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Background: Gliomas are among the most aggressive brain tumors, with high 
mortality and limited treatments. Despite genetic advances, their molecular 
mechanisms remain unclear, hindering diagnostic biomarkers and targeted 
therapies. This study investigates novel glioma susceptibility genes using 
integrative multi-omics.
Methods: Cross-tissue transcriptome-wide association analyses integrated 
glioma GWAS data with eQTLs from 49 GTEx v8 tissues, utilizing UTMOST 
(cross-tissue), FUSION (single-tissue), and MAGMA (gene-level). Prioritized 
genes underwent Mendelian randomization, Bayesian colocalization, and 
phenome-wide association. TGFA expression was assessed in glioma samples 
via public genomic repositories and immunohistochemistry. Drug repurposing 
employed Comparative Toxicogenomics Database (CTD) and CB-Dock2 for 
molecular docking.
Results: Five candidate genes were identified (SLC16A8, TGFA, PLA2G6, MAFF, 
TMEM184B), with Transforming Growth Factor Alpha (TGFA) as the strongest 
candidate. TGFA showed significant glioma associations across brain tissues and 
causal relationships via Mendelian randomization (OR: 1.27–1.39), supported by 
Bayesian colocalization. Elevated TGFA expression occurred in WHO grade 2/3 
gliomas and 1p/19q co-deleted tumors, validated by immunohistochemistry. 
Drug repurposing identified 40 FDA-approved TGFA-targeting drugs; irinotecan 
exhibited the highest binding affinity (−62.0 kcal/mol) in docking studies.
Discussion: TGFA is a novel glioma susceptibility gene with subtype-specific 
expression. Its therapeutic targeting offers opportunities for precision therapy, 
potentially advancing glioma clinical management.

KEYWORDS

glioma, TGFA, multi-omics analysis, transcriptome-wide association study, drug 
repurposing

OPEN ACCESS

EDITED BY

Brian D. Adams,  
Brain Institute of America, United States

REVIEWED BY

Athanasia Pavlopoulou,  
Dokuz Eylul University, Türkiye
Santosh Valvi,  
Perth Children’s Hospital, Australia

*CORRESPONDENCE

Kefu Yu  
 kefu006@163.com  

Zhigang Zhao  
 13910612086@163.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 18 July 2025
ACCEPTED 10 October 2025
PUBLISHED 05 November 2025

CITATION

Jiang R, Tu S, Ji N, Liu G, Yu K and 
Zhao Z (2025) Integrative multi-omics 
analysis identifies TGFA as a novel glioma 
susceptibility gene and therapeutic target.
Front. Neurol. 16:1656490.
doi: 10.3389/fneur.2025.1656490

COPYRIGHT

© 2025 Jiang, Tu, Ji, Liu, Yu and Zhao. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  05 November 2025
DOI  10.3389/fneur.2025.1656490

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1656490&domain=pdf&date_stamp=2025-11-05
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656490/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656490/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656490/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1656490/full
mailto:kefu006@163.com
mailto:13910612086@163.com
https://doi.org/10.3389/fneur.2025.1656490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1656490


Jiang et al.� 10.3389/fneur.2025.1656490

Frontiers in Neurology 02 frontiersin.org

1 Introduction

Gliomas constitute a substantial public health burden, 
representing over 20% of primary brain and central nervous system 
(CNS) tumors and 80.9% of adult malignant CNS neoplasms, with 
incidence rates of 30–80 cases per million annually (1, 2). Despite 
therapeutic advancements, they remain highly aggressive 
malignancies marked by poor survival and limited treatment efficacy 
(3). The 2021 WHO classification of CNS tumors categorizes gliomas 
into four grades: grades 1–2 represent low-grade neoplasms, while 
grades 3–4 are classified as high-grade tumors (4). Glioblastoma 
(GBM; grade 4), the most lethal subtype, exhibits a 5-year survival 
rate of <7% (2).

Although significant advances have been made in elucidating the 
genetic basis of gliomas, the comprehensive molecular mechanisms 
and key susceptibility genes driving glioma pathogenesis remain 
incompletely defined (5). This lack of understanding critically hinders 
progress toward identifying precise diagnostic biomarkers and 
developing molecularly targeted treatments, underscoring the 
pressing requirement for multidisciplinary genomic strategies to 
clarify the intricate genetic landscape of these tumors. Transforming 
growth factor alpha (TGF-α), a protein encoded by the TGFA gene, 
belongs to the epidermal growth factor (EGF) family and has 
functional similarities with EGF in mediating biological processes. It 
has functional similarities with EGF in mediating biological processes 
(6). Functionally, TGF-α is a ligand for epidermal growth factor 
receptor (EGFR), which belongs to the receptor tyrosine kinase 
(RTK) family (7). EGFR alterations represent one of the most 
common molecular hallmarks of gliomas (8), however, the 
contribution of its upstream ligand TGFA to gliomagenesis has 
remained largely unexplored. Emerging evidence suggests that 
TGF-α/EGFR signaling plays a pivotal role in tumor cell proliferation, 
differentiation, and survival, raising the possibility that TGFA itself 
may represent a novel glioma susceptibility locus and therapeutic 
target (7, 9–11).

