SIRI, CRP). The model retaining
AISI achieved a superior performance (AUC: 0.88) compared to
the alternative model without AISI (AUC: 0.82). This comparative
analysis confirms that AISI provides unique predictive information
that is not fully captured by its components or related indices
alone, underscoring its value as an integrative marker of systemic
inflammation in our prediction model. This underscores the
importance of accounting for interactions between variables—one
of the key advantages offered by machine learning in clinical
prediction modeling. This approach not only ensures the simplicity
of the model’s operation (requiring only the input of six easily
obtainable clinical variables), but also takes into account the
accuracy and effectiveness of the model’s predictions.

In brief, these findings indicate that the model possesses not
only internal applicability within our institution but also extensive
generalizability across other healthcare facilities.

This study has several limitations that should be considered.
First, its retrospective nature inherently introduces the potential
for selection bias and unmeasured confounding, despite our
efforts to adjust for known variables. Second, the data were
sourced exclusively from centers in a single country (China), and
the genetic, lifestyle, and clinical management homogeneity of
this population may limit the model’s generalizability to other
ethnic and healthcare settings. Third, while external validation
is a key strength, the cohort from the external center was
relatively small (n = 142), which may affect the stability of the
performance estimates. Fourth, our model predicts the risk of
LEDVT within a 30-day postoperative window. While this period
captures the peak incidence of this complication, the risk of
venous thromboembolism may persist beyond this timeframe,
especially in patients with prolonged immobility or other ongoing
risk factors. Our model’s performance in predicting long-term
risk remains unknown. Additionally, our study is limited by the
class imbalance inherent in the clinical occurrence of LEDVT,
with only 10.8% of patients in the primary cohort developing the
outcome. This imbalance contributed to the disparity between the
strong AUC-ROC and the more modest AUC-PR and F1 scores,
as the latter metrics are more sensitive to the performance on
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the minority class. Although we used stratified cross-validation
and conducted external validation to mitigate overfitting, and our
sensitivity analysis with resampling showed some improvement,
the model’s sensitivity remains moderate. This indicates a trade-
off whereby the model is excellent at identifying low-risk patients
(high specificity) but may miss a portion of true high-risk cases.
In clinical practice, this suggests that the model is best used
as a high-specificity screening tool to rule out low-risk patients,
while traditional risk factors and clinical vigilance should still
be applied universally. Future work should involve prospective
collection of larger, multi-center datasets with more balanced
classes or the application of advanced cost-sensitive learning
algorithms to improve the detection of minority-class patients
without compromising overall performance

5 Conclusion

We developed and externally validated a machine learning
model, with XGBoost showing optimal performance in predicting
LEDVT risk after aSAH. By integrating key clinical and
inflammatory variables, the model demonstrated strong predictive
power and generalizability. The inclusion of AISI underscores the
importance of systemic inflammation in thrombosis risk. A user-
friendly web tool was also established to support clinical decision-
making. This model may aid early identification and personalized
prevention of LEDVT in aSAH patients.
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