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Objective: Focal cortical dysplasia (FCD) and dysembryoplastic neuroepithelial 
tumor (DNET) are two major causes of intractable epilepsy, often with confusing 
imaging findings. This study aimed to develop magnetic resonance imaging 
(MRI)-based radiomics models for preoperative differentiation between FCD 
and DNET.
Methods: This study included 169 patients who underwent epilepsy surgery 
and were pathologically diagnosed with FCD (n = 96) or DNET (n = 73). 
Conventional brain T1-weighted (T1WI), T2-weighted (T2WI) and T2-fluid-
attenuated inversion recovery (T2-FLAIR) images were acquired from all cases. 
The whole dataset was randomly divided into a training set and a test set at a 
ratio of 3:1. PyRadiomics software was used for feature extraction and selection. 
The final features were determined using the least absolute shrinkage and 
selection operator (LASSO) algorithm. A support vector machine (SVM) was 
used to establish radiomics models based on individual sequences or fusion of 
these sequences. The performance of each model was evaluated by the area 
under the receiver operating characteristic curve (AUC), and the optimal model 
was also compared with the radiologists’ assessment results.
Results: The fusion radiomics model exhibited the best performance in 
differentiating between FCD and DNET, with an AUC of 0.894 (95% CI: 
0.799–0.968) and an accuracy of 82.0%, which were superior to the individual 
models based on T1WI, T2WI, or T2-FLAIR images. In addition, the diagnostic 
performance of the fusion radiomics model was superior to that of the junior 
radiologist and comparable to that of the senior radiologist.
Conclusion: The fusion radiomics model based on multi-sequence MRI can 
successfully differentiate FCD from DNET preoperatively, which contributes to 
appropriate surgical planning and satisfactory treatment outcomes.
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1 Introduction

Focal cortical dysplasia (FCD) and dysembryoplastic 
neuroepithelial tumor (DNET) are the most common causes of 
medically intractable epilepsy in children (1–3). They both require 
surgical resection, which can help reduce epileptic seizures and 
improve cognitive outcomes. Nonetheless, previous studies have 
shown that the postoperative recurrence rate of seizures varies greatly 
between patients with FCD and DNET. After complete resection, 
about 80% of patients with DNET will no longer experience seizures, 
whereas 50% of patients with FCD will still develop seizures of varying 
degrees (4, 5). Research suggests that blurred histological boundaries 
of FCD lesions should be taken into account for the surgical resection. 
Therefore, electroencephalography is often recommended to 
determine the extent of cortical excision. In contrast, complete 
surgical resection of DNET and epileptogenic zone (EZ) is thought to 
be sufficient and effective for preventing postoperative seizures (6, 7). 
Given the different surgical strategies and prognosis between FCD and 
DNET, preoperative differential diagnosis is of great importance.

Previous studies have shown that the clinical manifestations of 
FCD and DNET are similar except that epilepsy occurs earlier in 
children with FCD than in children with DNET, which is not sufficient 
to differentiate between the two diseases (8). Although positron 
emission tomography (PET) with high sensitivity can help identify 
FCD and DNET, it tends to lack specificity to metabolic decline 
emerging in the interictal stage (9). At present, magnetic resonance 
imaging (MRI) has played an important role in the detection and 
diagnosis of FCD and DNET. Despite many MR scanning techniques 
and post-processing methods, the imaging features such as the 
location, shape and signal changes of the two diseases are similar, 
which may lead to misdiagnosis. To sum up, it is still difficult to 
differentiate FCD from DNET by the existing imaging methods. 
Therefore, it is essential to develop a more precise and impartial 
diagnostic technique to differentiate between the two diseases.

Radiomics generally aims to extract quantitative and ideally 
reproducible information from diagnostic images, including complex 
patterns that are difficult for the human eye to recognize or quantify 
(10–12). By using the radiomics features, the radiomics models can 
be  established to achieve predictions, judgments, and differential 
diagnosis of diseases (13). A support vector machine (SVM) is a 
powerful classification algorithm that can estimate the classification 
probabilities and control complexity, which has been widely used in 
the field of neuroimaging (14–16), and also applied in related research 
on FCD (17). In addition, the least absolute shrinkage and selection 
operator (LASSO) is a regularization technique for minimizing the 
number of non-zero elements and producing a unique solution (18), 
which is often used to solve the problem of large sets of radiomics 
features derived from a relatively small sample size. Previously, it has 
been verified that LASSO combined with SVM has the best 
performance in differentiating diseases (19). Therefore, it is expected 
that the combination of the two can be used to differentiate FCD 
from DNET.

