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Repetitive transcranial magnetic 
stimulation reduces nicotine 
dependence and potentially 
modulates white matter 
microstructure in smokers: a pilot 
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imaging
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Introduction: The present study aims to investigate the effects of repetitive 
transcranial magnetic stimulation (rTMS) on smoking cessation and white matter 
(WM) structure related to the mesolimbic dopamine pathway using diffusion 
spectrum imaging (DSI).
Methods: The rTMS over the left dorsolateral prefrontal cortex (DLPFC) was 
repeated 10 times in 18 smokers. Quantitative anisotropy (QA) and fractional 
anisotropy (FA) were calculated for the anisotropy assessment, and mean 
diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were determined 
for the diffusivity evaluation. Nicotine dependence, and craving and withdrawal 
symptoms were evaluated using the Fagerström Test for Nicotine Dependence 
(FTND), the short version of the Tobacco Craving Questionnaire (sTCQ), the visual 
analogue scale (VAS), and the Minnesota Nicotine Withdrawal Scale (MNWS).
Results: After 10 times of rTMS, the FTND, MNWS and VAS scores significantly 
decreased, when compared to baseline, and withdrawal symptoms were 
partially alleviated. Furthermore, cigarette consumption was significantly 
decreased by rTMS, and four participants completely stopped smoking after 
rTMS treatment. Importantly, the smokers only had a reduction of AD in the right 
nucleus accumbens (NAc) fibers after rTMS, and a strong positive correlation 
was observed between the change in cigarette consumption and change in AD 
values in the right NAc fibers after rTMS treatment.
Discussion: These results suggest that rTMS over the left DLPFC is a potential 
effective strategy for nicotine dependence and craving, which is probably due 
to the modulation of the right NAc fibers. The right NAc emerged as a region 
of interest that warrants further investigation as a potential therapeutic target.
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1 Introduction

Smoking has been recognized as one of the most widespread and 
enduring forms of addiction, with its well-documented adverse health 
effects (1). China is presently the largest producer and consumer of 
tobacco in the world, and the number of tobacco-related deaths in 
China is proposed to increase from approximately one million in 2010 
to two million annually by 2030 and three million by 2050, unless 
widespread smoking cessation occurs (2).

The nature of tobacco addiction primarily stems from the effects of 
nicotine on the central nervous system (CNS) (3). Similar to other 
addictive substances, nicotine activates the mesolimbic dopamine 
pathway which originates from the ventral tegmental area (VTA) and 
projects to reward-related regions, including the nucleus accumbens 
(NAc), subthalamic nucleus (STN), amygdala (AMY), prefrontal cortex 
(PFC), hippocampus (HIP), and other areas (4–7). Indeed, accumulating 
neuroimaging evidence has revealed abnormalities in these regions 
associated to chronic smoking and relapse (8, 9). However, studies that 
employed diffusion tensor imaging (DTI) to explore the effect of 
nicotine on the brain microstructure have yielded inconsistent findings. 
For instance, chronic nicotine consumption has been linked to both 
decreased fractional anisotropy (FA) (10, 11) and increased FA (12), 
along with decreased radial diffusivity (RD) (12) and increased RD (13) 
levels. In addition, a study on nicotine addiction indicated that smokers 
have decreased FA values in the left anterior and posterior insula 
cortex-NAc fiber tracts, and higher FA, and lower axial diffusivity (AD), 
RD, and mean diffusivity (MD) values in the right posterior insula 
cortex-NAc fiber tracts, when compared to non-smokers (14). Despite 
these advancements, studies that used neuroimaging for nicotine 
addiction diagnosis, prognosis and treatment remain scarce. This 
challenge may be  partially attributed to the limited investigations 
conducted on brain white matter (WM), which constitutes >50% of the 
total mass of the human brain, and is essential for facilitating 
connections among various cortical regions (9).

