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Stroke-associated pneumonia (SAP) is a frequent complication of acute ischemic 
stroke (AIS) that contributes to poor clinical outcomes. The systemic immune-
inflammation index (SII), derived from neutrophil, lymphocyte, and platelet counts, 
may reflect post-stroke immune imbalance, but its role in predicting SAP remains 
unclear. In this retrospective study, we analyzed 1,767 AIS patients and evaluated 
the association between log₂-transformed SII and the occurrence of SAP using 
multivariable logistic regression, generalized additive models, and two-piecewise 
regression. SAP developed in 21.3% of patients during hospitalization. Higher SII 
levels were independently associated with increased SAP risk after adjustment for 
age, sex, vascular risk factors, comorbidities, baseline National Institutes of Health 
Stroke Scale (NIHSS) score, and dysphagia assessed by Kubota Water Drinking Test 
(KWDT). Patients in the highest SII quartile had a significantly greater likelihood of 
developing SAP compared to those in the lowest quartile (adjusted odds ratio = 2.03, 
95% confidence interval: 1.21–3.38, p = 0.0069). A non-linear, threshold-dependent 
relationship was identified, with SAP risk increasing substantially beyond log₂-
SII ≈ 8.5. Receiver operating characteristic (ROC) analysis demonstrated moderate 
predictive performance of SII for SAP (area under the curve (AUC) = 0.726), while 
C-reactive protein (CRP) showed superior discrimination (AUC = 0.826 p < 0.0001). 
Supplementary sensitivity analyses, including a fully adjusted model without NIHSS 
and KWDT and an alternative model replacing these with the A2DS2 score (Age, 
Atrial fibrillation, Dysphagia, Sex, Stroke Severity), showed consistent results, 
supporting the robustness of our findings. These findings suggest that SII may 
serve as a cost-effective and accessible biomarker to aid early identification of 
high-risk AIS patients.
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Introduction

Stroke remains one of the leading causes of mortality and long-
term disability worldwide, with acute ischemic stroke (AIS) 
accounting for approximately 80% of all cases (1). Despite advances in 
acute stroke management, complications during hospitalization, 
particularly stroke-associated pneumonia (SAP), continue to pose 
significant challenges (2). SAP occurs in 10 to 30% of AIS patients and 
is closely associated with prolonged hospital stays, increased 
healthcare costs, and worse functional outcomes, including higher 
mortality rates (3). Early identification of high-risk patients is essential 
to guide preventative interventions and improve prognosis (4).

Emerging evidence suggests that systemic inflammation plays a 
pivotal role in the development of SAP by disrupting immune 
homeostasis and enhancing susceptibility to pulmonary infections 
following AIS (5). Conventional inflammatory biomarkers such as CRP, 
white blood cell (WBC) count, and neutrophil-to-lymphocyte ratio 
(NLR) have been widely used to assess systemic inflammation; however, 
their predictive accuracy for SAP remains suboptimal (6). The systemic 
immune-inflammation index (SII) calculated from platelet count, 
neutrophil count, and lymphocyte count, is a novel composite marker 
that reflects the balance between pro-inflammatory and immune-
regulatory responses (7). Recent studies have demonstrated its 
prognostic value in various cardiovascular and oncologic conditions, 
but its predictive utility in SAP remains underexplored (8). In this study, 
we focused on SII as a comprehensive marker of immune-inflammatory 
balance, and compared it with CRP, a widely used reference biomarker 
in stroke research, to assess whether SII provides additional or 
complementary prognostic value beyond CRP. Moreover, existing 
studies evaluating inflammatory markers in SAP have primarily focused 
on linear relationships, potentially overlooking complex non-linear and 
threshold effects (9). For example, Kuang et  al. (10) examined the 
association between SII and SAP risk in a smaller, mixed cohort of acute 
stroke patients and reported a linear relationship, without investigating 
potential non-linear patterns or thresholds. Whether elevated SII levels 
exhibit a dose–response relationship or specific thresholds beyond 
which SAP risk dramatically increases has not been fully elucidated. 
Addressing these knowledge gaps is critical for refining clinical risk 
stratification and informing targeted preventative strategies (11).

We posited that early elevation of the SII, as a marker of post-
stroke immune disequilibrium, would identify AIS patients at 
independently higher risk of SAP, and that the exposure–response 
might be non-linear with a clinically relevant threshold. To test this 
hypothesis, we  investigated the association between SII and the 
development of SAP in patients with AIS by analyzing a large, 
retrospective cohort. Specifically, we examined the predictive value of 
log₂-transformed SII, explored potential non-linear and threshold 
effects through advanced modeling approaches, and compared the 
diagnostic performance of SII with established inflammatory 
biomarkers such as CRP.

Materials and methods

Study design and participants

This study utilized data from a previously established retrospective 
cohort investigating the prognosis of ischemic stroke. Patient data 

collected at The Quzhou Affiliated Hospital of Wenzhou Medical 
University (Quzhou People’s Hospital), Zhejiang, China, between 
September 2016 and September 2022 that met the inclusion criteria 
were included. All eligible patients were enrolled in a single-center 
retrospective cohort study and were subsequently classified into two 
groups based on the development of SAP during hospitalization: the 
SAP group and the non-SAP group. No case–control matching was 
performed, and group differences were addressed using multivariable 
models. This study was approved by the Ethics Committee of Quzhou 
People’s Hospital (Approval Number: 2023-151), which granted a 
waiver of informed consent due to the retrospective nature of the 
study and the use of de-identified data. The data were accessed for 
analysis on April 26, 2025. Prior to analysis, all data were anonymized, 
and researchers did not have access to any personally 
identifiable information.

Inclusion criteria were as follows: Patients were included if they 
met all of the following criteria: (1) Confirmed diagnosis of AIS within 
24 h of symptom onset, with admission during the same time window; 
(2) Brain magnetic resonance imaging (MRI) performed within 48 h 
of symptom onset using standard sequences (including diffusion-
weighted imaging, fluid-attenuated inversion recovery, susceptibility-
weighted imaging, T1-weighted, T2-weighted, and magnetic 
resonance angiography), with radiological confirmation of acute 
infarction; (3) Blood samples for neutrophil-to-lymphocyte ratio 
(NLR) and platelet count were obtained within 48 h of symptom onset 
to assess the acute immune-inflammatory status; (4) Complete clinical 
and laboratory data available for calculation of the SII.