Therefore, this study aimed to develop radiomics models based on 
individual sequences (T1WI, T2WI, and T2-FLAIR) or fusion of these 
sequences for differentiating FCD from DNET, and compare their 
diagnostic performance. We hope to provide a new high-performance 
method for preoperative differentiation of FCD and DNET in children 
with drug-resistant epilepsy.

2 Methods

2.1 Participants

This retrospective study was approved by the Institutional Review 
Board of our hospital and the requirement to obtain written informed 
consent was waived. All participants were from the our hospital 
between January 2014 and December 2022. Inclusion criteria were as 
follows: (1) Patients diagnosed with epilepsy in accordance with the 
International League Against Epilepsy (ILAE) Guidelines for 
Classification and Diagnosis of Epilepsy (20), (2) those undergoing 
epilepsy surgery and pathologically diagnosed with FCD or DNET, 
pathological types of FCD include: type I and type II (specifically, 
subtypes Ia, Ib, Ic, IIa, and IIb according to the ILAE classification), 
(3) those receiving preoperative non-invasive evaluation, including 
long-term video-EEG, conventional MRI and PET-CT. Exclusion 
criteria included: (1) Patients with incomplete clinical data, (2) those 
with low imaging quality, (3) those with FCD who had any 
concomitant lesions, or (4) those with recurrent lesions or a history of 
treatment. The flowchart of patient selection is shown in Figure 1. The 
clinical data including gender, age, age at seizure onset, type of seizure 
(based on the new operational classification by the ILAE), past 
medical history (febrile convulsions, encephalitis, perinatal brain 
injury, and traumatic brain injury) and kinds of anti-seizure 
medication administered were recorded.

2.2 MRI datasets and preprocessing

All patients were scanned by a 3.0 T scanner (Achieva 3.0 T TX, 
Philips, Holland) with an 8-channel head coil, with the following 
scanning parameters: T1WI: repetition time (TR) = 2,000 ms and 
echo time (TE) = 20 ms; T2WI: TR = 3,500 ms and TE = 80 ms; 
T2-FLAIR: TR = 8,000 ms and TE = 125 ms. For all images, the field 
of view (FOV) was 230 × 191 × 143 mm, and slice thickness was 
5.0 mm with an inter-slice spacing of 1.0 mm.

For image segmentation, the images of each subject were first 
aligned to T2-FLAIR using the FSL Version 5.0.9.1 Then they were 
loaded into an open-source image processing software ITK-SNAP 
(version 4.0.0, http://www.itksnap.org) in DICOM format. The 3D 
volume of the lesion was manually delineated layer by layer along its 
contour on T1WI, T2WI, and T2-FLAIR images by two radiologists 
with 8- and 5-year experience who were independently blinded to the 
clinical data of patients. During the delineation process, the following 
principles were strictly followed: (1) Boundary determination: The 
ROI is strictly delineated along the edge of the lesion, and the adjacent 
normal brain tissue is excluded as much as possible. (2) Image quality 
consideration: During the delineation process, actively avoid regions 
with significant volume effects, motion artifacts, and susceptibility 
artifacts that may affect the accuracy of the signal. (3) Multi-sequence 
collaborative judgment: The radiologist refers to the registered images 
of multiple sequences (such as T1WI, T2WI, and T2-FLAIR) and 
comprehensively determines the lesion range, ensuring that the ROI 
is spatially consistent across different sequences. (4) Dispute resolution 

1  http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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mechanism: If the two radiologists have a disagreement on the 
delineation of a certain ROI, an experienced senior radiologist with 
15 years of experience in central nervous system imaging diagnosis 
will arbitrate. This expert will review the registration quality and 
segmentation consistency of multiple sequence images one by one, 
and ultimately determine the ROI range to ensure that all subjects’ 
lesion areas are accurately and consistently covered. The intra- and 
interobserver agreement was assessed using the intraclass correlation 
coefficient (ICC), and ICC > 0.75 was considered good agreement.