Diffusion magnetic resonance imaging (dMRI) is the unique 
non-intrusive approach available for evaluating the structural integrity 
of WM (15). The predominant dMRI technique utilized for studying 
WM connectivity, and its associations with substance abuse and 
addictive behaviors is DTI, based on the Gaussian model (12, 16). 
However, fiber tracking based on DTI has limitations in revealing the 
crossing or branching fibers in a voxel (17, 18). Diffusion spectrum 
imaging (DSI) can reliably track the fibers along different directions 
within a voxel, thereby improving fiber reconstruction, and providing 
a more accurate reflection of the brain’s complex structures (19). For 
instance, a study revealed that DSI tractography displayed the lower 
maturity in the cingulum bundle when myelination was incomplete, 
while DTI tractography tended to terminate in such regions, possibly 
due to the presence of crossing fibers (20). Furthermore, DSI provides 
high-quality fiber tractography, reduces partial volume effects and 
false continuation artifacts, and has been utilized to reveal more 
comprehensive connectivity patterns and detailed anatomical 
structures (21–23). In addition, DSI imaging data can be employed to 
analyze elementary DTI indicators (24). Therefore, DSI demonstrates 
a powerful potential for enhancing the tractography of complex WM 
fibers, and has been increasingly utilized in studying a range of clinical 
conditions, including psychosis, stroke and epilepsy, among others 
(25–27). However, reports on the application of DSI in adult nicotine 
addiction remain rare.

In clinical practice, varenicline, bupropion and nicotine withdrawal 
management therapy are commonly prescribed for smoking cessation. 
Although these treatments are effective for a number of smokers, a 
substantial number of individuals do not respond to these treatments, 
presenting persistent challenges in addressing relapse (28). To date, 
alternative treatments with greater efficacy, such as neurostimulation 
techniques, including transcranial magnetic stimulation (TMS), have 
been developed for smoking discontinuation (29). Repetitive 
transcranial magnetic stimulation (rTMS) has been described as a 
non-invasive, medication-free therapeutic approach rooted in neural 
circuit modulation (30–32). Although TMS can only stimulate the 
cortical surface beneath the device’s magnetic coil (33), empirical 
evidence suggests that TMS can additionally influence the activity in the 
“downstream” brain regions (34). Furthermore, a recent study that 
combined functional magnetic resonance imaging (fMRI) and rTMS 
suggested that the dorsomedial PFC-extended AMY/basal forebrain 
circuit may be associated to nicotine addiction in schizophrenia and 
non-schizophrenia individuals (35). Other studies have also suggested 
the potential effect of rTMS on smoke cessation (36–38). However, the 
mechanism of rTMS in the treatment of smokers without psychosis has 
not been well-investigated.

Thus, DSI tractography was utilized to investigate the WM 
microstructure changes in the mesolimbic dopamine pathway-related 
regions (VTA, NAc, STN, AMY, PFC and HIP) in smokers who 
received rTMS treatment. Furthermore, it was hypothesized that 
rTMS can be beneficial for behavioral improvement, and modulate the 
WM microstructure in mesolimbic dopamine pathway-related 
regions. Moreover, a correlation may exist between changes in nicotine 
addiction behavior and alterations in WM microstructure.

2 Methods

2.1 Participants

Fifty-three smokers were engaged via online postings and referrals 
through verbal communication. Initial screening was conducted through 
a brief telephone interview, followed by a detailed interview, according 
to the criteria for inclusion and exclusion (Table 1), and 20 smokers were 
excluded. Participants who met the inclusion criteria underwent further 
face-to-face screening, and five smokers failed to attend the psychiatric 
screening or the initial phase of the actual treatment. Finally, 18 
participants finished all the assigned tasks and 10 rTMS treatments. The 
flowchart for participant recruitment and treatment is presented in 
Figure 1. The present study was approved by the Institutional Review 
Board of Zhejiang Hospital (2019 Pro-examination-34K No. -X2). All 
participants provided a signed consent form.

