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As laparoscopic surgery becomes more complex, the early detection and 
management of postoperative neurological issues, particularly postoperative 
delirium and cognitive dysfunction, have gained prominence in clinical nursing. 
In recent years, electroencephalogram (EEG) monitoring has emerged as a non-
invasive, real-time method for assessing brain function, and is increasingly being 
utilized in postoperative care. This includes evaluating the quality of anesthesia 
recovery, monitoring the balance of cerebral oxygen supply and demand, protecting 
neurological function, and overseeing postoperative sleep, demonstrating its 
potential benefits. This article provides a comprehensive review of the technical 
principles and application contexts of EEG monitoring in the nursing care of 
laparoscopic surgery patients, aiming to develop an optimized nursing model 
that encompasses the preoperative, intraoperative, and postoperative phases.
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1 Introduction

Laparoscopic surgery is commonly utilized across various surgical specialties. As clinical 
demand rises, more intricate laparoscopic procedures that involve lengthy operation times, 
deep anatomical layers, significant technical challenges, and elevated perioperative risks are 
being performed. In the United States, 2 million cases of these surgeries are conducted each 
year (1). However, laparoscopic surgery continues to encounter technical challenges and 
potential complications. Most prior researches have concentrated on traditional complications 
like intraoperative bleeding and infections, while comprehensive studies on the objective 
monitoring and care of nerve damage and postoperative cognitive dysfunction—such as 
delirium and cognitive decline—are still limited. The underlying pathological and physiological 
mechanisms associated with laparoscopic surgery may significantly contribute to postoperative 
nerve damage and cognitive issues, with 10–50% of elderly patients experiencing delirium 
post-surgery (2). Postoperative delirium (POD) and postoperative neurocognitive dysfunction 
(POCD) are signs of reversible nerve injury, with incidence rates ranging from 36.6% in 
younger individuals to 42.4% in older adults (3), and they are closely linked to an increased 
risk of long-term dementia (4, 5). In the U.S., the healthcare costs related to POD are estimated 
at $32.9 billion annually (6), and the daily expenses for patients with delirium are double those 
of non-delirious patients, totaling between $38 billion and $152 billion each year (7).
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Electroencephalography (EEG) serves as a non-invasive, cost-
effective method for dynamically assessing fluctuations in brain 
function. It can provide a baseline evaluation of patients’ brain function 
prior to laparoscopic surgery, quantify anesthesia depth through EEG 
biomarkers during the procedure, and offer early warnings regarding 
cognitive recovery post-surgery, as well as indicate the extent of brain 
function recovery (8). For surgical nursing staff, enhancing perioperative 
management of patients under EEG monitoring is crucial for improving 
patient outcomes and alleviating the burden on families and society.

This review seeks to systematically combine EEG-based 
applications and creates an optimized nursing model aimed at 
minimizing neurological injury complications during laparoscopic 
surgery, particularly focusing on POD and POCD. The review will 
address the following scientific topics: (1) neurological complications 
following laparoscopic surgery; (2) the mechanisms behind POD and 
POCD; (3) how EEGs can help prevent and monitor these conditions; 
and (4) the development of a comprehensive postoperative care model 
for laparoscopic surgery utilizing EEG monitoring. By addressing 
these areas, the goal is to establish a monitoring system based on EEGs 
and develop an effective nursing approach that can reduce 
postoperative neurocognitive disorders, enhance patients’ quality of 
life, and alleviate the burden on families and the healthcare system.

2 Postoperative neurological 
complications after laparoscopic 
surgery

Postoperative neurological issues following laparoscopic surgery 
can arise from various factors, including pneumoperitoneum pressure, 
extended use of specific positions (like low head and high foot or 
lithotomy), and electrosurgical techniques. These complications may 
include autonomic dysfunction, peripheral nerve damage, and central 
nervous system issues. The likelihood of experiencing these 
complications is significantly influenced by the type of surgery 
performed, its duration, and the patient’s pre-existing health conditions.