Exclusion criteria included: (1) Severe systemic comorbidities, 
including hepatic dysfunction (alanine aminotransferase >10 × or 
aspartate aminotransferase >3 × the upper limit of normal), renal 
impairment (serum creatinine >443 μmol/L), active malignancies, or 
hematologic disorders; (2) Cardiopulmonary insufficiency, including 
New York Heart Association class III–IV heart failure, left ventricular 
ejection fraction <40%, chronic obstructive pulmonary disease, or 
respiratory tract infection at admission; (3) Active infections at 
admission, including respiratory (e.g., community-acquired 
pneumonia [CAP]), urinary, or systemic infections; (4) Pregnancy or 
lactation; (5) Inability to reliably assess stroke severity due to coma, 
severe aphasia, or other neurologic deficits precluding use of the 
National Institutes of Health Stroke Scale (NIHSS); (6) Multiple AIS 
hospitalizations during the study period (only the first admission was 
included); (7) Missing laboratory data required for calculation of SII 
(i.e., Platelet count, Neutrophil count or Lymphocyte count); (8) 
Patients diagnosed with autoimmune diseases.

The detailed patient selection process is illustrated in Figure 1.

Baseline data collection

Baseline data were retrieved from medical records and included 
demographic and clinical characteristics at admission, such as age, sex, 
smoking status, hypertension, type 2 diabetes, AF and chronic 
obstructive pulmonary disease (COPD). Stroke severity was assessed 
using the NIHSS, swallowing difficulty was evaluated using the 
Kubota Water Drinking Test (KWDT), and consciousness 
disturbances were assessed using the Glasgow Coma Scale (GCS).

Blood samples were collected by trained nurses on the second 
morning after admission (6:00 AM) using vacuum tubes, stored at 4 °C, 
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and processed within 2 h by certified laboratory technicians. Laboratory 
tests included: White blood cell count (WBC), Neutrophil-to-lymphocyte 
ratio (NLR), Platelet count, Aspartate transaminase (AST), Alanine 
transaminase (ALT), Glycated hemoglobin (HbA1c), Homocysteine 
(HCY), Serum creatinine (Scr), Albumin (ALB), Triglycerides (TG), Total 
cholesterol (TC), High-density lipoprotein (HDL-c), Low-density 
lipoprotein (LDL-c), The neutrophil-to-lymphocyte ratio (NLR) was 
calculated as neutrophil count divided by lymphocyte count. All 
laboratory results were reported using standard international units: WBC 
and PLT in ×109/L, CRP in mg/L, and NLR as a ratio. Reference ranges 
(e.g., WBC: 4.0–10.0 × 109/L, PLT: 150–400 × 109/L, CRP: <5 mg/L) were 
provided for clinical interpretation.

To ensure consistency in exposure measurement, only patients who 
underwent blood testing within 48 h of symptom onset were included. All 
NIHSS evaluations were performed by neurologists trained in 
standardized stroke assessment and blinded to laboratory data. Inter-rater 
reliability was maintained by duplicate scoring in a subset of cases.

Definitions

The diagnosis of SAP was determined independently by two 
attending neurologists following the Pneumonia in Stroke Consensus 

Group recommendations (12). If necessary, an attending respiratory 
physician was consulted for confirmation. To ensure incident SAP, 
patients with pneumonia present at admission (i.e., community-
acquired pneumonia, CAP) were excluded, and only pneumonia 
developing after admission within the acute phase following stroke 
was classified as SAP.

The diagnostic criteria required at least one of the following:

Fever (>38 °C) without an alternative cause;
Abnormal WBC count (leukopenia <4 × 109/L or leukocytosis 

>12 × 109/L);
Altered mental status in patients ≥70 years without other causes.

Plus at least two of:

Purulent sputum or a change in sputum character;
Increased respiratory secretions or suction needs;
New or worsening cough, dyspnea, or tachypnea (>25 

breaths/min);
Auscultatory findings of rales, crackles, or bronchial 

breath sounds;
Oxygen desaturation (PaO₂/FiO₂ ≤ 240) or increased 

oxygen requirement;

FIGURE 1

Patient selection flowchart for the study of the systemic immune-inflammation index (SII) and stroke-associated pneumonia (SAP). A total of 2,954 
ischemic stroke patients were screened at the Quzhou Affiliated Hospital of Wenzhou Medical University. Patients were excluded if they were in the 
non-acute or recovery phase of stroke (n = 225), had autoimmune diseases (n = 41), had infectious diseases within 2 weeks prior to admission 
(n = 284), had received antibiotics within 1 week before hospitalization (n = 257), or had missing laboratory data required for SII calculation (n = 380). 
Ultimately, 1,767 eligible patients were included and stratified into the SAP group (n = 376) and the non-SAP group (n = 1,391). SII, systemic immune-
inflammation index; SAP, stroke-associated pneumonia.
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Radiologic confirmation was required with two consecutive chest 
X-rays showing new or progressive infiltrates, consolidation, or 
cavitation. In patients without prior pulmonary or cardiac disease, a 
single conclusive chest radiograph was deemed sufficient. Given the 
study’s focus on ischemic stroke-associated pneumonia, chest CT 
imaging was utilized instead of chest X-rays, providing superior 
diagnostic clarity. These criteria were selected for their relevance to 
the study population and their validated effectiveness in pneumonia 
diagnosis among stroke patients.

The SII was calculated as:

𝑆𝐼𝐼=Platelet count×Neutrophil count/Lymphocyte count.

The estimated glomerular filtration rate (eGFR) was calculated 
using the Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) formula to assess renal function.

Statistical analysis

All statistical analyses were performed using R Studio (version 
4.2.2; R Foundation for Statistical Computing, Vienna, Austria) and 
EmpowerStats (version 2.0; https://www.empowerstats.net). 
EmpowerStats served as a user-friendly interface that automatically 
generates and executes standard R code. To ensure reproducibility, 
key analyses were also re-run directly in R, and the results were 
identical. The normality of continuous variables was assessed using 
the Kolmogorov–Smirnov test. Normally distributed variables were 
expressed as mean ± standard deviation (SD) and compared with 
Student’s t-test, while non-normally distributed variables were 
presented as median (IQR) and compared using the Mann–Whitney 
U test. Categorical variables were analyzed using the Chi-square or 
Fisher’s exact test, as appropriate.