2.2 Assessment of cigarette consumption, 
nicotine dependence, and craving levels

Daily cigarette consumption was self-reported by the participants, 
and nicotine dependence was assessed using the Fagerström Test for 
Nicotine Dependence (FTND) (39) and smoking severity index (SI) 
(40). Symptoms related to nicotine withdrawal were evaluated using 
the Minnesota Nicotine Withdrawal Scale (MNWS) formulated in 
1986 (41). Cravings were assessed using the short version of the 
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Tobacco Craving Questionnaire (sTCQ) (42) and a subjective visual 
analogue scale (VAS) (43, 44). The FTND, SI, MNWS and sTCQ were 
measured twice: at baseline before rTMS (S1) and after the 10th rTMS 
session (S2). VAS was assessed before and after each rTMS session 
through the responses of the participants to the following question: 
“How much do you want to smoke right now?”

2.3 The rTMS procedure

The rTMS treatment was conducted according to prior studies 
(31, 45) by targeting the left dorsolateral prefrontal cortex (DLPFC) 
using a YRD CCY-II TMS (Yiruide, China) stimulator equipped with 
an O-coil design. The resting motor threshold (RMT) was established 
through motor strip activation, followed by the analysis of the 
resultant motor-evoked potential recorded from the right abductor 
pollicis brevis (APB). The stimulation site was identified using a TMS 

head cap. The stimulation lasted for 800 s, and delivered 1,800 pulses 
that comprised 36 trains of 50 pulses at 10 Hz, with an inter-train 
interval of 20 s, through an intensity set at 100% of the RMT. Each 
participant received 10 treatments over 2 weeks.

2.4 Imaging acquisition and processing

The magnetic resonance imaging (MRI) scan was conducted using a 
3 T MRI scanner (Magnetom Skyra, Siemens, Germany) equipped with 
a 32-channel head coil. During the MRI, the participants were instructed 
to remain motionless, close their eyes, and avoid focusing on any specific 
thought. Motion artifacts were minimized by placing a foam pad between 
the head and coil. Three-dimensional (3D) T1-weighted images were 
acquired using the following settings: 176 sagittal slices, gap = 0 mm, field 
of view (FOV) = 256 × 256 mm, repetition time (TR) = 1,900 ms, echo 
time (TE) = 2.50 ms, inversion time (TI) = 900 ms, flip angle = 30°, and 
voxel size = 1.00 × 1.00 × 1.00 mm3. DSI scans were acquired using the 
following parameters: slice number = 60, TR = 8,700 ms, TE = 110.00 ms, 
FOV = 240 × 240 mm, voxel size = 1.10 × 1.10 × 2.50 mm3, phase 
encoding direction of anterior-to-posterior (A to P), maximum 
b-value = 3,000 s/mm2, q-space diffusion mode, q-space weightings = 3, 
and half q-space coverage.

The dMRI data was preprocessed by eddy current and motion 
correction using DSI Studio.1 Then, the diffusion data underwent 
reconstruction, utilizing the generalized q-sampling imaging (46), 
according to a previous study (12). The quantitative anisotropy (QA), 
FA, MD, AD, and RD values of each participant were computed using 
DSI Studio.

2.5 Regions of interest-based fiber tracking

The fiber clusters of six regions of interest (ROIs) related to 
nicotine addiction circuits (VTA, NAc, STN, AMY, PFC and HIP) 
were chosen from the Anatomical Automatic Labeling (AAL) 
template. Linear and non-linear transformations were applied to map 
the QA, FA, MD, AD and RD image coordinates of each participant’s 
brain onto the Montreal Neurological Institute’s (MNI) space. The 
working flowchart is presented in Figures 2A,B.

2.6 Statistical analysis

The data was expressed in mean ± standard error of the mean 
(SEM), and analyzed using the Statistical Package for the Social 
Sciences (SPSS, version 31; IBM, Armonk, NY, United States). Paired 
t-test was conducted to assess continuous variables (outcomes), which 
included the FTND, SI, MNWS, sTCQ and VAS scores, and the 
diffusion metrics along the fiber tracts of ROIs between S1 and S2. 
Network-based statistics (NBS) (47) correction was adopted for the 
ROIs, according to the following steps: forming a set of supra-
threshold edges using an initial threshold (p < 0.001) in the paired 
t-test matrix, and determining the statistical significance of each 

1  http://dsi-studio.labsolver.org

TABLE 1  Inclusion and exclusion criteria for the study.