2.1 Autonomic dysfunction

Once pneumoperitoneum is established, the rise in abdominal 
pressure affects the autonomic nervous system balance through 
several mechanisms: (1) Increased tension in the vagus nerve: Traction 
on the peritoneum activates the vagus nerve, which can result in 
bradycardia and, in severe instances, cardiac arrest (9). (2) Stimulation 
of the sympathetic nervous system: Elevated carbon dioxide levels 
(PaCO₂ > 50 mmHg) and the pressure from pneumoperitoneum 
activate the sympathetic nervous system, leading to significant 
fluctuations in blood pressure (over 20% from baseline) and 
postoperative nausea and vomiting (PONV) (10–13). The incidence 
of PONV can be as high as 80% in female patients, potentially due to 
hormonal changes and variations in drug metabolism (14).

2.2 Peripheral nerve complications

The primary causes of complications during surgical procedures 
are mechanical compression, electrical injury, and positional factors. 
Common types of nerve injuries include brachial plexus paralysis (15), 

obturator nerve injury (16), sciatic nerve injury (17), and femoral 
nerve injury (18), among others.

2.3 Central nervous system complications

Conventional complications of the central nervous system usually 
involve structural damage, like cerebral edema and cerebral infarction, 
as well as functional and metabolic disorders. These issues are 
uncommon in laparoscopic surgery and generally include brain 
injuries related to hypercapnia (19), cerebral infarction (20), and 
metabolic encephalopathy (21). Furthermore, POD and POCD are 
also considered central nervous system complications, but they are 
often categorized separately because of their distinct 
pathophysiological mechanisms and clinical presentations. This article 
primarily focuses on these two types of complications.

3 The manifestations and 
pathogenesis of postoperative 
neurocognitive disorders

3.1 Clinical manifestations and 
epidemiology

Postoperative neurocognitive dysfunction (PND) is a syndrome 
of cognitive impairment that occurs after surgery, caused by factors 
related to the surgery and anesthesia. It is a complex condition that 
primarily includes POD and POCD (22). These two conditions differ 
notably in their clinical symptoms, patterns of cognitive impairment, 
and epidemiological characteristics, as outlined below.

3.1.1 POD
POD is defined as the sudden onset of impaired consciousness 

and cognitive dysfunction following surgery. It is marked by acute 
confusion, attention deficits, and fluctuating cognitive abilities. 
Symptoms include disorientation (misrecognition of time, place, and 
person), hallucinations or delusions, confused speech, behavioral 
agitation or suppression (“quiet delirium”), and temporary memory 
loss. The condition typically fluctuates significantly, usually emerging 
within 24 to 72 h after surgery and lasting from several hours to a few 
days. The overall incidence of POD is about 23%, but it can reach up 
to 50% in high-risk surgeries (23). In complex laparoscopic 
procedures, the incidence varies between 8 and 60%, depending on 
the surgical site and type (24–27). POD is closely linked to POCD, 
often considered an early stage of POCD, with an incidence ranging 
from 10 to 54% (28). The hallmark cognitive features of POD are acute 
impairments in attention and consciousness, affecting critical 
cognitive domains such as attention and awareness.

3.1.2 POCD
POCD refers to ongoing cognitive decline following surgery, 

characterized by a notable reduction in abilities such as memory, 
attention, and executive function compared to pre-surgery levels. This 
impairment lasts for more than 1 week after the operation, often 
persisting for several weeks, months, or even longer (28, 29). Unlike 
the sudden and temporary changes seen in POD, POCD develops 
more gradually and is primarily evident through decreased ability to 
perform daily activities—for example, memory lapses causing 
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repeated forgetting of medical instructions, and executive dysfunction 
leading to difficulties in completing complex tasks. The occurrence of 
POCD typically ranges from 10 to 54% and is closely linked to POD, 
with many studies suggesting that POD may be an early indicator of 
POCD (3, 26). Factors influencing its incidence include patient age, 
type of surgery, and preoperative cognitive reserve. Elderly patients 
and those undergoing complex laparoscopic procedures, such as 
radical gastrectomy, face a significantly higher risk of developing 
POCD (28, 29). This condition involves persistent impairment across 
multiple cognitive areas, particularly affecting memory, executive 
function, and the speed of information processing.

