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Background: Acute ischemic stroke (AIS) is a common cerebrovascular 
condition. Cerebral microbleeds (CMBs) are frequently observed in AIS patients 
and are closely associated with poor prognosis and potential therapeutic 
implications. Understanding the distinct metabolic profiles in AIS patients with 
CMBs is critical for uncovering the underlying pathophysiological mechanisms 
and identifying novel biomarkers.
Methods: An untargeted metabolomics approach using liquid chromatography–
mass spectrometry (LC–MS) was employed to compare the metabolic profiles of 
30 AIS patients with CMBs (CMB group) and 30 AIS patients without CMBs (the 
Non CMB group, abbreviated as NCMB group). Raw MS data were processed 
using MS-DIAL and metabolites were identified by comparison with public and 
in-house databases. Both univariate and multivariate analyses (PCA, OPLS-
DA) were used to identify differential metabolites, followed by KEGG pathway 
enrichment analysis.
Results: The LC–MS platform demonstrated robust stability and high data 
quality. Multivariate statistical modeling successfully distinguished between the 
two groups, revealing distinct metabolic phenotypes. A total of 156 significantly 
altered metabolites were identified, including 103 upregulated and 53 
downregulated metabolites. Pathway analysis revealed significant perturbations 
in lipid metabolism, amino acid metabolism, and energy metabolism.
Conclusion: This study identified unique metabolic signatures in AIS patients 
with CMBs. The metabolites such as N-ethylglycine, aspartyl-glutamate, and 
oleamide were significantly elevated, while metabolites like PC (16:0/18:1) and 
PC (18:0/20:4) were significantly reduced, and other metabolites implicated 
disruptions in energy and lipid metabolism. These findings suggest potential 
biomarker candidates for diagnosis, prognosis, and therapeutic intervention in 
this high-risk population.
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1 Introduction

Acute ischemic stroke (AIS) is a leading cause of disability and death worldwide. Among 
AIS patients, cerebral microbleeds (CMBs) are frequently detected and have been associated 
with adverse clinical outcomes. CMBs are defined as small hypointense lesions visible on 
susceptibility-weighted imaging (SWI) (1), representing microvascular hemorrhages due to 
structural damage to cerebral small vessels (2).
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Although the exact mechanisms underlying CMB formation 
remain unclear, multiple pathophysiological processes have been 
proposed, including inflammation, oxidative stress, and blood–brain 
barrier (BBB) disruption (3). White matter hyperintensities (WMHs), 
another marker of cerebral small vessel disease (CSVD) (4), are also 
linked to similar pathological mechanisms (5). While some studies 
have reported no significant association between CMBs and microglial 
activation or BBB permeability, animal and neuropathological studies 
suggest a potential role of neuroinflammation (1).

Metabolomics offers a comprehensive and dynamic overview of 
low-molecular-weight metabolites within biological systems. Unlike 
genomics or proteomics, metabolomics reflects downstream 
biochemical activity, providing insights into real-time physiological 
states (6). This approach is particularly valuable for investigating 
complex diseases like AIS and CSVD (7). Metabolomics has been 
emphasized by Lasica et  al. as a powerful tool for monitoring 
secondary brain injury and complex pathological processes following 
cerebrovascular events, such as aneurysmal subarachnoid 
hemorrhage, enabling the elucidation of dynamic disease progression 
(8). More significantly, this approach demonstrates considerable 
potential in identifying subtype-specific biomarkers for various 
cerebrovascular diseases. In a large-scale prospective study of Chinese 
adults, distinct plasma metabolite profiles were found to be strongly 
associated with incident ischemic stroke and its subtypes (9). These 
findings robustly suggest that different cerebrovascular pathological 
substrates (e.g., atherosclerosis or small vessel disease) may possess 
unique metabolic fingerprints.

Despite the clinical significance of CMBs in AIS, the specific 
metabolic alterations associated with CMBs remain poorly 
characterized. This study aimed to apply an untargeted LC–MS-based 
metabolomics strategy to identify metabolic differences between AIS 
patients with and without CMBs. To our knowledge, this represents 
the first study in recent years to employ untargeted metabolomics for 
comparing AIS patients with and without CMBs, revealing distinct 
metabolic disturbance patterns specific to CMBs. The study aimed to 
identify distinct metabolic signatures and dysregulated pathways that 
could serve as novel targets for CMB diagnosis, early risk 
stratification, and personalized therapeutic strategies.

