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Oculomotor indicators of 
cognitive performance are 
modulated by neurodegeneration
Patrice Voss 1,2, Nils A. Koch 2,3, Maryse E. Thomas 1,2, 
Paul S. Giacomini 1,2 and Etienne De Villers-Sidani 1,2*
1 Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2 Innodem Neurosciences, 
Montreal, QC, Canada, 3 Integrated Program in Neuroscience, McGill University, Montreal, QC, 
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In this study, the extent to which eye movements can be  used to estimate 
cognitive ability in neurologically intact individuals was evaluated in the absence 
of clear underlying neurodegenerative processes. In contrast to previous studies 
of Parkinson’s Disease (PD) and multiple sclerosis that demonstrated a strong 
link between oculomotor parameters and clinical measures of cognition, this 
relationship is unaffected by disease in healthy participants, enabling a more direct 
assessment of the connection between eye movements and cognition. Accordingly, 
a modest portion (≤28%) of the observed variance in cognitive test scores could 
be explained by oculomotor parameters in 204 participants aged 18–79 with 
no differences between males and females observed. The relationship between 
oculomotor parameters and cognitive measures was further compared between 
neurologically intact individuals and a separate sample of 65 individuals with PD. 
Oculomotor parameters showed stronger correlations with cognitive measures in 
PD patients, likely contributing to the greater explanatory power of oculomotor-
based models in this population. Finally, given that many oculomotor parameters 
are affected by age, the ability to estimate an individual’s age without confounding 
neurodegeneration was assessed. As 33% of the variance in participants’ age could 
be explained by oculomotor parameters, age may be estimated from oculomotor 
parameters, providing insight into the aging brain. Collectively, these findings 
highlight the connection between oculomotor function and clinical measures of 
cognition in the absence of neurodegeneration and indicate that these relationships 
are likely mediated by the functional integrity of brain networks involved in both 
motor control and cognitive processing.
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Introduction

Although knowledge about our ability to infer brain function through analysis of eye 
movements has been around for a few centuries (1), the advent of modern eye-tracking 
technology has resulted in a growing interest in probing brain circuitry integrity via the 
detailed study of eye movements. Much of the recent work has attempted to develop 
eye-movement and gaze-based markers of neurodegenerative processes, such as Alzheimer’s 
Disease (AD), Parkinson’s Disease (PD), and Multiple Sclerosis (MS). For instance, AD is 
associated with difficulty in inhibiting incorrect responses during an anti-saccade task and 
with a reduction in directional error corrections (2, 3), and while findings have not been 
consistent across all studies, some have also reported an increased rate of saccadic intrusions 
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during fixation (4, 5). Hallmark features of PD also include hypometric 
saccades toward targets, which also often follow a multistep sequence 
(6, 7). Additionally, internuclear ophthalmoplegia (INO), a slowing of 
the adducting eye during horizontal saccades, is a well-documented 
oculomotor feature of MS (72), with reported prevalence estimates 
ranging from 15 to 52%, depending on the assessment method used 
[see Hof et al. (8) for a more comprehensive overview].

Beyond identifying markers of disease, a growing body of research 
suggests that it may be possible to infer disease severity and track 
disease progression via the analysis of eye movements. Several studies 
have indicated that individual oculomotor parameters (e.g., saccadic 
latency or anti-saccade error rate) correlate strongly with clinical scale 
scores [e.g., the Expanded Disability Status Scale (EDSS) for MS or the 
Movement Disorder Society Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS III) (9–12)]. Although cognition has often been 
investigated via eye-tracking paradigms of free-viewing conditions, 
where coarse eye movement and gaze parameters are interpreted to 
reflect certain cognitive processes such as memory and attention 
(13–15), the study of cognitive function via detailed oculomotor 
analysis is relatively novel. Indeed, recent evidence suggests that 
cognitive ability can be inferred via the analysis of spatiotemporal 
parameters measured with infrared eye-tracking devices and standard 
paradigms of oculomotor function (e.g., pro-saccades, fixation 
stability, anti-saccades, and smooth pursuit tasks). For instance, 
several oculomotor metrics measured in individuals with PD have 
been shown to significantly correlate with measures of general 
cognition such as the Mini-Mental Status Exam (MMSE) (16, 17) or 
the Montreal Cognitive Assessment (MoCA) (18, 19), or with 
measures of processing such as the Symbol Digit Modalities Test 
(SDMT) (20, 21) and Paced Auditory Serial Addition Test (PASAT) 
(22, 23) in MS patients.

Using a novel mobile eye-tracking software that functions using 
the standard camera of an iPad Pro (Eye-Tracking Neurological 
Assessment (ETNA™); Innodem Neurosciences), our group recently 
replicated many of the aforementioned findings in several clinical 
populations. In particular, several oculomotor parameters, when 
jointly considered, could account for a large proportion of the variance 
in cognitive test scores. For instance, a combination of oculomotor 
parameters and machine learning regression models was able to 
explain between 43 and 72% of the variance on cognitive test scores 
in PD patients (24), and explain between 48 and 73% of the variance 
on cognitive test scores in MS patients (25).

However, to our knowledge, most of the evidence described above 
linking cognitive ability to oculomotor parameters was obtained in 
clinical populations, particularly those with neurological disorders. 
Notably, disease-related factors may simultaneously affect both eye 
movements and cognitive function, making it difficult to determine 
whether observed relationships reflect direct associations or shared 
consequences of the underlying condition. Studying neurologically 
intact individuals offers a unique opportunity to disentangle these 
effects by providing a clearer baseline from which to understand the 
specific contribution of cognitive function to oculomotor measures. 
As previous studies have demonstrated that oculomotor function is a 
sensitive marker of neural integrity in various neurological conditions 
(26–28), the current study aims to extend these findings by examining 
this relationship in healthy individuals.

