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Oculomotor indicators of
cognitive performance are
modulated by neurodegeneration
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In this study, the extent to which eye movements can be used to estimate
cognitive ability in neurologically intact individuals was evaluated in the absence
of clear underlying neurodegenerative processes. In contrast to previous studies
of Parkinson’s Disease (PD) and multiple sclerosis that demonstrated a strong
link between oculomotor parameters and clinical measures of cognition, this
relationship is unaffected by disease in healthy participants, enabling a more direct
assessment of the connection between eye movements and cognition. Accordingly,
a modest portion (<287%) of the observed variance in cognitive test scores could
be explained by oculomotor parameters in 204 participants aged 18-79 with
no differences between males and females observed. The relationship between
oculomotor parameters and cognitive measures was further compared between
neurologically intact individuals and a separate sample of 65 individuals with PD.
Oculomotor parameters showed stronger correlations with cognitive measures in
PD patients, likely contributing to the greater explanatory power of oculomotor-
based models in this population. Finally, given that many oculomotor parameters
are affected by age, the ability to estimate an individual's age without confounding
neurodegeneration was assessed. As 33% of the variance in participants’ age could
be explained by oculomotor parameters, age may be estimated from oculomotor
parameters, providing insight into the aging brain. Collectively, these findings
highlight the connection between oculomotor function and clinical measures of
cognition in the absence of neurodegeneration and indicate that these relationships
are likely mediated by the functional integrity of brain networks involved in both
motor control and cognitive processing.

KEYWORDS

cognition, eye-tracking, oculomotor dynamics, saccades, Parkinson’s disease,
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Introduction

Although knowledge about our ability to infer brain function through analysis of eye
movements has been around for a few centuries (1), the advent of modern eye-tracking
technology has resulted in a growing interest in probing brain circuitry integrity via the
detailed study of eye movements. Much of the recent work has attempted to develop
eye-movement and gaze-based markers of neurodegenerative processes, such as Alzheimer’s
Disease (AD), Parkinson’s Disease (PD), and Multiple Sclerosis (MS). For instance, AD is
associated with difficulty in inhibiting incorrect responses during an anti-saccade task and
with a reduction in directional error corrections (2, 3), and while findings have not been
consistent across all studies, some have also reported an increased rate of saccadic intrusions
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during fixation (4, 5). Hallmark features of PD also include hypometric
saccades toward targets, which also often follow a multistep sequence
(6, 7). Additionally, internuclear ophthalmoplegia (INO), a slowing of
the adducting eye during horizontal saccades, is a well-documented
oculomotor feature of MS (72), with reported prevalence estimates
ranging from 15 to 52%, depending on the assessment method used
[see Hof et al. (8) for a more comprehensive overview].

Beyond identifying markers of disease, a growing body of research
suggests that it may be possible to infer disease severity and track
disease progression via the analysis of eye movements. Several studies
have indicated that individual oculomotor parameters (e.g., saccadic
latency or anti-saccade error rate) correlate strongly with clinical scale
scores [e.g., the Expanded Disability Status Scale (EDSS) for MS or the
Movement Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS 1IIT) (9-12)]. Although cognition has often been
investigated via eye-tracking paradigms of free-viewing conditions,
where coarse eye movement and gaze parameters are interpreted to
reflect certain cognitive processes such as memory and attention
(13-15), the study of cognitive function via detailed oculomotor
analysis is relatively novel. Indeed, recent evidence suggests that
cognitive ability can be inferred via the analysis of spatiotemporal
parameters measured with infrared eye-tracking devices and standard
paradigms of oculomotor function (e.g., pro-saccades, fixation
stability, anti-saccades, and smooth pursuit tasks). For instance,
several oculomotor metrics measured in individuals with PD have
been shown to significantly correlate with measures of general
cognition such as the Mini-Mental Status Exam (MMSE) (16, 17) or
the Montreal Cognitive Assessment (MoCA) (18, 19), or with
measures of processing such as the Symbol Digit Modalities Test
(SDMT) (20, 21) and Paced Auditory Serial Addition Test (PASAT)
(22, 23) in MS patients.

Using a novel mobile eye-tracking software that functions using
the standard camera of an iPad Pro (Eye-Tracking Neurological
Assessment (ETNA™); Innodem Neurosciences), our group recently
replicated many of the aforementioned findings in several clinical
populations. In particular, several oculomotor parameters, when
jointly considered, could account for a large proportion of the variance
in cognitive test scores. For instance, a combination of oculomotor
parameters and machine learning regression models was able to
explain between 43 and 72% of the variance on cognitive test scores
in PD patients (24), and explain between 48 and 73% of the variance
on cognitive test scores in MS patients (25).

However, to our knowledge, most of the evidence described above
linking cognitive ability to oculomotor parameters was obtained in
clinical populations, particularly those with neurological disorders.
Notably, disease-related factors may simultaneously affect both eye
movements and cognitive function, making it difficult to determine
whether observed relationships reflect direct associations or shared
consequences of the underlying condition. Studying neurologically
intact individuals offers a unique opportunity to disentangle these
effects by providing a clearer baseline from which to understand the
specific contribution of cognitive function to oculomotor measures.
As previous studies have demonstrated that oculomotor function is a
sensitive marker of neural integrity in various neurological conditions
(26-28), the current study aims to extend these findings by examining
this relationship in healthy individuals.