2 Materials and methods

2.1 Study design and patient cohort

This cross-sectional case–control study recruited AIS patients 
from the Department of Neurology, First Affiliated Hospital of 
Ningbo University, Ningbo city, Zhejiang province, China, between 
January and September 2024. A total of 60 AIS patients were enrolled 
and classified into two groups: 30 with CMBs (CMB group) and 30 
without CMBs (NCMB group).

Inclusion criteria for the CMB group were: admission within 
7 days of onset, age ≥18 years, diagnosis of AIS confirmed by 
diffusion-weighted imaging (DWI), and presence of ≥1 CMB on 
SWI. The inclusion criteria for the non-CMB (NCMB) group were 
identical to those of the CMB group, with the exception of the 
absence of microbleeds on susceptibility-weighted imaging (SWI). 
Both groups shared the same exclusion criteria. Exclusion criteria 
included autoimmune disorders, malignancy, severe infections, 

significant hepatic or renal dysfunction, or incomplete clinical/
imaging data. The study protocol was approved by the ethics 
committee of the First Affiliated Hospital of Ningbo 
University(Approval NO.: the First Affiliated Hospital of Ningbo 
University LUNSHEN 2024 Research No. 066A; Approval date: June 
28, 2024).

2.2 Clinical and imaging data collection

All patients underwent neuroimaging, including 1.5 T brain MRI 
and vascular imaging. The neuroimaging data were independently 
evaluated by two board-certified neurologists, each with over a 
decade of specialized experience in stroke neurology and specific 
expertise in interpreting susceptibility-weighted imaging (SWI) for 
cerebral microbleed (CMB) detection. Demographic and clinical data 
were collected, including age, sex, smoking and drinking history, 
vascular risk factors (hypertension, diabetes, dyslipidemia, coronary 
artery disease), NIH Stroke Scale (NIHSS) scores, and modified 
Rankin Scale (mRS) scores. Laboratory tests included blood counts, 
eGFR, total cholesterol (TC), triglycerides (TG), HDL-C, LDL-C, 
and HbA1c.

2.3 Sample preparation and untargeted 
metabolomics analysis

EDTA-containing blood samples of all patients were collected 
after fasting overnight and then centrifuged within 30 min after 
blood draw at 3,000 rpm for 15 min at 4°C. These serum samples 
were stored immediately at −80°C until analyses and avoid repeated 
freezing and thawing during storage.

100 μl serum was thoroughly mixed with 400 μl of cold methanol 
acetonitrile (v/v, 1:1) via vortexing. And then the mixture were 
processed with sonication for 1 h in ice baths. The mixture was then 
incubated at −20°C for 1 h, and centrifuged at 4°C for 20 min with a 
speed of 14, 000 g. The supernatants were then harvested and dried 
under vacuum LC–MS analysis.

Metabolomics profiling was analyzed using a UPLC-ESI-Q-
Orbitrap-MS system (UHPLC, Shimadzu Nexera X2 LC-30 AD, 
Shimadzu, Japan) coupled with Q-Exactive Plus (Thermo Scientific, 
San Jose, USA).

For liquid chromatography (LC) separation, samples were 
analyzed using a ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 
1.8 μm; Waters, Milford, MA, USA). The flow rate was 0.3 ml/min 
and the mobile phase contained: A: 0.1% FA in water and B: 100% 
acetonitrile (ACN). The gradient was 0% buffer B for 2 min and was 
linearly increased to 48% in 4 min, and then up to 100% in4 min and 
maintained for 2 min, and then decreased to 0% buffer B in 0.1 min, 
with 3 min re-equilibration period employed.

The electrospray ionization (ESI) with positive-mode and 
negative mode were applied for MS data acquisition separately. The 
HESI source conditions were set as follows: Spray Voltage:3.8kv 
(positive) and 3.2kv (negative); Capillary Temperature:320°C; Sheath 
Gas (nitrogen) flow: 30 arb (arbitrary units); Aux Gas flow: 5 arb; 
Probe Heater Temp: 350°C; S-Lens RF Level:50. The instrument was 
set to acquire over the m/z range 70–1,050 Da for full MS. The full 
MS scans were acquired at a resolution of 70,000 at m/z 200, and 
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17,500 at m/z 200 for MS/MS scan. The maximum injection time was 
set to for 100 ms for MS and 50 ms for MS/MS. The isolation window 
for MS2 was set to 2 m/z and the normalized collision energy 
(stepped) was set as 20, 30 and 40 for fragmentation.

