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Background: Carotid artery stenting (CAS) is considered a crucial treatment 
option for patients with symptomatic carotid artery stenosis. Nevertheless, 
adverse neurovascular events (ANEs) following this procedure remain a 
significant challenge. This study aimed to identify risk factors for ANEs and to 
construct a predictive nomogram to assist in perioperative risk stratification.
Methods: This retrospective study (January 2020–January 2025) enrolled 
consecutive symptomatic carotid stenosis patients undergoing CAS from two 
centers: 209 in the training cohort from Ganzhou People’s Hospital and 148 in 
the external validation cohort from The First Affiliated Hospital of Nanchang 
University. Patients were categorized into ANE and non-ANE groups based on 
postoperative outcomes within 30 days. Within the training cohort, independent 
predictors were identified through a three-step approach: (1) univariate screening, 
(2) LASSO regression for variable selection, and (3) multivariable logistic regression 
for final risk factor determination. The nomogram was constructed using R. 
Internal validation was performed via 1,000 bootstrap resamples. The model’s 
predictive accuracy and clinical utility were assessed using the C-index, receiver 
operating characteristic (ROC) curve, and decision curve analysis (DCA).
Results: Age, ulcerated plaque, hemodynamic suppression, and balloon dilation 
were found to be  independent risk factors for the occurrence of ANEs. The 
Hosmer–Lemeshow test confirmed a good model fit (training: p = 0.845; 
validation: p = 0.356), and the calibration curve showed no significant deviation 
of the predicted probabilities from the actual probabilities. The bootstrap-
corrected C-index for internal validation was 0.773. Discriminatory performance 
was robust, with C-index of 0.802 (training) and 0.816 (validation), and AUCs 
of 0.798 (95% CI: 0.707–0.889, training) and 0.819 (95% CI: 0.724–0.913, 
validation). DCA confirmed the substantial clinical value of the nomogram. 
Furthermore, stratified analyses further revealed different but consistent risk 
profiles for ischemic and hemorrhagic ANEs, while the composite nomogram 
maintained robust predictive performance across both subgroups.
Conclusion: The nomogram demonstrated good predictive performance for 
assessing the risk of ANEs in symptomatic carotid stenosis patients undergoing CAS. 
Its use aids in optimizing clinical decision-making and reducing postoperative ANEs.
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Introduction

Stroke remains the third leading cause of death and disability 
globally, with approximately 12 million individuals experiencing their 
first stroke annually, of which about 62.4% are ischemic strokes (1). 
Estimates suggest that 20–30% of ischemic strokes originate from 
carotid atherosclerotic stenosis (2). Carotid artery stenting (CAS), a 
minimally invasive approach for severe carotid artery stenosis, is an 
effective alternative to carotid endarterectomy (CEA), particularly for 
high-risk surgical patients. Although randomized trials such as 
SPACE-2 have questioned the efficacy of CAS in asymptomatic 
patients, current guidelines continue to endorse its use in individuals 
with symptomatic carotid stenosis of ≥50%—the population 
investigated in this study (3). In clinical practice, even with the 
assistance of embolic protection devices (EPDs) and stent renewal, 
adverse neurovascular events (ANEs), such as transient ischemic 
attack (TIA), ischemic or hemorrhagic stroke, and cerebral 
hyperperfusion syndrome (CHS), continue to occur post-CAS (4, 5). 
While ischemic events are more prevalent, CHS—characterized by 
impaired cerebral autoregulation and increased ipsilateral cerebral 
blood flow—represents a serious but often underrecognized 
complication. All these events may lead to neurological deterioration, 
prolonged hospitalization, or even mortality. Notably, they appear to 
share overlapping risk factors, including advanced age, high-grade 
stenosis, and perioperative blood pressure instability (6–8). Therefore, 
the early and effective identification of individuals at high risk for CAS 
complications among patients with carotid stenosis remains critical.

Several recent studies have explored predictors of post-CAS 
complications, but most have focused on isolated outcomes. For 
example, one carotid ultrasound study found that the jellyfish sign, 
proximal calcification, and elevated LDL cholesterol were predictive of 
new diffusion-weighted imaging (DWI) lesions after CAS (9). Another 
machine learning–based model using XGBoost identified internal 
carotid artery peak systolic velocity, LDL cholesterol, and procedure type 
(CEA vs. CAS) as key predictors of early ischemic events (10). Research 
on CHS is relatively limited; a transcranial Doppler–based study 
demonstrated that specific hemodynamic parameters could predict CHS 
risk, highlighting the role of cerebral autoregulation (11). Although TIA, 
stroke, and CHS differ in pathophysiology, they may share a common 
perioperative risk profile. However, existing models remain fragmented 
and focus on specific complications. This lack of integration limits their 
clinical value in comprehensive risk stratification. To date, no validated 
tool is available for predicting the overall risk of ANEs in patients with 
symptomatic carotid stenosis undergoing CAS.

This study constructed and validated a nomogram for 
predicting ANE risk by comprehensively analyzing preoperative 
demographic, imaging, and intraoperative technical data from 
patients undergoing CAS. This tool offers clinicians a practical and 
individualized risk stratification approach, potentially reducing the 
incidence of postoperative neurovascular complications.