To examine the association between SII and SAP, SII values were 
log₂-transformed to reduce skewness and enhance interpretability. In 
addition to treating log₂-transformed SII as a continuous variable, 
we categorized it into quartiles based on its distribution to reduce the 
influence of extreme values, detect non-linear or threshold effects 
without prespecifying a cut-off, and facilitate risk comparison between 
groups in line with prior literature. We analyzed log₂-SII both as a 
continuous variable and under non-linear frameworks: the continuous 
approach enabled comparability with prior studies and provided an 
overall effect estimate, whereas non-linear analyses (GAM and 
two-piecewise logistic regression) were used to identify and 
characterize potential threshold-dependent relationships.

Multicollinearity among covariates was assessed using variance 
inflation factors (VIF). Logistic regression models were used to 
calculate odds ratios (ORs) and 95% confidence intervals (CIs). Three 
models were constructed:

Model 1: Unadjusted;
Model 2: Adjusted for age and sex;
Model 3: Further adjusted for smoking status, hypertension, 

diabetes mellitus, atrial fibrillation (AF), chronic obstructive 
pulmonary disease (COPD), systolic and diastolic blood pressure 
(SBP, DBP), uric acid (UA), white blood cell count (WBC), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), glycated 

hemoglobin (HbA1c), estimated glomerular filtration rate (eGFR), 
baseline NIHSS score (continuous), and KWDT results.

In supplementary sensitivity analyses, we  examined two 
alternative adjustment strategies: (1) a fully adjusted model excluding 
NIHSS and KWDT; and (2) a model in which age, sex, AF, NIHSS, 
and KWDT were replaced by the A2DS2 score, to assess the robustness 
of the results.

Generalized additive models (GAMs) with penalized splines 
were used to model the relationship between log₂-SII and SAP, 
allowing for flexible assessment of potential non-linear effects. To 
identify a threshold, we  fitted two-segment logistic regression 
models across all possible cut points within the observed log₂-SII 
range. The cut point with the highest log-likelihood was selected as 
the threshold, and its 95% confidence interval was estimated using 
1,000 bootstrap resamples. The predictive performance of SII alone 
and CRP alone was evaluated using univariate ROC curve analysis, 
with comparisons of area under the curve (AUC) performed via the 
DeLong test. To assess the incremental value of SII beyond 
established predictors, we  constructed multivariable logistic 
regression models including both SII and CRP, and both SII and the 
A2DS2 score (treated as a continuous variable), and compared their 
AUCs with those of CRP alone and the A2DS2 score alone, 
respectively, using the DeLong test. A two-sided p-value < 0.05 was 
considered statistically significant.

Results

Baseline characteristics by SAP status

Among the 1,767 AIS patients, 376 (21.3%) developed SAP 
(Table 1). Compared with the non-SAP group, SAP patients were 
older (74.49 ± 11.74 vs. 67.86 ± 12.27 years, p < 0.001), and more 
frequently had atrial fibrillation (35.11% vs. 11.50%) and COPD 
(15.69% vs. 4.03%). No significant differences were observed in sex 
distribution or smoking status.

Laboratory findings showed elevated inflammatory markers in the 
SAP group, including SII (624.92 [378.67–1065.05] vs. 352.41 
[242.93–506.37]), CRP, and WBC. Additionally, fasting glucose, BUN, 
AST, and homocysteine levels were higher, while triglycerides and 
eGFR were lower (all p < 0.05).

SAP patients exhibited more severe neurological impairment, 
as indicated by higher NIHSS and mRS scores and lower GCS scores 
(all p < 0.001). In addition, they also had higher A2DS2 scores, 
consistent with their increased risk of poststroke pneumonia (all 
p < 0.001).

Baseline characteristics by log₂-SII quartiles

Patient characteristics across log₂-SII quartiles are shown in 
Table 2. Age and diastolic blood pressure did not significantly differ 
among the groups. The incidence of SAP increased markedly across 
quartiles, from 11.1% in Q1–Q2 to 17.2% in Q3 and 45.7% in Q4 
(p < 0.001). Higher SII quartiles were associated with increasing 
systolic blood pressure (p = 0.002) and a higher proportion of female 
patients (p = 0.023).
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The prevalence of atrial fibrillation increased from 13.80% in Q1 
to 23.98% in Q4 (p < 0.001), and COPD was more frequent in higher 
quartiles (p = 0.013). Laboratory findings showed progressively higher 
fasting glucose, LDL, CRP, and WBC counts and lower triglycerides 
across quartiles (all p < 0.001).

Neurological scores, including NIHSS, A2DS2, and mRS, 
increased with higher SII quartiles, while GCS scores decreased (all 
p < 0.001). Dysphagia was more common in the higher quartiles 
(p < 0.001).

Association between log₂-SII and SAP

Multivariable logistic regression analysis results are shown in 
Table 3. Compared to Q1, the unadjusted odds ratios (ORs) for SAP 
were 1.67 (95% CI: 1.13–2.45, p = 0.0091) for Q3 and 6.75 (95% CI: 
4.75–9.59, p < 0.0001) for Q4. After adjustment for age and sex, the 
associations remained significant (Q3: OR = 1.74, 95% CI: 1.17–2.58, 
p = 0.0059; Q4: OR = 7.48, 95% CI: 5.20–10.75, p < 0.0001). In the 
fully adjusted model, only Q4 remained significantly associated with 
SAP (OR = 2.03, 95% CI: 1.21–3.38, p = 0.0069), while Q2 and Q3 
were not statistically significant (both p > 0.05).

When modeled as a continuous variable, log₂-SII was significantly 
associated with SAP across all models. The unadjusted OR was 2.39 
(95% CI: 2.09–2.73, p < 0.0001); adjusted ORs were 2.48 (95% CI: 
2.17–2.84, p < 0.0001) in Model 2 and 1.41 (95% CI: 1.17–1.69, 
p = 0.0002) in Model 3. All variance inflation factors (VIFs) were 
below 3, indicating no evidence of multicollinearity among the 
covariates (Supplementary Table 2).

In sensitivity analyses, the association between log₂-SII and SAP 
remained consistent when using a fully adjusted model without 
NIHSS and KWDT (Supplementary Table 1A) and when replacing 
age, sex, AF, NIHSS, and KWDT with the A2DS2 score 
(Supplementary Table 1B). The effect estimates were comparable to 
those observed in the main model, supporting the robustness of 
our findings.

