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Epilepsy, a chronic neurological condition affecting over 70 million individuals
worldwide, has far-reaching effects beyond seizure activity, including a significant
impact on reproductive health by posing significant challenges to fertility and
hormonal health. Emerging evidence underscores the complex bidirectional
interplay between epilepsy, antiepileptic drugs (AEDs), and sex steroid hormones;
particularly progesterone, testosterone, and prolactin, which influence both seizure
threshold and reproductive function. This paper explores how epilepsy alters
hypothalamic—pituitary-gonadal (HPG) axis dynamics, often leading to conditions
like polycystic ovary syndrome (PCOS), anovulation, and menstrual irregularities.
Moreover, the role of prolactin dysregulation following seizures, as well as the
impact of temporal lobe epilepsy on gonadotropin-releasing hormone (GnRH)
pulsatility, is examined in relation to infertility outcomes. By integrating current
research on neuroendocrine signaling and reproductive physiology, this paper
highlights the need for individualized care strategies in individuals with epilepsy
to optimize both seizure control and reproductive health.

KEYWORDS
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Introduction

There is a wealth of evidence in the scientific literature supporting the complex relationship
between epilepsy and infertility. Infertility is clinically defined as the failure to achieve
pregnancy after 12 months of regular unprotected intercourse or as a result of reproductive
disorders in one or both partners. Its prevalence is approximately 15% of couples worldwide
(1, 2). The etiology of infertility is attributed to male factors in about one-third of cases, female
factors in another third, and the remaining cases are considered idiopathic (3, 4).

Epilepsy is one of the most common neurological disorders, affecting over 70 million
individuals worldwide (5, 6). Its development and manifestations are multifactorial and often
reflect an interplay of genetics, environmental and acquired factors, and hormonal dysregulation
(7, 8). Due to its mechanisms of neuronal disruption, epilepsy has a profound systemic impact
and can significantly affect reproductive health through disruption of the hypothalamic-
pituitary-gonadal (HPG) axis and alterations in circulating sex hormone levels (9, 10).

Women with epilepsy (WWE) commonly exhibit reproductive disturbances, including
menstrual irregularities, polycystic ovary syndrome (PCOS), and dysregulation of estrogen,
androgen, and prolactin (PRL) levels (11-13). Men with epilepsy (MWE) often present with
hypogonadism, reduced testosterone, and impaired spermatogenesis (14). Disruption of the
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HPG axis, ion channel dysfunction, and anti-seizure medications
(ASM)-mediated endocrine interference underlie these impairments
(11, 15, 16). Key fertility regulators that are affected include estrogen,
progesterone (PROG), prolactin (PRL), follicle-stimulating hormone
(FSH), (LH), (07),
dehydroepiandrosterone (DHEA), human chorionic gonadotropin

luteinizing ~ hormone oxytocin
(hCQG), anti-miillerian hormone (AMH), testosterone, neurosteroids,
and insulin (13-15). Despite significant advances in understanding
the intersection between epilepsy and infertility, critical gaps remain
regarding the mechanisms through which epilepsy and its treatment
influence reproductive health. Key unanswered questions include the
pathophysiological mechanisms underlying infertility in patients with
epilepsy and the effective strategies for preserving fertility in affected
individuals to improve quality of life both physiologically
and psychosocially.

This review aims to explore the relationship between epilepsy and
hormonal dysregulation, particularly emphasizing reproductive
outcomes. It consolidates the current evidence regarding the complex
interactions among epilepsy, sex hormone regulation, endocrine
signaling pathways, and fertility. Additionally, it provides a
comprehensive overview of how epilepsy impacts fertility, pregnancy,
and fetal development, while considering the 2025 ILAE framework
to address previous limitations that have hindered translational
research. Furthermore, it discusses emerging strategies aimed at
preserving reproductive function within this vulnerable population.

The interplay between reproductive
hormones and neuronal activity

The impact of reproductive hormones on seizure occurrence is
well documented, especially during physiologic states of high
hormonal influence such as menstruation, pregnancy, and menopause.
Hormonal fluctuations can alter seizure control due to changes in
neuronal excitability and survival, but strangely, pregnancy, a state of
high hormonal influence, is not reported to exacerbate seizures (17,
18). Two-thirds of women remain free from seizures during
pregnancy, although if seizures are present, there may be a significant
worsening of the general condition, especially due to focal seizures. In
such cases, close supervision of the treatment regimen and seizure
response is required, with modifications such as increased dosages of
ASMs or different drug options (17, 18).