2.4 Data processing and metabolite 
identification

Raw MS data were processed using MS-DIAL software for peak 
alignment, retention time correction, and peak area extraction. To 
monitor analytical variability, quality control (QC) samples (pooled 
from aliquots of all study samples) were injected every 7–8 
experimental samples and processed identically. No internal 
standards were employed. Signal drift was addressed during data 
preprocessing via total peak area normalization (performed 
separately for positive and negative ion modes) and retention time 
correction in MS-DIAL.

Metabolites were identified by matching accurate mass (mass 
tolerance <10 ppm) and MS/MS spectra (mass tolerance <0.02 Da) 
against public databases (HMDB, MassBank, GNPS) and an in-house 
library (BP-DB). For downstream analysis, ion peaks with >50% 
missing values within any group were excluded. Integrated positive 
and negative ion data were subjected to Unit Variance Scaling (UV) 
preprocessing in Python prior to statistical modeling.

2.5 KEGG enrichment analysis

To identify the perturbed biological pathways, the differential 
metabolite data were performed KEGG pathway analysis using KEGG 

database.1 KEGG enrichment analyses were carried out with the 
Fisher’s exact test, and FDR correction for multiple testing was 
performed. Enriched KEGG pathways were nominally statistically 
significant at the p < 0.05 level.

2.6 Statistical analysis

Statistical analysis was conducted using R software (v4.4.2). 
Continuous variables were expressed as medians (IQR) and compared 
using the Mann–Whitney U test. Categorical variables were presented 
as counts (percentages) and analyzed using the chi-square test. 
Pearson correlation was used for assessing relationships between 
continuous variables.

Differential metabolites were identified using both univariate and 
multivariate approaches. Selection criteria included OPLS-DA variable 
importance in projection (VIP) > 1 and p-value <0.05, or fold change 
(FC) ≥ 1.5 or ≤1/1.5 with p < 0.05. OPLS-DA models were validated 
via 200-time permutation tests. All plots were generated using R.

3 Results

3.1 Demographics and clinical 
characteristics

The baseline characteristics of the CMB and NCMB groups are 
summarized in Table  1. No statistically significant differences were 

1  http://www.kegg.jp

TABLE 1  Baseline characteristics of acute ischemic stroke patients with and without cerebral microbleeds.