In terms of image preprocessing, we have indeed carried out several 
steps to enhance data quality and feature stability, which include: (1) 
Image resampling (Resampling): All images are uniformly resampled 
to isotropic resolution (the default value is 1 × 1 × 1 mm3) to eliminate 
the influence of resolution differences among the original images on 
feature extraction. (2) Grayscale Discretization (Discretization): The 
grayscale values of the image are discretized using a fixed bin width (the 
default bin width is 25 HU) to reduce noise and enhance the consistency 
of features. (3) Image Filtering (Filtering): The default filter set of 
PyRadiomics was applied, including: Gaussian Laplacian (LoG) 
filtering and wavelet filtering. Other image enhancement filters (such 
as gradient, square, etc.). (4) Image mask processing: Before feature 
extraction, all the regions of interest (ROI) were delineated by 
experienced radiologists and the masks were ensured to be aligned with 
the images. All these preprocessing steps were completed using the 
default parameters of PyRadiomics. The specific settings can be referred 
to the IBSI guidelines and the official documentation of PyRadiomics. 

The whole dataset was randomly divided into a training set and a test 
set at a ratio of 3:1. All the cases in the training set were used to train 
the diagnostic model, whereas all the cases in the test set were used to 
independently evaluate the performance of the model.

2.3 Feature extraction and feature selection

PyRadiomics software (version 3.0, http://readthedocs.org/projects/
PyRadiomics/) was used for feature extraction and feature selection. 
This tool strictly follows the standards of the Imaging Biomarker 
Standardization Initiative (IBSI), ensuring the standardization and 
reproducibility of feature calculations. Finally, a total of 1,130 features 
were extracted and categorized into seven major types: (1) 18 first-order 
statistics; (2) 14 shape-based; (3) 24 gray level co-occurrence matrix 
(GLCM); (4) 16 gray level run length matrix (GLRLM); (5) 16 gray level 
size zone matrix (GLSZM); (6) 5 neighboring gray tone difference 
matrix (NGTDM); (7) 14 gray level dependence matrix (GLDM). After 
normalization, feature screening was further performed using the 
machine learning algorithm provided by the sklearn package.

2.4 Model training and validation

The features with no significant difference between the two groups 
were filtered by the two-sample t-test, and the optimal features were 

FIGURE 1

Patient selection flowchart. The subjects were selected according to the inclusion criteria and exclusion criteria. FCD, focal cortical dysplasia; DNET, 
dysembryoplastic neuroepithelial tumors.
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determined using the LASSO algorithm with 5-fold cross-validation. 
Twenty-five, 8 and 14 feature subsets were extracted from the T1WI-, 
T2WI- and T2-FLAIR-based models, respectively. Then the above 
process was repeated to further screen the fusion features of the three, 
and a total of 12 fusion features were obtained finally. SVM was used 
for the classification of features. In the training set, GridSearchCV 
(CV = 5, namely, 5-fold cross-validation) was used to optimize the 
hyperparameters of the model to reduce its training error and 
generalization error. The diagnostic efficacy of the model was assessed 
through the mean area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity, specificity, and accuracy. The workflow 
of data preparation and radiomics analysis is shown in Figure 2.

2.5 Radiologists’ assessment

To compare the performance of the radiomics model with the 
radiologists’ assessment results in differentiating FCD from DNET, 
two radiologists with 8- and 5-year experience who were blinded to 
the clinical and pathological data were asked to differentiate FCD 
from DNET according to the sequences (T1WI, T2WI, and 
T2-FLAIR). Then the sensitivity and specificity of the radiomics 
model and the radiologists’ assessment results were compared.

2.6 Statistical analysis

Statistical analysis was performed using SPSS26.0. Measurement 
data (age, age of seizure onset) was expressed as median [interquartile 
range (IQR)]. Independent sample t-test (if homogeneity of variance 
was met) or Welch’s t-test (if heterogeneity of variance was met) was 
used for comparison between groups. Count data (gender, seizure 
type, past medical history and Number of anti-seizure medication.) 

were expressed as the number of cases (percentage) [n (%)], and 
comparison between groups was performed using the Chi-square test 
or Fisher’s exact test (when the expected frequency was <5). p < 0.05 
was considered statistically significant.

3 Results

3.1 Patient characteristics

A total of 169 patients with FCD (n = 96) or DNET (n = 73) were 
included, with more males than females in both FCD and DNET 
groups. Among the 96 FCD patients, the histological subtypes were 
distributed as follows: type Ia (n = 8), type Ib (n = 11), type Ic (n = 9), 
type IIa (n = 32), and type IIb (n = 36). The median age at seizure onset 
in the FCD group was higher than that in the DNET group. 59 (61.5%) 
patients in the FCD group and 37 (50.7%) patients in the DNET group 
administer more than three kinds of anti-seizure medication. The 
gender, age at seizure onset, type of seizure, past medical history, and 
kinds of anti-seizure medication administered had no significant 
differences between the FCD and DNET groups (Table 1).