Recent advances in multi-omics research have offered promising 
insights into glioma genetics and potential therapeutic targets. Howell 
et al. (12) demonstrated how DNA methylation modulates glioma risk 
factors, while Zhou (13). employed Mendelian randomization to 
identify metabolic alterations associated with glioblastoma. Thornton 
et al. (11) further leveraged multi-omic MR to uncover druggable 
targets, demonstrating causal influences from 22 molecular 
characteristics encompassing 18 genes/proteins on glioma 
susceptibility. Robinson et al. (9) integrated multi-tissue eQTLs with 
glioma GWAS data to identify five candidate tissues and four genes 
previously tied to glioma pathogenesis (JAK1, STMN3, PICK1, and 
EGFR). Additionally, Zhao et al. (14) explored a causal relationship 
between β-receptor blockers targeting ADRB1 and the development 
of GBM. Despite these valuable contributions, most studies have 
primarily focused on investigating gene associations in single tissues, 
with limited validation across multiple brain regions and limited 
translation toward therapeutic applications.

Transcriptome-wide association study (TWAS) are used to 
prioritize potential gene candidates and explore gene-trait 
connections through integrated analysis of GWAS summary statistics 
and expression quantitative trait loci (eQTL) datasets (15). UTMOST 
(Unified Test for Molecular Signature), a methodology for cross-
tissue TWAS, expands this framework by simultaneously performing 

gene-level association analyses across diverse tissues, thereby 
improving the detection of tissue-specific and shared genetic effects 
(16). Unlike single-tissue methods, UTMOST employs a “group-lasso 
penalty” that improves imputation models by identifying shared 
eQTL effects while preserving tissue-specific variations. This cross-
tissue methodology has effectively uncovered candidate genes linked 
to susceptibility to multiple pathologies, including rheumatoid 
arthritis (17), essential hypertension (18), and carcinoma of the 
lung (19).

Our work introduces an integrative multi-omics framework 
designed to address key methodological limitations in contemporary 
glioma studies. Through integration of glioma GWAS datasets with 
GTEx v8 eQTL profiles from 49 tissues, we implement UTMOST for 
cross-tissue transcriptome-wide association analyses, FUSION 
(Functional Summary-based Imputation) for tissue-specific 
evaluations, and MAGMA for gene-level association testing. To 
validate the robustness of our findings, we  employ Mendelian 
randomization (MR), Bayesian colocalization, and phenome-wide 
association studies (PheWAS). Furthermore, we  extend beyond 
genetic association to explore therapeutic potential through drug 
repurposing and molecular docking analyses using the Comparative 
Toxicogenomics Database (CTD), ChEMBL, and CB-Dock2. This 
integrated approach not only aims to identify novel glioma 
susceptibility genes but also to evaluate their potential as therapeutic 
targets, thereby advancing both our understanding of glioma biology 
and potential treatment strategies.

2 Materials and methods

Figure 1 illustrates the methodological framework. This approach 
combined multi-tissue TWAS via UTMOST, tissue-specific 
evaluations using FUSION, and MAGMA-based gene testing, 
following established protocols (20).

2.1 Data acquisition

Instrumental variables were selected as cis-single nucleotide 
polymorphism (cis-SNP) significantly associated with plasma protein 
levels at the genome-wide significance threshold (p < 5 × 10−8) from 
the European Genome Phenotype Archive1 database. Cis-SNPs were 
defined as single nucleotide polymorphisms located within 1 Mb of 
the gene encoding the respective protein. Linkage disequilibrium (LD) 
was calculated using data from the 1,000 Genomes European reference 
panel. Within a 1 Mb window, SNPs with LD values (r2) less than 
0.001 were considered independent. Summary statistics for glioma 
GWAS were derived from a 2017 publication, encompassing 12,496 
glioma cases and 18,190 controls (21). The dataset used in this study 
is accessible through the European Genome Phenotype Archive (see 
text footnote 1, respectively) under accession number 
EGAD00010001657. A total of 26 glioma tissue specimens were 
acquired from an equal number of patients who underwent 
neurosurgical procedures at Beijing Tiantan Hospital. None of the 

1  EGA; http://www.ebi.ac.uk/ega/
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individuals participating in the study had received chemotherapy or 
radiotherapy before sample collection. Approval for the research 
protocol was provided by the institutional review board of Beijing 
Tiantan Hospital (approval number: KY2024-346-03), which 
exempted written informed consent due to the retrospective nature of 
the research. All protocols adhered to the Declaration of Helsinki and 
applicable national guidelines.