Subgroup analyses

To assess the consistency of the association between elevated 
SII and SAP, subgroup analyses were conducted across key clinical 
variables (Figure 2). The association remained significant in both 
age groups (<70 years: OR = 2.26, 95% CI: 1.81–2.80; ≥70 years: 
OR = 2.50, 95% CI: 2.11–2.97) and in both sexes (female: 
OR = 2.24, 95% CI: 1.84–2.73; male: OR = 2.50, 95% CI: 2.09–
2.98). Similar results were observed in patients with and without 
smoking history, hypertension, diabetes, atrial fibrillation, and 
COPD. All p values for interaction were greater than 0.05, 
indicating that the effect of SII on SAP risk was consistent across 
clinical subgroups.

Predictive performance of SII and CRP for 
stroke-associated pneumonia

ROC curve analysis demonstrated that both log₂-transformed SII 
and CRP had predictive value for SAP in patients with acute ischemic 

stroke. As shown in Figure 3a, the area under the curve (AUC) was 
0.726 (95% CI: 0.694–0.758) for SII and 0.826 (95% CI: 0.800–0.851) 
for CRP, with a statistically significant difference between the two 
(p < 0.0001) indicating that CRP had a significantly greater 
discriminatory capacity. At the optimal cutoff point, SII had a 
sensitivity of 59.6% and a specificity of 79.3%. For CRP, the sensitivity 
was 66.8% and the specificity was 86.4%. The overall accuracy was 
75.1% for SII and 82.2% for CRP.

In an additional analysis, we constructed a multivariable model 
including both SII and CRP, which yielded an AUC of 0.842 (95% CI: 
0.817–0.866). This was not significantly different from that of CRP 
alone (AUC 0.826, 95% CI: 0.800–0.851, p = 0.152) (Figure  3b). 
Similarly, the AUC of the combined model was significantly higher 
than that of SII alone (p < 0.0001) (Figure 3c). Similarly, when A2DS2 
was analyzed as a continuous score, its AUC was 0.758 (95% CI: 
0.729–0.787), and adding SII increased the AUC to 0.817 (95% CI: 
0.790–0.843) (p < 0.0001) (Figure 3d).

Detailed diagnostic metrics for all models (AUC with 95% CI, 
sensitivity, specificity, and accuracy) are presented in Table 4.

Non-linear association and threshold 
effect of SII on SAP risk

When log₂-SII was treated as a continuous variable in the fully 
adjusted logistic regression model, a significant overall positive 
association with SAP was observed (OR = 1.98 per 1-unit increase, 
95% CI: 1.62–2.42, p < 0.001; Table 5), providing an overall effect 
estimate for comparability with prior studies.

A two-piecewise logistic regression model identified an inflection 
point at log₂-SII = 8.48. Below this threshold, SII was not significantly 
associated with SAP (OR = 0.80, 95% CI: 0.59–1.08, p = 0.1420), 
whereas above the threshold, a significant association was observed 
(OR = 2.20, 95% CI: 1.72–2.81, p < 0.0001). The difference in effect 
between segments was statistically significant (OR = 2.75, 95% CI: 
1.77–4.27, p < 0.0001), and the log-likelihood ratio test supported the 
superiority of the threshold model over the linear model (p < 0.001) 
(Table 5). The threshold was determined by the cut point with the 
highest log-likelihood (95% CI obtained via 1,000 bootstrap 
resamples; see Methods).

Generalized additive model (GAM) analysis further supported a 
non-linear association between log₂-SII and SAP risk, revealing a flat 
trend at lower SII levels and a sharp increase beyond log₂-SII ≈ 8.5, 
consistent with the identified inflection point (Figure 4).

Discussion

In this retrospective cohort of 1,767 patients with AIS, elevated SII 
levels were independently associated with an increased risk of 
SAP. Patients in the highest SII quartile had a significantly greater risk 
of SAP (adjusted OR = 2.31, 95% CI: 1.44–3.70; p = 0.0005) compared 
to those in the lowest quartile. Furthermore, GAM and two-piecewise 
logistic regression identified a non-linear, threshold-dependent 
relationship between log₂-SII and SAP risk, indicating that the 
association becomes more pronounced beyond a specific threshold. 
To facilitate comparability with prior studies, we also reported the 
effect estimate from a model treating log₂-SII as a continuous 
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TABLE 1  Baseline characteristics of the study population stratified by SAP and non-SAP groups.

Variables Overall Non-SAP SAP P-value

N 1767 1,391 376

Age (years) 69.27 ± 12.45 67.86 ± 12.27 74.49 ± 11.74 <0.001

SBP (mmHg) 152.26 ± 21.46 152.21 ± 21.59 152.46 ± 20.96 0.807

DBP (mmHg) 82.64 ± 12.94 82.88 ± 12.98 81.76 ± 12.78 0.239

Gender, n (%) 0.134

 � Female 716 (40.52%) 551 (39.61%) 165 (43.88%)

 � Male 1,051 (59.48%) 840 (60.39%) 211 (56.12%)

Current smoking, n (%) 0.990

 � No 1,118 (63.27%) 880 (63.26%) 238 (63.30%)

 � Yes 649 (36.73%) 511 (36.74%) 138 (36.70%)

Hypertension, n (%) 0.786

 � No 409 (23.15%) 320 (23.01%) 89 (23.67%)

 � Yes 1,358 (76.85%) 1,071 (76.99%) 287 (76.33%)

Diabetes, n (%) 0.749

 � No 1,139 (64.46%) 894 (64.27%) 245 (65.16%)

 � Yes 628 (35.54%) 497 (35.73%) 131 (34.84%)

Atrial fibrillation, n (%) <0.001

 � No 1,475 (83.47%) 1,231 (88.50%) 244 (64.89%)

 � Yes 292 (16.53%) 160 (11.50%) 132 (35.11%)

COPD, n (%) <0.001

 � No 1,652 (93.49%) 1,335 (95.97%) 317 (84.31%)

 � Yes 115 (6.51%) 56 (4.03%) 59 (15.69%)

Laboratory parameters

HDL (mmol/L) 1.17 ± 0.32 1.16 ± 0.30 1.20 ± 0.35 0.029

LDL (mmol/L) 2.85 ± 1.00 2.87 ± 0.99 2.80 ± 1.04 0.128

FPG (mg/dL) 101.70 (90.00–128.43) 99.90 (89.28–124.74) 108.90 (93.06–138.73) <0.001