Methods

Patient population

Between January 2020 and January 2025, clinical data were 
retrospectively collected from 679 patients with carotid stenosis who 

underwent stenting procedures at Ganzhou People’s Hospital and The 
First Affiliated Hospital of Nanchang University. The inclusion criteria 
were as follows: (1) A confirmed diagnosis of symptomatic carotid 
artery stenosis, as evidenced by a history of cerebral infarction or 
symptoms of TIA within the past 6 months; (2) Carotid artery stenosis 
≥ 50%; and (3) Initial CAS treatment. The exclusion criteria were as 
follows: (1) Carotid artery stenosis caused by non-atherosclerotic 
conditions such as dissection or large-artery inflammation; (2) 
Patients whose clinical or imaging data were incomplete; (3) Previous 
CEA or CAS intervention on the target carotid artery; (4) Patients 
undergoing emergency CAS for acute large-vessel occlusion; and (5) 
Severe coagulation disorders, hepatic or renal insufficiency, and 
psychiatric disorders, among other conditions. This study was 
reviewed by the Ethics Committee of Ganzhou People’s Hospital (No. 
Ky2024018). Written informed consent was waived as the retrospective 
study involved only the analysis of previously collected data.

Data collection and definition

Patient demographics and radiology and surgical records were 
obtained from the hospital’s medical records system. The patient 
demographic data included age, sex, hypertensive disease status, 
diabetes mellitus status, hyperlipidemia status, coronary cardiopathy 
status, and smoking history prior to the procedure. CYP2C19 
genotyping results were retrieved and stratified into three clopidogrel 
resistance categories: no resistance (*1/*1, *1/*17, *17/*17), moderate 
resistance (*1/*2, *1/*3, *2/*17, *3/*17), and severe resistance (*2/*2, 
*2/*3, *3/*3) (12). Additionally, radiographic data on the rate of 
carotid stenosis, as well as the length, thickness, morphology (regular 
or irregular), and characteristics (calcified or ulcerated) of the plaques, 
were acquired. The carotid stenosis percentage was calculated as (1 – 
the ratio of the narrowest diameter to the original diameter) × 100% 
(13). Plaque length was measured as the total distance between the top 
and bottom of each lesion, while plaque thickness referred to the 
maximum thickness of the plaque in an axial view. Based on 
preoperative cervical vascular computed tomography angiography 
(CTA), the atherosclerotic plaque morphology was classified as 
follows: plaques with a computed tomography (CT) value of ≥120 
Hounsfield units (Hu) were categorized as calcified, while those with 
a CT value below this threshold were considered non-calcified. 
Plaques were classified as ulcerative if the spread of the contrast agent 
along the inner surface of the arterial plaque exceeded 1 mm (14). The 
procedure adhered to the published guideline protocol (15). 
Intraoperative data included blood pressure variability (BPV), aortic 
arch typing, carotid tortuosity, hemodynamic suppression, use of 
balloon dilation, and stent type. BPV was quantified as the coefficient 
of variation, calculated by dividing the standard deviation of systolic 
pressure measurements by the mean systolic pressure and expressed 
as a percentage (16). The type of aortic arch was determined by 
comparing the vertical distance from the top of the aortic arch to the 
origin of the innominate artery (a) with the diameter of the left 
common carotid artery, (b) type I: a/b < 1, type II: 1 ≤ a/b < 2, type 
III: a/b ≥ 2 (17). Carotid artery tortuosity was identified by the 
presence of “C” type curvature, “O” type coiling, or “S” type twisting 
(18). Hemodynamic suppression was diagnosed if the patient 
exhibited either asymptomatic or symptomatic hypotension (systolic 
blood pressure below 90 mmHg) or bradycardia (heart rate lower than 
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60 beats per minute) intraoperatively or postoperatively (19). 
Prophylactic use of temporary cardiac pacemakers, with a pacing rate 
of 60 beats per minute, was considered indicative of hemodynamic 
depression if the intraoperative or postoperative electrocardiogram 
displayed a clear pacing signal. Patients underwent head CT and MRI 
scans between 24 and 72 h after CAS.

Patients were categorized into ANE and non-ANE groups 
according to the presence or absence of ANEs during the 30-day 
follow-up period. The ANEs included episodes of TIA, ischemic or 
hemorrhagic stroke, and CHS. TIA was defined as a transient episode 
of neurological dysfunction caused by focal brain, spinal cord, or 
retinal ischemia, without acute cerebral infarction (20). To minimize 
the risk of TIA misclassification based solely on medical record 
documentation, a standardized adjudication process was adopted: (a) 
two neurologists independently and blindly reviewed all suspected TIA 
cases; (b) the initial “TIA vs. non-TIA” judgments from each 
neurologist were recorded separately; and (c) in cases of disagreement, 
a third senior neurologist provided the final adjudication. Inter-rater 
agreement was assessed using Cohen’s kappa statistic, with detailed 
results reported in the Supplementary Table S1. Hemorrhagic stroke 
events were characterized by the presence of new punctate or confluent 
high-density shadows indicative of blood on head CT scans. Ischemic 
stroke events were identified by new high-signal areas on MRI scans, 
particularly on DWI sequences, accompanied by neurological deficits 
corresponding to the lesion. CHS was defined by (a) new-onset 
neurological symptoms post-CAS (e.g., severe headache, focal 
neurological deficits, seizures, or impaired consciousness), (b) 
exclusion of new cerebral ischemic lesions on postoperative 
neuroimaging, and (c) and objective evidence of cerebral 
hyperperfusion, defined as either: a > 100% increase in ipsilateral 
middle cerebral artery flow velocity versus preoperative baseline, or 
a > 100% increase in cerebral blood flow (CTP/MR perfusion) versus 
contralateral hemisphere (21, 22). Although the composite endpoint of 
ANEs provides overall statistical power, it potentially masks crucial 
heterogeneity in underlying pathophysiology. To ascertain whether 
predictors exert uniform effects across all event types, and to identify 
distinct risk factor profiles specific to each pathological pathway, 
we performed a pre-specified subgroup analysis. To this end, ANEs 
were categorized into two groups based on their distinct 
pathophysiologies: (a) Ischemic ANEs, comprising TIA and ischemic 
stroke, based on their shared etiology of thromboembolism or 
hemodynamic insufficiency leading to cerebral ischemia (23, 24). (b) 
Hemorrhagic ANEs, comprising hemorrhagic stroke and CHS, based 
on their shared pathophysiology of disruption of the blood–brain 
barrier and extravasation of blood, either due to vessel rupture or from 
overwhelmed cerebral autoregulation and capillary leakage (25, 26).