2.2 eQTL data source

The GTEx V8 dataset (22) offers an extensive collection of RNA 
expression information across 49 distinct tissue types, obtained from 
838 deceased donors.2 All data are publicly accessible and can be freely 
retrieved from the GTEx portal for research use. The number of 
samples varies considerably between tissue types, with renal cortex 

2  https://ftp.ebi.ac.uk/pub/databases/spot/eQTL/imported/GTEx_V8

having the smallest sample size at 73 cases and skeletal muscle 
representing the largest with 706 cases.

2.3 TWAS analyses across tissues

To investigate gene-phenotype associations at a systemic level, 
we applied UTMOST methodology,3 which enables transcriptome-
wide analysis across multiple tissues. This approach enhances the 
capability to identify genes in tissues with stronger signals for heritable 
traits and improves attribution precision (16, 17). Subsequently, 
we utilized the generalized Berk-Jones (GBJ) test to incorporate gene-
trait associations using the covariance structure derived from 
tissue-specific summary statistics (16, 23). Statistical significance was 
determined using false discovery rate (FDR) adjustment, with results 
considered significant at FDR < 0.05.

3  https://github.com/Joker-Jerome/UTMOST?tab=readme-ov-file

FIGURE 1

The flowchart of this study. GWAS, genome-wide association; GTEx, Genotype-Tissues Expression Project; TWAS, transcriptome-wide association 
studies; UTMOST, unified test for molecular signatures; FUSION, functional summary-based imputation; MAGMA, multi-marker Analysis of GenoMic 
Annotation; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas.
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2.4 TWAS analyses in individual tissues

We employed the FUSION framework4 to conduct TWAS by 
combining glioma GWAS summary statistics with eQTL profiles 
from 49 tissues in the GTEx V8 dataset (24). To model gene-SNP 
relationships, we  calculated linkage disequilibrium (LD) using 
individuals of European ancestry from the 1,000 Genomes Project 
as a reference. FUSION incorporates multiple expression prediction 
models—BLUP, BSLMM, LASSO, elastic net, and top1—to evaluate 
SNP effects on gene expression. The model demonstrating optimal 
predictive performance was selected to generate gene-specific 
expression weights (25). These weights were subsequently 
integrated with glioma GWAS Z scores to perform TWAS analysis 
of glioma susceptibility. Only genes meeting two criteria were 
retained for final interpretation: (1) FDR < 0.05 in the cross-tissue 
TWAS and (2) FDR < 0.05  in at least one tissue-specific 
TWAS result.

2.5 Gene analysis

Gene-level analyses were performed using MAGMA (v1.08) 
under default parameters, consolidating SNP-based association data 
into gene-level scores to quantify phenotype-linked genetic effects per 
gene (26). For specific parameters and methodological details, see the 
original MAGMA documentation (27).

2.6 MR and bayesian colocalization

We implemented the “TwoSampleMR” package in R to conduct 
MR analyses (28). In this investigation, cis-eQTL SNPs served as 
instrumental variables (IVs), with gene expression as the exposure 
variable and glioma GWAS statistics as the outcome. SNPs achieving 
genome-wide significance (p < 5 × 10−8) were filtered, and LD 
clustering (r2 < 0.001) was applied to ensure variant independence 
(29). For loci containing only one independent IV, causal effects 
were estimated using the Wald ratio, with p < 0.05 as the significance 
threshold. Bayesian colocalization was conducted using the R 
package “coloc” (19, 30) to determine whether GWAS and eQTL 
associations at a specific locus likely share the same causal variant. 
The posterior probabilities (PP) of five causal models were calculated 
(19, 30), among which hypothesis 4 (PP. H4) had a PP exceeding 
0.75, which was considered as strong evidence supporting the 
existence of a common genetic basis between the two signals 
(18, 19).

2.7 PheWAS

We used the AstraZeneca PheWAS portal to perform 
phenotype-wide association studies (PheWAS)5 to assess potential 
pleiotropic effects and unintended consequences of candidate 

4  http://gusevlab.org/projects/fusion/

5  https://azphewas.com/

drug targets (31). This approach uses the UK Biobank cohort data 
(31) to assess the association between rare protein-coding variants 
within genes and 18,780 phenotypic characteristics. To minimize 
false-positive findings, we  implemented multiple testing 
correction and established the genome-wide significance 
threshold at 2 × 10−8, consistent with the portal’s 
default parameters.

2.8 Drug repurposing

To obtain insights into the drug compounds targeting proteins 
identified in this study, we utilized the CTD6 (32) (as of 16/3/2025). 
This database offers manually curated information on 50 million 
toxicogenomic relationships. Our analysis focused primarily on 
compounds with experimentally validated interactions with protein 
targets. To ensure translational relevance, only FDA-approved drugs 
were considered for subsequent docking analysis. Furthermore, 
we identified drugs aimed at these two proteins that are currently 
undergoing clinical trials using the ChEMBL (33) database (as of 
16/3/2025).