As such, the primary objective of the present study was to 
determine to what extent cognitive ability could be estimated in a large 

sample of neurologically intact individuals via oculomotor parameters 
measured with standard eye-tracking tasks (i.e., pro-saccades, anti-
saccades, smooth pursuit, fixation, optokinetic nystagmus). To 
evaluate cognitive ability, four of the cognitive domains outlined in the 
Movement Disorder Society Task Force Guidelines (29) were 
measured for comparison with previous findings in participants with 
PD (24) using the following tests: MoCA (global cognitive), Trail 
Making Test (TMT A/B) (attention and working memory), Controlled 
Oral Word Association Test (COWAT) of verbal fluency (executive 
function), Hopkins Verbal Learning Test (HVLT; memory). The 
Symbol Digit Modalities Test (SDMT) was additionally included to 
assess cognitive processing speed and the Beck Anxiety Inventory 
(BAI) to assess participant anxiety levels as part of the assessment.

Correlations between clinical test scores, participant age, and all 
individual oculomotor parameters were investigated. Subsequently a 
partial least squares (PLS) regression approach was used to determine 
the extent of clinical score variance that could be explained using the 
eye movement parameters. A secondary objective was to determine to 
what extent an individual’s age could be estimated in the absence of 
confounding neurodegeneration, given that many oculomotor 
parameters are known to be impacted by age (30–32). How well this 
age estimate can also explain clinical score variance was then 
examined. Finally, the relationship between oculomotor inputs and 
cognitive scores and the performance of the PLS regression models of 
neurologically intact participants was compared with those obtained 
from a sample of PD participants. In light of a growing body of 
evidence highlighting critical sex differences across numerous 
domains of neuroscience (33), the data collected in this study were 
disaggregated by sex wherever possible to explore potential sex-related 
effects—an approach that remains underutilized in much of 
neurological research. Although the study was not explicitly designed 
to investigate sex differences, the relatively large sample size would 
enhance confidence in any observed effects and could support the 
generation of testable hypotheses for future targeted investigations.

Methods

Subject populations

Healthy group
204 cognitively and neurologically intact (self-reported) 

individuals took part in this study (Healthy Controls (HC): age 
40.2 ± 15.0, range 18–79, 120/84 males/females). All individuals 
provided informed and written consent and were recruited from the 
general public. The study procedures outlined in this paper were 
approved by and performed in accordance with the guidelines of the 
Veritas and the McGill University Health Centre research 
ethics boards.

PD group
For model comparison purposes, data collected from 65 

Parkinson’s Disease (PD) patients with mild-to-moderate idiopathic 
PD used in two previous publications (24, 34) were also used in the 
present study to compare the oculomotor-based predictive models 
between the PD patients and the neurologically intact individuals. All 
PD patients (age 64.1 ± 8.4, range 45–89, 43/22 males/females) were 
diagnosed by a movement disorder specialist in the province of 
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Quebec according to the MDS criteria (35) and were enrolled as part 
of the Quebec Parkinson Network (QPN; https://rpq-qpn.ca/) 
initiative (36). Data was collected in a sample of 65 consecutively 
recruited patients. Additional patient details can be found in Koch 
et al. (24).

Oculomotor assessment and experimental 
setup

All eye-tracking tests were performed using the ETNA™ software 
installed on a 12.9-inch iPad Pro tablet. The software enables the 
simultaneous presentation of visual stimuli on-screen and video 
recordings of the eyes using the embedded front-facing camera at 60 
frames per second. Gaze-tracking is performed in visible light with a 
deep neural network that uses four inputs to produce a general gaze 
model: an image of each of the user’s eyes, an image of the user’s face, 
and the Euler angles of the head as head pose information. Apple’s 
ARKit was used to detect facial landmarks.

Participants were seated throughout the experiment. The iPad was 
positioned vertically using an adjustable tablet stand, placed 
approximately 45 cm from the participant, such that the center of the 
screen aligned with eye level. While no physical head restraints (e.g., 
chin rests) were used, participants were instructed to minimize head 
movement during the tasks. The ETNA™ software includes built-in 
safeguards to monitor head orientation and eye-to-screen distance in 
real time. If the participant’s head position deviated beyond acceptable 
limits, an on-screen prompt provided clear visual instructions for 
realignment (e.g., “Please move your head slightly forward” or “Please 
tilt your head slightly to the left”), thereby ensuring consistent data 
quality throughout the assessment.

All participants performed five oculomotor tasks in the following 
order: a fixation task, a pro-saccade task, an anti-saccade task, a 
smooth pursuit task, and an optokinetic nystagmus (OKN) task. Task 
details and parameters are outlined in the Supplementary materials. 
All participants performed a brief calibration step whereby they 
tracked a slow-moving target on-screen using the ETNA™ software, 
before undertaking the visual tasks. The calibration procedure itself 
trains an additional model, which is then incorporated into the 
general gaze model to produce the final individualized gaze-tracking 
model. The ETNA™ software’s gaze-tracking algorithms have an 
estimated average (over the entire screen) accuracy of 0.47 degrees 
(mean offset between the actual gaze position and the recorded gaze 
position) and precision of 0.33 degrees (as calculated via Root Mean 
Square (RMS) of the sampled points); an estimate of reliability of the 
gaze point estimate from one sample to the next, which are comparable 
values to those of research-grade infrared eye tracking devices. For a 
detailed description of how oculomotor parameters were extracted 
from the gaze signal, see Supplementary materials.

Clinical and cognitive assessments

Cognitive assessments included the following: the Montreal 
Cognitive Assessment (MoCA) (37), the Trail Making Test (TMT 
A/B) (38), the Hopkins Verbal Learning Test (HVLT) (39), and the 
CFL version of Controlled Oral Word Association Test (COWAT) 
(40). These tests were selected as they had been administered to most 

PD patients enrolled in the Quebec Parkinson Network initiative and 
they evaluated four of the cognitive domains outlined in the 
Movement Disorder Society Task Force Guidelines (29). For healthy 
participants, we  included an additional measure of cognitive 
processing with the Symbol Digit Modalities Test (SDMT) – (41) and 
of state anxiety with the Beck Anxiety Inventory [BAI – Beck et al. 
(42)]. The number of HC and PD participants who completed each 
test is as follows: MoCA (203 HC, 36 PD), TMTA (203 HC, 50 PD), 
TMTB (203 HC, 49 PD), COWAT (203 HC, 48 PD), HVLT (200 HC, 
50 PD), SDMT (198 HC), BAI (203 HC).