Statistical analysis

Categorical variables are expressed herein as frequencies 
(percentages) and were compared using the χ2 test. Continuous 
variables with a normal distribution are reported as the mean ± 
standard deviation and were analyzed using Student’s t-test, while 
variables with skewed distributions are presented as the median 
(interquartile range) and were assessed using the Wilcoxon test. 
Missing covariates were handled via multiple imputation (27). 
Variable selection employed a sequential approach: univariate 

screening (p < 0.1) identified candidate predictors, followed by least 
absolute shrinkage and selection operator (LASSO) regression with 
sevenfold cross-validation (λ determined by minimizing binomial 
deviance). Variables excluded by LASSO but clinically critical were 
retained based on established relevance. Continuous variables were 
tested for nonlinearity using restricted cubic splines. The number of 
knots was set at four, a choice guided by the Akaike information 
criterion to balance model fit and complexity, consistent with 
established approaches (28). The selected candidate variables were 
then incorporated into the multiple logistic regression analysis, from 
which statistically significant variables were utilized to construct a 
personalized nomogram for predicting ANEs. Bayesian validation 
with weakly informative priors was conducted to evaluate predictor 
robustness under EPV = 8 constraints. The model’s discriminative 
ability was evaluated using the concordance index (C-index), where a 
value > 0.7 indicates favorable accuracy. The consistency and 
predictive accuracy of the model were measured by plotting 
calibration curves and the area under the receiver operating 
characteristic (ROC) curve (AUC). The fit of the model was evaluated 
by the Hosmer–Lemeshow test, while its net benefit was estimated 
through decision curve analysis (DCA). The corrected C-index was 
obtained by bootstrapping (1,000 resamplings) to internally validate 
the predictive model. To further evaluate whether predictors exert 
uniform effects across different event types, we  conducted a 
pre-specified subgroup analysis. Given the limited number of events 
within each subgroup, we applied Firth’s penalized logistic regression 
to mitigate small-sample bias and obtain more stable estimates of odds 
ratios and confidence intervals. For model interpretability, we further 
used the SHAP (SHapley Additive exPlanations) framework to 
quantify the contribution of each predictor to the model’s output. 
Considering that event numbers declined substantially after 
stratification, we  did not rebuild independent models for each 
subgroup. Instead, we  applied the predictors identified in the 
composite model to the ischemic and hemorrhagic subgroups, and 
assessed their discriminatory performance using ROC curve analysis. 
Statistical processing and graphing were conducted using SPSS 
(version 21.0) and RStudio (version 4.3.3). A p-value of < 0.05 was 
considered to indicate statistical significance.

Results

Baseline characteristics and predictor 
screening

This study enrolled 209 patients from Ganzhou People’s Hospital 
(training cohort) and 148 patients from The First Affiliated Hospital 
of Nanchang University (validation cohort), all of whom met the 
inclusion and exclusion criteria (Figure 1). Baseline demographic and 
clinical features of both cohorts are summarized in Table 1, with no 
significant differences (p  > 0.05). Within the training cohort, 32 
patients (15.31%) experienced ANEs during follow-up, comprising 35 
distinct clinical events. The cohort comprised: isolated TIA in 10 cases 
(4.78%), isolated symptomatic cerebral infarction in 7 cases (3.35%), 
coexisting TIA and symptomatic cerebral infarction in 2 cases (0.96%), 
isolated intracranial hemorrhage in 3 cases (1.44%), CHS progressing 
to intracranial hemorrhage in 1 case (0.48%), and isolated CHS in 9 
cases (4.31%). Univariate analysis identified seven candidate 
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predictors associated with ANE: age, degree of carotid stenosis, plaque 
morphology, ulcerated plaque, hemodynamic suppression, blood 
pressure variability, and use of balloon dilation (Table  2). LASSO 
regression assigned nonzero coefficients to four variables: age, 
ulcerated plaque, hemodynamic suppression, use of balloon dilation 
(Figure 2). Given the potential clinical relevance of carotid stenosis 
degree, plaque morphology, and blood pressure variability to 
neurovascular outcomes, we  conservatively retained all seven 
predictors in multivariate modeling. LASSO’s coefficient shrinkage 
still optimized model stability by resolving multicollinearity.