2.9 Molecular docking

Molecular docking provides a computational framework for 
evaluating the affinity and interaction between candidate ligands and 
corresponding molecular targets, thereby facilitating the screening 
of promising therapeutic drugs for further experimental evaluation 
and drug development improvements. This study used the web-based 
tool CB-Dock27 (34) developed by Cao Yang’s laboratory for 
molecular docking simulations. The researchers used compounds 
from the Comparative Toxicogenomics Database (CTD) to screen 
proteins encoded by genes associated with the pathogenesis of 
glioma (35).

For each ligand, CB-Dock2 automatically identified the top five 
binding cavities ranked by cavity volume. Docking was performed 
in all five cavities, and the vina scoring function was used to 
calculate binding affinity values (kcal/mol). Docking outputs 
included cavity center coordinates, cavity size, docking poses, and 
binding energies. The best-scoring conformation (lowest binding 
energy) was used for downstream analysis of protein–
ligand interactions.

The three-dimensional structures of four bioactive 
molecules—estradiol (PubChem CID: 5757), gefitinib (CID: 
123631), irinotecan (CID: 60838), and bromocriptine (CID: 
31101)—were obtained in sdf format from the PubChem 
database.8 The crystal structure of transforming growth factor α 
(TGF-α) (PDB ID 1YUF) was acquired in pdb format from the 
Protein Data Bank.9

6  http://ctdbase.org/

7  https://cadd.labshare.cn/cb-dock2/index.php; access date: March 16, 2025

8  https://pubchem.ncbi.nlm.nih.gov/; accessed March 16, 2025

9  https://www.rcsb.org/; accessed March 16, 2025
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2.10 Gene expression analysis using public 
genomic repositories

Transcriptomic information and associated clinical data from 
glioma specimens were extracted from two major genomic databases: 
the Chinese Glioma Genome Atlas10 and The Cancer Genome Atlas.11 
After excluding entries with incomplete clinical annotations or 
insufficient follow-up, a gene expression matrix was generated for 
prognostic analysis. The relationship between TGFA expression level 
and glioma histological grade was evaluated using R software 
(version 4.3.0).

2.11 Immunohistochemical staining 
protocol

Formalin-fixed, paraffin-embedded glioma tissue sections were 
initially heated at 60 °C for 90 min. Deparaffinization was 
performed by immersing the sections in xylene three times, each 
for 5 min, followed by sequential rehydration through descending 
ethanol concentrations (100, 95, and 75%). After three washes with 
PBS (5 min each), endogenous peroxidase activity was blocked with 
3% hydrogen peroxide solution for 10 min at room temperature. 
Heat-induced epitope retrieval involved immersing slides in 
antigen retrieval buffer at 95 °C for 10 min, then allowing them to 
cool gradually to ambient temperature. Permeabilization was 
carried out with 0.1% Triton X-100  in PBS for 5 min, and 
nonspecific binding was blocked using 1% bovine serum albumin 
(BSA) for 30 min. Slides were incubated overnight at 4 °C with an 
anti-TGF-α primary antibody (Immunoway, YT4626) diluted 
1:100 in blocking buffer. The following day, after three additional 
PBS washes (10 min each), sections were treated with an 
HRP-conjugated goat anti-rabbit secondary antibody for 60 min. 
Signal detection was achieved using 3,3′-diaminobenzidine (DAB) 
substrate, and the reaction was halted with tap water. Hematoxylin 
was applied for nuclear counterstaining (1 min), followed by 
differentiation in 1% acid-alcohol. Slides were mounted using 
neutral resin and digitized via the Leica Aperio AT2 scanning 
system. Staining intensity was quantified using ImageJ, and 
statistical analysis was conducted using GraphPad Prism version 8 
(GraphPad Software, San Diego, CA, United States), with statistical 
significance defined as p < 0.05.

3 Results

3.1 TWAS findings from cross-tissue and 
single-tissue analyses

TWAS studies conducted through both cross-tissue and single-
tissue analytical frameworks identified distinct sets of genes associated 
with glioma susceptibility. The cross-tissue analysis revealed 218 genes 
with nominal significance (p < 0.05; Supplementary Table S1), of 

10  CGGA; http://www.cgga.org.cn

11  TCGA; https://www.cancer.gov/tcga

which 18 remained significant after FDR adjustment (FDR < 0.05; 
Table 1). Parallel analysis in individual tissues confirmed that 153 
genes achieved FDR < 0.05  in at least one tissue type 
(Supplementary Table S2). A subset of 9 protein-coding genes, 
POLR2F, SLC16A8, CPSF3, PXDN, TGFA, PLA2G6, MAFF, 
TMEM184B, and CSNK1E, met statistical criteria in both analysis 
models, indicating that they are reliable and high-confidence 
candidate genes for glioma susceptibility.