3.2 Mechanism

Postoperative neurocognitive impairment following laparoscopic 
surgery arises from various mechanisms, primarily neuroinflammation 
and disruptions in the cholinergic system. Additionally, certain 
complex laparoscopic procedures involve unique factors such as 
extended pneumoperitoneum and hypercapnia, which can lead to 
reduced blood flow to the brain and metabolic irregularities, further 
worsening the damage (Table 1).

3.2.1 Neuroinflammation and blood–brain barrier 
disruption

The involvement of neuroinflammation, disruption of the blood–
brain barrier, and oxidative stress in postoperative neurocognitive 
disorders has been thoroughly researched and validated (30, 31). 

Studies (32) have shown that pro-inflammatory cytokines are 
increased in the serum and cerebrospinal fluid of POD and 
POCD. During surgical procedures, damaged tissues release oxygen 
free radicals, neurotrophic factors, interleukin-1, interleukin-6, tumor 
necrosis factor alpha (TNF-α), and other substances (33). These 
elements can either pass through the relatively permeable ventricles, 
actively cross the blood–brain barrier, or directly enter the brain 
through the compromised blood–brain barrier, where they bind to 
specific receptors in the central nervous system. This process activates 
microglia and endothelial cells, worsening postoperative inflammatory 
responses and leading to cognitive decline (34). Additionally, a study 
(35) using a rat model to investigate postoperative neurological 
dysfunction revealed issues with neurotrophic factors in memory-
related regions like the hippocampus and prefrontal cortex. A recent 
prospective cohort study (36) indicated a direct link between POD 
and blood–brain barrier disruption, noting that the barrier’s 
permeability fluctuates with neuroinflammation and lactate levels, 
further influencing the onset of delirium. Furthermore, minimizing 
intraoperative bleeding may help reverse this disruption of the blood–
brain barrier.

3.2.2 Imbalance of cerebral oxygen supply and 
demand and perfusion abnormalities

Complex laparoscopic surgeries, particularly those involving the 
gastrointestinal tract, often necessitate a reverse Trendelenburg 
position and extended pneumoperitoneum to achieve an optimal 
surgical view and a smooth operating environment. Typically, the use 
of carbon dioxide pneumoperitoneum and the reverse Trendelenburg 

TABLE 1  EEG correlation table of laparoscopic surgery specificity and anesthesia-related mechanisms.

Laparoscopic surgery-specific mechanisms EEG

Pneumoperitoneum-related injuries: Pneumoperitoneum pressure (10-12 mmHg) 

leads to hypercapnia (PaCO₂ > 50 mmHg), causing cerebral vasodilation, increased 

intracranial pressure, and imbalance of cerebral oxygen supply and demand; At the 

same time, peritoneal traction activates the vagus nerve and exacerbates the 

neuroinflammatory response.

α inhibition: When the pneumoperitoneal pressure was > 10 mmHg, the frontal lobe 

α wave power decreased by > 30%, indicating that the brain perfusion was 

insufficient, and the pneumoperitoneum pressure and position needed to be adjusted 

together.

δ dynamics: postoperative δ wave power increases by > 40% and lasts for > 6 h, 

which is associated with blood–brain barrier disruption and requires enhanced 

anti-inflammatory interventions (such as optimized fluid management);

SEF: Intraoperative SEF ratio < 1.0 suggests inhibition of cerebral metabolism, and 

hypercapnia should be corrected in combination with blood gas analysis.

Posture impact: Special positions such as reverse Trendelenburg position change 

cerebral hemodynamics, resulting in cerebral hypoperfusion, prefrontal cortex and 

hippocampal metabolism abnormalities.

Surgical stress: Prolonged surgery (>3 h) and electrosurgical procedures cause tissue 

damage, release pro-inflammatory factors such as IL-1, IL-6, TNF-α, disrupt the 

blood–brain barrier, activate microglia, and lead to a neuroinflammatory cascade.

Metabolic disorders: Acidosis due to pneumoperitoneum affects synaptic function, 

mitochondrial electron transport chain abnormalities, decreased ATP production, 

and exacerbates neuronal damage.