Women with epilepsy (WWE) are significantly more likely to
experience reproductive and sexual dysfunction than the general
population. Sexual disorders affect approximately 20-30% of WWE,
with reduced libido being the most common complaint (19).
Additional endocrine and reproductive abnormalities frequently
reported include polycystic ovary syndrome (PCOS), menstrual
irregularities,  premature = menopause,  hyperandrogenism,
hypogonadotropic hypogonadism, premature ovarian failure, and
hyperprolactinemia (20-26). Approximately 33% of WWE experience
seizure exacerbation corresponding with the changes of the menstrual
cycle, known as catamenial epilepsy (27). This seizure pattern is
sensitive to changes in hormonal levels of estrogen and progesterone
(PROG), both key players in modulating neuronal excitation and
thereby seizure thresholds (28). Corresponding to the dominant
hormone in each phase of the menstrual cycle, three main patterns of
catamenial epilepsy have been noted. The C1 (perimenstrual pattern)
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is guided by a decline in PROG and its metabolites, which reduces
GABAergic inhibition, consequently increasing seizure susceptibility.
The C2 (perimenstrual pattern) is characterized by a peak in E2
(estradiol) levels, which enhances the excitation of neurons, and lastly,
the C3 (anovulatory pattern) is marked by a highly sustained level of
estrogen in the absence of PROG entirely, leading to heightened
neuronal excitation (29-31). These disruptions in hormonal balance
not only reflect underlying endocrine abnormalities but also
contribute to reduced fertility. Morrell estimates that 50-66% of WWE
may be at risk for impaired fertility compared to women without
epilepsy (32).

The hormonal effects of epilepsy are not limited to women, but are
highly reported in men as well, with rates of sexual dysfunction
ranging between 38 to 71% among men with epilepsy (MWE) (33).
Hormonal dysregulation caused by epilepsy results in reduced levels
of testosterone, both in its free and albumin-bound state, lower free
androgen index (FAI) and increased concentrations of estradiol (E2),
sex hormone-binding globulin (SHBG), luteinizing hormone (LH),
follicle-stimulating hormone (FSH), and prolactin (PRL) (22, 23, 34).
This imbalance and marked decrease in testosterone concentrations
manifests as concerns such as delayed sexual development, impaired
spermatogenesis, decreased libido, and abnormal testicular
morphology (20, 22). MWE have characteristically lower levels of
testosterone, even from younger ages, where 11% of individuals under
20 years of age exhibit sub-threshold levels. These manifestations
become more pronounced with age as testosterone levels decrease
physiologically as well, causing increased sexual dysfunction in
MWE (35).

Although both sexes experience epilepsy-related endocrine
disturbances, the clinical manifestations differ. These sex-specific
factors warrant the need for personalized, comprehensive care that
addresses both the neurological and psychosocial challenges
associated with epilepsy (3, 11, 12, 34).

The mechanisms of hormonal
disturbances caused by epilepsy

The relationship between epilepsy and sex hormones is complex
and not yet fully understood and has a multi-faceted interaction since
both the condition itself and the use of ASMs can disrupt the
hypothalamic—pituitary axis, resulting in abnormal steroid hormone
production (20). One theory proposes that alterations in neuronal
activity during and between seizures interrupt the release of
neurotransmitters glutamate, NE, GABA, and dopamine which
interferes with the pulsatility of Gonadotropin-releasing Hormone
(GnRH) and consequent hormonal regulation (20, 61). It has been
suggested that epilepsy directly affects the hypothalamic-pituitary
axis, resulting in altered levels of GnRH, LH, FSH, PRL, and
downstream hormones such as estrogen, testosterone, and DHEA (20).

GnRH pulse frequency plays a critical role in determining
gonadotropin output. Low-frequency pulses favor FSH secretion,
while high-frequency pulses promote LH release. Continuous
(non-pulsatile) GnRH secretion suppresses both FSH and LH,
inhibiting ovulation and estrogen production. Seizure-related
disruptions in this balance can thus result in reproductive dysfunction
(64). Abnormal GnRH pulsatility is pathognomonic for several
reproductive disorders. In PCOS, persistently high-frequency GnRH
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pulses shift the LH/FSH ratio toward LH dominance (65). This
stimulates ovarian theca cells to overproduce androgens, while
insufficient FSH impairs aromatase activity in granulosa cells,
reducing estrogen synthesis. Conversely, in hypogonadotropic
hypogonadism and hypothalamic amenorrhea, GnRH secretion is
diminished, resulting in low FSH and LH levels and impaired gonadal
function (66).

The pattern and location of seizures affect the prevalence of
specific hormonal disturbances. This suggests that there is a direct link
between epilepsy and endocrine dysfunction (21, 37-42). Present
research is largely acquired by conducting investigations in animal
models utilising electrical stimulation, and human studies using
electroconvulsive therapy. Both models have demonstrated altered
pituitary hormone secretion caused by altered neuron firing in
response to epilepsy (43, 44). Hormonal changes have been noted both
in response to seizures and during interictal periods, especially with
increased levels of PRL and LH in both sexes (20, 37).

Dana-Haeri et al. (39) found that PRL and LH levels increased
significantly 20 min after the seizure. Following a 60-min period, PRL
returned to its initial level, while LH continued to demonstrate
elevated levels for a longer duration of time. FSH was also noted to
be increased both immediately after a seizure and following a 60-min
period, but only in women. In a similar vein, Nappi et al. (45) reported
a higher frequency of LH surges in both focal and generalised epilepsy
cases. Elevated PRL levels may cause decreased libido and impotence
in men, and anovulatory cycles in women (46, 47).