3.2 MAGMA gene-based analysis

Using MAGMA for gene-level association testing, we identified 
87 genes significantly linked to glioma susceptibility after applying 
FDR correction (FDR < 0.05; Supplementary Table S3). We combined 
the results from the UTMOST cross-tissue TWAS analysis with 
prioritized genes from both FUSION and MAGMA analyses to 
strengthen the reliability of candidate gene screening. This integrated 
approach highlighted five strong candidate genes with consistent 
signals in different methods: SLC16A8, TGFA, PLA2G6, MAFF, and 
TMEM184B (Figure 2).

3.3 MR and colocalization results

The TGFA gene, located on chromosome 2, demonstrated 
significant associations with glioma across several brain regions—
including the caudate basal ganglia, cortex, and hypothalamus—based 
on FUSION analysis results. MR supported a potential causal effect of 
TGFA on glioma risk, yielding statistically significant associations 
(p < 0.05). The estimated odds ratios (ORs) and their 95% confidence 
intervals (CIs) for the corresponding brain regions were 1.39 (1.18–
1.64), 1.27 (1.12–1.43), and 1.28 (1.13–1.45), respectively 
(Supplementary Table S4). Bayesian colocalization reinforced this 
link, showing high posterior probabilities (PP. H4 = 0.86–0.93) for 
shared causal variants in all three tissues (Supplementary Table S5). 
The SNP rs7561547 emerged as the primary colocalized variant for 
glioma in these regions (Supplementary Figures S1, S2).

3.4 PheWAS

To assess therapeutic benefits or unintended effects of TGFA as a 
glioma drug target and evaluate off-target pleiotropy beyond MR–
Egger intercept findings, we performed gene-level PheWAS using 
17,361 binary and 1,419 quantitative traits from the AstraZeneca 
PheWAS Portal (31). This analysis tested associations between 
genetically predicted TGFA protein levels and diseases/traits. As 
summarized in Supplementary Table S6 and Supplementary Figure S3, 
TGFA showed no significant associations (genomic-wide significance 
threshold: p < 2 × 10−8), suggesting minimal off-target pleiotropic 
effects and supporting the specificity of TGFA as a therapeutic target.

3.5 Drug repurposing

The CTD database (see text footnote 6, respectively) was queried 
for  TGFA drug targets, revealing 40 FDA-approved drugs with 
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potential  for  treating glioma among 242 interacting chemicals 
(Supplementary Table S7). Additionally, a search of the ChEMBL database 
revealed a drug targeting TGFA, revealing 154 FDA-approved drugs with 
potential for treating glioma among 464 drugs (Supplementary Table S8). 
Only bromocriptine was in both two databases.

3.6 Molecular docking

Molecular docking studies focused on TGFA, the primary 
therapeutic target, were conducted with six pharmacological agents 
using the CB-Dock2 platform. Binding site analyses and interaction 
profiling for four lead compounds with their respective protein targets 
revealed energy values for each molecular complex. For each ligand, the 
top five cavities predicted by CB-Dock2 were explored, and docking was 
evaluated using the vina scoring function. The results demonstrated that 
all ligands achieved stable binding conformations with negative docking 
scores, reflecting favorable protein–ligand interactions. 
Supplementary Table S9 and Supplementary Figure S4 illustrate the 
ligand-binding conformations and spatial orientations for the top three 
drugs by interaction frequency (estradiol, gefitinib, irinotecan) and 
bromocriptine when docked with TGFA. Supplementary Tables S9-1–S9-4 
detail the top five binding cavities, prioritized by volumetric parameters 
and energy metrics. All evaluated compounds demonstrated stable 
hydrogen bonding networks and pronounced electrostatic 
complementarity with their targets. Notably, the TGFA-irinotecan 
complex displayed optimal binding affinity (−62.0 kcal/mol), reflecting 
superior molecular stability among the tested pairs.

3.7 Gene expression differences in glioma 
subtypes

In both the TCGA and CGGA cohorts, WHO grade II and III 
gliomas had significantly higher TGFA expression levels than grade 
IV tumors (p < 0.0001; Figures 3A,B). Similarly, tumors harboring 
1p/19q co-deletion demonstrated significantly upregulated TGFA 
expression compared to non-codeleted gliomas in these datasets 
(p < 0.0001; Figures 3C,D). These observations imply a possible link 

FIGURE 2

Venn diagram. MAGMA identified 87 significant genes associated 
with glioma, FUSION identified 153, and UTMOST cross-tissue 
analysis identified 18.

TABLE 1  The significant genes for glioma risk in cross-tissue UTMOST analysis.