Inclusion criteria Exclusion criteria

Between the age of 18 

and 60 years old

Current substance use of any psychoactive substances 

other than nicotine

Smoking ≥5 cigarettes 

per day

Contraindications to MRI and TMS

Smoking for >5 years Used other forms of nicotine delivery, such as 

nicotine patches and electronic cigarettes

Motivated to quit 

smoking

Currently taking drugs or smoking cessation 

medications, including varenicline and bupropion

History of epilepsy, psychiatric disorders, heart 

disease, or relevant medical history of other 

cerebrovascular disorders

MRI, magnetic resonance imaging; TMS, transcranial magnetic stimulation.

FIGURE 1

Flowchart for the recruitment of participants.
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component’s size using non-parametric permutation testing (1,000 
permutations), which provides strong control over the family-wise 
error rate (FWER). ROIs that exhibited significant changes in the 
diffusion metrics (QA, FA, MD, AD and RD) following the rTMS 
treatment were further analyzed for Pearson correlation with various 
tobacco addiction behavioral scales. Then, a multiple linear regression 
model was used to assess the association between the changes in these 
diffusion metrics and changes in tobacco addiction behavioral scales, 
controlling for the potential confounding effects of age. A p-value of 
<0.05 was set as the level of significance.

3 Results

3.1 Demographic characteristics

The present study included a total of 18 male smokers with an age of 
39.56 ± 2.71 years old, education duration of 11.83 ± 0.85 years, and 
smoking age of 19.17 ± 2.28 years old. The ethnic groups of the 
participants included the Han population (n = 17) and other populations 
(n = 1).

3.2 Treatment effects of rTMS on nicotine 
dependence and craving

As shown in Table 2, the rTMS (S2) significantly decreased 
nicotine dependence at S2, as demonstrated by the significant 

decrease in FTND (p < 0.0001) and SI (p < 0.0001), when 
compared to that at S1. The MNWS scores indicated that the 
syndrome related to nicotine withdrawal significantly decreased 
between S1 and S2 (p = 0.024). In addition, the sTCQ (p < 0.0001) 
and VAS (p < 0.0001) scores indicated that the nicotine cravings 
significantly decreased after rTMS, when compared to S1. These 
results suggest that rTMS was potentially effective in smoking 
cessation, as supported by the self-reported cigarette consumption 
(Figure 3). Figure 3A shows that there was a decreasing trend of 
daily cigarette consumption following rTMS treatments, when 
compared to baseline (S1), and this trend reached a significantly 
different level after session 5. Figure 3B shows that there was a 
significant difference in cigarette consumption between S1 and S2. 
Among the 18 participants, four participants completely stopped 
smoking after 2 or 3 days during the study period, and all other 
participants presented with gradually decreased 
cigarette consumption.

3.3 Effects of rTMS on the dMRI metrics of 
smokers

The analysis of the image metrics of MRI of smokers before and 
after rTMS treatment revealed a significant decrease in AD values 
in the right NAc fiber tracts after rTMS treatment (p = 0.03, 
Hedges’g = 0.55, Table  3). However, the other image metrics, 
including QA, FA, MD and RD, did not significantly change after 
rTMS in the right NAc fiber tracts. In addition, the other nicotine 

FIGURE 2

Working flowchart for image processing. (A) Preprocessing and reconstruction. (B) Definition of ROIs and tracking fibers using the DSI studio software. 
The above processes were prepared for collecting the diffusion measures for statistical analysis. ROI, region of interest; GQI, generalized q-sampling 
imaging; PFC, prefrontal cortex (yellow); HIP, hippocampus (purple); NAc, nucleus accumbens (red); AMY, amygdala (blue); STN, subthalamic nucleus 
(green); VTA, ventral tegmental area (pink).
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addiction-related ROIs, including VTA, STN, AMY, PFC and HIP, 
were not significantly affected by the rTMS treatment, when 
compared to those between S1 and S2 (all p > 0.05, Hedges’g < 0.5, 
Table 3).