As such, the primary objective of the present study was to
determine to what extent cognitive ability could be estimated in a large
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sample of neurologically intact individuals via oculomotor parameters
measured with standard eye-tracking tasks (i.e., pro-saccades, anti-
saccades, smooth pursuit, fixation, optokinetic nystagmus). To
evaluate cognitive ability, four of the cognitive domains outlined in the
Movement Disorder Society Task Force Guidelines (29) were
measured for comparison with previous findings in participants with
PD (24) using the following tests: MoCA (global cognitive), Trail
Making Test (TMT A/B) (attention and working memory), Controlled
Oral Word Association Test (COWAT) of verbal fluency (executive
function), Hopkins Verbal Learning Test (HVLT; memory). The
Symbol Digit Modalities Test (SDMT) was additionally included to
assess cognitive processing speed and the Beck Anxiety Inventory
(BAI) to assess participant anxiety levels as part of the assessment.
Correlations between clinical test scores, participant age, and all
individual oculomotor parameters were investigated. Subsequently a
partial least squares (PLS) regression approach was used to determine
the extent of clinical score variance that could be explained using the
eye movement parameters. A secondary objective was to determine to
what extent an individual’s age could be estimated in the absence of
confounding neurodegeneration, given that many oculomotor
parameters are known to be impacted by age (30-32). How well this
age estimate can also explain clinical score variance was then
examined. Finally, the relationship between oculomotor inputs and
cognitive scores and the performance of the PLS regression models of
neurologically intact participants was compared with those obtained
from a sample of PD participants. In light of a growing body of
evidence highlighting critical sex differences across numerous
domains of neuroscience (33), the data collected in this study were
disaggregated by sex wherever possible to explore potential sex-related
effects—an approach that remains underutilized in much of
neurological research. Although the study was not explicitly designed
to investigate sex differences, the relatively large sample size would
enhance confidence in any observed effects and could support the
generation of testable hypotheses for future targeted investigations.

Methods
Subject populations

Healthy group

204 cognitively and neurologically intact (self-reported)
individuals took part in this study (Healthy Controls (HC): age
40.2 £ 15.0, range 18-79, 120/84 males/females). All individuals
provided informed and written consent and were recruited from the
general public. The study procedures outlined in this paper were
approved by and performed in accordance with the guidelines of the
Veritas and the McGill University Health Centre research
ethics boards.

PD group

For model comparison purposes, data collected from 65
Parkinson’s Disease (PD) patients with mild-to-moderate idiopathic
PD used in two previous publications (24, 34) were also used in the
present study to compare the oculomotor-based predictive models
between the PD patients and the neurologically intact individuals. All
PD patients (age 64.1 + 8.4, range 45-89, 43/22 males/females) were
diagnosed by a movement disorder specialist in the province of
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Quebec according to the MDS criteria (35) and were enrolled as part
of the Quebec Parkinson Network (QPN; https://rpg-gpn.ca/)
initiative (36). Data was collected in a sample of 65 consecutively
recruited patients. Additional patient details can be found in Koch
etal. (24).

Oculomotor assessment and experimental
setup

All eye-tracking tests were performed using the ETNA™ software
installed on a 12.9-inch iPad Pro tablet. The software enables the
simultaneous presentation of visual stimuli on-screen and video
recordings of the eyes using the embedded front-facing camera at 60
frames per second. Gaze-tracking is performed in visible light with a
deep neural network that uses four inputs to produce a general gaze
model: an image of each of the user’s eyes, an image of the user’s face,
and the Euler angles of the head as head pose information. Apple’s
ARKit was used to detect facial landmarks.

Participants were seated throughout the experiment. The iPad was
positioned vertically using an adjustable tablet stand, placed
approximately 45 cm from the participant, such that the center of the
screen aligned with eye level. While no physical head restraints (e.g.,
chin rests) were used, participants were instructed to minimize head
movement during the tasks. The ETNA™ software includes built-in
safeguards to monitor head orientation and eye-to-screen distance in
real time. If the participant’s head position deviated beyond acceptable
limits, an on-screen prompt provided clear visual instructions for
realignment (e.g., “Please move your head slightly forward” or “Please
tilt your head slightly to the left”), thereby ensuring consistent data
quality throughout the assessment.

All participants performed five oculomotor tasks in the following
order: a fixation task, a pro-saccade task, an anti-saccade task, a
smooth pursuit task, and an optokinetic nystagmus (OKN) task. Task
details and parameters are outlined in the Supplementary materials.
All participants performed a brief calibration step whereby they
tracked a slow-moving target on-screen using the ETNA™ software,
before undertaking the visual tasks. The calibration procedure itself
trains an additional model, which is then incorporated into the
general gaze model to produce the final individualized gaze-tracking
model. The ETNA™ software’s gaze-tracking algorithms have an
estimated average (over the entire screen) accuracy of 0.47 degrees
(mean offset between the actual gaze position and the recorded gaze
position) and precision of 0.33 degrees (as calculated via Root Mean
Square (RMS) of the sampled points); an estimate of reliability of the
gaze point estimate from one sample to the next, which are comparable
values to those of research-grade infrared eye tracking devices. For a
detailed description of how oculomotor parameters were extracted
from the gaze signal, see Supplementary materials.

Clinical and cognitive assessments

Cognitive assessments included the following: the Montreal
Cognitive Assessment (MoCA) (37), the Trail Making Test (TMT
A/B) (38), the Hopkins Verbal Learning Test (HVLT) (39), and the
CFL version of Controlled Oral Word Association Test (COWAT)
(40). These tests were selected as they had been administered to most
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PD patients enrolled in the Quebec Parkinson Network initiative and
they evaluated four of the cognitive domains outlined in the
Movement Disorder Society Task Force Guidelines (29). For healthy
participants, we included an additional measure of cognitive
processing with the Symbol Digit Modalities Test (SDMT) - (41) and
of state anxiety with the Beck Anxiety Inventory [BAI - Beck et al.
(42)]. The number of HC and PD participants who completed each
test is as follows: MoCA (203 HC, 36 PD), TMTA (203 HC, 50 PD),
TMTB (203 HC, 49 PD), COWAT (203 HC, 48 PD), HVLT (200 HC,
50 PD), SDMT (198 HC), BAI (203 HC).