Multivariable analysis and nomogram 
development

Independent risk factors for ANE post-CAS were established 
through multivariable logistic regression, namely, age (OR: 1.095, 
95% CI: 1.026–1.169, p = 0.007), ulcerated plaque (OR: 2.986, 95% 
CI: 1.203–7.414, p = 0.018), hemodynamic suppression (OR: 2.904, 
95% CI: 1.118–7.543, p = 0.029), and the use of balloon dilation (OR: 
3.445, 95% CI: 1.360–8.728, p = 0.009) (Table 3). Age was modeled as 
a continuous linear term; restricted cubic spline analysis detected no 
significant nonlinearity (nonlinearity test p = 0.063), supporting its 
linear specification in the final model (Supplementary Figure S1). To 
further validate these predictors, Bayesian posterior distribution plots 
were generated. All variables exhibited clear unimodal distributions 
with 95% credible intervals excluding zero. Notably, the posterior 
means provided a ranking of variable contributions that was fully 
aligned with the direction of effects observed in the traditional 
logistic regression analysis (Supplementary Figures S2–S5). The 
optimal cutoff value for age was determined to be 64.5 years based on 
the ROC curve (Supplementary Figure S6). To assess the risk of ANEs 
following CAS, the significant factors identified were incorporated to 
construct a nomogram (Figure  3). As illustrated, each predictive 
variable was allocated a score, and the cumulative scores were then 
calculated to estimate the likelihood of ANE occurrence.

Validation of the nomogram for ANE 
occurrence

The nomogram demonstrated substantial predictive accuracy, 
achieving a C-index of 0.802 in the training cohort and 0.816 in the 
validation cohort. Internal bootstrap validation (1,000 resamplings) on 
the training cohort yielded a corrected C-index of 0.773, indicating 
favorable predictive performance and robustness. Hosmer–Lemeshow 
testing showed no significant evidence of misfit (training: χ2 = 4.135, 
p  = 0.845; validation: χ2  = 8.843, p  = 0.356). The calibration curve 
further demonstrated close agreement between the nomogram-
predicted probabilities of ANEs after CAS and actual outcomes 
(Figure 4). Furthermore, to evaluate and correct for any potential over 
optimism in the training set, we  generated a bootstrap-corrected 
calibration curve using the training cohort (Supplementary Figure S7), 
which further confirmed the model’s robust calibration performance. 
Additionally, the model exhibited excellent discriminative ability, with 
AUC values of 0.798 (95% CI: 0.707–0.889) for the training cohort and 
0.819 (95% CI: 0.724–0.913) for the validation cohort (Figure 5). DCA 
revealed that employing the nomogram provided a net clinical benefit 
over the no intervention strategy across probability thresholds ranging 
from 0.07 to 0.75 (training) and 0.04 to 0.72 (validation) (Figure 6).

Stratified analysis of ischemic and 
hemorrhagic ANEs

We further performed stratified analyses to separately evaluate 
ischemic and hemorrhagic ANEs. In the training cohort, Firth logistic 
regression identified Age (OR = 1.096, 95% CI 1.020–1.183, p = 0.013), 
Ulcerated plaque (OR = 4.268, 95% CI 1.570–11.844, p = 0.005), and 
Hemodynamic suppression (OR = 3.313, 95% CI 1.204–9.685, p = 0.020) 
as independent risk factors for ischemic ANEs (Table 4). By contrast, 
hemorrhagic ANEs were independently associated with Hemodynamic 
suppression (OR = 3.520, 95% CI 1.023–13.681, p  = 0.046), Blood 
pressure variability (OR = 1.163, 95% CI 1.006–1.369, p = 0.041), and 

FIGURE 1

Flowchart for patient screening.
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Use of balloon dilation (OR = 5.943, 95% CI 1.790–22.341, p = 0.004) 
(Table 5). In the validation cohort, results exhibited trends consistent 
with those observed in the training set (Supplementary Tables S2, S3). 
SHAP analysis further delineated the distinct contributions of predictors 
within each subgroup (Figure 7). In ischemic ANEs, Ulcerated plaque, 
Hemodynamic suppression, and Age exerted the greatest impact, 
whereas in hemorrhagic ANEs, Balloon dilation and Hemodynamic 
suppression emerged as dominant contributors. Notably, the color 

gradient in the bee swarm plots indicated that increasing Age was 
associated with elevated risk of both ischemic and hemorrhagic events. 
After stratification, the composite model retained acceptable predictive 
performance. In the training cohort, AUCs were 0.787 for ischemic and 
0.788 for hemorrhagic ANEs (Figure 8A); in the validation cohort, AUCs 
were 0.793 and 0.778, respectively (Figure  8B). Compared with the 
original composite model, stratified models demonstrated slightly lower 
discrimination, yet remained within clinically meaningful ranges.

TABLE 1  Baseline characteristics in the training cohort and validation cohort.

Variables Training cohort (n = 209) Validation cohort (n = 148) p-value

Age (years), mean ± SD 65.25 ± 6.95 64.76 ± 6.47 0.494

Gender, n (%) 0.713

 � Male 172 (82.3) 124 (83.8)

 � Female 37 (17.7) 24 (16.2)

Hypertension, n (%) 157 (75.1) 105 (70.9) 0.379

Diabetes mellitus, n (%) 57 (27.3) 53 (35.8) 0.085

Hyperlipidemia, n (%) 70 (33.5) 51 (34.5) 0.849

Coronary cardiopathy, n (%) 42 (20.1) 32 (21.6) 0.726

Smoking, n (%) 123 (58.9) 90 (60.8) 0.710

Clopidogrel resistant, n (%) 0.994

 � None 74(39.6) 53(40.2)

 � Moderate 79(42.2) 55(41.7)

 � Severe 34 (18.2) 24 (18.2)