3.4 Correlation and regression analysis of 
treatment outcomes

There was no significant correlation between AD values in the 
right NAc fibers and various tobacco addiction behavioral scales, 
either at pre- or post-treatment (all p > 0.05). However, a strong 
positive correlation (r = 0.621, p = 0.006) was observed between the 
change in cigarette consumption and change in AD values in the right 
NAc fibers before and after rTMS treatment (Figure 4). Furthermore, 
the multiple linear regression yielded a standardized model, in which 
the change in AD values of the right NAc fibers was primarily 
predicted by the change in cigarette consumption (β = 0.608, 
p = 0.009), with age making a minimal contribution (β = −0.089, 
p = 0.666): Z_ΔAD = (0.608 × Z_Δcigarette) + (−0.089 × Z_age).

3.5 Power analysis

A post-hoc power analysis using the AD values of the right NAc 
fibers before and after TMS treatment in smokers was conducted, with 
the α error probability set at 0.05. The achieved statistical power 
(1 − β) was calculated via the G*Power software, and the result was 
0.6. This result indicates that the statistical power of the present study 
only reached a moderate level. Subsequently, a priori power analysis 
was performed using the same effect size (d = 0.554, derived from the 
pre- and post-treatment AD values of the right NAc fibers), with the 
α error probability set to 0.05, and the desired power (1 − β) set to 0.8. 
The analysis indicated that a minimum sample size of 28 participants 
would be required to achieve adequate power in future studies.

4 Discussion

Smoking and nicotine addiction are worldwide problems (1–3). 
Recent studies have indicated that nicotine addiction can lead to 
abnormalities in the brain, including its structures and functions (9, 
48), as detected by advanced imaging techniques, such as fMRI, DTI 
and DSI (11, 12, 24, 35). However, there is no satisfactory strategy for 
smoking cessation. rTMS is a novel non-invasive technique, which has 
been used in multiple diseases (24–26). The present study delved in 
determining whether rTMS can influence the WM microstructure in 
mesolimbic dopamine pathway-related regions in individuals with 
nicotine dependence. The findings revealed that cigarette consumption 
and the questionnaire scores decreased after rTMS treatment, 
suggesting that rTMS treatment is a potential effective intervention 
for reducing nicotine dependence and craving in smokers, and can 
partially alleviate the anxiety and depression induced by nicotine 
withdrawal. Furthermore, the present study revealed that AD 
decreased in the right NAc fiber tracts after short-term rTMS 
treatment, suggesting that rTMS may have the potential to change the 
WM microstructure, and thereby decrease nicotine addiction, 
although there were no significant changes in QA, FA, MD and RD in 
NAc and other dopamine pathway related regions.

TABLE 2  Effects of rTMS in smokers.

Clinical 
scales

S1 
(n = 18)

S2 
(n = 18)

p-value Hedges’g 95% 
CI LL 95% CI UL

FTND 3.67 ± 0.49 1.67 ± 0.34 <0.0001 1.14 0.55 1.71

SI 2.67 ± 0.39 1.11 ± 0.27 <0.0001 1.11 0.53 1.68

MNWS 9.28 ± 1.66 5.72 ± 1.17 0.0240 0.56 0.07 1.03

sTCQ 51.33 ± 3.50 33.00 ± 3.48 <0.0001 1.24 0.63 1.84

VAS 48.06 ± 5.67 12.67 ± 3.32 <0.0001 1.40 0.70 1.96

The data are presented in mean ± standard error of the mean (SEM). CI, confidence interval; 
LL, lower limit; UL, upper limit; rTMS, repetitive transcranial magnetic stimulation; S1, 
stage before rTMS treatment; S2, stage after the 10th rTMS treatment; FTND, the Fagerström 
Test for Nicotine Dependence; SI, smoking severity index (SI); MNWS, the Minnesota 
Nicotine Withdrawal Scale; sTCQ, the short version of the Tobacco Craving Questionnaire; 
VAS, visual analogue scale.