Clinical outcome measures

Given the number of tests used and the multiple possible outcome
measures for each, we selected, a priori, one outcome measure per test
for use in subsequent analyses. MoCA: the total score (out of 30) was
used as the outcome measure. SDMT: the total number of correct
symbol-digit pairings within a 90 s time limit (out of 110). TMT - Part
A (TMTA): time in seconds to connect numbered circles in ascending
order. TMT - Part B (TMTB): time in seconds to connect the numbers
and letter sequence alternately. HVLT: total recall score, which is the
sum of the correctly recalled words across the three learning trials.
COWAT: total count of valid words produced during one minute per
letter, using letters C-F-L. BAI: total score (out of 63).

Data analyses

Correlation analyses

For all correlations between eye movement parameters and the
demographic or clinical outcome measures of interest (Age, MoCA,
TMTA, TMTB, HVLT, COWAT, and BAI), the Spearman’s rho
correlation coeflicient was calculated. This rank-based approach was
selected because it does not assume linearity or normally distributed
variables, and it is more robust to outliers than Pearson’s correlation,
which was important given the skewed distributions observed for
several clinical measures (e.g., Trail Making Test times, BAI scores).
We note that Spearman’s rho assumes independent and identically
distributed (iid) pairs and can be influenced by ties in rank assignment.
Each participant contributed a single set of measures, satisfying
independence, and ties were rare for continuous oculomotor
parameters. For cognitive scores with more frequent ties (e.g., MoCA,
SDMT), average ranks were assigned by the software, an approach
demonstrated to introduce minimal bias in large samples (43, 44).
We therefore judged Spearman’s rho to be the most appropriate
balance between robustness and sensitivity for the present dataset. To
adjust for the false discovery rate, corrected p-values were computed
using the Benjamini-Hochberg procedure evaluated at an alpha level
of 0.05.

Partial least squares regression analysis

Partial least squares (PLS) regression was used to examine the
relationship between oculomotor parameters and each clinical score
(Age, TMTA, TMTB, COWAT, SDMT, MoCA, HVLT, and BAI)
while accounting for multicollinearity between oculomotor
parameters. In order to include subjects with structurally missing
values in the oculomotor parameters and maximize sample size input
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into the PLS models, probabilistic principal component analysis
(PPCA) imputation (45, 46) was used to estimate the missing values.
A multi-step feature selection procedure was used for each model.
The first step consisted of a correlation-based feature selection to
determine the 20 parameters (out of a total of 199) most correlated
with the clinical score. Subsequently, an exhaustive feature selection
procedure was used to select the parameter set of the final model,
which involved sampling all possible combinations of those 20
oculomotor parameters (set sizes from 1 to 20) and subsequent
model fitting. For each PLS regression model, the number of latent
variables maximizing the covariance between the independent and
dependent variables was selected by minimizing the Bayesian
information criterion (47, 48) using a 10-fold cross-validation
approach. The coeflicient of determination (R*) was used to assess
multiple regression performance (both adjusted and non-adjusted
values).

Permutation tests

Permutation tests were used to determine if there was a
statistically significant difference between Spearman’s rho correlations
or adjusted R* between groups (i.e., male vs. female or HC vs. PD). For
both measures, the difference in Spearman’s rho or adjusted R
between groups was first computed. A null distribution was then
generated by shuffling the group labels N=1,000 times and
recalculating the difference on each replicate. A two-tailed p-value
evaluated at an alpha level of 0.05 was obtained by calculating the
proportion of permuted differences more extreme than the
observed value.

Results

Relationship between clinical measures
and age

The correlation coefficients (Spearman’s rho) between all clinical
and demographic variables (Age, MoCA, TMTA, TMTB, HVLT,
COWAT, BAI) of the healthy group are displayed in Figure la (and
further documented in Supplementary Table 1). Related test scores
unsurprisingly correlated more highly with one another (such as the
TMTA and TMTB), whereas scores of general cognition (MoCA) or
anxiety levels (BAI) correlated more weakly with the other clinical
scores measuring specific cognitive abilities. The relationships between
participant age and cognitive/clinical test scores are further depicted
for TMTA (Figure 1b, Spearman’s rho = 0.4034, p = 2.41*10~°), TMTB
(Figure 1lc, Spearman’s rho =0.3707, p=5.20¥10"%), COWAT
(Figure 1d, Spearman’s rho = —0.1421, p = 0.0432), SDMT (Figure le,
Spearman’s rho = —0.6290, p=3.30¥10"%), MoCA (Figure 1f,
Spearman’s rho = —0.1280, p = 0.0687), HVLT (Figure 1g, Spearman’s
rho = —0.4353, p=1.19710""), and BAI (Figure 1h, Spearman’s
rho = —0.2838, p = 4.07%107°), which are disaggregated by participant
sex (Figures 1b-h). No significant differences were found between the
correlation coeficients of males and females for TMTA (Figure 1b,
p=0.2680), TMTB (Figure lc; p=0.3610), COWAT (Figure 1d,
p=0.6225), SDMT (Figure le, p=0.5240), MoCA (Figure 1f,
p=0.5950), HVLT (Figure lg, p=0.3650), or BAI (Figure 1b,
p=0.130) with age, computed via permutation tests (N = 1,000
replicates).
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Correlations between eye-tracking
parameters and clinical outcome measures

Spearman correlations between the extracted oculomotor
parameters and clinical/demographic variables (Age, TMTA,
TMTB, BAI, MoCA, COWAT, SDMT, HVLT) are detailed in
Supplementary Table 2, with oculomotor parameters having at least
one significant correlation shown in Figure 2. Participant age
correlates the most strongly with various sets of oculomotor
parameters, primarily those from the pro-saccade task. SDMT, TMTA
TMTB, and HVLT also had multiple significant correlations with
various parameters, particularly from the anti-saccade and
pro-saccade tasks. In contrast, MoCA, COWAT, and BAI are
significantly correlated with fewer oculomotor parameters. After
correction for multiple comparisons, 47 oculomotor parameters were
significantly correlated with age, 31 with SDMT, 23 with TMTA, 17
with HVLT, 12 with TMTA, 7 with COWAT, 5 with MoCA, and none
with BAIL Select representative significant correlations between
clinical outcome measures and oculomotor parameters are depicted
in Figure 3.