Anesthesia-related mechanisms

Direct drug inhibition: Propofol, benzodiazepines inhibit the thalamic-cortical arousal 

system by enhancing GABA ergic neurotransmission, resulting in a decrease in α 

wave power and an increase in δ waves.

Abnormal BIS value;

θ (4–8 Hz) are diffuse and can be partially reversed with discontinuation.

Abnormal depth of anesthesia: Excessive anesthesia at BIS<40 can lead to suppression 

of neuronal activity, while fluctuations in depth (BIS variant> 20) increase the 

metabolic burden on the brain.

Cholinergic system interference: Anesthetic drugs reduce acetylcholine release, affect 

hippocampal memory function, and are directly related to postoperative cognitive 

decline.
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position can lead to significant alterations in cerebral blood flow and 
an increase in intracranial pressure (37, 38). Previous research (39) has 
shown that brain oxygenation notably declines when 
pneumoperitoneum pressure is maintained between 10 and 12 mmHg, 
which is linked to cognitive changes. A study examining the effects on 
short-term cognitive function in patients who underwent robot-
assisted radical prostatectomy (40) revealed that some individuals 
experienced lower Mini Mental State Examination (MMSE) scores, 
POD, elevated intracranial pressure, and mild cognitive impairment. 
Furthermore, acidosis resulting from carbon dioxide 
pneumoperitoneum can disrupt synaptic nervous function, dilate 
cerebral blood vessels, raise intracranial pressure, enhance the release 
of vascular factors, and lead to venous short circuits, ultimately 
contributing to cognitive dysfunction (41).

3.2.3 Oxidative stress and mitochondrial 
dysfunction

Mitochondria serve various roles, including metabolite and redox 
signaling, energy production in the form of adenosine triphosphate 
(ATP), and the regulation of nuclear gene expression and epigenetics. 
They respond to stress by continuously undergoing division and 
fusion (42, 43). Surgical stress can disrupt the mitochondrial electron 
transport chain. Recent studies (44) have indicated that disorders in 
mitochondrial energy metabolism and associated biological changes 
are closely linked to the development of neurocognitive disorders after 
surgery. The mechanisms behind the imbalance in mitochondrial 
homeostasis related to POCD involve mitochondrial dynamics and 
dysfunction (45). Furthermore, mitochondrial damage, such as 
oxidative stress, can cause an imbalance in the production and 
removal of oxygen free radicals, which can further impair 
mitochondrial function (43).

3.2.4 Other factors such as surgical and 
anesthesia specificity

Complex laparoscopic surgeries involve high-risk procedures such 
as extended pneumoperitoneum, pelvic lymph node dissection (which 
can harm the autonomic nerve plexus), and gastrointestinal 
reconstruction (which may involve traction on the vagus nerve), all of 
which can have direct or indirect impacts on neurological function. 
Furthermore, the choice and dosage of anesthetic agents can influence 
the occurrence of postoperative neurocognitive disorders and elevate 
the risk of POD (46, 47). Recent research has also indicated that 
abnormal buildup of β-amyloid protein and synaptic function 
impairment (48, 49), along with disruptions in the gut-brain 
microbiota axis (50), can contribute to postoperative 
neurocognitive issues.

3.2.5 Differences in mechanisms between POD 
and POCD

Although both POD and POCD fall under the category of PNDs 
and share fundamental pathological features like neuroinflammation 
and blood–brain barrier disruption, they differ significantly in terms 
of timing of injury, reversibility, and key mechanisms. These 
differences mainly highlight the contrast between “acute reversible 
injury” and “chronic potentially persistent injury”: (1) Timing of 
neuroinflammation: POD is closely linked to an acute 
neuroinflammatory response. Within hours to days following surgical 
trauma, pro-inflammatory factors (such as IL-6 and TNF-α) rapidly 