3.2 Diagnostic performance of radiomics 
models

Three T1WI-, T2WI-, and T2-FLAIR-based models and a fusion 
radiomics model based on the combination of the three sequences were 
established. It was found that the fusion radiomics model had the best 
performance, with an AUC of 0.894 (95% CI, 0.799–0.968), accuracy of 
82.0%, sensitivity of 92.9%, and specificity of 68.2%. For the T1WI-, 
T2WI- and T2-FLAIR-based models, the accuracy was 76.0, 84.0 and 
76.0%, the sensitivity was 75.0, 92.9 and 75.0%, the specificity was 77.3, 

FIGURE 2

Workflow of the radiomics analysis. The workflow of the radiomics analysis was as follows: Image acquisition, ROI segmentation, feature extraction, 
feature selection, model training, and diagnostic performance evaluation.
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72.7 and 77.2%, and the AUC was 0.816 (95% CI, 0.710–0.912), 0.864 
(95% CI, 0.755–0.951) and 0.820 (95% CI, 0.705–0.91), respectively. The 
statistical selection process of features with the LASSO algorithm is 
shown in Figure 3. The AUCs of different models are shown in Figure 4.

The image features of the fusion model are summarized as follows: 
T2_log-sigma-2-mm-3D_grIm_GrayLevelNonUniformityNormalized, 
FLAIR_wavelet-HLL_gIrlm_ShortRunLowGrayLeveEmphasis, FLAIR_
wavelet-LHL_ngtdm_Contrast, T1_original_firstorder_10Percentile, 
T2_wavelet-LLL_glcm_SumAverage, T2_original_glcm_JointEntropy, 
T2_log-sigma-3-mm-3D_glcm_SumEntropy, T2_original_glcm_
SumAverage, T1 log-sigma-2-mm-3D_firstorder_10Percentile, T2_
original_shape_Elongation, T2_original_glcm_JointAverage, T2_wavelet- 
LLL_glcm_JointAverage.

3.3 Radiologists reading

The accuracy, sensitivity and specificity of the junior radiologist’s 
assessment were50.0, 53.6, and 45.5%, respectively, while those of the 
senior radiologist’s assessment were 76.0, 78.6, and 72.7%, respectively. 
The diagnostic performance of the fusion radiomics model was 
superior to that of the junior radiologist and comparable to that of the 
senior radiologist (Table 2). During radiologists reading, there were 
some easily-confused cases, which led to misdiagnosis. The 
representative FCD and DNET cases with similar imaging findings are 
shown in Figure 5.

4 Discussion

In this study, several MRI-based radiomics models were 
established to differentiate FCD from DNET. Among them, the fusion 

radiomics model exhibited the highest prediction accuracy, with an 
AUC of 0.894. Importantly, the diagnostic performance of the fusion 
radiomics model was superior to that of the junior radiologist and 
comparable to that of the senior radiologist, suggesting its clinical 
application value. To the best of our knowledge, this is the first time 
that an MRI-based radiomics model is used for the differential 
diagnosis of FCD and DNET, the two most common epileptogenic 
lesions in children. Given the different surgical strategies and 
prognosis between FCD and DNET, this model is expected to provide 
a new method for preoperative differential diagnosis.

A total of 12 features were extracted in this study, mainly including 
2 first-order features, 11 shape features, 6 gray-level co-occurrence 
matrix (GLCM) features, 2 gray-level run-length matrix (GLRLM) 
features, 4 wavelet features, and 3 log-sigma features. The shape 
features are used to describe the geometric features of the image, 
providing quantifiable indicators for morphological analysis of 
tumors. GLCM features, GLRLM features, and log-sigma features 
reflect the image texture, describing the pixel spatial distribution. 
Since texture can make full use of image information, it serves as an 
important basis for image description and recognition. It is challenging 
to recognize these features by visual perception, but they offer valuable 
insights into the tumor cell structure and microenvironment, 
providing powerful evidence for differentiation of DNET and FCD 
(21). Texture outperforms other image features by effectively capturing 
both the global properties and intricate details of the image. The 
wavelet features can effectively capture the image texture information 
of various scales, thereby providing valuable information for the 
differentiation and classification of lesions. They exhibit a strong 
ability of prognostic evaluation and serve as crucial components in 
radiomics modeling (22). In addition, first-order features are used to 
describe the distribution of grayscale value within an image for the 
differentiation and classification of lesions.