PLS regression analyses

We performed partial least squares (PLS) regression analyses to
develop models that best explained each demographic and clinical
outcome measure based solely on oculomotor parameters. PLS
regressions for each measure are presented in Figure 4 and show that
all models explain between 10 and 33% of the variance of the
cognitive-, age- and anxiety-related outcome measures. The best
variance explanatory model was for age (Figure 4a; R? = 0.36, Adjusted
R*=0.33), followed by SDMT (Figure 4e; R*=0.31, Adjusted
R?=0.28), COWAT (Figure 4d; R* = 0.26, Adjusted R* = 0.21), TMTA
(Figure 4b; R* = 0.22, Adjusted R* = 0.19), TMTB (Figure 4¢; R* = 0.20,
Adjusted R*=0.17), and HVLT (Figure 4g; R*=0.18, Adjusted
R*>=10.16). The MoCA (Figure 4f; R* = 0.15, Adjusted R* = 0.12) and
BAI models (Figure 4h; R* = 0.14, Adjusted R*> = 0.10) explained the
least variance. Although the PLS regression R* values sometimes
differed between males and females, no statistically significant
differences were observed for age (Figure 4a, p = 0.4702), TMTA
(Figure 4b, p=0.1824), TMTB (Figure 4c, p =0.5816), COWAT
(Figure 4d, p=0.8258), SDMT (Figure 4e, p=0.3578), MoCA
(Figure 4f, p=0.2710), HVLT (Figure 4g, p=0.9404) or BAI
(Figure 4h, p = 0.9054) as evaluated by permutation tests (N = 1,000
replicates). These results show that oculomotor parameters are able to
account for a small to modest portion of the variance in cognitive
scores in healthy individuals. Scores that show less individual variation
in our sample population (MoCA) or assess anxiety as opposed to
cognition (BAI) were the least well-explained by oculomotor models.

Additionally, the ability of PLS regression to predict clinical
measures when including age in addition to oculomotor parameters
as a model feature was evaluated (Supplementary Figure 1). When this
demographic variable was included, the amount of variance explained
by each model stayed the same or increased slightly (0-17% increase).
The greatest improvement in model performance was observed for
SDMT (Supplementary Figure 1d; R? = 0.47, Adjusted R* = 0.45) with
an additional 17% in variance explained, followed by 7% for HVLT
(Supplementary Figure 1f; R* = 0.25, Adjusted R* = 0.23) and 6% for
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FIGURE 1
Relationship between age and clinical measures. Spearman’s rho correlation values between each clinical score for healthy individuals (a). Scatterplots
highlighting the relationship between age and TMTA (b), TMTB (c), COWAT (d), SDMT (e), MoCA (f), HVLT (g), and BAI (h). Blue dots represent male
participants and red dots represent female participants. Spearman’s rho and corresponding p-values are reported for the entire healthy participant
dataset (black), for females only (red) and males only (blue) above panels b-h. * p < 0.05, ** p < 0.01, *** p < 0.001 (corrected p-values).

TMTB (Supplementary Figure 1b; R* = 0.26, Adjusted R* = 0.23). The
remaining models either had a small (1-2%) increase in variance
explained (TMTA - Supplementary Figure la: R* = 0.24, Adjusted
R*=0.21; BAI - Supplementary Figure lg: R*=0.15, Adjusted
R?=0.11) or no change in performance (COWAT - Supplementary
Figure lc: R*=0.26, Adjusted R*=0.21; MoCA - Supplementary
Figure le: R* = 0.15, Adjusted R* = 0.12). These findings indicate that
for some cognitive scores, particularly those most correlated with age
(SDMT, HVLT; Figure 1), including age in the model helps capture
variance in cognitive performance not explained by oculomotor
that
explained a substantial amount of the variance in cognitive scores

parameters alone. However, oculomotor parameters

prior to including age suggests that these parameters capture
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meaningful individual differences in cognition beyond age-related
effects.

To explore whether oculomotor-predicted age captures
meaningful variation related to cognitive function, age estimates
from our PLS regression model (Figure 4a) and true chronological
age were compared. Figure 5 depicts the relationship between
predicted age and TMTA (Figure 5a, Spearman’s rho = 0.3873,
p=114%10"%), TMTB (Figure 5b, Spearmans rho =0.2894,

p=2.82%10"°), COWAT (Figure 5c, Spearmans rho=—0.1712,
p=0.0146), SDMT (Figure 5d, Spearmans rho=—-0.4779,
p=1.08%10"%), MoCA (Figure 5e, Spearmans rho=—0.1312,
p=0.0620), HVLT (Figure 5f, Spearmans rho =—0.3455,

p=5.43%107), and BAI (Figure 5g, Spearman’s rho = —0.1666
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Relationship between oculomotor parameters and clinical measures. Heatmap depicting Spearman’s rho correlation values between eye-tracking
parameters and age or clinical scores. Only oculomotor parameters with at least one significant correlation after correcting for multiple comparisons
are shown. PS, pro-saccade; SP, smooth pursuit. * p < 0.05, ** p < 0.01, *** p < 0.001 (corrected p-values).