Gene symbole CHR Ensemeble ID Location (hg38) Test score p value FDR

EIF3L 22 ENSG00000100129 37,848,868–37,889,407 8.57 1.19E-04 3.38E-02

POLR2F 22 ENSG00000100142 37,952,607–38,041,915 27.95 2.43E-13 8.98E-10

SLC16A8 22 ENSG00000100156 38,078,134–38,084,184 9.70 3.78E-05 1.47E-02

TOMM22 22 ENSG00000100216 38,681,957–38,685,421 13.74 4.56E-07 4.22E-04

RASD2 22 ENSG00000100302 35,540,831–35,553,999 8.61 1.94E-04 3.91E-02

NMU 4 ENSG00000109255 55,595,229–55,636,698 8.46 2.01E-04 3.91E-02

CPSF3 2 ENSG00000119203 9,423,651–9,473,101 7.89 1.93E-04 3.91E-02

PXDN 2 ENSG00000130508 1,631,887–1,744,852 10.01 2.78E-05 1.47E-02

TGFA 2 ENSG00000163235 70,447,284–70,554,193 9.96 3.42E-05 1.47E-02

KCNJ4 22 ENSG00000168135 38,426,327–38,455,199 9.44 6.28E-05 2.11E-02

PCBP1 2 ENSG00000169564 70,087,477–70,089,203 9.30 1.45E-04 3.84E-02

KLF11 2 ENSG00000172059 10,042,849–10,054,836 10.81 1.79E-05 1.11E-02

PCBP1-AS1 2 ENSG00000179818 69,960,104–70,103,220 7.81 1.81E-04 3.91E-02

PLA2G6 22 ENSG00000184381 38,111,495–38,214,778 7.56 9.31E-05 2.87E-02

MAFF 22 ENSG00000185022 38,200,767–38,216,507 9.81 3.98E-05 1.47E-02

H1-0 22 ENSG00000189060 37,805,229–37,807,432 8.79 1.69E-04 3.91E-02

TMEM184B 22 ENSG00000198792 38,219,291–38,273,010 14.10 1.73E-07 3.21E-04

CSNK1E 22 ENSG00000213923 38,290,691–38,318,084 11.62 3.44E-06 2.55E-03
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between TGFA transcriptional activity and distinct molecular-
pathological glioma subtypes.

3.8 Clinical glioma samples validate gene 
signature

Prognostic evaluation of glioma patients was performed via IHC 
staining of TGFA in surgically resected tissues. TGFA immunoreactivity 
showed heterogeneous expression patterns but enabled clear 
differentiation between high- and low-expression subgroups. Notably, 
TGFA levels were markedly elevated in WHO grade 2 gliomas 
compared to grades 3–4 (Figure  4A) and in tumors with 1p/19q 

co-deletion versus non-codeleted cases (Figure  4B), aligning with 
TCGA and CGGA database findings (Figure 4C). Clinicopathological 
and molecular correlates are detailed in Supplementary Table S10.

4 Discussion

This study used a multi-omics research strategy to elucidate the 
genetic architecture of glioma susceptibility by coordinating glioma 
GWAS data with GTEx V8 expression quantitative trait loci. A 
tiered analytical pipeline—incorporating cross-tissue 
transcriptome-wide association via UTMOST, tissue-specific TWAS 
with FUSION, and MAGMA-based gene prioritization—uncovered 

FIGURE 3

Analysis of TGFA gene expression and genetic alterations in TCGA and CGGA. (A) Gene expression levels of TGFA across distinct grades in TCGA. 
Statistical significance was determined by ANOVA (p < 0.001). (B) Gene expression levels of TGFA across distinct grades in CGGA. Statistical significance 
was determined by ANOVA (p < 0.001). (C) Association between TGFA expression and 1p/19q chromosomal deletion status in TCGA (Non-deletion vs. 
Co-deletion). Statistical significance was determined by ANOVA (p < 0.001). (D) Association between TGFA expression and 1p/19q chromosomal 
deletion status in CGGA (Non-deletion vs. Co-deletion). Statistical significance was determined by ANOVA (p < 0.001).
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Transforming Growth Factor Alpha (TGFA) as a novel glioma risk 
locus. Causal inference analyses (Mendelian randomization and 
Bayesian colocalization) reinforced TGFA’s role, demonstrating 
consistent risk effects (OR: 1.27–1.39) and identifying rs7561547 as 
a shared causal variant (posterior probability: 0.86–0.93) across 
cerebral tissues. TGFA expression patterns mirrored genetic 
associations, showing marked upregulation in WHO grade 2–3 
gliomas versus grade 4 and in 1p/19q codeleted tumors across 
TCGA, CGGA, and institutional cohorts (Supplementary Figure S2). 
Computational drug repositioning highlighted irinotecan as a high-
affinity TGFA binder (−62.0 kcal/mol), supported by molecular 
docking. These results collectively nominate TGFA as a tractable 
therapeutic target and mechanistic hub in glioma pathogenesis, 
bridging genetic epidemiology to translational pharmacology.