Lesion location, n (%) 0.685

 � Internal carotid artery 182 (87.1) 131 (88.5)

 � Common carotid artery 27 (12.9) 17 (11.5)

Degree of carotid stenosis, n (%) 0.652

 � <70% 77 (36.8) 58 (39.2)

 � ≥70% 132 (63.2) 90 (60.8)

Plaque length (mm), mean ± SD 20.32 ± 6.74 20.49 ± 6.82 0.815

Plaque thickness (mm), mean ± SD 3.80 ± 0.78 3.74 ± 0.75 0.479

Plaque morphology, n (%) 0.901

 � Regular 120 (57.4) 84 (56.8)

 � Irregular 89 (42.6) 64 (43.2)

Plaque characteristics, n (%)

 � Calcified plaque 73 (34.9) 58 (39.2) 0.411

 � Ulcerated plaque 50 (23.9) 34 (23.0) 0.835

Aortic arch typing, n (%) 0.709

 � I 59 (28.2) 36 (24.3)

 � II 124 (59.3) 92 (62.2)

 � III 26 (12.4) 20 (13.5)

Carotid tortuosity, n (%) 113 (54.1) 83 (56.1) 0.706

Hemodynamic suppression, n (%) 76 (36.4) 50 (33.8) 0.615

Blood pressure variability (%), mean ± SD 14.14 ± 4.50 13.99 ± 3.80 0.741

Use of balloon dilation, n (%) 52 (24.9) 41 (27.7) 0.549

Stent type, n (%) 0.771

 � Closed-loop 55 (26.3) 41 (27.7)

 � Open-loop 154 (73.7) 107 (72.3)
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Discussion

Although carotid artery stenting decreases the risk of future 
ischemic stroke in patients with symptomatic carotid artery stenosis 
by reshaping vascular structure and restoring blood flow (29), ANEs 
such as TIA, stroke, and cognitive impairment continue to pose 

challenges in clinical practice. Consequently, it is essential to analyze 
the factors associated with the occurrence of ANEs following CAS and 
to establish relevant predictive models. In this study, the incidence of 
ANEs within 30 days after CAS for symptomatic carotid artery 
stenosis was 15.31%, with rates of 5.74% for TIA and 6.22% for stroke, 
consistent with previous literature (30). However, the incidence of 

TABLE 2  Univariate analysis in the training cohort.

Variables ANE group (n = 32) Non-ANE group (n = 177) OR (95%CI) p-value

Age (years), mean ± SD 68.94 ± 6.48 64.59 ± 6.84 1.095 (1.035–1.158) 0.002

Gender, n (%)

 � Male 27 (84.4) 145 (81.9) 0.839 (0.300–2.346) 0.738

 � Female 5 (15.6) 32 (18.1)

Hypertension, n (%) 25 (78.1) 132 (74.6) 1.218 (0.493–3.006) 0.670

Diabetes mellitus, n (%) 7 (21.9) 50 (28.2) 0.711 (0.289–1.749) 0.458

Hyperlipidemia, n (%) 12 (37.5) 58 (32.8) 1.231 (0.563–2.689) 0.602

Coronary cardiopathy, n (%) 7 (21.9) 35 (19.8) 1.136 (0.454–2.840) 0.785

Smoking, n (%) 20 (62.5) 103 (58.2) 1.197 (0.551–2.600) 0.649

Clopidogrel resistant, n (%)

 � None 13(40.6) 66(37.3)

 � Moderate 16(50.0) 75(42.4) 1.083 (0.485–2.418) 0.846

 � Severe 3(9.4) 36(20.3) 0.423 (0.113–1.583) 0.201

Lesion location, n (%)

 � Internal carotid artery 26 (81.2) 156 (88.1) 1.714 (0.632–4.650) 0.290

 � Common carotid artery 6 (18.8) 21 (11.9)

Degree of carotid stenosis, n (%)

 � <70% 6 (18.8) 71 (40.1) 2.903 (1.137–7.410) 0.026

 � ≥70% 26 (81.2) 106 (59.9)

Plaque length (mm), mean ± SD 19.86 ± 6.43 20.40 ± 6.80 0.988 (0.933–1.046) 0.674

Plaque thickness (mm), mean ± SD 3.96 ± 0.81 3.77 ± 0.77 1.366 (0.844–2.212) 0.204

Plaque morphology, n (%)

 � Regular 14 (43.8) 106 (59.9) 1.920 (0.897–4.106) 0.093

 � Irregular 18 (56.2) 71 (40.1)

Plaque characteristics, n (%)

 � Calcified plaque 15 (46.9) 58 (32.8) 1.810 (0.845–3.879) 0.127

 � Ulcerated plaque 15 (46.9) 35 (19.8) 3.580 (1.630–7.862) <0.001

Aortic arch typing, n (%)

 � I 8 (25.0) 51 (28.8)

 � II 17 (53.1) 107 (60.5) 1.013 (0.410–2.501) 0.978

 � III 7 (21.9) 19 (10.7) 2.349 (0.749–7.366) 0.143

Carotid tortuosity, n (%) 20 (62.5) 93 (52.5) 1.505 (0.694–3.265) 0.300

Hemodynamic suppression, n (%) 21 (65.6) 55 (31.1) 4.235 (1.911–9.386) <0.001

Blood pressure variability (%), mean ± SD 15.85 ± 4.17 13.83 ± 4.50 1.110 (1.016–1.213) 0.021