FIGURE 3

Effects of rTMS on cigarette consumption. (A) Daily change (% of baseline) in the number of cigarettes smoked for each treatment session. (B) The 
number of cigarettes smoked per day significantly decreased after the last treatment session (S2), when compared to before the first treatment session 
(S1) (*p < 0.05 and ****p < 0.0001).
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TABLE 3  Paired t-test results of dMRI metrics in smokers before and after rTMS (after correction).

ROI QA FA MD AD RD

L-VTA

p 0.82 0.94 0.79 0.82 0.77

Hedges’g 0.06 0.02 0.07 0.05 0.07

95% CI (LL, UL) −0.39, 0.49 −0.46, 0.42 −0.50, 0.38 −0.49, 0.39 −0.51, 0.38

R-VTA

p 0.88 0.97 0.15 0.09 0.21

Hedges’g 0.04 0.01 0.36 0.42 0.31

95% CI (LL, UL) −0.41, 0.48 −0.45, 0.43 −0.80, 0.12 −0.86, 0.06 −0.75, 0.16

L-STN

p 0.64 0.94 0.89 0.79 0.95

Hedges’g 0.11 0.02 0.03 0.07 0.01

95% CI (LL, UL) −0.34, 0.55 −0.46, 0.42 −0.41, 0.47 −0.38, 0.50 −0.43, 0.45

R-STN

p 0.80 0.17 0.85 0.47 0.93

Hedges’g 0.06 0.33 0.04 0.17 0.02

95% CI (LL, UL) −0.38, 0.50 −0.77, 0.14 −0.48, 0.40 −0.61, 0.28 −0.42, 0.46

L-NAc

p 0.46 0.33 0.70 0.80 0.64

Hedges’g 0.18 0.24 0.09 0.06 0.11

95% CI (LL, UL) −0.61, 0.28 −0.67, 0.22 −0.35, 0.53 −0.39, 0.50 −0.34, 0.55

R-NAc

p 0.53 0.38 0.09 0.03* 0.16

Hedges’g 0.15 0.21 0.43 0.55 0.35

95% CI (LL, UL) −0.30, 0.59 −0.25, 0.65 −0.06, 0.87 0.05, 1.00 −0.13, 0.78

L-AMY

p 0.75 0.85 0.35 0.22 0.44

Hedges’g 0.08 0.04 0.23 0.30 0.19

95% CI (LL, UL) −0.51, 0.37 −0.48, 0.40 −0.66, 0.23 −0.73, 0.17 −0.62, 0.27

R-AMY

p 0.73 0.46 0.53 0.71 0.45

Hedges’g 0.08 0.18 0.15 0.09 0.18

95% CI (LL, UL) −0.37, 0.52 −0.28, 0.61 −0.59, 0.30 −0.53, 0.36 −0.62, 0.27

L-HIP

p 0.97 0.30 0.88 0.96 0.79

Hedges’g 0.05 0.24 0.11 0.07 0.13

95% CI (LL, UL) −0.49, 0.40 −0.67, 0.23 −0.34, 0.55 −0.37, 0.51 −0.32, 0.57

R-HIP

p 0.94 0.27 0.31 0.40 0.28

Hedges’g 0.06 0.15 0.30 0.28 0.30

95% CI (LL, UL) −0.49, 0.39 −0.59, 0.30 −0.17, 0.73 −0.19, 0.71 −0.17, 0.73

L-PFC

p 0.96 0.47 0.58 0.23 0.91

Hedges’g 0.01 0.17 0.13 0.29 0.03

95% CI (LL, UL) −0.43, 0.45 −0.28, 0.61 −0.32, 0.57 −0.18, 0.73 −0.42, 0.47

R-PFC

p 0.75 0.23 0.78 0.40 0.54

Hedges’g 0.08 0.29 0.07 0.20 0.15

95% CI (LL, UL) −0.37, 0.51 −0.18, 0.73 −0.51, 0.38 −0.25, 0.64 −0.58, 0.30

*p < 0.05; L, left; R, right; CI, confidence interval; LL, lower limit; UL, upper limit; ROI, region of interest; QA, quantitative anisotropy; FA, fractional anisotropy; MD, mean diffusivity; AD, 
axial diffusivity; RD, radial diffusivity; VTA, ventral tegmental area; STN, subthalamic nucleus; NAc, nucleus accumbens; AMY, amygdala; HIP, hippocampus; PFC, prefrontal cortex.