TABLE 1  Clinical characteristics of patients.

variable FCD (96) DNET (73) stat p

Man/female, n 61/35 50/23 0.451 0.502

Age (month), median (IQR) 96(54,120) 72(36,132) 1.024 0.307

Age of seizure onset (month), median (IQR) 84(48,120) 72(36,120) 0.320 0.749

Seizure type, n (%) 0.599 0.741

FAS 22(23.0) 15(20.5)

FIAS 35(36.4) 24(32.9)

FBTCS 39(40.6) 34(46.6)

Past History, n (%) 0.999

None 67(69.8) 56(76.7)

Febrile convulsions 21(21.9) 13(17.8)

encephalitis 2(2.1) 2(2.7)

perinatal brain injury 5(5.2) 1(1.4)

traumatic brain injuries 1(1.0) 1(1.4)

Number of anti-seizure medication, n (%) 0.999

1 5(5.2) 7(9.6)

2 32(33.3) 29(39.7)

≥3 59(61.5) 37(50.7)

Data are represented as median (interquartile range) or n (%). FCD, focal cortical dysplasias; DNET, dysembryoplastic neuroepithelial tumor. FAS, focal aware seizures; FIAS, focal impaired 
awareness; FBTCS, focal to bilateral tonic–clonic seizures.
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Radiomics features have been widely used in radiomics research, 
which display good performance in the differentiation of lesions. They 
combine many features of the image and allow a more comprehensive 
analysis, resulting in higher sensitivity and accuracy in lesion diagnosis 

than a few or a single image indicator (18). The concept of radiomics 
originates from medical imaging but surpasses it in terms of complexity 
and scope. It has drawn great attention in various domains such as 
image recognition and data analysis. Transforming the image into 

FIGURE 3

Statistical selection process of radiomic features with LASSO regression. (A,B) The decreasing path of mean square deviation and characteristic 
coefficient with the change of λ value. (C) Features related to the optimal value were further reserved with respective coefficients to build the 
radiomics signature model. (D) ROC curve were cross-validated with hyperparameters on the training set in individual and fusion model.

FIGURE 4

The area under the ROC curve of for different models. (a) Training set and (b) test set. The gray diagonal lines indicate an AUC value of 0.5, which 
means the prediction result of completely random.
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multidimensional quantitative data has emerged as a valuable tool to 
contribute to clinical decision-making (23), which can differentiate two 
similar diseases by extracting their features, greatly improving 
preoperative diagnostic accuracy and providing a useful reference for 
surgical planning. In this study, the radiomics model exhibited superior 
performance in differentiating between FCD and DNET. This model 
makes accurate preoperative differentiation of FCD and DNET among 
epilepsy patients feasible, allowing clinicians to effectively tailor 
surgical plans for better outcomes and quality of life.

Our research ultimately identified these 12 features as describing a 
highly heterogeneous tumor image: Firstly, multiple texture features such 

as GrayLevelNonUniformity, Contrast, JointEntropy, and SumEntropy 
all point to a chaotic internal structure of the tumor, possibly containing 
various components (such as active tumor, necrosis, and edema); 
Secondly, multiple intensity-related features on T2 and FLAIR, such as 
SumAverage, JointAverage, and ShortRunLowGrayLevelEmphasis, 
suggest that there may be extensive edema and necrotic areas within the 
tumor; Thirdly, the `Elongation` feature indicates that the tumor has an 
irregular shape and grows in an infiltrative manner rather than in a 
clearly demarcated expansive way. Finally, the features are derived from 
multiple sequences including T1, T2, and FLAIR, and even different 
processing methods of the same sequence (original, wavelet, LoG 
filtering), which allows the model to comprehensively evaluate the two 
diseases from multiple perspectives (cell density, water content, edges, 
and different scales), suggesting that FCD and DNET have completely 
different pathological features internally. This radiomics model can help 
distinguish between these two diseases, which is crucial for the selection 
of treatment plans and the assessment of treatment effects.