HbA1C (%) 6.00 (5.50–7.20) 6.00 (5.50–7.20) 6.10 (5.60–7.30) 0.153

TG (mg/dL) 113.37 (80.16–155.00) 117.80 (84.14–163.85) 93.00 (69.08–127.76) <0.001

TC (mmol/L) 4.28 (3.66–5.01) 4.32 (3.69–5.03) 4.18 (3.57–4.92) 0.022

SII index 388.52 (255.09–601.37) 352.41 (242.93–506.37) 624.92 (378.67–1065.05) <0.001

CRP (mg/L) 2.82 (1.15–6.89) 2.00 (1.00–4.25) 13.62 (4.00–37.47) <0.001

AST (U/L) 19.00 (16.00–24.95) 19.00 (15.30–24.00) 21.00 (17.00–29.00) <0.001

ALT (U/L) 17.00 (12.00–25.00) 17.00 (12.00–25.00) 16.00 (12.00–25.00) 0.617

BUN (mmol/L) 5.20 (4.17–6.45) 5.10 (4.11–6.26) 5.70 (4.40–7.30) <0.001

UA (umol/L) 312.00 (251.00–380.00) 313.00 (257.40–382.05) 303.75 (235.45–369.80) 0.034

EGFR

(ml/min/1.73 m2)
99.31 (79.67–118.94) 100.69 (81.77–119.34) 93.86 (71.75–116.24) <0.001

HCY (umol/L) 14.92 (11.71–19.20) 14.60 (11.50–19.00) 16.30 (12.93–20.02) <0.001

WBC (*109/L) 6.97 (5.60–8.68) 6.60 (5.40–8.00) 9.24 (7.44–11.39) <0.001

Clinical characteristics

KWDT 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–4.00) <0.001

A2DS2 3.00 (2.00–4.00) 2.00 (2.00–4.00) 4.00 (3.00–7.00) <0.001

GCS 15.00 (14.00–15.00) 15.00 (15.00–15.00) 14.00 (12.00–15.00) <0.001

mRS 1.00 (0.00–2.00) 1.00 (0.00–2.00) 3.00 (1.00–5.00) <0.001
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predictor; this should be interpreted as an average effect across the 
exposure range, whereas the non-linear analyses (GAM and 
two-segment logistic regression) better characterize the threshold-
dependent pattern observed (Table 5 and Figure 4).

The association between elevated SII and SAP risk may reflect 
stroke-induced immune dysfunction (13). AIS activates 
neuroendocrine responses such as the hypothalamic–pituitary–
adrenal (HPA) axis and sympathetic nervous system, leading to 
increased levels of glucocorticoids and catecholamines (14, 15). These 
hormonal shifts promote lymphocyte apoptosis and suppression of 
adaptive immunity, characteristic of stroke-induced 
immunodepression syndrome (SIDS) (16, 17). By integrating 
neutrophil, platelet, and lymphocyte counts, SII captures this 
imbalance-reflecting both overactivation of innate immunity 
(neutrophilia and thrombocytosis) and suppression of adaptive 
responses (lymphopenia) (18–20).

Beyond stroke, SII has demonstrated prognostic relevance in 
various clinical conditions (21, 22). In cardiovascular disease, elevated 
SII levels have been independently associated with poor outcomes in 
coronary artery disease (23, 24), as well as with all-cause and 
cardiovascular mortality in large-scale cohorts (25–27). In oncology, 
SII has emerged as a reliable biomarker of systemic inflammation and 
prognosis across multiple malignancies, including hepatocellular, 
colorectal, and gynecologic cancers (22, 28–31). Furthermore, in 
sepsis, SII has shown predictive value for both disease severity and 
mortality, reinforcing its utility as a broad indicator of immune 
dysregulation (32, 33).

SII may also act as a surrogate marker for deeper 
immunopathological processes involved in the development of SAP 
(34, 35). Neutrophilia promotes the release of reactive oxygen species 
and proteases that damage the alveolar-capillary barrier (36, 37). 
Concurrent lymphopenia compromises adaptive immunity, while 
elevated platelet counts enhance inflammation through cytokine 
release (38, 39). This triad generates a pro-inflammatory yet 
immunosuppressed state, predisposing patients to pulmonary 
infections (40, 41).

Additional evidence from post-stroke immunology studies 
indicates that peripheral lymphocyte counts, particularly T cells, B 
cells, and NK cells, decline rapidly within hours to days after AIS onset 
due to apoptosis, redistribution to lymphoid organs, and functional 
exhaustion (42, 43). This lymphopenia, a hallmark of stroke-induced 
immunodepression syndrome (SIDS), compromises adaptive 
immunity and reduces pathogen clearance capacity (42, 44), thereby 
increasing susceptibility to infections such as SAP. In parallel, 
neutrophil and platelet activation further amplifies systemic 
inflammation and damages the alveolar-capillary barrier (45) (with 
NETs broadly detected in AIS thrombi (46)), creating a “double-hit” 

effect of immune suppression and inflammatory injury. These 
dynamic changes in immune cell populations directly influence SII 
values, as a rising SII often reflects both increased innate immune 
activation (neutrophilia, thrombocytosis) and marked adaptive 
immune suppression (lymphopenia) (42, 43), providing a plausible 
mechanistic link between elevated SII and heightened SAP risk in 
AIS patients.

Unlike CRP, SII reflects cellular immune dynamics by integrating 
neutrophils, platelets, and lymphocytes (47). This composite measure 
captures both innate activation and adaptive suppression (7). The 
threshold-dependent pattern observed in our study suggests that 
SAP risk rises notably only when this imbalance exceeds a critical 
level. CRP, as an acute-phase reactant produced by the liver in 
response to infection or tissue injury, often rises rapidly and directly 
with the onset of infection—this may explain its higher 
discriminatory performance for SAP in our cohort (e.g., Liu et al. 
found that CRP levels within 12 h of stroke onset were independently 
associated with poor outcomes) (48, 49). In contrast, SII reflects the 
underlying immune-inflammatory balance and may be  more 
informative for early risk stratification, before overt infection occurs. 
Although other inflammatory markers such as WBC and NLR have 
been studied—NLR may help identify high-risk SAP patients (50)—
these markers typically show modest and heterogeneous 
discrimination (6). Therefore, we prioritized SII as an integrative 
index and used CRP as a reference biomarker; WBC was adjusted for 
in models, and SII remained independently associated with SAP 
(Table 3; VIFs < 3).