Previous studies have indicated that chronic nicotine exposure 
diminishes communication throughout the brain, and increases local 
connectivity between specific network nodes (49). The NAc receives 
direct glutamatergic projections from the AMY, HIP, thalamus and 
PFC, and indirect mesolimbic dopaminergic projections from the 
VTA and substantia nigra (50). Furthermore, the NAc plays a critical 
role in neural mechanisms of addiction, primarily due to dopamine 
release, and the activation of multiple receptors within the NAc (50). 

Emerging evidence suggests that structural and functional changes 
can occur in the NAc of subjects with substance use disorders. For 
example, previous studies have reported the decrease in structural 
volume of the left NAc (51–53), and the increase in thickness of the 
right VTA-NAc (53) in subjects with heroin addiction. Similarly, the 
present study indicated that rTMS significantly decreased AD in the 
right NAc fiber tracts in smokers with lower cigarette consumption, 
suggesting that the right NAc is involved in nicotine addiction.
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It has generally been considered that AD primarily reflects 
axonal integrity, with decreased AD indicating a reduction in axonal 
volume, and the beginning stages of axonal damage (54, 55). 
However, the increase in volume of glial cells may also be correlated 
to lower AD (56), and nicotine exposure may increase the number 
and density of glial cells (57). In addition, a decrease in AD may 
indicate early neural immune activation or the initial phases of 
intracellular inflammation and edema (55). Therefore, this 
phenomenon was attributed to the fact that the majority of 
participants (14 of 18 participants) continued smoking throughout 
the treatment period, despite the reduction in the number of 
cigarettes smoked, and merely four participants ceased smoking 
completely in the last 2 or 3 days of the study period. A previous 
study suggested that long-term smoking can compromise the 
integrity of WM in the brain (58). However, there is no definitive 
consensus on the exact duration or number of days required for this 
effect to manifest (49, 59). The present study indirectly demonstrated 
that nicotine intake over a period of approximately 2 weeks may 
initially influence the WM microstructure of the right NAc fibers. 
However, several studies have reported that the WM of the left 
hemisphere may be more vulnerable to the neurotoxic effects of 
nicotine, when compared to that of the right hemisphere (14, 58). 
These results were inconsistent with the present results, in which the 
right NAc fibers may be more vulnerable to nicotine. In addition, 
the Pearson correlation analysis indicated that the greater the 
reduction in cigarette consumption, the greater the decrease in AD 
values in the right NAc fibers after rTMS treatment. Nonetheless, 
the results may not be fully aligned with the previous explanation 
of the investigators. If the reduction in AD values was attributed 
entirely to the fact that most subjects continued to smoke during the 
treatment period, the more the cigarette consumption decreased, 
the less the AD values should have decreased. Therefore, the 
investigators proposed a hypothesis that rTMS may alter the 
microstructure of the right NAc fibers and modulate dopamine 
release within the NAc, thereby reducing nicotine dependence and 
craving in smokers. A study reported that the reduction in 
dopamine release in the NAc decreased the nicotine-taking behavior 
(60). In contrast, a decrease in AD does not necessarily indicate the 
presence of axonal injury, and reductions in AD have been observed 
in healthy brain maturation (9). Meanwhile, the age-related 
reduction of AD in a number of brain regions have been reported, 
which may be  correlated to the growth of neurofibrils, such as 