Clinical outcome measures

Given the number of tests used and the multiple possible outcome 
measures for each, we selected, a priori, one outcome measure per test 
for use in subsequent analyses. MoCA: the total score (out of 30) was 
used as the outcome measure. SDMT: the total number of correct 
symbol-digit pairings within a 90 s time limit (out of 110). TMT – Part 
A (TMTA): time in seconds to connect numbered circles in ascending 
order. TMT – Part B (TMTB): time in seconds to connect the numbers 
and letter sequence alternately. HVLT: total recall score, which is the 
sum of the correctly recalled words across the three learning trials. 
COWAT: total count of valid words produced during one minute per 
letter, using letters C-F-L. BAI: total score (out of 63).

Data analyses

Correlation analyses
For all correlations between eye movement parameters and the 

demographic or clinical outcome measures of interest (Age, MoCA, 
TMTA, TMTB, HVLT, COWAT, and BAI), the Spearman’s rho 
correlation coefficient was calculated. This rank-based approach was 
selected because it does not assume linearity or normally distributed 
variables, and it is more robust to outliers than Pearson’s correlation, 
which was important given the skewed distributions observed for 
several clinical measures (e.g., Trail Making Test times, BAI scores). 
We note that Spearman’s rho assumes independent and identically 
distributed (iid) pairs and can be influenced by ties in rank assignment. 
Each participant contributed a single set of measures, satisfying 
independence, and ties were rare for continuous oculomotor 
parameters. For cognitive scores with more frequent ties (e.g., MoCA, 
SDMT), average ranks were assigned by the software, an approach 
demonstrated to introduce minimal bias in large samples (43, 44). 
We  therefore judged Spearman’s rho to be  the most appropriate 
balance between robustness and sensitivity for the present dataset. To 
adjust for the false discovery rate, corrected p-values were computed 
using the Benjamini–Hochberg procedure evaluated at an alpha level 
of 0.05.

Partial least squares regression analysis
Partial least squares (PLS) regression was used to examine the 

relationship between oculomotor parameters and each clinical score 
(Age, TMTA, TMTB, COWAT, SDMT, MoCA, HVLT, and BAI) 
while accounting for multicollinearity between oculomotor 
parameters. In order to include subjects with structurally missing 
values in the oculomotor parameters and maximize sample size input 
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into the PLS models, probabilistic principal component analysis 
(PPCA) imputation (45, 46) was used to estimate the missing values. 
A multi-step feature selection procedure was used for each model. 
The first step consisted of a correlation-based feature selection to 
determine the 20 parameters (out of a total of 199) most correlated 
with the clinical score. Subsequently, an exhaustive feature selection 
procedure was used to select the parameter set of the final model, 
which involved sampling all possible combinations of those 20 
oculomotor parameters (set sizes from 1 to 20) and subsequent 
model fitting. For each PLS regression model, the number of latent 
variables maximizing the covariance between the independent and 
dependent variables was selected by minimizing the Bayesian 
information criterion (47, 48) using a 10-fold cross-validation 
approach. The coefficient of determination (R2) was used to assess 
multiple regression performance (both adjusted and non-adjusted  
values).

Permutation tests
Permutation tests were used to determine if there was a 

statistically significant difference between Spearman’s rho correlations 
or adjusted R2 between groups (i.e., male vs. female or HC vs. PD). For 
both measures, the difference in Spearman’s rho or adjusted R2 
between groups was first computed. A null distribution was then 
generated by shuffling the group labels N = 1,000 times and 
recalculating the difference on each replicate. A two-tailed p-value 
evaluated at an alpha level of 0.05 was obtained by calculating the 
proportion of permuted differences more extreme than the 
observed value.

Results

Relationship between clinical measures 
and age

The correlation coefficients (Spearman’s rho) between all clinical 
and demographic variables (Age, MoCA, TMTA, TMTB, HVLT, 
COWAT, BAI) of the healthy group are displayed in Figure 1a (and 
further documented in Supplementary Table 1). Related test scores 
unsurprisingly correlated more highly with one another (such as the 
TMTA and TMTB), whereas scores of general cognition (MoCA) or 
anxiety levels (BAI) correlated more weakly with the other clinical 
scores measuring specific cognitive abilities. The relationships between 
participant age and cognitive/clinical test scores are further depicted 
for TMTA (Figure 1b, Spearman’s rho = 0.4034, p = 2.41*10−9), TMTB 
(Figure  1c, Spearman’s rho = 0.3707, p = 5.20*10−8), COWAT 
(Figure 1d, Spearman’s rho = −0.1421, p = 0.0432), SDMT (Figure 1e, 
Spearman’s rho = −0.6290, p = 3.30*10−23), MoCA (Figure  1f, 
Spearman’s rho = −0.1280, p = 0.0687), HVLT (Figure 1g, Spearman’s 
rho = −0.4353, p = 1.19*10−10), and BAI (Figure  1h, Spearman’s 
rho = −0.2838, p = 4.07*10−5), which are disaggregated by participant 
sex (Figures 1b–h). No significant differences were found between the 
correlation coefficients of males and females for TMTA (Figure 1b, 
p = 0.2680), TMTB (Figure  1c; p = 0.3610), COWAT (Figure  1d, 
p = 0.6225), SDMT (Figure  1e, p = 0.5240), MoCA (Figure  1f, 
p = 0.5950), HVLT (Figure  1g, p = 0.3650), or BAI (Figure  1b, 
p = 0.130) with age, computed via permutation tests (N = 1,000  
replicates).