Use of balloon dilation, n (%) 15 (46.9) 37 (20.9) 3.339 (1.526–7.306) 0.003

Stent type, n (%)

 � Closed-loop 10 (31.2) 45 (25.4) 0.750 (0.330–1.704) 0.492

 � Open-loop 22 (68.8) 132 (74.6)

ANE, adverse neurovascular event.
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CHS in this cohort was 4.78%, falling within the 2.2–11.2% range 
reported in prior studies (8, 11), yet reflecting notable variability. This 
discrepancy may stem from several factors, including differences in 
patient selection criteria, perioperative blood pressure control 
protocols, imaging surveillance intensity, and diagnostic definitions of 
CHS. For instance, some studies include only clinically overt CHS, 
while others capture subclinical cases detected via transcranial 
Doppler or perfusion imaging. In this study, 21 variables potentially 
associated with postoperative ANEs were analyzed among a training 
cohort of 209 patients undergoing CAS for symptomatic carotid 
stenosis. Age, ulcerated plaque, hemodynamic suppression, and the 
use of balloon dilation were identified as independent risk factors for 
ANEs through univariate analysis, LASSO, and multivariable logistic 
regression analysis. On this basis, a risk prediction nomogram was 
successfully developed, providing quantifiable probabilities and 
describing each predictor’s contribution to the risk of ANEs after CAS.

Consistent with previous reports (6, 31), age was confirmed as an 
independent risk factor for ANEs following CAS in this study 
(OR = 1.095). This indicates that the risk of ANEs increases by an 
average of 9.5% with each additional year of age. The extensive 

atherosclerosis, abnormal or tortuous arterial anatomy, and complex 
plaques observed in elderly patients not only complicate the CAS 
procedure but also increase the risk of plaque detachment or vascular 
injury. In addition, the presence of multiple coexisting comorbidities 
may lead to increased stroke risk in these patients post-CAS (32, 33). 
Moreover, advancing age was associated with diminished cerebral 
autoregulatory capacity and increased blood–brain barrier 
permeability, which may have elevated the risk of postoperative CHS 
and intracerebral hemorrhage (34, 35). Additionally, age-related 
microvascular fragility and reduced cerebrovascular reactivity may 
have increased sensitivity to intraoperative microemboli. These emboli 
could have induced vasoreactive changes or caused distal vessel 
occlusion, leading to reduced perfusion in functionally critical brain 
regions and thereby increasing the risk of postoperative TIA or 
ischemic stroke (36, 37). In this study, the optimal cutoff value for age 
was determined by receiver operating characteristic (ROC) curve 
analysis to be 64.5 years, which suggests that individuals above this 
age are at an increased risk of ANEs when undergoing CAS. Thus, 
enhanced monitoring and precautions may be necessary for older 
patients in the perioperative period of CAS.

FIGURE 2

Characteristic factors were screened by the LASSO binary logistic regression model. (A) Log(lambda) values for the 21 features in the LASSO analysis. A 
coefficient distribution plot was generated from the log(lambda) sequence. (B) LASSO model parameter selection was conducted through sevenfold 
cross-validation. Four nonzero coefficients were identified by determining the optimal lambda values using the 1 standard error (1-SE) criterion. Vertical 
lines were plotted at the points corresponding to the minimum and 1-SE standard.

TABLE 3  Multivariate logistic regression analysis in the training cohort.

Variables β SE OR (95%CI) p-value

Age 0.091 0.033 1.095 (1.026–1.169) 0.007

Degree of carotid stenosis 0.759 0.588 2.135 (0.675–6.756) 0.197

Plaque morphology 0.765 0.456 2.150 (0.879–5.256) 0.093

Ulcerated plaque 1.094 0.464 2.986 (1.203–7.414) 0.018

Hemodynamic suppression 1.066 0.487 2.904 (1.118–7.543) 0.029

Blood pressure variability 0.095 0.054 1.099 (0.988–1.223) 0.081

Use of balloon dilation 1.237 0.474 3.445 (1.360–8.728) 0.009
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This study also revealed that the presence of ulcerated plaques was 
the strongest predictor of ANE. Patients with ulcerated plaques had an 
approximately 3.0-fold greater risk of developing ANE after CAS than 
did patients without such plaques. More stable plaques were associated 
with thick, unruptured fibrous caps. In contrast, vulnerable or ruptured 
fibrous caps, related to ulceration, are crucial determinants of ischemic 

stroke. Beyond macroscopic structure, the profound vulnerability of 
ulcerated plaques may be  driven by an active intraplaque 
microenvironment involving processes such as inflammation and 
ferroptosis (38). This inherent fragility implies that the irregular surface 
readily serves as an attachment point for platelet aggregation; 
concurrently, reverse blood flow within the ulcer niche further 

FIGURE 3

Nomogram for predicting the occurrence of ANEs after CAS for symptomatic carotid stenosis.

FIGURE 4

Calibration curves of the nomogram in the training cohort (A) and validation cohort (B).
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FIGURE 5

ROC curves for the ANE nomogram in the training cohort (A) and validation cohort (B).