increase and penetrate the blood–brain barrier, triggering excessive 
microglial activation and a central acute inflammatory reaction. This 
inflammation typically diminishes gradually as systemic inflammation 
is controlled post-surgery and is characterized by short-term, intense 
effects (34, 36). In contrast, neuroinflammation in POCD presents as 
a subacute or chronic persistent condition. Although 
pro-inflammatory factor levels decrease after surgery compared to the 
acute phase seen in POD, the inflammation lasts much longer (up to 
several weeks or even months) and is accompanied by ongoing 
microglial activation and accumulation of neurotoxic substances, 
resulting in long-term damage to cognitive-related brain regions such 
as the hippocampus (30, 31). (2) Differences in the reversibility of 
blood–brain barrier damage: In patients with POD, blood–brain 
barrier disruption is dynamically reversible and is mainly influenced 
by factors like acute hypercapnia and fluctuations in intracranial 
pressure during surgery. Research indicates that minimizing 
intraoperative bleeding can significantly reverse this abnormal 
permeability (36). As pneumoperitoneum is relieved and the balance 
between cerebral oxygen supply and demand is restored, blood–brain 
barrier function can gradually recover over several days. In contrast, 
blood–brain barrier damage in POCD tends to cause structural 
alterations. Prolonged inflammatory stimulation leads to ongoing 
disruption of tight junctions in vascular endothelial cells, along with 
the accumulation of toxic substances such as beta-amyloid, making 
full restoration of barrier function difficult and resulting in axonal 
injury and synaptic loss (49). (3) Differences in the duration of 
cerebral metabolism and perfusion abnormalities: The imbalance 
between cerebral oxygen supply and demand in POD primarily arises 
from acute intraoperative events, such as sudden increases in 
pneumoperitoneum pressure (notably reducing cerebral oxygenation 
at 10–12 mmHg) and transient cerebral blood flow fluctuations caused 
by specific surgical positions. These issues can be rapidly resolved by 
adjusting pneumoperitoneum pressure and optimizing patient 
positioning, making the metabolic disturbances mostly temporary 
(39, 40). Conversely, POCD is linked to prolonged cerebral 
hypoperfusion and reduced metabolic reserve. Even if oxygenation is 
restored during surgery, cognitive-related brain regions (like the 
prefrontal cortex) may remain in a low metabolic state for an extended 
period due to persistent mitochondrial dysfunction (including 
insufficient ATP production and buildup of oxidative stress products) 
and impaired cerebral blood vessel autoregulation. (4) Differences 
between the cholinergic system and synaptic damage: In POD, 
inhibition of the cholinergic system is an acute functional suppression, 
primarily due to short-term acetylcholine depletion caused by 
anesthetic agents (like anticholinergic drugs) and surgical stress. This 
results in sudden symptoms such as confusion and attention deficits. 
Once the medication is stopped or stress is alleviated, normal function 
can quickly return (41). In contrast, POCD involves structural damage 
to cholinergic neurons, with prolonged inflammation and oxidative 
stress causing cell death and reduced synaptic density in the basal 
forebrain. It is also linked to impaired synaptic plasticity (for example, 
dysfunction of neurotrophic factors), leading to lasting impairments 
in cognitive areas like memory and executive function, with longer 
recovery times and a risk of progressing to chronic cognitive decline 
(34, 48). (5) Other specific mechanistic differences: POD is also 
associated with acute disruptions in the sleep–wake cycle and 
temporary functional disconnection of the default mode network 
(DMN). EEG findings may show sudden increases in δ power and a 
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shift toward lower frequencies in the dominant rhythm (51, 52). On 
the other hand, POCD is more related to chronic pathological 
processes such as long-term disturbances in the gut microbiota-brain 
axis and abnormal β-amyloid protein accumulation. These factors 
continuously impact neuroendocrine and immune regulation 
pathways, causing gradual cognitive decline (49, 50). In summary, 
POD is characterized by acute, reversible, and functional impairments, 
whereas POCD involves chronic, potentially lasting, and structural 
damage. Understanding these mechanistic differences offers a 
theoretical foundation for accurate diagnosis and targeted treatment, 
including clinical approaches like EEG monitoring.