Correlations between eye-tracking 
parameters and clinical outcome measures

Spearman correlations between the extracted oculomotor 
parameters and clinical/demographic variables (Age, TMTA, 
TMTB, BAI, MoCA, COWAT, SDMT, HVLT) are detailed in 
Supplementary Table 2, with oculomotor parameters having at least 
one significant correlation shown in Figure  2. Participant age 
correlates the most strongly with various sets of oculomotor 
parameters, primarily those from the pro-saccade task. SDMT, TMTA 
TMTB, and HVLT also had multiple significant correlations with 
various parameters, particularly from the anti-saccade and 
pro-saccade tasks. In contrast, MoCA, COWAT, and BAI are 
significantly correlated with fewer oculomotor parameters. After 
correction for multiple comparisons, 47 oculomotor parameters were 
significantly correlated with age, 31 with SDMT, 23 with TMTA, 17 
with HVLT, 12 with TMTA, 7 with COWAT, 5 with MoCA, and none 
with BAI. Select representative significant correlations between 
clinical outcome measures and oculomotor parameters are depicted 
in Figure 3.

PLS regression analyses

We performed partial least squares (PLS) regression analyses to 
develop models that best explained each demographic and clinical 
outcome measure based solely on oculomotor parameters. PLS 
regressions for each measure are presented in Figure 4 and show that 
all models explain between 10 and 33% of the variance of the 
cognitive-, age- and anxiety-related outcome measures. The best 
variance explanatory model was for age (Figure 4a; R2 = 0.36, Adjusted 
R2 = 0.33), followed by SDMT (Figure  4e; R2 = 0.31, Adjusted 
R2 = 0.28), COWAT (Figure 4d; R2 = 0.26, Adjusted R2 = 0.21), TMTA 
(Figure 4b; R2 = 0.22, Adjusted R2 = 0.19), TMTB (Figure 4c; R2 = 0.20, 
Adjusted R2 = 0.17), and HVLT (Figure  4g; R2 = 0.18, Adjusted 
R2 = 0.16). The MoCA (Figure 4f; R2 = 0.15, Adjusted R2 = 0.12) and 
BAI models (Figure 4h; R2 = 0.14, Adjusted R2 = 0.10) explained the 
least variance. Although the PLS regression R2 values sometimes 
differed between males and females, no statistically significant 
differences were observed for age (Figure  4a, p = 0.4702), TMTA 
(Figure  4b, p = 0.1824), TMTB (Figure  4c, p = 0.5816), COWAT 
(Figure  4d, p = 0.8258), SDMT (Figure  4e, p = 0.3578), MoCA 
(Figure  4f, p = 0.2710), HVLT (Figure  4g, p = 0.9404) or BAI 
(Figure 4h, p = 0.9054) as evaluated by permutation tests (N = 1,000 
replicates). These results show that oculomotor parameters are able to 
account for a small to modest portion of the variance in cognitive 
scores in healthy individuals. Scores that show less individual variation 
in our sample population (MoCA) or assess anxiety as opposed to 
cognition (BAI) were the least well-explained by oculomotor models.

Additionally, the ability of PLS regression to predict clinical 
measures when including age in addition to oculomotor parameters 
as a model feature was evaluated (Supplementary Figure 1). When this 
demographic variable was included, the amount of variance explained 
by each model stayed the same or increased slightly (0–17% increase). 
The greatest improvement in model performance was observed for 
SDMT (Supplementary Figure 1d; R2 = 0.47, Adjusted R2 = 0.45) with 
an additional 17% in variance explained, followed by 7% for HVLT 
(Supplementary Figure 1f; R2 = 0.25, Adjusted R2 = 0.23) and 6% for 
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TMTB (Supplementary Figure 1b; R2 = 0.26, Adjusted R2 = 0.23). The 
remaining models either had a small (1–2%) increase in variance 
explained (TMTA – Supplementary Figure 1a: R2 = 0.24, Adjusted 
R2 = 0.21; BAI  – Supplementary Figure  1g: R2 = 0.15, Adjusted 
R2 = 0.11) or no change in performance (COWAT – Supplementary  
Figure  1c: R2 = 0.26, Adjusted R2 = 0.21; MoCA  – Supplementary  
Figure 1e: R2 = 0.15, Adjusted R2 = 0.12). These findings indicate that 
for some cognitive scores, particularly those most correlated with age 
(SDMT, HVLT; Figure 1), including age in the model helps capture 
variance in cognitive performance not explained by oculomotor 
parameters alone. However, that oculomotor parameters 
explained a substantial amount of the variance in cognitive scores 
prior to including age suggests that these parameters capture 

meaningful individual differences in cognition beyond age-related  
effects.

To explore whether oculomotor-predicted age captures 
meaningful variation related to cognitive function, age estimates 
from our PLS regression model (Figure 4a) and true chronological 
age were compared. Figure  5 depicts the relationship between 
predicted age and TMTA (Figure  5a, Spearman’s rho = 0.3873, 
p = 1.14*10−8), TMTB (Figure  5b, Spearman’s rho = 0.2894, 
p = 2.82*10−5), COWAT (Figure  5c, Spearman’s rho = −0.1712, 
p = 0.0146), SDMT (Figure  5d, Spearman’s rho = −0.4779, 
p = 1.08*10−12), MoCA (Figure  5e, Spearman’s rho = −0.1312, 
p = 0.0620), HVLT (Figure  5f, Spearman’s rho = −0.3455, 
p = 5.43*10−7), and BAI (Figure  5g, Spearman’s rho = −0.1666 