FIGURE 6

DCA for the ANE nomogram in the training cohort and validation cohort.
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increases the risk of thrombus formation. Irregular ulcerated plaques 
readily serve as attachment points for platelet aggregation, while 
reverse blood flow within ulcer niches further increases the risk of 
thrombus formation (39, 40). As the procedure progresses, the distal 
EPD can potentially damage lesions, particularly ulcerated plaques, as 
the guidewire passes through the stenotic area. There is also a risk of 
emboli overflow during device retrieval (41). Previous studies have 
reported that fragments from vulnerable ulcerated plaques are finer, 
and the microemboli from these fragments are less likely to 
be effectively filtered by distal protection devices. These microemboli 
can obstruct small cerebral vessels, increasing the risk of postoperative 
TIA or ischemic stroke (42). In identifying ulcerated plaques, Saba et al. 
(43) found that the majority of carotid plaque ulcerations diagnosed 
via color Doppler ultrasound were overlooked, while CTA exhibited a 
high sensitivity of 93.75% for detecting ulcerations. Therefore, in 
clinical practice, the importance of CTA as an essential preprocedural 
assessment tool for CAS should be emphasized, with attention given to 
the characteristics of plaques, especially those that are ulcerated.

Hemodynamic suppression and the use of balloon dilation have 
also been identified as independent risk factors for ANEs following 
CAS. Perioperative hemodynamic suppression is closely associated 
with the number of new ischemic lesions identified by DWI, while 
insufficient perfusion increases the susceptibility of the brain to 
embolism (44). During carotid revascularization surgery, a surge in 
blood flow stimulates the carotid sinus, affecting the sinoatrial and 
atrioventricular nodes and increasing cardiac vagal tone, potentially 
leading to bradycardia and a decrease in peripheral vascular resistance, 
which may result in hypotensive episodes (45). These hemodynamic 
alterations may cause insufficient perfusion in vulnerable brain regions, 
increasing the risk of postoperative TIA or ischemic stroke (46). 
Therefore, it is essential to monitor and regulate perioperative 
hemodynamics, especially in patients with baseline bradycardia. 
Preventive strategies, such as prophylactic administration of atropine 

or the use of temporary pacemakers, are recommended. In addition, 
patients with chronic cerebral hypoperfusion may have impaired 
autoregulatory capacity, making them more susceptible to CHS after 
stent placement (47). In such cases, an inability of cerebral vessels to 
constrict in response to restored perfusion could result in microvascular 
leakage, vasogenic edema, or intracerebral hemorrhage. Therefore, 
strict control of perioperative blood pressure fluctuations is essential to 
reduce the risk of CHS. Postoperative continuous blood pressure 
monitoring and individualized antihypertensive management may also 
aid in the early detection and mitigation of CHS symptoms. During 
balloon dilation, inflation may activate baroreceptors in the carotid 
sinus and induce reflexive hypotension. As the duration of balloon 
inflation increases, so does the risk of stroke (48). Concurrent carotid 
artery wall injury, plaque disruption, increased embolus counts, and 
in-stent thrombosis formation can all diminish perfusion to peripheral 
brain tissues, potentially increasing the probability of symptomatic 
stroke associated with balloon use. These findings suggest that during 
CAS procedures, clinicians should use balloon dilation cautiously, 
reducing the frequency of use or considering techniques such as 
low-pressure dilation to minimize vascular damage. It is noteworthy 
that stent type (closed-cell vs. open-cell) was ultimately not retained in 
the final predictive model. This finding is consistent with prior large-
scale meta-analyses, which demonstrated no significant differences 
between the two designs in terms of 30-day rates of death, stroke, or 
TIA (49). Similar conclusions have also been reported in other 
independent studies (50). Evidence suggests that closed-cell stents may 
confer advantages in specific subgroups, such as patients with unstable 
plaques, where they have been associated with lower in-hospital rates 
of stroke, myocardial infarction, or death (51). These observations 
imply that in contemporary CAS practice, with advances in device 
technology and increasing operator expertise, the direct impact of stent 
architecture on overall periprocedural risk may have been outweighed 
by more clinically meaningful patient-specific factors, such as plaque 

TABLE 4  Univariate and multivariate Firth penalized logistic regression analyses for ischemic ANEs in the training cohort.

Variables Univariate analysis
(Ischemic ANEs)

Multivariate analysis
(Ischemic ANEs)

OR (95%CI) p-value OR (95%CI) p-value

Age 1.100 (1.027–1.177) 0.006 1.102 (1.022–1.192) 0.013

Ulcerated plaque 4.508 (1.703–11.934) 0.002 4.573 (1.617–13.282) 0.004

Hemodynamic suppression 3.803 (1.420–10.183) 0.008 3.576 (1.248–10.979) 0.020

Use of balloon dilation 1.746 (0.622–4.906) 0.290 1.456 (0.427–4.537) 0.528

ANE, adverse neurovascular event.

TABLE 5  Univariate and multivariate Firth penalized logistic regression analyses for hemorrhagic ANEs in the training cohort.

Variables Univariate analysis
(Hemorrhagic ANEs)

Multivariate analysis
(Hemorrhagic ANEs)

OR (95%CI) p-value OR (95%CI) p-value

Age 1.081 (0.998–1.172) 0.057 1.068 (0.967–1.180) 0.190

Ulcerated plaque 2.536 (0.782–8.227) 0.121 2.552 (0.591–10.580) 0.193

Hemodynamic suppression 4.991 (1.473–16.906) 0.010 4.060 (1.082–17.768) 0.044

Blood pressure variability 1.198 (1.039–1.382) 0.013 1.182 (1.013–1.407) 0.043

Use of balloon dilation 8.514 (2.483–29.193) <0.001 7.151 (1.976–30.414) 0.004

ANE, adverse neurovascular event.
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morphology. In our cohort, the lack of statistical significance for stent 
type may reflect several factors: (1) an insufficient proportion of 
patients with unstable plaques to detect a measurable effect, and (2) 
perioperative strategies, such as the choice and systematic use of 
embolic protection devices and optimized pharmacological 
management, which may have mitigated the modest differences 
attributable to stent design. Future prospective studies focused on high-
risk subgroups are warranted to clarify whether tailored stent selection 
can provide incremental clinical benefit beyond current best practices.