Variable MCB (N = 30) NCMB (N = 30) Overall (N = 60) p-value

Age, years 69.5 (64.0, 77.0) 71.0 (66.0, 80.0) 70.0 (64.0, 77.0) 0.999

Sex 13 (43.3%) 16 (53.3%) 29 (48.3%) 0.354

BMI 24.5 (21.5, 27.7) 22.9 (20.4, 24.7) 23.9 (21.1, 27.2) 0.179

NIHSS 2.0 (1.0, 3.0) 1.5 (0.0, 3.0) 2.0 (1.0, 3.0) 0.203

mRS 1.0 (1.0, 2.0) 1.0 (1.0, 1.0) 1.0 (1.0, 2.0) 0.244

Hypertension 23 (76.7%) 29 (96.7%) 52 (86.7%) 0.004

Diabetes 8 (26.7%) 19 (63.3%) 27 (45.0%) 0.004

CHD 2 (6.7%) 7 (23.3%) 9 (15.0%) 0.043

Smoking 6 (20.0%) 19 (63.3%) 25 (41.7%) 0.004

Drinking 7 (23.3%) 19 (63.3%) 26 (43.3%) 0.004

WBC 6.1 (5.3, 7.0) 6.4 (5.5, 7.4) 6.2 (5.4, 7.2) 0.443

RBC 4.3 (4.1, 4.7) 4.4 (4.1, 4.8) 4.3 (4.1, 4.7) 0.771

eGFR 81.7 (67.0, 99.0) 82.0 (66.5, 96.0) 82.0 (67.0, 96.0) 0.963

TG 1.1 (0.7, 1.5) 1.3 (0.9, 1.6) 1.2 (0.8, 1.6) 0.354

TC 4.2 (3.4, 5.2) 4.3 (3.7, 5.5) 4.3 (3.5, 5.3) 0.655

LDL 2.7 (2.1, 3.5) 2.8 (2.1, 3.5) 2.7 (2.1, 3.5) 0.999

HDL 1.0 (0.9, 1.2) 1.1 (1.0, 1.2) 1.1 (0.9, 1.2) 0.179

HbA1C 6.1 (5.6, 7.2) 6.2 (5.5, 7.3) 6.1 (5.6, 7.2) 0.771
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observed between the groups in terms of age, sex, body mass index (BMI), 
hematological parameters, estimated glomerular filtration rate (eGFR), 
lipid profiles, HbA1c, admission NIHSS scores, or mRS scores. However, 
hypertension, diabetes, coronary heart disease, smoking, and alcohol 
consumption were significantly more prevalent in the NCMB group 
(p < 0.05; Table 1).

3.2 Quality control and system stability

Quality control assessments demonstrated excellent system stability 
and analytical reproducibility. QC samples prepared from pooled aliquots 
consistently validated retention time alignment and peak intensity 
normalization. These measures ensured that observed differences in 
metabolomic profiles were attributable to biological variation rather than 
technical artifacts.

3.3 Multivariate analysis of metabolic 
profiles

Orthogonal partial least squares discriminant analysis 
(OPLS-DA) indicated some degree of separation between the 
metabolic profiles of the CMB and NCMB groups. The model 
yielded statistics (R2X = 0.0858, R2Y = 0.934, Q2 = 0.573), 
suggesting that only a small proportion of the total variance was 
captured. Therefore, while the analysis provides exploratory 
insights and facilitated the identification of key metabolites 
contributing to group separation, the findings should 
be interpreted with caution (Figure 1).

3.4 Identification of differential metabolites

Based on predefined statistical thresholds (VIP > 1 and p < 0.05, or 
FC ≥ 1.5 or ≤1/1.5 and p < 0.05), a total of 156 differential metabolites 

were identified—103 upregulated and 53 downregulated in the CMB 
group. Notable upregulated metabolites included oleamide, methionine, 
dimethyl sulfoxide (DMSO), succinate, N-ethylglycine, tyrosine, 
γ-glutamylmethionine, O-arachidonoylethanolamine, LPE (18:0/0:0), 
leucine, and aspartylglutamate. These spanned various chemical classes, 
notably fatty acyls, amino acids, and glycerophospholipids. 
Downregulated compounds included N-(carboxymethyl)-N-(2-
((carboxymethyl)amino)ethyl)glycine, PC (16:0/18:1) and PC (18:0/20:4), 
erythronic lactone, 2-cyanoacetamide, and GW 9662 (Figures  2–5; 
Supplementary Table S1).

3.5 Enriched metabolic pathways and 
functional analysis

KEGG pathway enrichment analysis mapped differential 
metabolites to biologically relevant pathways. The most 
significantly enriched pathways were associated with energy 
metabolism, oxidative stress, and inflammatory responses, 
indicating systemic metabolic disturbances in AIS patients with 
CMBs. (Figure 6).

4 Discussion

Distinct metabolic profiles of acute ischemic stroke (AIS) patients 
with cerebral microbleeds (CMB) were successfully identified through 
untargeted metabolomics analysis. Significant alterations in metabolic 
patterns were observed in CMB patients compared to non-CMB 
counterparts, involving multiple metabolite classes and underlying 
biological pathways.

The predominantly upregulated metabolites included amino 
acids (methionine, leucine, tyrosine) and organic acids (succinate, 
N-ethylglycine, aspartylglutamate), which are closely associated with 
energy metabolism pathways. Differential regulation was observed in 
the tricarboxylic acid (TCA) cycle, alanine-aspartate–glutamate 

FIGURE 1

OPLS-DA score plot and loading plot of acute ischemic stroke (AIS) patients with and without cerebral microbleeds (CMB).
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metabolism, and pyruvate metabolism pathways, predominantly 
affecting energy homeostasis. The persistent upregulation or 
downregulation of energy-producing metabolites (e.g., TCA cycle 
intermediates, pyruvate, specific amino acids) suggests aberrant 
energy metabolism or mitochondrial dysfunction in CMB patients. 
These findings align with established mechanisms of neuronal injury 
in stroke, particularly cellular energy failure (10). The presence of 

specific organic acids may indicate metabolic blockades or shunting. 
Impaired energy metabolism likely exacerbates neuronal damage and 
impedes recovery in CMB patients, contributing to poorer 
clinical outcomes.