4 Diagnosis of POD and POCD

The primary clinical assessment tools for diagnosing POD include 
the Confusion Assessment Method (CAM) (53), the ICU Confusion 
Assessment Method (CAM-ICU), and additional tools like the 
Delirium Rating Scale and the 4AT Scale (54). CAM is considered the 
gold standard for assessing POD (55). Diagnosing postoperative 
cognitive dysfunction primarily depends on neuropsychological tests 
such as the MMSE and the Montreal Cognitive Assessment (MoCA) 
(56). Due to technical challenges and complex procedures, there are 
limited clinical applications for biomarker detection, including 
cerebrospinal fluid analysis and blood markers related to astrocyte 
injury and blood–brain barrier disruption, as well as functional 
magnetic resonance imaging to monitor abnormalities in hippocampal 
blood oxygen levels and PET-CT for brain metabolism assessment 
(56). However, it is undeniable that some postoperative patients, 
particularly elderly individuals, show low cooperation with scale 
assessments, and these assessment methods are often affected by the 
experience and subjectivity of medical personnel. International studies 
have found that nurses’ sensitivity and specificity in evaluating delirium 
were 47 and 98%, respectively (57). This finding is not isolated; several 
international multicenter studies have confirmed that nursing staff 
commonly exhibit insufficient sensitivity when using traditional 
delirium assessment tools. For instance, a study involving 234 elderly 
hospitalized patients across 12 countries (55) found that despite 
standardized training, nurses using the CAM scale to detect delirium 
had an overall sensitivity of only 51%. This was mainly due to the 
fluctuating nature of delirium (such as “quiet delirium” being easily 
missed) and variations in nurses’ ability to recognize subtle symptoms. 
Additionally, a meta-analysis focusing on ICU patients (57) reported 
that the sensitivity of nursing staff using only the CAM-ICU ranged 
from 35 to 58%, which was significantly lower than the 82 to 91% 
sensitivity achieved through assessments by multidisciplinary teams, 
highlighting the limitations of traditional tools in nursing practice.

In recent years, optimization tools for nursing situations have 
increasingly been implemented in clinical practice, partially 
addressing the limitations of traditional methods: (1) 3-min 
Diagnostic Interview for Delirium (3D-CAM): This simplified version 
of the CAM tool targets key symptoms such as “acute onset, attention 
deficits, and altered consciousness” through structured questions. A 
recent systematic review and meta-analysis (58) reported that 
3D-CAM has a sensitivity of 92% and specificity of 95%, with an 
administration time reduced to under 3 min, making it well-suited for 
busy postoperative nursing environments. (2) Nursing Delirium 
Screening Scale (Nu-DESC): This bedside screening tool is specifically 

designed for nursing staff. By evaluating five symptoms—restlessness, 
inattention, clouded consciousness, hallucinations, and fluctuation—
its sensitivity ranges from 76 to 82% in elderly postoperative patients, 
and its agreement with neurologists’ diagnoses is significantly better 
than that of CAM-ICU (55). Nonetheless, CAM/CAM-ICU remains 
the predominant tool in clinical use, and the adoption and 
standardization of alternative tools require improvement. Therefore, 
it is essential to accurately detect postoperative neurocognitive 
disorders through technological advancements and the development 
of an objective evaluation system based on EEG monitoring. EEG can 
provide an objective complement to scale assessments, creating a 
combined “subjective + objective” evaluation model alongside scales, 
thereby enhancing the early detection accuracy of delirium. This 
approach not only impacts patient outcomes but also reduces 
healthcare costs, representing a crucial strategy to address the 
challenges posed by an aging population (Table 2).