microtubules and neurofilaments (61, 62). However, the results of 
the multiple linear regression analysis indicated that age had a 
minimal contribution to the reduction of AD in the right NAc fibers 
in the present study. This aligns with the perspective that axon 
coherence, which is associated to AD, does not serve as a major 
contributing factor to the developmental changes observed in 
numerous studies (63). Hence, the significant reduction in AD 
values in the right NAc fiber tracts in smokers after rTMS treatment 
may indicate that rTMS may facilitate the growth of neurofibrils, 
and modulate the microstructure of the right NAc fiber tracts, 
excluding the influence of age. The previous study conducted by the 
investigators on functional MRI revealed that rTMS can increase the 
functional connectivity of the right NAc with several visual and 
sensory processing regions in smokers, and that the right NAc 
appeared to play a central role in the adaptive reorganization of 
brain networks during the cessation of smoking through rTMS 
treatment (64). Therefore, the changes in AD are likely to reflect the 
complex interactions among multiple biological factors that 
influence its progression in various directions (56). The present 
study may provide crucial new insights into the neural mechanisms 
of rTMS in treating smoking addiction. In future studies, the role of 
NAc WM laterality, particularly in its relation to smoking and 
rTMS, warrants further investigation.

For the right insula-NAc fiber, a study reported lower FA values 
in individuals with heroin addiction, when compared to healthy 
controls (65). Furthermore, DTI studies have revealed reduced FA in 
tracts projecting from the bilateral NAc to the frontal cortex in 
individuals with nicotine addiction, when compared to healthy 
controls (66, 67). Compared to non-smokers, smokers exhibit an 
increased integration coefficient between the frontoparietal network 
(FPN) and basal ganglia network (BGN), and a reduced integration 
coefficient between the medial frontal network (MFN) and 
FPN. Furthermore, the analysis of variance revealed that rTMS 
treatment can reduce the integration coefficient between the FPN and 
BGN, and improve the recruitment coefficient of the FPN (68). These 
studies indicate that nicotine addiction involves other brain regions. 
However, the present study did not detect significant changes in QA, 
FA, MD and RD in the right NAc, and all metrics in other brain 
regions, which was inconsistent with the expectations of the 
investigators. This discordance may have been primarily derived from 
the following reasons: (1) the different indicators exhibited varying 
sensitivities to different diseases (19); (2) there was a possibility that 
nicotine did not damage the relevant fibers; (3) the rTMS treatment 
required more repetitions to demonstrate its effect. These factors may 
also account for the mismatch between robust behavioral 
improvements and limited imaging changes. Furthermore, the placebo 
effect could have contributed to this phenomenon. Therefore, sham 
stimulation experiments should be conducted (31, 35).

5 Limitations

There were some limitations in the present study that require 
clarification. First, the sample size was small. Thus, a large sample 
study is required to validate the present findings. Second, there was no 
control group, such as sham treatment and non-smokers. Third, 
further research that involves female smokers is necessary to ensure 
the applicability of the present findings across genders, although it is 

FIGURE 4

More decrease in cigarettes consumption predicted more reduction 
in AD in the right NAc fibers after rTMS treatment.
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difficult to recruit female smokers in China. Fourth, the absence of 
objective biochemical validation limited the precision of the present 
experimental findings. Incorporating established biochemical markers 
in future studies, such as CO/cotinine (14, 35), would enhance the 
accuracy and reliability of the research outcomes. Fifth, the 
participants should be stratified by age, since a study reported that 
smokers are generally associated to lower FA in adults, and higher FA 
in young adults (≤30 years old) (69). Sixth, more repetitions of the 
rTMS treatment and follow-up may be helpful to verify the present 
results. Finally, other regions should be  carefully investigated for 
whole-brain tractography, since the NAc receives projections from the 
medial PFC, anterior insula, AMY and VTA, contributing to its 
intricate anatomical connections within addiction circuits (50).

6 Conclusion

The present study was the first attempt to determine how rTMS 
affects the brain microstructure in individuals with nicotine 
dependence using DSI. The results indicated that the decreased AD 
values within the right NAc fiber tracts could be  the “result” of 
nicotine addiction, or directly attributable to HF-rTMS. These results 
suggest that the right NAc emerged as a region of interest that warrants 
further investigation as a potential therapeutic target.
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