Beyond the disease itself, ASMs also contribute to GnRH
dysregulation by modulating neurotransmitters such as gamma-
aminobutyric acid (GABA), NMDA, and glutamate in the limbic
system (50). Epilepsy impacts hormonal regulation through feedback
loops involving the hypothalamus, pituitary gland, and peripheral
endocrine organs. Disruptions in these circuits, whether during
seizures or interictal periods, impairs hormonal balance and
regulation (51) (Figures 1-4).

Epileptic Seizures
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Neurotransmitters (glutamate, NE, GABA, dopamine) and hormonal
pathways (GnRH, LH, FSH) involved in epileptic seizures, highlighting
abnormal GnRH pulsatility as a potential factor in seizure-related
endocrine disruptors. Created in BioRender (2025).
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FSH, LH, and the HPG axis in epilepsy

Seizures affect the HPG axis which mainly regulate the release of
sexual hormones. The downstream effect of the preoptic nucleus
neurons activation in the hypothalamus result from the secretion of
GnRH into the portal circulation and anterior pituitary gland
activation (55). GnRH signal transduction to G-protein coupled
receptors on the gonadotroph cells, generates LH and FSH release in
the anterior pituitary (56, 57). Both hormones bind to receptors in
the gonads and promote the production of sex hormones such as
estrogen (E2), testosterone, and PROG (52, 58). Not only are these
steroid hormones and their neuroactive metabolites highly influenced
by seizures, they also modulate neuronal excitability through
genomic and non-genomic mechanisms, thus influencing seizure
susceptibility (18, 59). The bidirectional impact of endocrine
dysregulation causes higher levels of hormonal and reproductive
disruption in individuals with epilepsy when compared to their
healthy counterparts, in both men and women (20, 53, 54). The
dysfunction is not limited to any subtype of epilepsy, but is rather
observed in the vast majority of cases, including focal and generalized
onset seizures as well as secondary generalized focal onset seizures
(20) but is most commonly associated with temporal lobe epilepsy
(TLE) (53, 54).

TLE, a specific subtype of focal epilepsy affecting mainly the
temporal lobe, exerts a more profound effect on the HPG axis, leading
to significant dysregulation of gonadotropin secretion, especially
impacting FSH and LH (8). TLE can trigger seizure activity in different
hemispheres, each exerting lateralized effects on neuroendocrine
regulation. Left-sided TLE is consistently associated with elevated
GnRH pulse frequency, triggering higher LH/FSH ratios resulting in
hyperandrogenism, and clinical features resembling PCOS (8). In
contrast, right-sided TLE is more often linked to hypogonadotropic
hypogonadism, characterized by reduced LH and FSH secretion
resulting in amenorrhea (48). Essentially, left temporal foci contribute
to hypergonadotropic states, whereas right temporal foci contribute
to hypogonadism. In addition to the chronic region-specific impact of
epilepsy on the HPG axis, acute ictal and postictal events also produce
immediate hormonal disturbances. Postictal surges of neuronal
activity trigger surges of LH and FSH translating immediately to
short-term endocrine imbalances. Chronic instability of these
hormones often terminates in altered LH pulse frequency and
amplitude, causing anovulatory cycles and menstrual
irregularities (49).

Up to 50% of WWE experience reproductive disturbances such as
oligomenorrhea, amenorrhea, and infertility. These effects are more
pronounced in women with left-sided epileptiform discharges, which
may more directly impact limbic-hypothalamic pathways responsible
for GnRH regulation (63).

Seizure disorders and ASMs, particularly valproic acid (VPA), can
further exacerbate GnRH dysregulation. VPA has been shown to
elevate androgen levels and worsen LH/FSH imbalances, contributing
to PCOS-like features in women and hormonal suppression in men
(15, 42, 48, 62, 68).

In MWE, elevated LH levels may reflect increased pituitary
drive in response to testicular dysfunction. Increased FSH and LH
levels are markers of gonadal and

damage impaired

spermatogenesis. Epileptic discharges may interfere with

hypothalamic control of testosterone production via Leydig cell
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suppression and disruption of negative feedback loops. Clinically,
this manifests as reduced libido, delayed sexual development, and
infertility (69).

The clinical consequences of HPG axis disruption in epilepsy are
extensive. Menstrual irregularities, infertility, and premature
menopause are observed frequently in women, especially those with
TLE and VPA exposure.

hypogonadism and sexual dysfunction being the typical manifestations

Men are similarly affected, with

of reproductive disruption. These findings emphasize the importance
of integrated treatment strategies that address seizure control and
reproductive health.

Seizure activity during ictal and postictal phases can interfere
with the pulsatile release of GnRH, likely due to disrupted
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neurotransmitter signaling involving GABA, glutamate, and
NMDA receptor pathways (60). Ictal events in TLE have been
shown to trigger transient postictal surges in both LH and FSH,
leading to acute hormonal fluctuations (49). This disruption
contributes to altered levels of LH, FSH, PRL, estrogen, and
testosterone (20, 61).