p =0.0175). Similar to the relationships with true age, the correlations
between predicted age and TMTA (p = 0.0680), TMTB (p = 0.9870),
COWAT (p = 0.6750), SDMT (p = 0.5320), MoCA (p = 0.4230),
HVLT (p=0.3080) and BAI (p=0.3580) did not display sex
differences as determined by permutation tests (N = 1,000 replicates).
The correlations between predicted age and cognitive scores were also
similar to those observed with true age in terms of magnitude of
correlation and direction of the relationship. To confirm this,
permutation tests (N = 1,000 replicates) were performed to assess
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whether the correlations between true age and clinical scores were
statistically different from those between predicted age and clinical
scores (Spearman’s rho correlations reported in Figure 5h). Apart
from SDMT (p=0.0420), correlations were not found to
be significantly different: TMTA (p = 0.860), TMTB (p = 0.3750),
COWAT (p = 0.7950), MoCA (p = 0.9740), HVLT (p = 0.2780), BAI
(p = 0.2210). These findings indicate that oculomotor-predicted age
varies with cognition in a manner comparable to chronological age,
supporting its potential as a proxy for age-related cognitive change.

frontiersin.org


https://doi.org/10.3389/fneur.2025.1649745
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Voss et al. 10.3389/fneur.2025.1649745
a - b c o d
p=-0.3315p = 1.4e-06 .2 p =-0.3460p = 5.6e-07 < p =-0.2544p = 0.0003 % p =-0.2408p = 0.0006
_é‘ 8 100 - som @ B0 ° .g 100 - comm o =
S 250 4 = 153 o 1.0
8 = o) 2
K} Oy = [0}
= EQ oo £
- 200 H* =205 ® 5 = 08
s y BO Lo 2
s ¢ “— ) o]
= 450 =c (Ol %)
o o @ T ® 0.6
o o 8 e o
S Q © o © E
5 100 Sa Sa S
(%) 8 i 8 0.4
= s c 9]
= < 2
< <

T e 5
z :
e 3
o 1.0 pt
= 2
E £
= 08 =
3 3
5 o
e 0.6 2
° o
S ]
8 Q
S 04 s
@ n
=] =
< <

SDMT

FIGURE 3

Select relationships between oculomotor parameters and clinical measures. Correlations between select oculomotor parameters and age or clinical
scores in healthy participants: Age (a), TMTA (b), TMTB (c), COWAT (d), SDMT (e), MoCA (f), HVLT (g), and BAI (h). Spearman’s rho correlation values
and p-values are reported above each panel, and linear regression lines with 95% confidence intervals are shown. PS, pro-saccade.

h
0 =0.3227p = 3.36-06 0 =-0.2051p = 0.0034

Py © 0.5 4
S 2
§ 150 - ) S

o .
< ~hul |
o) _ £ “
= 100 =
E— (0]
©
£ g
o) 50 A =1
n
e —_  ?

10 20 30
HVLT

Finally, to directly compare the ability of PLS regression models
to predict cognitive scores from oculomotor parameters in healthy or
PD participants, the PD data published in Koch et al. (24) was
reanalyzed, the results of which are shown in Figure 6. The clinical
outcome measures collected in both the neurologically intact
individuals (Healthy Controls; HC) and PD patients from Koch et al.
(24) are first reported, with TMTA (Figure 6a; Mann-Whitney U
(MWU) = 2583.5, p = 7.683*10"%), TMTB (Figure 6b; MWU = 2651.0,
p =3.967%10"7), MoCA (Figure 6d; MWU = 4913.5, p = 0.0008) and
HVLT (Figure 6e;s MWU = 6857.5, p = 4.7113*10°), but not COWAT
(Figure 6¢; MWU = 5416.5, p = 0.2288) scores differing significantly
between the populations.

To assess whether the relationship between clinical outcome
measures and oculomotor parameters is comparable in the
neurologically intact and PD populations, Spearman’s rho correlation
coeflicients between cognitive scores and all oculomotor parameters
within each population (as in Figure 2) were calculated and the
average absolute correlation coefficients within each oculomotor task
(anti-saccade (AS), fixation (Fix), optokinetic nystagmus (OKN),
pro-saccade (PS) and smooth pursuit (SP)) were compared
(Figures 6f-j). In general, the average correlations between cognitive
scores and oculomotor parameters in PD patients had greater
magnitude than those of HC participants, although this varied by
score and task. To investigate this further, two-tailed Mann Whitney
U tests were performed and corrected for multiple comparisons using
the Benjamini-Hochberg procedure. All scores contained at least one
task for which PD correlations were found to be statistically larger
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than HC correlations (Figures 6f-j). For full statistical results see
Supplementary Table 3.

To further examine the stronger relationships between oculomotor
parameters and cognitive scores in PD patients, new PLS regression
models were fit for the PD group using the same procedures as for the
neurologically intact population (see Methods). In comparison to
Koch et al. (24), the current methods explore a greater number of
oculomotor parameters and include PPCA imputation, which better
leverages the full dataset of both participants and parameters. As such,
the use of the same method enabled comparison of model
performance between the HC and PD groups. The relationship
between HC model predictions and the clinical outcome measures
common to both populations are reproduced from Figure 4 in
Figures 6k-o to aid in the comparison with the same relationships in
the PD population in Figures 6p-t.