Multi-omics association studies are increasingly used to investigate 
glioma pathobiology and identify potential drug repurposing 
opportunities. For instance, Zhou (13) reported 69 plasma metabolites 
linked to glioblastoma development. In another study, Robinson et al. 
combined eQTL data from multiple tissues with a glioma GWAS dataset 
and identified five glioma-associated brain regions (cerebellum, basal 
nuclei accumbens, cerebral cortex, caudate basal ganglia, and putamen) 
along with four associated genes (STMN3, JAK1, EGFR, and PICK1) (9). 
Utilizing brain multi-omic analyses, Thornton et  al. revealed causal 
relationships between 22 molecular features spanning 18 genes or 
proteins and glioma susceptibility (11). Similarly, Zhao et al. investigated 
initial indications of a connection between β-receptor blockers targeting 

ADRB1 and glioblastoma progression by integrating eQTL colocalization 
with single-cell RNA-seq data (14). Nevertheless, cross-tissue analytical 
results require further validation, as existing research has largely 
concentrated on single-tissue gene associations with glioma.

Robinson et al. (9), Thornton et al. (11), and our research reinforce 
the critical role of brain-tissue specificity, though their objectives diverge. 
Thornton et al. (11) applied a multi-omics MR approach to identify new 
therapeutic targets for gliomas and demonstrated the causal role of 
molecular features. Similarly, Robinson et  al. (9) adopted MR but 
prioritized transcriptome-wide analyses to uncover tissue-dependent 
genes linked to glioma risk, revealing three previously uncharacterized 
susceptibility loci and underscoring tissue-specific mechanisms. Unlike 
these studies, our work combined diverse omics methodologies—such 
as TWAS, UTMOST, MAGMA, FUSION, and Bayesian colocalization—
to map glioma risk genes, with a focus on TGFA as a novel risk factor in 
the caudate basal ganglia, cortex, and hypothalamus. We further explored 
TGFA’s therapeutic utility via drug repurposing and molecular docking. 
A key strength of our approach lies in its methodological breadth, 
incorporating PheWAS and docking simulations to connect genetic 
insights to clinical translation. Additionally, we identified FDA-approved 
drugs targeting TGFA, bolstering translational relevance. By merging 
multi-layered validation with drug discovery components, our 
framework offers a more holistic and clinically actionable investigation.

This study’s core analytical framework centered on a cross-tissue 
TWAS framework, leveraging UTMOST’s integrative model. Unlike 
conventional single-tissue TWAS, this methodology integrates gene 

FIGURE 4

Association between TGFA immunoexpression and clinicopathological features in glioma cases. (A) Representative images of IHC staining of TGFA 
index in glioma samples across distinct grades. (B) Representative images of IHC staining of TGFA index in glioma samples across 1p/19q chromosomal 
deletion status. (C) Results of the percentage of TGF-α+ cells of TGFA in distinct grades and 1p/19q chromosomal deletion status. *p < 0.05; **p < 0.01; 
***p < 0.001.
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expression data across tissues to bolster statistical power for detecting 
trait-associated genes, enabling a more comprehensive elucidation of 
gene-trait relationships and improving the detection of associations that 
may not be detected in single-tissue analyses (16). In recent years, several 
studies have adopted multi-tiered analytical pipelines incorporating 
cross-tissue TWAS screening, single-tissue TWAS, gene-level validation, 
and colocalization techniques and Mendelian randomization (MR) to 
map susceptibility genes across diverse pathologies (17, 20, 36). Through 
cross-tissue TWAS coupled with rigorous validation, we  identified 
TGFA as a previously unreported glioma risk locus.

Recent molecular advances have substantially enriched our 
understanding of gliomagenesis. For example, large-scale integrative 
studies have revealed new epigenetic and metabolic drivers of glioma. 
Howell et al. (12) demonstrated how DNA methylation mediates the 
effects of established risk factors on glioma incidence, underscoring the 
role of epigenetic regulation in tumor initiation. Glioma stem-like cells 
sustained by chromatin regulators such as BRD proteins and PRC2 
components, together with arginine and lysine methylation dynamics 
mediated by PRMTs and KDMs, have emerged as key determinants of 
self-renewal, DNA repair, and therapy resistance, opening new 
therapeutic opportunities (37). Moreover, oncogenic signaling through 
EGFR and PI3K/AKT converges with metabolic rewiring and post-
translational modifications, including PKM2 O-GlcNAcylation and 
PTEN succination, while spatially resolved profiling has emphasized 
tumor heterogeneity and the roles of neuronal interactions and lipid-
laden macrophages in immune evasion (37). These fundamental works 
unravel the complexities of glioma development and present new 
options for therapeutic intervention. Our discovery of TGFA as a 
glioma susceptibility gene adds to the growing body of research by 
connecting cross-tissue transcriptome connections to functional 
validation and therapeutic repurposing, thereby expanding the 
molecular framework of gliomagenesis for translational application.