Previous studies, such as Kuang et al. (10), have reported a linear 
association between SII and SAP risk in a mixed acute stroke 
population, but did not explore potential non-linear patterns or 
threshold effects and did not restrict the analysis to a well-defined 
cohort of AIS patients. By applying GAM and two-piecewise logistic 
regression, our study identified a distinct inflection point, revealing that 
the relationship between SII and SAP is not uniform across its range. 
Furthermore, our work extends prior findings by evaluating the added 
predictive value of SII beyond established clinical severity scores 
(NIHSS and A2DS2), thereby providing a more nuanced understanding 
of how immune imbalance contributes to SAP development and 
underscoring the value of advanced modeling in biomarker-based 
risk stratification.

These findings not only enhance our understanding of SII’s 
prognostic relevance but also support its potential integration into 
clinical risk models. Compared with biomarkers like CRP, SII is more 
accessible, cost-effective, and readily obtained from routine blood 
tests. Combining SII with validated scores such as A2DS2 could 
improve early SAP detection, particularly in resource-limited settings 
(51, 52). Future studies should explore dynamic SII monitoring and 

TABLE 1  (Continued)

Variables Overall Non-SAP SAP P-value

NHISS 3.00 (1.00–6.00) 2.00 (1.00–5.00) 5.00 (2.00–13.00) <0.001

Values are presented as mean ± SD, median (IQR), or n (%), as appropriate. p-values were calculated using t-test, Mann–Whitney U test, or chi-square test as applicable. p-values < 0.05 were 
considered statistically significant. Bold values indicate statistical significance (p < 0.05).
CRP, C-reactive protein; SII, systemic immunity-inflammation index; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, 
fasting plasma glucose; TG, triglycerides; HbA1C, glycated hemoglobin A1c; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; AST, 
aspartate aminotransferase; ALT, alanine aminotransferase; UA, uric acid; BUN, blood urea nitrogen; HCY, homocysteine; WBC, white blood cell count; EGFR, estimated glomerular filtration 
rate; GCS, Glasgow Coma Scale; KWDT, Kubota Water Drinking Test; A2DS2, Age, atrial fibrillation, dysphagia, stroke severity and sex; AF, atrial fibrillation; COPD, chronic obstructive 
pulmonary disease.
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TABLE 2  Baseline characteristics of patients stratified by quartiles of log2-transformed systemic immunity-inflammation index (SII).

SII log2 quartile Q1 Q2 Q3 Q4 P-value

N 442 441 442 442

SAP, n (%) 49 (11.09%) 49 (11.11%) 76 (17.19%) 202 (45.70%) <0.001

Age (years) 69.64 ± 11.72 68.42 ± 12.79 69.01 ± 12.57 70.01 ± 12.70 0.242

SBP (mmHg) 149.69 ± 22.10 151.43 ± 21.09 152.98 ± 20.95 154.95 ± 21.38 0.002

DBP (mmHg) 81.47 ± 12.65 82.59 ± 12.78 82.66 ± 13.70 83.86 ± 12.54 0.056

Gender, n (%) 0.023

 � Female 170 (38.46%) 160 (36.28%) 183 (41.40%) 203 (45.93%)

 � Male 272 (61.54%) 281 (63.72%) 259 (58.60%) 239 (54.07%)

Current smoking, n (%) 0.148

 � No 276 (62.44%) 262 (59.41%) 286 (64.71%) 294 (66.52%)

 � Yes 166 (37.56%) 179 (40.59%) 156 (35.29%) 148 (33.48%)

Hypertension, n (%) 0.118

 � No 119 (26.92%) 100 (22.68%) 101 (22.85%) 89 (20.14%)

 � Yes 323 (73.08%) 341 (77.32%) 341 (77.15%) 353 (79.86%)

Diabetes, n (%) 0.103

 � No 268 (60.63%) 294 (66.67%) 278 (62.90%) 299 (67.65%)

 � Yes 174 (39.37%) 147 (33.33%) 164 (37.10%) 143 (32.35%)

Atrial fibrillation, n (%) <0.001

 � No 381 (86.20%) 389 (88.21%) 369 (83.48%) 336 (76.02%)

 � Yes 61 (13.80%) 52 (11.79%) 73 (16.52%) 106 (23.98%)

COPD, n (%) 0.013

 � No 415 (93.89%) 417 (94.56%) 421 (95.25%) 399 (90.27%)

 � Yes 27 (6.11%) 24 (5.44%) 21 (4.75%) 43 (9.73%)

Laboratory parameters

  HDL (mmol/L) 1.17 ± 0.31 1.13 ± 0.28 1.15 ± 0.34 1.22 ± 0.32 <0.001

  LDL (mmol/L) 2.73 ± 0.89 2.80 ± 0.99 2.93 ± 1.03 2.94 ± 1.07 0.003

  FPG (mg/dL) 99.81 (88.38–123.75) 97.92 (87.84–122.94) 101.70 (90.54–128.07) 108.36 (93.78–137.34) <0.001

  HbA1C (%) 6.10 (5.60–7.30) 5.90 (5.50–7.10) 6.10 (5.50–7.19) 6.01 (5.50–7.30) 0.286

  TG (mg/dL) 116.03 (79.93–161.86) 123.11 (86.80–176.25) 113.81 (84.36–154.78) 94.33 (73.51–131.97) <0.001

  TC (mmol/L) 4.22 (3.61–4.85) 4.21 (3.57–4.94) 4.33 (3.70–5.08) 4.38 (3.72–5.18) 0.033

  SII index 202.24 (156.56–228.03) 318.99 (286.19–349.82) 474.84 (430.89–523.95) 899.58 (705.21–1210.17) <0.001

  CRP (mg/L) 2.00 (1.00–4.00) 2.00 (0.98–4.26) 3.00 (1.28–7.00) 6.14 (2.36–18.65) <0.001