Notably, the oculomotor parameter-based PLS models explain
a greater proportion of cognitive score variance in PD patients
(47-63%) than in neurologically intact individuals (12-28%), and
predicted scores are more closely related to true scores (Spearman’s
rho PD: 0.74-0.89 vs. HC: 0.37-0.50). Specifically, the PLS
regression model for TMTA explains 54% of PD TMTA scores
(Figure 60; R* = 0.62, Adjusted R* = 0.54, Spearman’s rho = 0.7833,
p=1.78%10""") in comparison to the 19% variance (rho = 0.4972,
p =4.49710"") explained by the equivalent model in HCs. The
TMTB PLS regression model explains 54% of PD patient TMTB
scores (Figure 6q; R*=0.62, Adjusted R?>=0.54, Spearman’s
rho =0.7772, p=5.17710"") compared to the 17% variance
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(rho = 0.3776, p = 2.79*107*) explained by the equivalent model in
HCs. Similarly, the PLS regression model for the PD population
explains 47% of PD COWAT scores (Figure 61; R* = 0.57, Adjusted
R*=0.47, Spearman’s rho = 0.7437, p = 1.39*10™%) instead of the
21% variance (rho = 0.4974, p = 4.36*107"*) explained by the model
for the HC population. For MoCA scores, the PLS regression
model for PD patients explains a much larger percentage (63%) of
the PD population’s MoCA scores (Figure 6s; R* = 0.76, Adjusted
R?>=0.63, Spearman’s rho = 0.8861, p = 6.72¥107") compared to
the 12% explained variance (rho = 0.3669, p = 7.31¥107®) of the
PLS regression for the HC population. Finally, the PLS regression
model for HVLT for PD patients also explains more variance (57%)
in HVLT scores (Figure 6t; R*=0.63, Adjusted R*>=0.57,
Spearman’s rho = 0.7560, p = 2.12%¥1077) than the model for HCs
(16% rho = 0.4671, p = 2.19*10"19).
Additionally, permutation tests (N = 1,000 replicates) were carried

variance  explained,
out to assess whether the relationship between predicted and true
scores (as quantified by the Spearman’s rho values) differed
between the groups for each score. The PLS-predicted values were
significantly more correlated with the true values for the PD
models than HC models for all scores: TMTA (p = 0.0129), TMTB
(p = 0.006), COWAT (p =0.036), MoCA (p = 0.003), HVLT
(p =0.015). Taken together, the PLS regression models leverage
information present in the oculomotor parameters to explain more
of the variance in clinical outcome measures in PD patients than
in neurologically intact individuals.
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Discussion

This study’s primary objective was to determine the extent to
which cognitive ability can be estimated via oculomotor parameters
in a large sample of neurologically intact individuals. To measure such
parameters, a novel mobile eye-tracking software was used that
functions using the standard camera of an iPad Pro, and has been used
previously to examine similar relationships in PD (24) and MS
patients (25). To evaluate cognitive ability, four of the cognitive
domains outlined in the Movement Disorder Society Task Force
Guidelines (29) were measured for comparisons with previous
findings in PD participants: MoCA, COWAT, HVLT and
TMTA/B. The Symbol Digit Modalities Test (SDMT) was additionally
included to assess cognitive processing speed and the Beck Anxiety
Inventory (BAI) was also added to assess participant anxiety levels as
part of the clinical assessment.

Relationship between oculomotor
parameters and cognitive domains

To determine the extent to which oculomotor parameters could
be used to estimate clinical measures of cognition in neurologically
intact individuals, partial least squares (PLS) regression, which
accounts for multicollinearity among the predictor variables
(oculomotor parameters), was used. This approach yielded adjusted
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FIGURE 5
Relationship between oculomotor-predicted age and clinical measures. Scatterplots of the relationship between the oculomotor-based PLS
predictions of age (predicted age) and clinical scores for healthy participants: TMTA (a), TMTB (b), COWAT (c), SDMT (d), MoCA (e), HVLT (f), and BAI
(g). Spearman’s rho correlation coefficients between true age or predicted age and each score (h). Blue dots represent male participants and red dots
represent female participants. Spearman’s rho and corresponding p-values are reported for the entire healthy participant dataset (black), for females
only (red) and males only (blue) above panels (a—g).

R* values (Figures 4b-g) between 0.10 (BAI) and 0.28 (SDMT) for
predictions of cognitive scores. Additionally, a previously reported
(24) PD dataset was re-analyzed for a direct comparison with the
healthy participants. Notably, larger proportions of the variance in
clinical outcome measures could be explained by the oculomotor
parameters of the PD individuals than from those of the healthy group
(Figures 6k-t), which was also reflected in greater correlations
between the actual and predicted clinical measures in the PD dataset,
ranging from an increase of 0.25 for COWAT to 0.52 for MoCA.
Figures 6f-j depicts the average absolute correlation coeflicients
between a given clinical measure and the oculomotor parameters
measured from a specific eye-tracking task (i.e., anti-saccade, fixation,
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pro-saccade, smooth pursuit, and optokinetic nystagmus) for HC and
PD. Notably, the mean correlation coeflicients associated with anti-
saccade, pro-saccade, and smooth pursuit parameters were
systematically higher in the PD cohort relative to the neurologically
intact group. This differential likely underlies the reduced explanatory
power of the oculomotor-based models for clinical cognitive scores
observed in the healthy control sample. These findings are in line with
those from the previous report on PD patients (24), in which anti-
saccade and pro-saccade parameters contributed the most to the
clinical outcome measure predictive models. Indeed, there is ample
evidence that anti-saccade tasks, in particular, tap into several
executive and frontal cognitive processes, including psychomotor
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FIGURE 6
Oculomotor parameters are more predictive of cognitive measures for PD than HC participants. Cognitive score distributions for the healthy
participants (Healthy Controls — HC) and PD patients from Koch et al. (24) for TMTA (a), TMTB (b), COWAT (c), MoCA (d) and HVLT (e). The
corresponding average absolute correlation coefficient for each oculomotor task with each of the cognitive score distributions for HC and PD (f-j).
Relationships between the participants’ cognitive scores and the corresponding predicted value obtained by PLS regression analysis for HC (k—o) and
PD (p-t). AS, anti-saccade; Fix, fixation; OKN, optokinetic nystagmus; PS, pro-saccade; SP, smooth pursuit. * p < 0.05, ** p < 0.01, *** p < 0.001
(Mann-Whitney U corrected p-values).