Numerous differentially expressed metabolites belonged to lipid 
categories, particularly fatty acyls and glycerophospholipids [e.g., 
upregulated oleamide and O-arachidonoylethanolamine; 

FIGURE 2

Differential metabolites identified by univariate analysis in acute ischemic stroke patients with and without cerebral microbleeds.

FIGURE 3

Top 30 metabolites with significant fold changes and VIP scores in AIS patients with vs. without cerebral microbleeds.
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FIGURE 5

Enriched metabolic pathways in AIS patients with vs without cerebral microbleeds.

FIGURE 4

Hierarchical clustering analysis of differential metabolites in AIS patients with and without cerebral microbleeds.
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downregulated PC (O-16:0/20:5)]. Cerebral hemorrhage has been 
strongly associated with oxidative stress and elevated lipid 
peroxidation products (5). The substantial alterations in fatty acyls 
and glycerophospholipids strongly suggest disrupted lipid 
metabolism, implicating lipid peroxidation as a key pathological 
process in CMB.

Notably, a significant increase in a feature annotated as dimethyl 
sulfoxide (DMSO) was observed in the CMB group. DMSO is known 
to exhibit antioxidant properties and modulate cerebral metabolism, 
showing neuroprotective effects in experimental traumatic brain 
injury models (11). In humans, endogenous DMSO production 
remains controversial, with most evidence supporting the endogenous 
presence of its oxidized form, dimethyl sulfone (DMSO₂), derived 
from methanethiol metabolism. Although our sample preparation 
protocol did not involve the use of DMSO and procedural blanks did 
not show detectable peaks, the possibility of trace exogenous 
contamination or misannotation cannot be excluded. Therefore, this 
finding should be interpreted with caution. Ideally, future targeted 
LC–MS studies using authentic standards and isotope-labeled 
approaches are required to confirm the presence and biological 
relevance of DMSO in CMB patients.

Although some studies report no direct association between CMB 
and microglial activation/blood–brain barrier leakage, evidence 
suggests CMB can induce inflammatory responses (12). The identified 

lipid metabolites—particularly glycerophospholipids like LPE 
(18:0/0:0) and PC (18:0/20:4)—are known mediators of inflammation 
(13). Furthermore, downregulated erythronolactone, a lactone 
compound implicated in neuroinflammation (14), was observed. 
These metabolomic findings suggest altered inflammatory mediators/
pathways in CMB, potentially indicating an inflammatory 
component—either as a cause or consequence of microbleeds. 
Inflammation adversely affects blood–brain barrier integrity (15), and 
elevated plasma inflammatory markers have been documented in 
lacunar stroke patients (16, 17). Pathological examinations frequently 
reveal inflammatory cell infiltrates in perforating arterioles and 
perivascular tissues adjacent to lacunes. Therefore, further analysis of 
these differential lipid metabolites may yield novel insights or 
molecular targets for future investigation.

The findings of this study hold significant translational potential. The 
key differential metabolites identified—including N-ethylglycine, 
aspartylglutamate, and oleamide—provide promising candidates for 
developing novel biomarker panels for CMB risk stratification and 
prognostic evaluation. Future longitudinal studies should track the dynamic 
changes in these metabolites to assess their utility in monitoring disease 
progression or therapeutic response. Such investigations will represent a 
critical step toward translating these fundamental discoveries into clinical 
applications, potentially enabling precision medicine strategies for AIS 
patients with CMBs.