Generalized seizures are also associated with acute elevations in
PRL and LH in both sexes, while FSH levels tend to rise predominantly
in women. PRL typically returns to baseline within an hour, but LH
may remain elevated for longer periods (37, 62). Chronic seizure
activity can lead to persistent alterations in the frequency and
amplitude of LH pulses, often resulting in anovulatory cycles and
menstrual dysfunction.
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Hypothalamus: Modulates |
neuroendocrine rhythms
and may influence
hormone-triggered seizure
patterns (like catamenial
epilepsy).
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Reduces GABA synthesis
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decarboxylase. Modulates
emotional triggers of
seizures (e.g., stress-
induced seizures).

FIGURE 4

Cerebral cortex: Increases
neuronal excitability and lowers
the threshold for cortical
seizures.

Brain regions with estrogen receptors and their roles in seizure susceptibility. Estrogen increases neuronal excitability in the cerebral cortex (promoting
generalized seizures), modulates hormone-sensitive rhythms in the hypothalamus (linked to catamenial epilepsy), reduces GABAergic inhibition in the
amygdala (enhancing emotional triggers), and enhances glutamate signaling in the hippocampus (a key focus in temporal lobe epilepsy). These
mechanisms collectively lower the seizure threshold under hormonal fluctuations. Created in BioRender (2025).

Hippocampus: Increases
excitatory synaptic activity
by enhancing glutamate
signaling (especially via
NMDA receptors).

Estrogen

Estrogens are a group of sex steroid hormones that include estrone
(E1), estradiol (E2), estriol (E3), and estetrol (E4), the latter being
produced exclusively during pregnancy. These hormones are
synthesized from cholesterol, the main precursor to all steroid
hormones, including testosterone and androstenedione, which are
immediate precursors to estrogen, via the enzyme aromatase. The
biosynthesis is tightly controlled by alterations in LH and FSH levels,
secreted by the anterior pituitary in response to GnRH (70). The
production of estrogens in women occurs primarily in the ovaries,
while in men, 20% of estrogen is derived from the testes but
predominantly produced through peripheral aromatization of adipose
tissue, bone, brain, and skin (71).

Based on the physiological state of the body, the prevailing
estrogen varies. E2 is the main estrogen during reproductive years, E1
dominates after menopause, and E3 becomes prominent during
pregnancy (72-74). While estrogen is highlighted as the main
hormone regulating female reproductive physiology, its importance
in males is often overlooked but very critical. Inadequate estrogen
signaling in the testes can impair spermatogenesis and contribute to
infertility (70).

Beyond their reproductive roles, estrogens exert a significant
influence on brain function. These hormones are locally synthesized
in the brain via aromatization and play a key role in modulating
cognitive and neuroendocrine process in key regions of the brain
especially the hypothalamus and temporolimbic system, including the
medial and cortical amygdala (75, 76). In these regions, estrogens

Frontiers in Neurology

highly influence emotional regulation, fear and anxiety processing as
well as neuronal excitability via estrogen receptors ESR1, ESR2, and
G-protein coupled estrogen receptor (GPER) (70, 77). E2 in particular
is implicated in altering seizure susceptibility in regions such as the
hippocampus, cerebral cortex, amygdala, and hypothalamus by
altering key neurotransmitters such as GABA and glutamate (77).

Historically, estrogens were believed to be purely proconvulsant
based on early animal and clinical data. However, accumulating
evidence suggests that estrogens can exhibit both proconvulsant and
anticonvulsant properties, with their effects modulated by factors such
as sex, hormonal status, seizure type, brain region, dosage, and
duration of exposure (78, 79). This duality as well as the influence of
various external factors, complicates predictions of their influence on
seizure activity.

At a cellular level, E2 enhances excitatory neurotransmission by
stimulating NMDA receptor-mediated glutamate activity, thereby
increasing neuronal firing rates (80). It augments the excitability of
hippocampal CA1 pyramidal neurons and weakens inhibitory control
by reducing GABA synthesis and downregulating glutamic acid
decarboxylase in the corticomedial amygdala (76, 81). E2 also elevates
acetylcholine levels and increases choline acetyltransferase activity,
further potentiating excitatory activity (82).

E2 has
neuroprotective effects in several preclinical studies. Due to its ability

Conversely, demonstrated anticonvulsant and
to counteract cyclosporin A-induced inhibition of GABAergic
signaling in the hippocampus, estrogen thereby reduces seizure
susceptibility (84). In ovariectomized female rats, estrogen

administration attenuated seizures induced by NMDA, kainic acid
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(KA), cyclosporin A, and picrotoxin, supporting its role in enhancing
GABAergic tone and modulating excitatory input (77, 83-86).
Additionally, E1 reduced KA-induced seizures and mortality in male
mice (87), and E2 pre-treatment in female rats protected against
hippocampal damage following status epilepticus (SE) (88, 89).
Clinically, estrogen imbalance has profound consequences for
individuals with epilepsy, particularly during states such as pregnancy
or menopause, where hormonal regulation is strictly controlled and
plays a key role in physiological processes. Variations in E1, E2, and
E3 levels can modulate neuronal excitability and thus affects seizure
thresholds. Creating a feedback loop and hormonal fluctuations cause
bidirectional influence. Moreover, hormone replacement therapy
(HRT) and certain contraceptives may influence seizure patterns,
depending on their formulation and estrogenic content (90).