  AST (U/L) 20.00 (17.00–25.00) 19.00 (16.00–24.00) 19.00 (15.00–24.00) 20.00 (16.00–26.00) 0.002

  ALT (U/L) 18.00 (13.00–25.00) 16.00 (12.00–25.00) 17.00 (12.00–24.00) 16.00 (12.00–25.00) 0.028

  BUN (mmol/L) 5.12 (4.16–6.28) 5.20 (4.30–6.21) 5.10 (4.10–6.38) 5.38 (4.08–6.80) 0.140

  UA (umol/L) 317.25 (262.00–381.88) 320.00 (257.50–390.00) 305.10 (250.32–372.40) 309.00 (236.48–375.70) 0.022

  EGFR (ml/min/1.73 m2) 99.55 (80.72–119.79) 97.76 (79.50–115.64) 101.95 (80.52–118.21) 100.47 (78.66–122.12) 0.425

  HCY (umol/L) 14.45 (11.53–19.20) 14.20 (11.40–18.90) 15.30 (11.92–19.08) 15.85 (12.50–19.67) 0.006

  WBC (*109/L) 5.78 (4.80–7.16) 6.38 (5.34–7.66) 7.20 (6.00–8.43) 9.12 (7.50–11.27) <0.001

Clinical characteristics

  KWDT 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–3.00) <0.001

  A2DS2 2.00 (2.00–4.00) 2.00 (2.00–4.00) 2.00 (2.00–4.00) 3.00 (2.00–5.00) <0.001

  GCS 15.00 (15.00–15.00) 15.00 (15.00–15.00) 15.00 (14.00–15.00) 15.00 (13.00–15.00) <0.001

  mRS 1.00 (0.00–2.00) 1.00 (0.00–2.00) 1.00 (0.00–2.00) 2.00 (1.00–4.00) <0.001
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TABLE 2  (Continued)

SII log2 quartile Q1 Q2 Q3 Q4 P-value

  NHISS 2.00 (1.00–4.00) 2.00 (1.00–5.00) 3.00 (1.00–5.00) 4.00 (2.00–9.00) <0.001

Values are presented as mean ± SD, median (IQR), or n (%), as appropriate. P-values were calculated using t-test, Mann–Whitney U test, or chi-square test as applicable. p-values < 0.05 were 
considered statistically significant. Bold values indicate statistical significance (P < 0.05).
SAP, stroke-associated pneumonia; CRP, C-reactive protein; SII, systemic immunity-inflammation index; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; FPG, fasting plasma glucose; TG, triglycerides; HbA1C, glycated hemoglobin A1c; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density 
lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; UA, uric acid; BUN, blood urea nitrogen; HCY, homocysteine; WBC, white blood cell count; EGFR, 
estimated glomerular filtration rate; GCS, Glasgow Coma Scale; KWDT, Kubota Water Drinking Test; A2DS2, age, atrial fibrillation, dysphagia, stroke severity and sex; AF, atrial fibrillation; 
COPD, chronic obstructive pulmonary disease.

TABLE 3  Multivariable logistic regression analysis of the association between log2-transformed SII quartiles and stroke-associated pneumonia (SAP).

Exposure Crude model (model 1) Partially adjusted model 
(model 2)

Fully adjusted model (model 
3)

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Log₂-SII 2.39 (2.09, 2.73) <0.0001 2.48 (2.17, 2.84) <0.0001 1.41 (1.17, 1.69) 0.0002

SII quartile

  Q1 1.0 1.0 1.0

  Q2 1.00 (0.66, 1.53) 0.9905 1.04 (0.68, 1.60) 0.8460 1.02 (0.59, 1.75) 0.9486

  Q3 1.67 (1.13, 2.45) <0.0001 1.74 (1.17, 2.58) 0.0059 1.21 (0.73, 2.03) 0.4603

  Q4 6.75 (4.75, 9.59) <0.0001 7.48 (5.20, 10.75) <0.0001 2.03 (1.21, 3.38) 0.0069

P for trend <0.0001 <0.0001 0.0035

Model 1: Unadjusted.
Model 2: Adjusted for age and sex.
Model 3: Adjusted for age, sex, smoking status, hypertension, diabetes, atrial fibrillation (AF), Chronic obstructive pulmonary disease (COPD), Systolic blood pressure (SBP), Diastolic blood 
pressure (DBP), uric acid (UA), white blood cell count (WBC), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Glycated hemoglobin (HbA1c), and estimated glomerular 
filtration rate (eGFR), baseline NIHSS score (continuous), and KWDT results.
Values are expressed as odds ratio (OR) with 95% confidence interval (CI). P-values < 0.05 were considered statistically significant. Bold values indicate statistical significance (p < 0.05). Global 
p-values for quartiles were calculated using trend tests.

FIGURE 2

Subgroup analysis of the association between systemic immune-inflammation index (SII) and stroke-associated pneumonia (SAP). This forest plot 
illustrates odds ratios (ORs) and 95% confidence intervals (CIs) for the association between elevated SII and the risk of SAP across predefined clinical 
subgroups, including age (<70 vs. ≥70 years), sex, smoking status, hypertension, diabetes, atrial fibrillation, and chronic obstructive pulmonary disease 
(COPD). Elevated SII was consistently associated with increased SAP risk in all subgroups. No significant interactions were detected (all P for interaction 
> 0.05), suggesting stability of the association across strata. SII, systemic immune-inflammation index; SAP, stroke-associated pneumonia; OR, odds 
ratio; CI, confidence interval; COPD, chronic obstructive pulmonary disease.
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FIGURE 3

Receiver operating characteristic (ROC) curves for predictive performance of systemic immune-inflammation index (SII), C-reactive protein (CRP), and 
A2DS2 in relation to stroke-associated pneumonia (SAP). (a) Comparison of SII (AUC = 0.726, 95% CI: 0.694–0.758) and CRP (AUC = 0.826, 95% CI: 
0.800–0.851) showing CRP had superior discriminatory ability (p < 0.0001). (b) ROC curves of CRP alone versus the combined model of SII + CRP. The 
combined model (AUC = 0.842, 95% CI: 0.817–0.866) was not significantly different from CRP alone (p = 0.152). (c) ROC curves of SII alone versus the 
combined model of SII + CRP. The addition of SII significantly improved predictive performance compared with SII alone (p < 0.0001). (d) ROC curves 
of A2DS2 score alone (AUC = 0.758, 95% CI: 0.729–0.787) versus the combined model of SII + A2DS2 (AUC = 0.817, 95% CI: 0.790–0.843), showing a 
significant improvement (p < 0.0001). ROC, receiver operating characteristic; AUC, area under the curve; SII, systemic immune-inflammation index; 
CRP, C-reactive protein; A2DS2, Age, Atrial Fibrillation, Dysphagia, Stroke Severity and Sex; SAP, stroke-associated pneumonia.