FIGURE 6

Comparison of differential metabolites in AIS patients with versus without cerebral microbleeds. Panels (A,C) depict metabolites that are significantly 
decreased in the CMB group relative to the Non-CMB group. Panels (B,D–F) depict metabolites that are significantly increased in the CMB group 
relative to the Non-CMB group.
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5 Limitations

This study has several limitations that should be acknowledged. First, 
the relatively small sample size may restrict the generalizability of the 
findings. Second, the inclusion window of 7 days after stroke onset may 
increase heterogeneity in metabolic profiles. Third, no independent 
validation cohort was included, which limits the external validity of our 
results. Fourth, the cross-sectional design precludes causal inference and 
prevents assessment of temporal changes in metabolite levels. Fifth, the 
reliance on LC–MS alone, while providing robust coverage of lipids and 
amino acids, may have missed other metabolite classes (e.g., volatile organic 
compounds); future investigations could benefit from multi-platform 
metabolomic approaches. Additionally, the low R2X value (0.0858) indicates 
that our model explains only a small proportion of the total metabolic 
variance, suggesting the need for expanded sample sizes in subsequent 
research. Notably, significant baseline differences in hypertension, diabetes, 
coronary artery disease, smoking, and alcohol consumption—all more 
prevalent in the NCMB group—may introduce confounding effects. Future 
studies should employ more rigorously matched cohorts to address 
this limitation.

6 Conclusion

This study identified unique metabolic signatures in AIS patients with 
CMBs. The metabolites such as N-ethylglycine, aspartyl-glutamate, and 
oleamide were elevated, while metabolites like PC (16:0/18:1) and PC 
(18:0/20:4) were reduced, and other metabolites implicated disruptions in 
energy and lipid metabolism. These findings suggest potential biomarker 
candidates for diagnosis, prognosis, and therapeutic intervention in this 
high-risk population.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by the ethics 
committee of the First Affiliated Hospital of Ningbo University. 
The studies were conducted in accordance with the local 
legislation and institutional requirements. The participants 
provided their written informed consent to participate in this 
study. Written informed consent was obtained from the 
individual(s) for the publication of any potentially identifiable 
images or data included in this article.

Author contributions

LZ: Writing – review & editing, Conceptualization. HS: Formal 
analysis, Writing  – original draft, Methodology, Supervision. XL: 

Formal analysis, Writing – original draft, Methodology. QH: Writing – 
original draft, Conceptualization, Funding acquisition.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Ningbo Science and Technology Project (contract no. 
2023H017).

Acknowledgments

Thank you to all the authors who have contributed to this paper.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Correction note

This article has been corrected with minor changes. These changes 
do not impact the scientific content of the article.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2025.1656974/
full#supplementary-material

https://doi.org/10.3389/fneur.2025.1656974
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656974/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656974/full#supplementary-material


Zhou et al.� 10.3389/fneur.2025.1656974

Frontiers in Neurology 09 frontiersin.org

References
	1.	Cai L, Tozer DJ, Markus HS. Cerebral microbleeds and their association with 

inflammation and blood-brain barrier leakage in small vessel disease. Stroke. (2025) 
56:427–36. doi: 10.1161/STROKEAHA.124.048974

	2.	Kozberg MG, Yi I, Freeze WM, Auger CA, Scherlek AA, Greenberg SM, et al. 
Blood-brain barrier leakage and perivascular inflammation in cerebral amyloid 
angiopathy. Brain Commun. (2022) 4:245. doi: 10.1093/braincomms/fcac245

	3.	Dupre N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a 
journey through recent discoveries. J Clin Invest. (2024) 134:2841. doi: 
10.1172/JCI172841

	4.	Ye S, Feng K, Zeng G, Cai J, Liang L, Chen J, et al. Deep and periventricular white 
matter hyperintensities exhibit differential metabolic profiles in arteriosclerotic cerebral 
small vessel disease: an untargeted metabolomics study. Front Neurosci. (2025) 
19:1607242. doi: 10.3389/fnins.2025.1607242

	5.	Yao J, Dai X, Yv X, Zheng L, Zheng J, Kuang B, et al. The role of potential oxidative 
biomarkers in the prognosis of intracerebral hemorrhage and the exploration 
antioxidants as possible preventive and treatment options. Front Mol Biosci. (2025) 
12:1541230. doi: 10.3389/fmolb.2025.1541230

	6.	Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted 
metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 
(2016) 27:1897–905. doi: 10.1007/s13361-016-1469-y

	7.	Li X, Li J, Yu F, Feng X, Luo Y, Liu Z, et al. The untargeted metabolomics reveals 
differences in energy metabolism in patients with different subtypes of ischemic stroke. 
Mol Neurobiol. (2024) 61:5308–19. doi: 10.1007/s12035-023-03884-w