Progesterone

Progesterone (PROG) is a key sex steroid hormone involved in
reproductive and neuroendocrine function. In females, it is primarily
secreted by the corpus luteum during the luteal phase of the menstrual
cycle and in early pregnancy, while placental production dominates
from the second trimester onward. PROG facilitates implantation,
supports gestation, and contributes to maintaining pregnancy. In
males, smaller amounts of PROG are synthesized by the testes and
adrenal glands, where it plays critical roles in spermatogenesis, sexual
function, and neuroprotection (91).

The effects of PROG are mediated by progesterone receptors
(PRs), which are expressed throughout the CNS. These receptors play
a pivotal role in the brain’s reward circuitry and modulation of
dopamine dependent sexual behaviors, implicating the psychosocial
impacts of reproductive hormones (92, 93). PROG also exerts
neuroprotective effects, reducing oxidative damage in the CNS and
supporting neuronal strength and plasticity, indicating its importance
in the regulation of epilepsy (94, 95).

PROG is widely recognized for its anticonvulsant properties,
primarily through its enhancement of GABA-A receptor-mediated
chloride conductance causing neuronal hyperpolarization and
reduced excitability (96-98). In addition to potentiating GABAergic
inhibition, PROG also diminishes acetylcholine activity as well as
amplifies the effects of adenosine, a neuromodulator with potent
inhibitory effects. These mechanisms are relevant in syndromes such
as autosomal dominant nocturnal frontal lobe epilepsy (99, 100).

A critical mediator of PROG’ anticonvulsant action is
allopregnanolone (ALLO), a neuroactive metabolite that acts as a
positive allosteric modulator of GABA-A receptors. ALLO
concentrations rise significantly following PROG treatment and have
been inversely correlated with seizure frequency due to the
augmentation of GABA-A receptors, especially in women
107).
Conversely, reduced ALLO levels in the cerebrospinal fluid have been

experiencing premenstrual seizure exacerbations (106,

associated with catamenial epilepsy and menstrual migraine,
highlighting the clinical relevance of neurosteroid fluctuations in
seizure susceptibility (108).

Clinical evidence supports the anticonvulsant effects of PROG in
both focal and generalized epilepsies. Several studies have
demonstrated reductions in interictal epileptiform discharges and
seizure frequency following intermittent PROG administration,
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particularly in women with catamenial epilepsy (48, 101-103).
However, the effectiveness of PROG appears to be dose-dependent,
with insufficient levels showing minimal benefit (104, 105).

Testosterone

Testosterone is the dominant male androgen and a steroid sex
hormone integral to both reproductive and systemic health.
Synthesized primarily in the Leydig cells of the testes under LH
stimulation, testosterone is also produced in smaller quantities by the
adrenal glands, ovaries, and placenta in both sexes. In the body,
testosterone can exist in several main forms, the majority being
inactive and bound to sex hormone binding globulin (SHBG), and a
small active portion found unbound or weakly bound to albumin. The
most biologically active form, 5a-dihydrotestosterone (5a-DHT)
converted from testosterone via 5a-reductase, is vital to the
development and functioning of primary and secondary male sexual
characteristics. 5a-DHT exerts effects through both cytoplasmic and
nuclear androgen receptors resulting in development of male
secondary sexual characteristics, maintenance of spermatogenesis,
muscle growth, libido, and mood regulation. While this hormone is
also found in females to a much lower extent, excessive androgen
levels can contribute to masculinization and hirsutism (46, 109).

Beyond its role in sexual development, testosterone contributes
significantly to psychological well-being due to its role in mood
regulation, self-esteem, and perceived quality of life (QOL),
particularly in aging men. Conversely, testosterone deficiency is linked
to sexual dysfunction, fatigue, and diminished QOL, all of which can
extend the burden of epilepsy (109).

Emerging epidemiological evidence indicates a substantial link
between androgen-related disorders and epilepsy in men. Both factors
are implicated in a bidirectional relationship due to mechanisms
causing a feedback influence via the hormones metabolic pathways.
Testosterone can be aromatized to E2, which is mostly associated with
proconvulsant properties, or metabolized by 5a-reductase into
5a-DHT, which exhibits anticonvulsant effects (110). Since 5a-DHT
is the principal circulating male androgen, which is known to be an
anticonvulsant, it can be estimated that there is a positive net impact
of testosterone on seizure activity. However, MWE are known to have
hypogonadism, characterized by reduced levels of free testosterone
and its urinary metabolites, thus diminishing any potential
anticonvulsant effects. Temporal lobe seizures (TLS) can disrupt the
HPG axis, impairing gonadotropin secretion and subsequently
reducing testosterone synthesis resulting in proconvulsant states.
Furthermore, serum testosterone levels are affected by hormone-
binding protein concentrations, which enzyme-inducing ASMs can
alter. Newer ASMs appear to have a lesser effect on this mechanism
(111). These hormonal imbalances have remarkable clinical
implications for both sexes, albeit with differing outcomes.