FIGURE 1

Relationship between age and clinical measures. Spearman’s rho correlation values between each clinical score for healthy individuals (a). Scatterplots 
highlighting the relationship between age and TMTA (b), TMTB (c), COWAT (d), SDMT (e), MoCA (f), HVLT (g), and BAI (h). Blue dots represent male 
participants and red dots represent female participants. Spearman’s rho and corresponding p-values are reported for the entire healthy participant 
dataset (black), for females only (red) and males only (blue) above panels b-h. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (corrected p-values).
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p = 0.0175). Similar to the relationships with true age, the correlations 
between predicted age and TMTA (p = 0.0680), TMTB (p = 0.9870), 
COWAT (p = 0.6750), SDMT (p = 0.5320), MoCA (p = 0.4230), 
HVLT (p = 0.3080) and BAI (p = 0.3580) did not display sex 
differences as determined by permutation tests (N = 1,000 replicates). 
The correlations between predicted age and cognitive scores were also 
similar to those observed with true age in terms of magnitude of 
correlation and direction of the relationship. To confirm this, 
permutation tests (N = 1,000 replicates) were performed to assess 

whether the correlations between true age and clinical scores were 
statistically different from those between predicted age and clinical 
scores (Spearman’s rho correlations reported in Figure 5h). Apart 
from SDMT (p = 0.0420), correlations were not found to 
be  significantly different: TMTA (p = 0.860), TMTB (p = 0.3750), 
COWAT (p = 0.7950), MoCA (p = 0.9740), HVLT (p = 0.2780), BAI 
(p = 0.2210). These findings indicate that oculomotor-predicted age 
varies with cognition in a manner comparable to chronological age, 
supporting its potential as a proxy for age-related cognitive change.

FIGURE 2

Relationship between oculomotor parameters and clinical measures. Heatmap depicting Spearman’s rho correlation values between eye-tracking 
parameters and age or clinical scores. Only oculomotor parameters with at least one significant correlation after correcting for multiple comparisons 
are shown. PS, pro-saccade; SP, smooth pursuit. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (corrected p-values).

https://doi.org/10.3389/fneur.2025.1649745
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Voss et al.� 10.3389/fneur.2025.1649745

Frontiers in Neurology 07 frontiersin.org

Finally, to directly compare the ability of PLS regression models 
to predict cognitive scores from oculomotor parameters in healthy or 
PD participants, the PD data published in Koch et  al. (24) was 
reanalyzed, the results of which are shown in Figure 6. The clinical 
outcome measures collected in both the neurologically intact 
individuals (Healthy Controls; HC) and PD patients from Koch et al. 
(24) are first reported, with TMTA (Figure 6a; Mann–Whitney U 
(MWU) = 2583.5, p = 7.683*10−8), TMTB (Figure 6b; MWU = 2651.0, 
p = 3.967*10−7), MoCA (Figure 6d; MWU = 4913.5, p = 0.0008) and 
HVLT (Figure 6e; MWU = 6857.5, p = 4.7113*10−5), but not COWAT 
(Figure 6c; MWU = 5416.5, p = 0.2288) scores differing significantly 
between the populations.

To assess whether the relationship between clinical outcome 
measures and oculomotor parameters is comparable in the 
neurologically intact and PD populations, Spearman’s rho correlation 
coefficients between cognitive scores and all oculomotor parameters 
within each population (as in Figure  2) were calculated and the 
average absolute correlation coefficients within each oculomotor task 
(anti-saccade (AS), fixation (Fix), optokinetic nystagmus (OKN), 
pro-saccade (PS) and smooth pursuit (SP)) were compared 
(Figures 6f–j). In general, the average correlations between cognitive 
scores and oculomotor parameters in PD patients had greater 
magnitude than those of HC participants, although this varied by 
score and task. To investigate this further, two-tailed Mann Whitney 
U tests were performed and corrected for multiple comparisons using 
the Benjamini-Hochberg procedure. All scores contained at least one 
task for which PD correlations were found to be statistically larger 

than HC correlations (Figures  6f–j). For full statistical results see 
Supplementary Table 3.

To further examine the stronger relationships between oculomotor 
parameters and cognitive scores in PD patients, new PLS regression 
models were fit for the PD group using the same procedures as for the 
neurologically intact population (see Methods). In comparison to 
Koch et al. (24), the current methods explore a greater number of 
oculomotor parameters and include PPCA imputation, which better 
leverages the full dataset of both participants and parameters. As such, 
the use of the same method enabled comparison of model 
performance between the HC and PD groups. The relationship 
between HC model predictions and the clinical outcome measures 
common to both populations are reproduced from Figure  4 in 
Figures 6k–o to aid in the comparison with the same relationships in 
the PD population in Figures 6p–t.

Notably, the oculomotor parameter-based PLS models explain 
a greater proportion of cognitive score variance in PD patients 
(47–63%) than in neurologically intact individuals (12–28%), and 
predicted scores are more closely related to true scores (Spearman’s 
rho PD: 0.74–0.89 vs. HC: 0.37–0.50). Specifically, the PLS 
regression model for TMTA explains 54% of PD TMTA scores 
(Figure 6o; R2 = 0.62, Adjusted R2 = 0.54, Spearman’s rho = 0.7833, 
p = 1.78*10−11) in comparison to the 19% variance (rho = 0.4972, 
p = 4.49*10−14) explained by the equivalent model in HCs. The 
TMTB PLS regression model explains 54% of PD patient TMTB 
scores (Figure  6q; R2 = 0.62, Adjusted R2 = 0.54, Spearman’s 
rho = 0.7772, p = 5.17*10−11) compared to the 17% variance 

FIGURE 3

Select relationships between oculomotor parameters and clinical measures. Correlations between select oculomotor parameters and age or clinical 
scores in healthy participants: Age (a), TMTA (b), TMTB (c), COWAT (d), SDMT (e), MoCA (f), HVLT (g), and BAI (h). Spearman’s rho correlation values 
and p-values are reported above each panel, and linear regression lines with 95% confidence intervals are shown. PS, pro-saccade.
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(rho = 0.3776, p = 2.79*10−8) explained by the equivalent model in 
HCs. Similarly, the PLS regression model for the PD population 
explains 47% of PD COWAT scores (Figure 6r; R2 = 0.57, Adjusted 
R2 = 0.47, Spearman’s rho = 0.7437, p = 1.39*10−09) instead of the 
21% variance (rho = 0.4974, p = 4.36*10−14) explained by the model 
for the HC population. For MoCA scores, the PLS regression 
model for PD patients explains a much larger percentage (63%) of 
the PD population’s MoCA scores (Figure 6s; R2 = 0.76, Adjusted 
R2 = 0.63, Spearman’s rho = 0.8861, p = 6.72*10−13) compared to 
the 12% explained variance (rho = 0.3669, p = 7.31*10−8) of the 
PLS regression for the HC population. Finally, the PLS regression 
model for HVLT for PD patients also explains more variance (57%) 
in HVLT scores (Figure  6t; R2 = 0.63, Adjusted R2 = 0.57, 
Spearman’s rho = 0.7560, p = 2.12*10−7) than the model for HCs 
(16% variance explained, rho = 0.4671, p = 2.19*10−10). 
Additionally, permutation tests (N = 1,000 replicates) were carried 
out to assess whether the relationship between predicted and true 
scores (as quantified by the Spearman’s rho values) differed 
between the groups for each score. The PLS-predicted values were 
significantly more correlated with the true values for the PD 
models than HC models for all scores: TMTA (p = 0.0129), TMTB 
(p = 0.006), COWAT (p = 0.036), MoCA (p = 0.003), HVLT 
(p = 0.015). Taken together, the PLS regression models leverage 
information present in the oculomotor parameters to explain more 
of the variance in clinical outcome measures in PD patients than 
in neurologically intact individuals.