speed, visual search, attention task-switching, and inhibition (49-52)
that are affected by PD. Similarly, several pro-saccade characteristics
such as latency, duration, peak, and average velocity predict decline in
global cognition, executive function, attention, and memory in PD
patients (18, 53). Of note, the score that was predicted most poorly for
the HC group was MoCA, which is an assessment of general cognitive
ability that does not show large variation in healthy individuals. It is
therefore not surprising that the variation in this score was more easily
captured by oculomotor parameters in PD patients.

Taken together, these findings suggest that in the absence of
significant impairment of brain function, as typically observed in
neurological disorders, the oculomotor system may offer a more
subtle signal with respect to predicting cognitive ability. This
underscores the strength of oculomotor analysis as a tool that is
sensitive to deviations from typical brain function and provides a
baseline of the relationship between eye movements and cognitive
scores in neurologically intact individuals without the underlying
confound of neuropathology. Our results indicate that it is therefore
likely that the link between eye-tracking data and cognition is
mediated by the functional integrity of brain circuits, which highlights
the utility of oculomotor analysis for the detection of
neurocognitive disorders.

Although the explanatory power of the PLS regression models in
neurologically intact individuals was modest, these results remain
scientifically informative. In complex, multifactorial systems such as
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cognition, modest R* values are expected because performance reflects
the joint influence of diverse neural, experiential, and environmental
factors. The fact that oculomotor parameters nevertheless accounted
for a significant portion of variance suggests that they capture
mechanistically relevant aspects of brain function. In particular,
parameters derived from pro-saccade and anti-saccade tasks
contributed most strongly to the latent components, consistent with
the involvement of fronto-striatal and parietal networks known to
support inhibitory control, attentional shifting, and processing speed
(54-56). This indicates that even subtle variation in oculomotor
control among healthy individuals reflects differences in the efficiency
of higher-order cognitive systems. By contrast, the substantially
greater variance explained in the PD cohort underscores how
neurodegeneration amplifies the coupling between oculomotor and
cognitive processes. Thus, while the analyses in the present context
were not designed to provide clinical predictions at the individual
level, they nevertheless provide mechanistic insight into shared neural
substrates across motor and cognitive domains, and highlight the
potential of oculomotor markers as sensitive indicators of early or
subclinical changes in brain function.

The expected impact of oculomotor functions also varies across
the clinical measures. For tasks that explicitly depend on visual
scanning and rapid saccadic movements, such as the Trail Making
Tests (TMTA/B) and the Symbol Digit Modalities Test (SDMT),
oculomotor efficiency likely contributes directly to performance. In
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contrast, tests such as the Hopkins Verbal Learning Test (HVLT) and
Controlled Oral Word Association Test (COWAT) primarily index
memory and verbal fluency, and any oculomotor contribution is likely
indirect, reflecting shared reliance on fronto-striatal and parietal
circuits that support executive control and attention. The MoCA, as a
composite measure including visuospatial and executive components,
likely reflects a mixture of both direct and indirect influences. Finally,
the BAT is least tied to oculomotor control, with effects expected to
be indirect at best. Based on this rationale, the anticipated influence
of oculomotor functions can be ranked as strongest for SDMT and
TMTA/B, intermediate for MoCA, HVLT, and COWAT, and weakest
for BAL This framework highlights how eye-movement metrics can
serve as both direct measures of visual-motor efficiency and indirect
markers of broader neural integrity underlying cognition.

Effect of sex on the relationship between
oculomotor parameters and cognition

Although the examination of potential sex differences in
eye-tracking and oculomotor research has, to a large extent, been
largely ignored or underreported, studies that have directly
investigated this issue have reported mixed results. For instance,
Coors et al. (57) noted that only a few of their investigated oculomotor
parameters exhibited weak sex differences and both Mathew et al. (58)
and Takahashi et al. (59) failed to demonstrate reliable sex differences.
In contrast, studies with very large sample sizes [Bargary et al. (60) -
N> 1,000 participants; Carrick et al. (61) — N > 23,000 participants]
have reported sex differences across a range of oculomotor parameters.
The requirement of such large sample sizes to demonstrate inter-sex
differences raises the question of the clinical or biological relevance of
the magnitude of these sex differences.

In this study, potential sex differences in the manner in which
oculomotor parameters relate to cognition were investigated and no
differences in the PLS model R? values between males and females (see
Figure 4) were found. Furthermore, the relationship between age and
clinical scores was compared between males and females (see
Figure 2), and no differences in the sex-based Spearman’s rho values
were found.

Relationship between age, cognition, and
oculomotor parameters

There is ample evidence in the literature supporting the effect that
age has on cognitive ability, as measured via neuropsychological tests,
consistent with our present findings and highlighted in Figure 1a. For
instance, the ability to successfully complete TMTA and TMTB tends
to slowly decline until the age of 60, at which point the slope of the
decline increases (62). This decline is in line with the positive
correlations reported here as worsening is evidenced by the increased
time required to complete the tasks. Both SDMT (63) and HVLT (64)
scores are also known to strongly correlate with age. It is also well
established that several eye-movement parameters vary as a function
of age, consistent with our findings that many oculomotor parameters
significantly correlate with age (Figure 2). For instance, saccade
latency and error rate in the antisaccade task increase with age (30, 32,
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65), whereas fixation stability tends to decrease and the frequency of
catch-up saccades during smooth pursuit increases with age (66).