The effects of testosterone on mood and reproductive function are
complex in WWE. A recent study correlating elevated levels of
testosterone, lower prolactin concentrations and increased depression
scores connects any associations between the imbalance of androgens
and their negative effects on mood and sexual desire (112). In MWE,
hormonal therapies may offer dual benefits for both seizure control
and sexual health. A comparative study evaluating the effects of
anastrozole plus testosterone versus placebo plus testosterone for the
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treatment of sexual dysfunction and hypogonadism demonstrated a
reduction in seizure frequency in both treatment arms (113). In this
study, forty men with focal epilepsy, hyposexuality and hypogonadism
were randomized into two groups and observed for three months. The
improvement of seizure control was remarkably associated with
decreased serum E2 levels and lowered scores in Beck Depression
Inventory-II (BDI-II). Such an observation indicates a potential link
between estrogen suppression, mood stabilization, and induced libido.

Prolactin

Prolactin (PRL), a polypeptide hormone secreted by the anterior
pituitary gland regulates lactation, reproductive physiology and
immune modulation. It is also known to affect the central nervous
system and can influence mood, emotions and behavior. Its pulsatile
secretion pattern plays an essential role in homeostasis and
reproductive balance and any alterations to this pulsatility often seen
in neurological disorders such as epilepsy can trigger menstrual
irregularities, infertility, as well as metabolic and immunologic
imbalances (114).

Physiologically, PRL exhibits a well-defined circadian rhythm
often mimicking the patterns of melatonin. Serum PRL levels surge
during the onset of sleep and often return to baseline levels within one
to two hours of waking. Baseline PRL concentrations are typically
higher in women than in men, reflecting differences in endocrine
regulation and reproductive physiology (116, 122). Stressors including
pregnancy, lactation and trauma can also result in increased PRL
levels (115, 116). The regulation of PRL secretion is primarily
governed by the ventromedial and arcuate nuclei of the hypothalamus,
which exert consistent inhibitory influence over the anterior pituitary
through dopaminergic signaling pathways (115, 116). Disruptions in
these inhibitory mechanisms, such as those caused by epileptic
discharges can lead to transient elevations in serum PRL levels causing
activation of many anterior pituitary hormones. The elevations in the
hypothalamus receive input from key limbic regions, particularly the
hippocampus and amygdala, structures frequently affected by epilepsy.
These regions also play key influential roles on the dynamics of PRL
dynamics through distinct anatomical pathways: hippocampal
projections via the fornix and stria terminalis are predominantly
inhibitory, while amygdaloid efferents through the amygdalofugal
tract often exert excitatory effects (117-121).

In TLE where seizure activity typically originates in the mesial
temporal structures, dissociation of epileptiform discharges from the
temporal lobe to the hypothalamus may result in a post-ictal surge in
PRL levels, as observed in both clinical and experimental settings
(118,120, 122, 123). This immediate surge in PRL levels, known as
postictal hyperprolactinemia, serves as an indicator for generalized or
focal seizures involving the limbic system. Elevations in hormone
levels caused by ictal episodes are generally more pronounced in
intensity and duration compared to those associated with stress,
allowing PRL to be a reliable biomarker for seizures (115, 116, 124).

Increased PRL levels following seizures and during the interictal
period may play a role in anovulatory cycles by interfering with other
regulatory hormones secreted by the hypothalamus and anterior
pituitary, in WWE. Elevated PRL concentrations have been observed
after both electroconvulsive therapy and spontaneous seizures and
studies have consistently shown that PRL levels are higher in
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individuals with focal epilepsy compared to their healthy counterparts
(125). This increase in PRL has been documented in a significant
proportion of generalized tonic—clonic seizures (GTCS) as well as
focal seizures with secondary generalization (21, 126). Furthermore,
clinical observations suggest that interictal brain activity may
contribute to the sustained elevation of PRL levels in the blood,
providing additional insight into its potential impact on reproductive
health in WWE (127).

Oxytocin

Oxytocin (OT), a peptide hormone produced in the supraoptic
and paraventricular nucleus of the hypothalamus and secreted from
the posterior pituitary, plays a critical role in the female reproductive
system regulation, mainly during labor and lactation. It facilitates the
milk ejection reflex, uterine contractions and constricts blood vessels
after child-birth to prevent excessive bleeding (128). Beyond its effects
on reproduction, OT influences a range of physiological and
psychological processes, including social behavior, anxiety, appetite
regulation, memory, learning, pain modulation (antinociception),
social recognition, and the stress response by functioning as a
neurotransmitter and neuromodulator by activating central OT
receptors in the brain (129).