It is important to acknowledge that TGFA has previously been 
implicated in gliomas, largely through its role as a ligand of 
EGFR. Early experimental work demonstrated that the TGF-α/EGFR 
autocrine loop promotes glioma cell proliferation and survival (7), and 
subsequent studies confirmed EGFR–TGF-α signaling as a hallmark 
pathway in human gliomas arget (10). Animal models have further 
shown that TGF-α overexpression can drive glioma-like phenotypes 
(6). However, these investigations were primarily mechanistic or 
limited to small-scale experimental systems. By contrast, our study is 
the first to integrate large-scale GWAS, multi-tissue eQTL datasets, 
and cross-tissue transcriptomic analyses to establish TGFA as a glioma 
susceptibility gene in human populations. Moreover, we extend this 
genetic association to translational relevance by demonstrating its 
potential as a therapeutic target through drug repurposing and 
molecular docking. Thus, our findings advance prior knowledge by 
moving from experimental implication of TGFA in gliomagenesis to 
population-level genetic validation and actionable therapeutic insight.

Estrogen and its receptors show considerable therapeutic potential 
in glioblastoma treatment due to their ability to modulate multiple 
biological pathways, cross the blood–brain barrier (BBB), and regulate 
transcription, making them viable therapeutic candidates (38). For 
example, Lee et al. demonstrated that 17β-estradiol and tamoxifen 
upregulated glutamate transporter-1 expression in astrocytes through 
TGF-α-mediated signaling, identifying a critical target for neurological 
therapy development (39). Gefitinib, a tyrosine kinase inhibitor (TKI) 
targeting EGFR (40), has shown sensitivity strongly associated with 

the EGFR ligand TGF-α (41). Irinotecan, a topoisomerase I inhibitor 
and camptothecin analog capable of crossing the BBB, had previously 
been evaluated in glioma treatment, but with limited clinical success 
when administered as a conventional topoisomerase I inhibitor (42). 
Our findings, however, suggest a distinct translational angle. 
Molecular docking revealed that irinotecan exhibits a strong binding 
affinity to TGFA, raising the possibility that its activity may extend 
beyond cytotoxicity to modulation of the TGFA–EGFR signaling axis, 
a pathway critically implicated in gliomagenesis (43). This mechanistic 
insight provides a rationale for reconsidering irinotecan not as an 
empirical chemotherapeutic, but rather as a biomarker-guided 
therapeutic candidate in TGFA-driven glioma subtypes. More broadly, 
our results exemplify how integrating genetic epidemiology with drug 
repurposing can uncover novel applications for existing FDA-approved 
agents, thereby accelerating the translation of molecular discoveries 
into targeted therapeutic strategies. Similarly, bromocriptine’s role in 
glioma therapy remains underexplored, though studies report 
sustained TGF-α mRNA upregulation during active pituitary tumor 
growth. Intriguingly, bromocriptine-induced activation of dopamine 
D2 receptors suppresses TGF-α mRNA expression prior to tumor 
shrinkage, suggesting its therapeutic promise for glioma (44). Further 
translational research—spanning both in vitro systems and in vivo 
models—remains essential to validate bromocriptine’s therapeutic 
efficacy and elucidate its mechanistic foundations.

While this study provides novel insights, several limitations 
warrant acknowledgment. (1) Our analyses relied on GWAS and 
eQTL datasets derived exclusively from European cohorts, potentially 
restricting the generalizability of results to populations of 
non-European ancestries. Validation in increasingly diverse cohorts 
is critical to ensuring the relevance of these findings across 
communities. (2) Although the study revealed substantial insights 
through computational and statistical analysis, there was no direct 
experimental validation of the relationships between TGFA and 
glioma. Additional biological investigations are required to validate 
these findings and investigate their functional consequences. (3) 
Although the study discovered possible TGFA genes associated with 
glioma, it did not completely understand the molecular mechanisms 
behind their roles in tumor progression. Further mechanistic research, 
including functional assays, is required to establish causal links.

5 Conclusion

To identify glioma susceptibility genes, this study employed a 
comprehensive multi-omics technique that comprised cross- and single-
tissue TWAS, MAGMA, MR, and Bayesian colocalization. Our findings 
consistently identified TGFA as a distinct risk gene, with high 
associations in the caudate basal ganglia, brain, and hypothalamus. 
Mendelian randomization revealed a connection between higher TGFA 
expression and increased glioma risk, whereas colocalization analysis 
revealed common causal variants. Furthermore, phenome-wide 
association studies indicated minimal pleiotropic effects, underlining 
the importance of TGFA participation. Bromocriptine was identified as 
a potential treatment approach through medication repurposing and 
molecular docking studies due to its favorable binding energy to 
TGFA. Despite the study’s limitations, which include European-centric 
datasets and a lack of experimental confirmation, the findings lay a solid 
platform for future research. These findings will need to be translated 
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into therapeutic applications through further cohort research and 
functional testing. Overall, our findings provide substantial 
contributions to glioma research and suggest promising future directions.
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