Discussion

This study’s primary objective was to determine the extent to 
which cognitive ability can be estimated via oculomotor parameters 
in a large sample of neurologically intact individuals. To measure such 
parameters, a novel mobile eye-tracking software was used that 
functions using the standard camera of an iPad Pro, and has been used 
previously to examine similar relationships in PD (24) and MS 
patients (25). To evaluate cognitive ability, four of the cognitive 
domains outlined in the Movement Disorder Society Task Force 
Guidelines (29) were measured for comparisons with previous 
findings in PD participants: MoCA, COWAT, HVLT and 
TMTA/B. The Symbol Digit Modalities Test (SDMT) was additionally 
included to assess cognitive processing speed and the Beck Anxiety 
Inventory (BAI) was also added to assess participant anxiety levels as 
part of the clinical assessment.

Relationship between oculomotor 
parameters and cognitive domains

To determine the extent to which oculomotor parameters could 
be used to estimate clinical measures of cognition in neurologically 
intact individuals, partial least squares (PLS) regression, which 
accounts for multicollinearity among the predictor variables 
(oculomotor parameters), was used. This approach yielded adjusted 

FIGURE 4

Predictions of age and clinical measures from oculomotor parameters using PLS regression models. Scatterplots of healthy participants’ age and 
clinical scores compared to the corresponding predicted value obtained by PLS regression analysis using oculomotor parameters as predictors: Age 
(a), TMTA (b), TMTB (c), COWAT (d), SDMT (e), MoCA (f), HVLT (g), and BAI (h). Blue dots represent male participants and red dots represent female 
participants. R2 and adjusted R2 values are reported for the entire healthy dataset (black), as well as R2 values for females only (red), and males only 
(blue) above each panel.
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R2 values (Figures 4b–g) between 0.10 (BAI) and 0.28 (SDMT) for 
predictions of cognitive scores. Additionally, a previously reported 
(24) PD dataset was re-analyzed for a direct comparison with the 
healthy participants. Notably, larger proportions of the variance in 
clinical outcome measures could be explained by the oculomotor 
parameters of the PD individuals than from those of the healthy group 
(Figures  6k–t), which was also reflected in greater correlations 
between the actual and predicted clinical measures in the PD dataset, 
ranging from an increase of 0.25 for COWAT to 0.52 for MoCA.

Figures 6f–j depicts the average absolute correlation coefficients 
between a given clinical measure and the oculomotor parameters 
measured from a specific eye-tracking task (i.e., anti-saccade, fixation, 

pro-saccade, smooth pursuit, and optokinetic nystagmus) for HC and 
PD. Notably, the mean correlation coefficients associated with anti-
saccade, pro-saccade, and smooth pursuit parameters were 
systematically higher in the PD cohort relative to the neurologically 
intact group. This differential likely underlies the reduced explanatory 
power of the oculomotor-based models for clinical cognitive scores 
observed in the healthy control sample. These findings are in line with 
those from the previous report on PD patients (24), in which anti-
saccade and pro-saccade parameters contributed the most to the 
clinical outcome measure predictive models. Indeed, there is ample 
evidence that anti-saccade tasks, in particular, tap into several 
executive and frontal cognitive processes, including psychomotor 

FIGURE 5

Relationship between oculomotor-predicted age and clinical measures. Scatterplots of the relationship between the oculomotor-based PLS 
predictions of age (predicted age) and clinical scores for healthy participants: TMTA (a), TMTB (b), COWAT (c), SDMT (d), MoCA (e), HVLT (f), and BAI 
(g). Spearman’s rho correlation coefficients between true age or predicted age and each score (h). Blue dots represent male participants and red dots 
represent female participants. Spearman’s rho and corresponding p-values are reported for the entire healthy participant dataset (black), for females 
only (red) and males only (blue) above panels (a–g).
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speed, visual search, attention task-switching, and inhibition (49–52) 
that are affected by PD. Similarly, several pro-saccade characteristics 
such as latency, duration, peak, and average velocity predict decline in 
global cognition, executive function, attention, and memory in PD 
patients (18, 53). Of note, the score that was predicted most poorly for 
the HC group was MoCA, which is an assessment of general cognitive 
ability that does not show large variation in healthy individuals. It is 
therefore not surprising that the variation in this score was more easily 
captured by oculomotor parameters in PD patients.

Taken together, these findings suggest that in the absence of 
significant impairment of brain function, as typically observed in 
neurological disorders, the oculomotor system may offer a more 
subtle signal with respect to predicting cognitive ability. This 
underscores the strength of oculomotor analysis as a tool that is 
sensitive to deviations from typical brain function and provides a 
baseline of the relationship between eye movements and cognitive 
scores in neurologically intact individuals without the underlying 
confound of neuropathology. Our results indicate that it is therefore 
likely that the link between eye-tracking data and cognition is 
mediated by the functional integrity of brain circuits, which highlights 
the utility of oculomotor analysis for the detection of 
neurocognitive disorders.