Both OT and vasopressin mRNA expressions are upregulated in
the paraventricular hypothalamic nucleus during seizures (131). This
suggests that the rapid rise in OT levels during or immediately
following a seizure may represent a neuroprotective mechanism aimed
at regulating hypothalamic activity in response to seizure-related
stress (132, 133). For example, after KA-induced status epilepticus,
increased activation of OT-expressing magnocellular neurons, but not
vasopressin-expressing neurons, was observed in the PVN (133).
Although OT and vasopressin share structural similarities, they likely
serve distinct roles in the pathophysiology of epilepsy.

Due to the potential neuroprotective role of oxytocin following
seizures, specific reports suggest that OT may have a therapeutic effect
in neuropsychiatric disorders, including but not limited to epilepsy
(131, 130).

Discussion

The relation between epilepsy, reproductive hormones, the HPG
axis and their complex pathways has been long recognized and
studied, with plenty of documentation supporting the bidirectional
influence between seizures and hormones. The interactions between
seizures and the mechanisms of the HPG axis has a pivotal role in the
functioning of the reproductive system thereby influencing fertility,
libido and overall QOL. Estrogen is primarily proconvulsant
enhancing glutamatergic excitation and reducing GABAergic
inhibition, especially with exogenous estrogens associated with
hormonal replacement therapy (HRT) or in-vitro fertilization (IVF).
Seizures can disrupt GnRH/FSH pulsatility disrupting estrogen and
progesterone levels thereby producing cycle irregularity and
anovulation, however, utilization of HRT or exogenous hormones to
treat any cycle irregularities can further exacerbate seizures. ALLO
enhances GABA-A currents behaving as an anticonvulsant in the
setting of seizures, however, epilepsy reflects low progesterone levels
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and are found to be associated with an increased estrogen to
progesterone ratio. A luteal phase deficiency marked by lower levels
of progesterone may result in difficulty for the fetus to implant and
remain in the uterus (134). Hormonal fluctuations directly influence
fertility outcomes such that luteal insufficiency and hyperprolactinemia
contribute to anovulation and hypogonadism, while hyperandrogenic
states, including polycystic ovary syndrome, are more prevalent in
women with epilepsy. Conversely, reproductive hormonal therapies
can exacerbate seizure risk, as demonstrated by case reports of seizure
worsening during estrogen-based ovulation induction.

Much of the current documentation regarding this relation stems
from animal based studies conducted in the 1990s, posing a
translational challenge to humans due to the vast difference in
epileptic properties and manifestations between both groups. These
properties may depend on various factors such as on sex, treatment
duration, time from seizure to testing, method of administration,
hormonal status, brain region involved, and seizure type. According
to the revised International League against Epilepsy (ILAE), the
updated classification of seizures has removed the term ‘onset’ from
‘generalized-onset seizures, acknowledging evidence that even
generalized seizures may have focal origins. Essentially, this challenges
any previous assumptions about the uniformity of seizures or
hormonal responses to seizures as their focal nature may change. This
nuance is critical when studying the pro or anticonvulsant properties
of hormones, which may vary by seizure onset type (78, 79, 135).
Importantly, the type and localization of seizures dictate the extent to
which endocrine and reproductive hormones can be altered. Among
focal epilepsies, temporal lobe epilepsy is recorded to have a significant
impact on GnRH pulsatility by causing disruptions to the HPG axis,
where right sided temporal foci are associated with hypogonadotropic
hypogonadism causing reduced gonadotropin secretion, while left-
sided temporal foci are associated with hyperandrogenic and PCOS
causing increased LH to FSH ratios and chronic anovulation (48, 49).
In contrast, generalized clonic-tonic seizures are associated with
elevations in neuroendocrine hormones such as prolactin and cortisol
which can also influence fertility outcomes which contribute to
anovulation and hypogonadism (116, 115). The postictal rises in
hormonal levels are dependent on the hormone, where prolactin is
detected and measured 10-20 min after an epileptic episode, returning
to baseline in 2-6 h (117-121). Due to this, prolactin serves as both a
diagnostic biomarker and a marker of acute hypothalamic-pituitary
stress activation in the setting of epilepsy. In terms of chronic
reproductive dysfunction caused by epilepsy, a thorough endocrine
evaluation comprising measurements of gonadotropins, estrogen,
luteal phase progesterone, early morning testosterone in men,
prolactin and cortisol are necessary to highlight the complex interplay
of hormones that rise to reproductive dysfunction. Taken together,
reproductive dysfunction in epilepsy emerges not from a single factor
but from a convergence of seizure-related hypothalamic disruption,
acute postictal hormonal surges, chronic alterations in HPGI feedback,
and iatrogenic drug effects. Recognition of these multidirectional
pathways highlights the importance of both acute and longitudinal
endocrine monitoring, tailored by seizure type and patient sex,
especially in individuals with fertility aspirations.

The new framework also shifts seizure observations which were
previously categorized as motor and non-motor responses, to
observable vs. unobservable manifestations. In essence, small changes
as facial flushing or tachycardia which were previously overlooked
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phenomena can now be acknowledged as such as stress-induced
sympathetic activation and be systematically linked to postictal
endocrine disruptions (135).