According to the established risk factors, a nomogram was 
developed to facilitate the preoperative prediction of ANEs. The 
model demonstrated high predictive accuracy with an AUC of 
0.798 in the training cohort and 0.819 in the validation cohort. The 
internally validated, corrected C-index of 0.773 attests to the excellent 
stability of the nomogram. The calibration curve demonstrated that 
the predicted probabilities of ANE occurrence closely matched the 

actual probabilities. DCA was conducted to assess the model’s clinical 
utility, indicating its good clinical value. The primary advantage of this 
study lies in the development of an easily applicable, quantifiable 
prediction tool that can preoperatively estimate the risk of ANEs in 
individuals with symptomatic carotid stenosis undergoing CAS. This 
not only aids in surgical decision-making and reduces event risk but 
also helps identify patients requiring closer postoperative monitoring 
due to high risk.

We conducted stratified analyses of ANEs and found that ischemic 
and hemorrhagic events exhibited distinct risk profiles. Ischemic ANEs 
were mainly influenced by age, ulcerated plaque, and hemodynamic 
suppression, reflecting the role of vulnerable plaque burden and 
impaired cerebrovascular reserve. In contrast, hemorrhagic ANEs were 
largely driven by peri-procedural factors such as use of balloon dilation 
and BPV, with hemodynamic suppression also contributing. These 
findings suggest that the two event types arise from different 

FIGURE 7

SHAP summary plots of the composite prediction model stratified by outcome subtype. (A) Ischemic ANEs subgroup; (B) Hemorrhagic ANEs subgroup.

FIGURE 8

ROC curves of the composite model stratified by ANE subtype in the training cohort (A) and validation cohort (B).
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pathophysiological mechanisms and may require differentiated 
perioperative management strategies. Although BPV was not included 
in the final nomogram, it remained an independent risk factor in the 
hemorrhagic subgroup, underscoring its clinical importance. Several 
explanations may account for its exclusion from the composite model. 
First, BPV appears to be more strongly associated with hemorrhagic 
complications, as shown in the subgroup analysis, but its effect may 
have been diluted when ischemic events were combined into the 
composite endpoint. Second, BPV is closely correlated with 
perioperative Hemodynamic suppression, which was retained as an 
independent predictor, thereby diminishing BPV’s statistical weight in 
the overall model. From a pathophysiological perspective, elevated 
BPV may exacerbate the risk of postoperative cerebral hyperperfusion 
and vessel rupture, thereby contributing specifically to hemorrhagic 
complications (52). These findings indicate that perioperative blood 
pressure management during CAS should not only target mean levels 
but also aim to minimize fluctuations to reduce hemorrhagic risk. 
Future large-scale studies are needed to clarify the mechanistic role of 
BPV and to assess whether its integration into risk prediction tools 
could enhance individualized stratification for hemorrhagic events. It 
is noteworthy that the composite model achieved AUCs of 0.798 and 
0.819  in the training and validation cohorts, respectively, which 
remained superior to those of the stratified models. This suggests that 
while stratified analysis improves mechanistic interpretability, the 
composite model retains indispensable clinical value by providing a 
robust and integrative tool for perioperative risk prediction. Taken 
together, the two approaches are complementary: stratified analysis 
enhances mechanistic insight, whereas the composite model offers 
stable predictive performance for clinical application.

This study has several limitations. First, its retrospective nature 
inevitably introduces risks of information bias and confounding 
factors. Second, due to the limited follow-up duration, the model is 
not applicable for predicting events occurring beyond 1  month 
postoperatively. Third, as the nomogram was developed in a Southern 
Chinese population, its applicability to Western populations may 
be  limited owing to differences in cardiovascular risk profiles. 
Although we  adopted a conservative variable selection strategy 
(LASSO combined with Bayesian validation) and performed both 
internal and external validation, the event-per-variable ratio (EPV = 8) 
remained lower than the ideal standard, which may restrict the 
generalizability of the model. In addition, although bootstrap 
resampling and external validation confirmed the overall calibration 
of the model, prediction in the extremely high-risk range remained 
somewhat uncertain, largely due to the relatively small number of 
such patients. Therefore, the proposed model requires further 
validation in prospective, multicenter studies with larger sample sizes 
to confirm its robustness and clinical applicability.

Conclusion

We developed and validated a tool that effectively predicts the risk 
of ANEs in patients with symptomatic carotid artery stenosis 
undergoing CAS at an early stage. The results confirmed that age, 
ulcerated plaque, hemodynamic suppression, and the use of balloon 
dilation are significant predictors of ANEs. This novel nomogram 
exhibited good accuracy and good clinical utility. Its application 
facilitates the preoperative identification of high-risk patients, enabling 

clinicians to adjust interventions to mitigate potential ANEs, thereby 
improving overall surgical outcomes and patient safety. Moreover, this 
study provides a foundation for further research in several key areas. 
Future studies could explore the long-term outcomes of patients 
identified as high-risk and the effectiveness of targeted management 
strategies. Additionally, research should consider the integration of this 
tool with other risk assessment models to develop a comprehensive 
approach to preoperative evaluation.
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