The purpose here, however, was to move beyond the known
relationships between age and specific parameters, and instead to attempt
to predict an individual’s age based on their measured oculomotor
parameters. The idea is akin to recent studies attempting to develop
biomarker-based age models to infer an individuals biological or “brain”
age using MRI (67, 68), and where the difference between one’s estimated
age and chronological age, the “brain age gap” (BAG), has been proposed
as a marker of brain health or brain functional integrity. We suspect that
testing the oculomotor-based age model on a clinical population would
produce a larger BAG than in a group of healthy controls — unfortunately,
this could not be specifically tested in the current study due to the critical
absence of a withheld age-matched control group.

Nonetheless, the oculomotor-based age model performed
reasonably as a first attempt, explaining roughly 33% of the age
variance in the subject sample (see Figure 4a). The accuracy of the age
predictions was further examined by investigating their relationships
with the clinical test scores. As seen in Figure 5, the “predicted age”
correlation coefficients were roughly on par with the coefficients
obtained using the participant’s true age, providing an additional line
of evidence linking oculomotor parameters and cognition. Next steps
in this specific line of research include future studies pairing known
markers of biological age with eye tracking to develop a more robust
eye-tracking model of biological age or brain age, which in turn could
lead to the development of a low-cost, non-invasive, and scalable
indicator of brain health and disease.

To assess whether anxiety might confound the observed
relationships between oculomotor features and cognitive outcome
measures, we included the BAI score in our analyses. The BAI was not
significantly correlated with any oculomotor parameters (Figure 2),
and PLS regression models in the HC group demonstrated the worst
predictive power for anxiety in terms of variance explained (Figure 4).
Therefore, we do not believe that anxiety levels played a role in driving
the observed results.

Study limitations

A first limitation relates to the extent to which participants were
truly cognitively intact, given that they self-reported as such. Using
the cutoff score of 23 outlined in the updated MoCA criteria by
Carson et al. (69), half a dozen of the participants would in fact
be classified as having mild cognitive impairment. However, given
that these participants represent less than 3% of our total study
sample, it is unlikely that they significantly biased any of the
reported findings. Moreover, their inclusion likely makes the dataset
more generalizable to the general population without diagnosed
neurological disorders.

Although cognitive ability is inferred here via variance explained by
oculomotor parameters, partial least squares regression analyses produce
inference models, which do not necessarily guarantee strong predictive
abilities. To claim that disease, cognitive ability, or even age, in a single
individual can be estimated, predictive models would need to
be validated with an independent dataset. Although several cognitive
domains were investigated, not all of them were sampled, and stronger
relationships with oculomotor parameters might exist with other
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cognitive functions captured with different neuropsychological tests not
included in the present study. In particular, the cognitive domains
sampled were limited to those typically associated with decline in PD.
The sample sizes of our two comparison groups were unequal, and
perhaps more importantly, were not age-matched. However, the age
distributions of our groups were roughly representative of their
associated population distributions (adult neurologically intact
individuals and individuals with mild-to-moderate PD), suggesting
that our findings are likely generalizable to those population sets.
Finally, another minor limitation relates to data loss caused by the
camera position relative to the iPad Pro tablet (at the top), which
makes it difficult to accurately detect the eyes when looking at the
bottom of the screen for some subjects due to the eyelids partially

obscuring  relevant gaze  estimation  markers see
Supplementary methods for further details. As a result, data collected
from large amplitude downward saccades were removed from all
subjects and all analyses.

Another limitation relates to the assumption of symmetrical
velocity profiles during saccades. Neurological conditions such as
Parkinson’s disease often produce asymmetric velocity profiles, with
an extended deceleration phase relative to acceleration. This
asymmetry may introduce measurement error in estimates of latency
and peak velocity. If present, such errors could lead to the
underestimation of the strength of observed associations between eye
movement parameters and clinical outcomes. Future iterations of the
model will explore relaxing the symmetry constraint to better
accommodate atypical velocity profiles observed in these populations.

Finally, one additional methodological consideration concerns the
use of Spearman’s rho. While this statistic is less sensitive to skew and
outliers than Pearson’s correlation, it assumes iid observations and is
affected by ties in the data. Given our study design, where each
participant contributed one observation, independence was satisfied.
Although ties occurred for some discrete clinical measures (e.g.,
MoCA, SDMT), their influence was minimized by the average-rank
procedure. Thus, while Spearman’s rho captures monotonic rather
than strictly linear associations, we believe it provided the most
appropriate framework for relating oculomotor and cognitive

variables in this dataset.

Conclusion

The present study set out to investigate the relationship between
oculomotor parameters and clinical scores of cognition, age, and sex.
Within neurologically intact individuals, no significant differences
between males and females regarding the relationship between the
examined clinical scores and oculomotor parameters were observed.
Overall, the findings demonstrate that while oculomotor parameters
show a modest but statistically reliable relationship with cognitive
performance in neurologically intact individuals, their predictive
value is substantially greater in individuals with a neurodegenerative
disorder (PD). This pattern suggests that the link between cognitive
function and eye-tracking parameters may be amplified in the context
of neurodegeneration, likely due to disruptions in shared neural
systems supporting both motor control and cognition. In healthy
individuals, the relationship appears more subtle, consistent with the
idea that the oculomotor system reflects broader aspects of brain
function that only become more diagnostically informative when
those systems are compromised. Finally, our results reveal a moderate
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association between age and several oculomotor parameters,
suggesting that while oculomotor analysis alone may not precisely
estimate an individuals “brain age” or biological age, it could
nonetheless contribute meaningfully to future predictive models when
combined with other relevant biomarkers.
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