Although the explanatory power of the PLS regression models in 
neurologically intact individuals was modest, these results remain 
scientifically informative. In complex, multifactorial systems such as 

cognition, modest R2 values are expected because performance reflects 
the joint influence of diverse neural, experiential, and environmental 
factors. The fact that oculomotor parameters nevertheless accounted 
for a significant portion of variance suggests that they capture 
mechanistically relevant aspects of brain function. In particular, 
parameters derived from pro-saccade and anti-saccade tasks 
contributed most strongly to the latent components, consistent with 
the involvement of fronto-striatal and parietal networks known to 
support inhibitory control, attentional shifting, and processing speed 
(54–56). This indicates that even subtle variation in oculomotor 
control among healthy individuals reflects differences in the efficiency 
of higher-order cognitive systems. By contrast, the substantially 
greater variance explained in the PD cohort underscores how 
neurodegeneration amplifies the coupling between oculomotor and 
cognitive processes. Thus, while the analyses in the present context 
were not designed to provide clinical predictions at the individual 
level, they nevertheless provide mechanistic insight into shared neural 
substrates across motor and cognitive domains, and highlight the 
potential of oculomotor markers as sensitive indicators of early or 
subclinical changes in brain function.

The expected impact of oculomotor functions also varies across 
the clinical measures. For tasks that explicitly depend on visual 
scanning and rapid saccadic movements, such as the Trail Making 
Tests (TMTA/B) and the Symbol Digit Modalities Test (SDMT), 
oculomotor efficiency likely contributes directly to performance. In 

FIGURE 6

Oculomotor parameters are more predictive of cognitive measures for PD than HC participants. Cognitive score distributions for the healthy 
participants (Healthy Controls – HC) and PD patients from Koch et al. (24) for TMTA (a), TMTB (b), COWAT (c), MoCA (d) and HVLT (e). The 
corresponding average absolute correlation coefficient for each oculomotor task with each of the cognitive score distributions for HC and PD (f–j). 
Relationships between the participants’ cognitive scores and the corresponding predicted value obtained by PLS regression analysis for HC (k–o) and 
PD (p–t). AS, anti-saccade; Fix, fixation; OKN, optokinetic nystagmus; PS, pro-saccade; SP, smooth pursuit. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
(Mann–Whitney U corrected p-values).
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contrast, tests such as the Hopkins Verbal Learning Test (HVLT) and 
Controlled Oral Word Association Test (COWAT) primarily index 
memory and verbal fluency, and any oculomotor contribution is likely 
indirect, reflecting shared reliance on fronto-striatal and parietal 
circuits that support executive control and attention. The MoCA, as a 
composite measure including visuospatial and executive components, 
likely reflects a mixture of both direct and indirect influences. Finally, 
the BAI is least tied to oculomotor control, with effects expected to 
be indirect at best. Based on this rationale, the anticipated influence 
of oculomotor functions can be ranked as strongest for SDMT and 
TMTA/B, intermediate for MoCA, HVLT, and COWAT, and weakest 
for BAI. This framework highlights how eye-movement metrics can 
serve as both direct measures of visual-motor efficiency and indirect 
markers of broader neural integrity underlying cognition.

Effect of sex on the relationship between 
oculomotor parameters and cognition

Although the examination of potential sex differences in 
eye-tracking and oculomotor research has, to a large extent, been 
largely ignored or underreported, studies that have directly 
investigated this issue have reported mixed results. For instance, 
Coors et al. (57) noted that only a few of their investigated oculomotor 
parameters exhibited weak sex differences and both Mathew et al. (58) 
and Takahashi et al. (59) failed to demonstrate reliable sex differences. 
In contrast, studies with very large sample sizes [Bargary et al. (60) – 
N > 1,000 participants; Carrick et al. (61) – N > 23,000 participants] 
have reported sex differences across a range of oculomotor parameters. 
The requirement of such large sample sizes to demonstrate inter-sex 
differences raises the question of the clinical or biological relevance of 
the magnitude of these sex differences.

In this study, potential sex differences in the manner in which 
oculomotor parameters relate to cognition were investigated and no 
differences in the PLS model R2 values between males and females (see 
Figure 4) were found. Furthermore, the relationship between age and 
clinical scores was compared between males and females (see 
Figure 2), and no differences in the sex-based Spearman’s rho values 
were found.

Relationship between age, cognition, and 
oculomotor parameters

There is ample evidence in the literature supporting the effect that 
age has on cognitive ability, as measured via neuropsychological tests, 
consistent with our present findings and highlighted in Figure 1a. For 
instance, the ability to successfully complete TMTA and TMTB tends 
to slowly decline until the age of 60, at which point the slope of the 
decline increases (62). This decline is in line with the positive 
correlations reported here as worsening is evidenced by the increased 
time required to complete the tasks. Both SDMT (63) and HVLT (64) 
scores are also known to strongly correlate with age. It is also well 
established that several eye-movement parameters vary as a function 
of age, consistent with our findings that many oculomotor parameters 
significantly correlate with age (Figure  2). For instance, saccade 
latency and error rate in the antisaccade task increase with age (30, 32, 

65), whereas fixation stability tends to decrease and the frequency of 
catch-up saccades during smooth pursuit increases with age (66).

The purpose here, however, was to move beyond the known 
relationships between age and specific parameters, and instead to attempt 
to predict an individual’s age based on their measured oculomotor 
parameters. The idea is akin to recent studies attempting to develop 
biomarker-based age models to infer an individual’s biological or “brain” 
age using MRI (67, 68), and where the difference between one’s estimated 
age and chronological age, the “brain age gap” (BAG), has been proposed 
as a marker of brain health or brain functional integrity. We suspect that 
testing the oculomotor-based age model on a clinical population would 
produce a larger BAG than in a group of healthy controls – unfortunately, 
this could not be specifically tested in the current study due to the critical 
absence of a withheld age-matched control group.