	8.	Lasica N, Raicevic V, Stojanovic NM, Djilvesi D, Horvat I, Jelaca B, et al. 
Metabolomics as a potential tool for monitoring patients with aneurysmal subarachnoid 
hemorrhage. Front Neurol. (2023) 13:1101524. doi: 10.3389/fneur.2022.1101524

	9.	Niu R, Wang H, Peng R, Wang W, Lin Y, Xiao Y, et al. Associations of plasma 
metabolites with risks of incident stroke and its subtypes in Chinese adults. J Am Heart 
Assoc. (2024) 13:e033201. doi: 10.1161/JAHA.123.033201

	10.	Yang BSK, Savarraj JPJ, Chen H, Hinds SN, Torres GL, Ryan AS, et al. Systemic 
metabolic alterations after aneurysmal subarachnoid hemorrhage: a plasma 
metabolomics approach. medRxiv. (2025). doi: 10.1101/2025.01.06.25320083

	11.	Bulama I, Nasiru S, Bello A, Abbas AY, Nasiru JI, Saidu Y, et al. Antioxidant-based 
neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a 
rats model. Front Pharmacol. (2022) 13:998179. doi: 10.3389/fphar.2022.998179

	12.	Zhong J, Li X, Yuan M, Chen D, Li Y, Lian X, et al. Metabolomics study of serum 
from patients with type 2 diabetes: peripheral neuropathy could be associated with 
sphingosine and phospholipid molecules. Lipids. (2025) 60:3–13. doi: 10.1002/lipd.12412

	13.	Chen Y, Xiao D, Li X. Lactylation and central nervous system diseases. Brain Sci. 
(2025) 15:294. doi: 10.3390/brainsci15030294

	14.	Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier 
permeability. Cell Mol Neurobiol. (2000) 20:131–47. doi: 10.1023/A:1007074420772

	15.	Hassan A, Hunt BJ, O'Sullivan M, Parmar K, Bamford JM, Briley D, et al. Markers 
of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain. 
(2003) 126:424–32. doi: 10.1093/brain/awg040

	16.	Rouhl RP, Damoiseaux JG, Lodder J, Theunissen RO, Knottnerus IL, Staals J, et al. 
Vascular inflammation in cerebral small vessel disease. Neurobiol Aging. (2012) 
33:1800–6. doi: 10.1016/j.neurobiolaging.2011.04.008

	17.	Hong H, Tozer DJ, Chen Y, Brown RB, Low A, Markus HS. Perivascular space 
dysfunction in cerebral small vessel disease is related to neuroinflammation. Brain. 
(2025) 148:1540–50. doi: 10.1093/brain/awae357

https://doi.org/10.3389/fneur.2025.1656974
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1161/STROKEAHA.124.048974
https://doi.org/10.1093/braincomms/fcac245
https://doi.org/10.1172/JCI172841
https://doi.org/10.3389/fnins.2025.1607242
https://doi.org/10.3389/fmolb.2025.1541230
https://doi.org/10.1007/s13361-016-1469-y
https://doi.org/10.1007/s12035-023-03884-w
https://doi.org/10.3389/fneur.2022.1101524
https://doi.org/10.1161/JAHA.123.033201
https://doi.org/10.1101/2025.01.06.25320083
https://doi.org/10.3389/fphar.2022.998179
https://doi.org/10.1002/lipd.12412
https://doi.org/10.3390/brainsci15030294
https://doi.org/10.1023/A:1007074420772
https://doi.org/10.1093/brain/awg040
https://doi.org/10.1016/j.neurobiolaging.2011.04.008
https://doi.org/10.1093/brain/awae357

	Untargeted metabolomic profiling in acute ischemic stroke patients with cerebral microbleeds
	1 Introduction
	2 Materials and methods
	2.1 Study design and patient cohort
	2.2 Clinical and imaging data collection
	2.3 Sample preparation and untargeted metabolomics analysis
	2.4 Data processing and metabolite identification
	2.5 KEGG enrichment analysis
	2.6 Statistical analysis

	3 Results
	3.1 Demographics and clinical characteristics
	3.2 Quality control and system stability
	3.3 Multivariate analysis of metabolic profiles
	3.4 Identification of differential metabolites
	3.5 Enriched metabolic pathways and functional analysis

	4 Discussion
	5 Limitations
	6 Conclusion

	References