In addition, radiomics can serve as a supplementary approach to 
certain challenges encountered by radiologists. Frequent work 
interruption is associated with increased time consumption and an 
increased likelihood of errors (24). Moreover, some cognitive biases 
may adversely affect the diagnostic accuracy (25). Radiomics possesses 
significant advantages in reducing reporting time and cognitive biases, 
especially for junior radiologists lacking relevant experience (26). 
However, current radiomics strategies involve excessive post-
processing before establishing appropriate machine learning models, 
and more studies on the effect-cost balance of such machine learning 
systems are needed before their clinical application.

In previous studies on childhood diseases, MR sequences with 
long scanning time were used (27), which was quite time-consuming 
and harmed the physical and mental health of patients. For younger 
children who cannot fully cooperate, there are certain difficulties in 
image acquisition, and the image quality cannot meet the 
requirements. Considering the high dose of anesthetic drugs, the 
impact on the brain development of children cannot be estimated. 
Besides, the longer the scanning time, the worse the compliance of 
children with claustrophobia, and the image quality also presents 
difficulties to radiologists and even fails to meet the diagnostic 
requirements (28).

For the above reasons, conventional MRI images were used in this 
study, which not only meet ethical requirements but also reduce the 
physical and mental burden of children.

To the best of our knowledge, few studies are available on the 
differential diagnosis of FCD and DNET in child patients with 

TABLE 2  Diagnostic performance of comparison of radiomics and human assessment.

Model Train model Test model Radiologist

T1WI T2WI Flair Fusion T1WI T2WI Flair Fusion Junior Senior

AUC 

(95%CI)

0.956

[0.926–

0.981]

0.885

[0.832–

0.938]

0.875

[0.811–

0.926]

0.884

[0.826–0.938]

0.816

[0.710–

0.912]

0.864

[0.755–

0.951]

0.820

[0.705–0.910]

0.894

[0.799–0.968]

Accuracy 86.6% 83.2% 84.0% 79.0% 76.0% 84.0% 76.0% 82.0% 50.0% 76.0%

Sensitivity 92.6% 91.2% 92.6% 88.2% 75.0% 92.9% 75.0% 92.9% 53.6% 78.6%

Specificity 78.4% 72.5% 72.5% 66.7% 77.3% 72.7% 77.2% 68.2% 45.5% 72.7%

Youden index 71.1% 63.7% 65.2% 55.0% 52.3% 65.6% 52.3% 61.0%

AUC, area under the curve; CI, confidence interval.

FIGURE 5

Illustrations of MRIs for FCD and DNET. (A) FCD was presented in the 
left occipital lobe. (B) DNET was presented in the left frontal lobe. 
(C) FCD was presented in the right frontal lobe. (D) DNET was 
presented in the left frontal lobe. FCD, focal cortical dysplasia; DNET, 
dysembryoplastic neuroepithelial tumors.
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epilepsy. Previous studies using DTI parameters to evaluate the 
changes of white matter surrounding epileptogenic foci suggested that 
only mean diffusivity may be useful in the differentiation of DNET 
from FCD, and this conclusion was based on the premise that the 
lesions showed hyperintensity on T2 and T2-FLAIR (29), which 
largely limited the inclusion of cases. The findings of this study may 
provide a reference for future research on this population. In the case 
of FCD, neurosurgeons can perform wide cortical resection over the 
MRI-delineated lesion, which can help reduce the incidence of 
postoperative epilepsy in patients with FCD. Furthermore, having a 
thorough understanding of the possible postoperative outcomes may 
increase the doctor-patient trust during epilepsy surgery.

This study still had some limitations. Firstly, the sample size was 
small, and the dataset was collected from one local tertiary hospital. 
In the future, a prospective multicenter study with a larger sample size 
should be conducted. Secondly, only T1WI, T2WI, and T2-FLAIR 
images were used, so multi-modal imaging data need to be included 
in the future, such as diffusion-weighted imaging (DWI) and arterial 
spin labeling. Thirdly, the diagnostic efficacy of radiomics models is 
related to the fusion features, so more features should be considered 
to achieve better performance.

In conclusion, a cost-effective, convenient, and non-invasive 
fusion radiomics model was established based on multiple features 
from conventional MRI images (T1WI, T2WI, and T2-FLAIR) to 
effectively differentiate between FCD and DNET in child patients with 
epilepsy before surgery. This model holds significant potential as a 
valuable reference for surgical planning and contributes to 
clinical practice.
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