Nonetheless, the oculomotor-based age model performed 
reasonably as a first attempt, explaining roughly 33% of the age 
variance in the subject sample (see Figure 4a). The accuracy of the age 
predictions was further examined by investigating their relationships 
with the clinical test scores. As seen in Figure 5, the “predicted age” 
correlation coefficients were roughly on par with the coefficients 
obtained using the participant’s true age, providing an additional line 
of evidence linking oculomotor parameters and cognition. Next steps 
in this specific line of research include future studies pairing known 
markers of biological age with eye tracking to develop a more robust 
eye-tracking model of biological age or brain age, which in turn could 
lead to the development of a low-cost, non-invasive, and scalable 
indicator of brain health and disease.

To assess whether anxiety might confound the observed 
relationships between oculomotor features and cognitive outcome 
measures, we included the BAI score in our analyses. The BAI was not 
significantly correlated with any oculomotor parameters (Figure 2), 
and PLS regression models in the HC group demonstrated the worst 
predictive power for anxiety in terms of variance explained (Figure 4). 
Therefore, we do not believe that anxiety levels played a role in driving 
the observed results.

Study limitations

A first limitation relates to the extent to which participants were 
truly cognitively intact, given that they self-reported as such. Using 
the cutoff score of 23 outlined in the updated MoCA criteria by 
Carson et al. (69), half a dozen of the participants would in fact 
be classified as having mild cognitive impairment. However, given 
that these participants represent less than 3% of our total study 
sample, it is unlikely that they significantly biased any of the 
reported findings. Moreover, their inclusion likely makes the dataset 
more generalizable to the general population without diagnosed 
neurological disorders.

Although cognitive ability is inferred here via variance explained by 
oculomotor parameters, partial least squares regression analyses produce 
inference models, which do not necessarily guarantee strong predictive 
abilities. To claim that disease, cognitive ability, or even age, in a single 
individual can be  estimated, predictive models would need to 
be validated with an independent dataset. Although several cognitive 
domains were investigated, not all of them were sampled, and stronger 
relationships with oculomotor parameters might exist with other 
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cognitive functions captured with different neuropsychological tests not 
included in the present study. In particular, the cognitive domains 
sampled were limited to those typically associated with decline in PD.

The sample sizes of our two comparison groups were unequal, and 
perhaps more importantly, were not age-matched. However, the age 
distributions of our groups were roughly representative of their 
associated population distributions (adult neurologically intact 
individuals and individuals with mild-to-moderate PD), suggesting 
that our findings are likely generalizable to those population sets. 
Finally, another minor limitation relates to data loss caused by the 
camera position relative to the iPad Pro tablet (at the top), which 
makes it difficult to accurately detect the eyes when looking at the 
bottom of the screen for some subjects due to the eyelids partially 
obscuring relevant gaze estimation markers  – see 
Supplementary methods for further details. As a result, data collected 
from large amplitude downward saccades were removed from all 
subjects and all analyses.

Another limitation relates to the assumption of symmetrical 
velocity profiles during saccades. Neurological conditions such as 
Parkinson’s disease often produce asymmetric velocity profiles, with 
an extended deceleration phase relative to acceleration. This 
asymmetry may introduce measurement error in estimates of latency 
and peak velocity. If present, such errors could lead to the 
underestimation of the strength of observed associations between eye 
movement parameters and clinical outcomes. Future iterations of the 
model will explore relaxing the symmetry constraint to better 
accommodate atypical velocity profiles observed in these populations.

Finally, one additional methodological consideration concerns the 
use of Spearman’s rho. While this statistic is less sensitive to skew and 
outliers than Pearson’s correlation, it assumes iid observations and is 
affected by ties in the data. Given our study design, where each 
participant contributed one observation, independence was satisfied. 
Although ties occurred for some discrete clinical measures (e.g., 
MoCA, SDMT), their influence was minimized by the average-rank 
procedure. Thus, while Spearman’s rho captures monotonic rather 
than strictly linear associations, we  believe it provided the most 
appropriate framework for relating oculomotor and cognitive 
variables in this dataset.

Conclusion

The present study set out to investigate the relationship between 
oculomotor parameters and clinical scores of cognition, age, and sex. 
Within neurologically intact individuals, no significant differences 
between males and females regarding the relationship between the 
examined clinical scores and oculomotor parameters were observed. 
Overall, the findings demonstrate that while oculomotor parameters 
show a modest but statistically reliable relationship with cognitive 
performance in neurologically intact individuals, their predictive 
value is substantially greater in individuals with a neurodegenerative 
disorder (PD). This pattern suggests that the link between cognitive 
function and eye-tracking parameters may be amplified in the context 
of neurodegeneration, likely due to disruptions in shared neural 
systems supporting both motor control and cognition. In healthy 
individuals, the relationship appears more subtle, consistent with the 
idea that the oculomotor system reflects broader aspects of brain 
function that only become more diagnostically informative when 
those systems are compromised. Finally, our results reveal a moderate 

association between age and several oculomotor parameters, 
suggesting that while oculomotor analysis alone may not precisely 
estimate an individual’s “brain age” or biological age, it could 
nonetheless contribute meaningfully to future predictive models when 
combined with other relevant biomarkers.
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SUPPLEMENTARY FIGURE 1

Predictions of clinical measures from oculomotor parameters using PLS 
regression models with the addition of age as a predictor. Scatterplots 
of healthy participants’ clinical scores compared to the corresponding 
predicted value obtained by PLS regression analysis using oculomotor 
parameters and age as predictors: TMTA (a), TMTB (b), COWAT (c), 
SDMT (d), MoCA (e), HVLT (f), and BAI (g). Blue dots represent male 
participants and red dots represent female participants. R2 and adjusted 
R2 values are reported for the entire healthy dataset (black), as well as R2 
values for females only (red), and males only (blue) above each panel. 
No significant differences in model performance between males and 
females were found when tested via permutation tests (N = 1000 
replicates): TMTA (p = 0.4702), TMTB (p = 0.9604), COWAT (p = 0.8408), 
SDMT (p = 0.9938), MoCA (p = 0.2792), HVLT (p = 0.6940), BAI 
(p = 0.6534).
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