TABLE 4  Comparison of diagnostic performance of SII, CRP, A2DS2, and their combination models for predicting stroke-associated pneumonia.

Model AUC 95% CI (AUC) Sensitivity (%) Specificity (%) Accuracy (%)

SII 0.726 0.694–0.758 59.6 79.3 75.1

CRP 0.826 0.800–0.851 66.8 86.4 82.2

A2DS2 0.758 0.729–0.787 48.1 90.5 81.5

SII + CRP 0.842 0.817–0.866 70.5 85.5 82.3

SII + A2DS2 0.817 0.790–0.843 69.2 80.5 78.0

Table summarizes the diagnostic performance of log₂-transformed SII, CRP, A2DS2, and their combinations for predicting stroke-associated pneumonia (SAP) in acute ischemic stroke, 
including the area under the ROC curve (AUC) with 95% confidence interval (CI), sensitivity, specificity, and overall accuracy. Statistical comparisons between AUCs were performed using 
the DeLong test.
ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SII, systemic immune-inflammation index; CRP, C-reactive protein; A2DS2, age, atrial fibrillation, 
dysphagia, sex, stroke severity; SAP, stroke-associated pneumonia.
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assess its predictive value across different stroke subtypes and care 
settings (53).

Several limitations should be  acknowledged. First, the 
retrospective and single-center design may limit generalizability. 
Second, inflammatory markers were measured only once within 
48 h of admission, precluding evaluation of temporal changes. 
Third, although our main models adjusted for baseline stroke 
severity (NIHSS) and dysphagia (KWDT), residual confounding 

by unmeasured aspects of severity (e.g., level of consciousness, 
aspiration risk, use of nasogastric/jejunal tubes, prolonged bed 
rest, and infarct location) cannot be  fully excluded despite 
multivariable adjustment. In addition, we did not evaluate other 
inflammatory or immune biomarkers (e.g., cytokines or measures 
of immune cell function), which may provide complementary 
information beyond SII and CRP and should be  explored in 
future work. Finally, long-term outcomes, such as SAP recurrence 
or post-discharge mortality, were not assessed. Prospective, 
multicenter studies are warranted to validate our findings and 
further refine the clinical utility of SII.

Conclusion

In this retrospective cohort of AIS patients, elevated SII levels 
were independently and non-linearly associated with SAP risk, 
exhibiting a clear threshold effect. Although CRP demonstrated 
superior discriminative ability, SII showed complementary prognostic 
value, particularly when combined with CRP or A2DS2, while 
remaining easily obtainable from standard blood counts. Integrating 
SII into existing clinical risk models may enhance early identification 
of high-risk individuals. Prospective, multicenter investigations are 
warranted to validate these findings and to explore whether dynamic 
SII monitoring can improve both short- and long-term outcomes in 
AIS populations.
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TABLE 5  Threshold effect and linear association between log₂-SII and 
stroke-associated pneumonia.

SAP Outcome Adjusted OR (95% CI) P-value

SII (Model I)

Linear association (log₂-SII)

1.50 (1.26–1.79) < 0.0001

SII (Model II)

  Inflection point 8.48

  SII < 8.48 0.80 (0.59, 1.08) 0.1420

  SII > =8.48 2.20 (1.72, 2.81) < 0.0001

  Difference (Segment 2-1) 2.75 (1.77, 4.27) < 0.0001

  Log likelihood ratio <0.001

Multivariable logistic regression models evaluating the linear and two-piecewise associations 
between log₂-transformed systemic immune-inflammation index (SII) and the risk of stroke-
associated pneumonia (SAP). Model I assumes a linear effect, while Model II incorporates a 
threshold at the inflection point (K = 8.48). Estimates are adjusted for age, sex, smoking status, 
hypertension, diabetes mellitus, atrial fibrillation (AF), chronic obstructive pulmonary disease 
(COPD), systolic blood pressure (SBP), diastolic blood pressure (DBP), uric acid (UA), white 
blood cell count (WBC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
glycated hemoglobin (HbA1c), and estimated glomerular filtration rate (eGFR).
SII, systemic immune-inflammation index; SAP, stroke-associated pneumonia; OR, odds 
ratio; CI, confidence interval. 
Bold values indicate statistical significance (p < 0.05).

FIGURE 4

Generalized additive model illustrating the non-linear relationship 
between log₂-SII and SAP risk. The generalized additive model (GAM) 
depicts a non-linear association between log₂-transformed systemic 
immune-inflammation index (SII) and the probability of stroke-
associated pneumonia (SAP). The SAP risk remained relatively stable 
at lower SII levels and increased sharply beyond log₂-SII ≈ 8.5, 
indicating a threshold-dependent relationship. The model was 
adjusted for relevant covariates described in the main analysis. SII, 
systemic immune-inflammation index; SAP, stroke-associated 
pneumonia; GAM, generalized additive model.
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Glossary

AIS - acute ischemic stroke

SAP - stroke-associated pneumonia

SII - systemic immune-inflammation index

CRP - C-reactive protein

GAM - generalized additive model

ROC - receiver operating characteristic

AUC - area under the curve

NIHSS - National Institutes of Health Stroke Scale

GCS - Glasgow Coma Scale

KWDT - Kubota Water Drinking Test

A2DS2 - Age, Atrial fibrillation, Dysphagia, Sex, Stroke severity

NLR - neutrophil-to-lymphocyte ratio

PLT - platelet count

WBC - white blood cell count

ALT - alanine aminotransferase

AST - aspartate aminotransferase

HbA1c - glycated hemoglobin

HCY - homocysteine

Scr - serum creatinine

ALB - albumin

TG - triglycerides

TC - total cholesterol

HDL-c - high-density lipoprotein cholesterol

LDL-c - low-density lipoprotein cholesterol

AF - atrial fibrillation

COPD - chronic obstructive pulmonary disease

SBP - systolic blood pressure

DBP - diastolic blood pressure

eGFR - estimated glomerular filtration rate

UA - uric acid

MRI - magnetic resonance imaging

CT - computed tomography

SD - standard deviation

OR - odds ratio

CI - confidence interval
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