The current understanding of epilepsy’s effects on hormonal
balance relies predominantly on animal studies, with limited data
regarding the impacts on humans. This poses a concern toward the
validity of these studies as the metabolic demands, hormonal regulation
and even seizure manifestation differs significantly between animals
and humans. Currently, many of the studies regarding reproductive
hormones and their role versatility in epileptic states are based on
rodent models, which experience estrous cycles that last 4-5 days, with
a considerable overlap between estrogen and PROG levels. This
contrasts with the human menstrual cycle, which spans 28-35 days and
features more distinct hormonal phases (136). Animal based studies
have also indicated that PROG and its active metabolite, ALLO, both
possess anticonvulsant properties and can lead to decreased seizure
occurrence (106, 103), however, a 2012 clinical trial found that cyclic
PROG was ineffective in treating partial refractory epilepsy in women
(18). This clinical trial also paved the understanding regarding the
differences in types of seizures and exacerbations and how they can
manifest with various responses to hormones or treatments. It was
noted that women with higher perimenstrual seizure exacerbations
showed minimal response to PROG, but those with lower exacerbations
showed some response to treatment., highlighting the inconsistencies
of extrapolating animal data to human treatment and the need for
further clinical research. Moreover, such discrepancies suggest the need
to examine the hormonal responsiveness in relation to seizure type and
timing within the menstrual cycle. The effects of medications observed
around periods of menstruation further raise questions regarding the
role of fluctuating hormones in seizure exacerbation and treatment
efficacy. Much of the current literature focuses on acute postictal
hormone measurements, often overlooking the physiological, chronic
fluctuations of hormones, as the hormonal cycles do not follow a daily
pattern but are subject to varying amplitudes based on the cyclic
period. Studies by Bauer et al. (126) and Molaie et al. (127) identified
acute PRL spikes following seizures and altered levels during interictal
periods, suggesting persistent hormonal disruptions in epilepsy,
though the long-term impact on seizure thresholds or fertility remains
unclear. This constrains our ability to draw precise correlations and
conclusions applicable to human healthcare.

Catamenial epilepsy, where seizures cluster around specific
menstrual phases, highlights the need for longitudinal hormone
monitoring, yet most studies measure hormones only postictally or
within narrow windows, neglecting the full cyclical variation across
the menstrual cycle (18). Consequently, the broader relationship
between seizure patterns and chronic effects of hormonal fluctuations
remain poorly understood (37, 62). Hormones naturally fluctuate in
response to both extrinsic and intrinsic stimuli, and the inability to
account for these variations weakens claims about their relationship
to epilepsy. While acute postictal hormone changes are well
established,
longitudinal investigation.

long-term  hormonal  imbalances  require

Although hormonal influences in women have been more
extensively studied due to the clear cyclic patterns, hormones like
testosterone and PRL also fluctuate in men and may modulate seizure
activity, particularly in conditions like stress or sleep deprivation.
Epilepsy manifests differently between sexes, not only in terms of

seizure frequency or type, but also in terms of drug response, psychiatric

frontiersin.org


https://doi.org/10.3389/fneur.2025.1658284
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Kobylarek et al.

comorbidities, and endocrine profiles. For instance, lower testosterone
levels were associated with increased seizure susceptibility, and hormone
replacement therapy with testosterone has shown potential in reducing
seizure outcomes. However, the precise role of testosterone remains
unclear due to its dual metabolic mechanism in the brain, underscoring
the need for further investigation of hormonal fluctuations in men.

In addition to the methodological limitations of conducting
human studies, the lack of sex-specific analyses, longitudinal studies,
and inadequate translation from animal research to human studies
hinder our understanding of the role of epilepsy on hormonal
imbalance. The physiological variations of hormones, the heterogenic
manifestation of epilepsy, and sample size limitations pose significant
challenges in conducting human research and performing analyses.
Given the variability in reproductive hormones across age groups and
menstrual cycles, along with diverse epilepsy phenotypes, large,
meticulously stratified cohorts are essential to account for the diversity
and identify clinically meaningful patterns.

Future research should aim to address the bidirectional
relationship between seizures and the reproductive endocrine system
through more precise, longitudinal studies. Careful monitoring of
hormonal measurements in respect to seizure onset, menstrual cycle
phase, and ASM exposure would allow for stronger comparisons
across cohorts, especially with human studies and long term analyses.
Advances in hormonal monitoring and imaging of hypothalamic-
pituitary activity could refine our understanding of how seizure
localization affects endocrine function. Personalized hormonal
therapies, such as progesterone supplementation for catamenial
epilepsy or androgen supplementation in men with hypogonadism to
mitigate seizures and increase fertility outcomes could represent
promising avenues to address issues regarding epilepsy and fertility.
Advancements in this field could yield a deeper understanding of
these mechanisms that will not only refine treatment strategies but
also enhance the QOL for patients confronting difficulties of epilepsy
and hormonal dysfunction.
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