5 The role and nursing application of 
EEG in preventing and monitoring 
postoperative cognitive impairment

EEG monitoring is a non-invasive, real-time, and cost-effective 
method for assessing brain function, proving to be particularly valuable 
in systemic neuroprotective strategies related to POD and POCD (59). 
Research indicates (60–62) that POD and POCD are associated with 
specific spectral features of EEG, particularly frontal lobe alpha waves, 
which reflect the balance between arousal and sedation. This balance 
can be  disrupted by neuroinflammation and anesthesia responses 
during surgery. The American Society for the Advancement of 
Rehabilitation and Perioperative Quality advises anesthesiologists to 
utilize EEG, including raw waveforms, spectrograms, and processed 
indices, to guide anesthesia (59). The characteristics of preoperative 
raw EEG, such as time-frequency and power spectrum analysis, along 
with the dual frequency index (BIS) derived from complex EEG 
algorithms, may serve as predictive markers for POD and POCD in 
patients (63, 64). It is important to note that the BIS primarily indicates 
the depth of anesthesia, and its link to POD/POCD is largely based on 
pharmacological factors like excessive sedation from anesthetic drugs 
and individual patient sensitivity. However, physiological stressors 
unique to laparoscopic surgery—such as pneumoperitoneum pressure, 
CO₂ retention, and changes in cerebral perfusion—can cause 
neurocognitive impairment through mechanisms unrelated to 
anesthesia depth, including neuroinflammation and imbalances in 
cerebral oxygen supply and demand (Table 1). For instance, (1) certain 
positions (like Trendelenburg) can reduce venous return, resulting in 
inadequate cerebral perfusion; (2) hypercapnia from carbon dioxide 
pneumoperitoneum can diffuse into brain tissue, lower cerebrospinal 
fluid pH, inhibit brain cell metabolism, cause cerebral vasodilation, 
increase cerebral blood flow, and raise intracranial pressure, all of 
which affect neuronal electrical activity (65). These pathological and 
physiological changes are directly observable in the EEG, making EEG 
a vital tool for monitoring brain function during the perioperative 
period. Common EEG indicators include: suppressed α power, which 
signals reduced attention or metabolic inhibition; increased δ power, 
linked to postoperative delirium and cerebral metabolic disturbances; 
and abnormal γ frequency bands, which suggest neuroinflammation 
or synaptic dysfunction. By continuously monitoring these biomarkers, 
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clinical teams can identify patients at high risk early on and adjust 
perioperative management accordingly—such as optimizing 
ventilation settings, controlling pneumoperitoneum pressure, or 
applying neuroprotective measures—to help lower the incidence of 
POD/POCD.

Perioperative care is essential for ensuring patient safety and 
facilitating recovery, encompassing everything from pre-surgery 
preparation to long-term follow-up. In the context of high-risk 
postoperative care, like laparoscopic surgery, nursing teams can 
greatly minimize complications, speed up recovery, and enhance 
patients’ quality of life by employing comprehensive interventions and 
collaborating across disciplines, all while utilizing accurate and 
objective EEG monitoring.

5.1 Preoperative evaluation and cognitive 
rehabilitation intervention

Identifying patients at risk for POD and POCD after laparoscopic 
surgery early on can facilitate the implementation of timely brain 
health interventions and optimal care strategies, preventing irreversible 
brain function deterioration. Analyzing multi-lead raw EEG data from 
perioperative patients can yield valuable cognitive-related insights. The 
alpha frequency band of EEG, which originates from the thalamus, 
plays a role in regulating wakefulness, attention, and other essential 
cognitive functions. Previous research (51) has indicated that 
preoperative high alpha wave power, increased alpha functional 
connectivity, and structural damage in the frontal lobe can help identify 

patients at high risk for POD. In elderly patients undergoing abdominal 
surgery, those with preoperative cognitive decline show reduced alpha 
frequency power and peak alpha frequency during anesthesia 
maintenance, possibly because these patients are more likely to reach 
deep anesthesia with standard anesthesia doses (67). This finding aligns 
with a study that examined preoperative biomarkers linked to delayed 
neurocognitive recovery (68), which found that patients experiencing 
delayed recovery after surgery exhibited higher power in the low alpha 
frequency band of baseline EEG and lower alpha peak frequency.

Besides the alpha frequency band, other EEG frequency band 
indicators are also linked to postoperative cognitive dysfunction. A 
separate study (69) investigating the connection between changes in 
perioperative EEG and POD in older patients revealed that the 
preoperative low spectral edge frequency (SEF) and gamma band 
(30.1-45 Hz) in those who experienced POD were significantly lower 
compared to those who did not. An SEF of 17.75 Hz or lower before 
surgery showed high sensitivity (94.4%) and a negative predictive value 
(97.7%) for POD. The SEF ratio for patients with POD from wakefulness 
to anesthesia induction was nearly 1, while for those without POD, it 
was above 1, suggesting that POD patients did not exhibit the typical 
EEG slowing response. Thus, preoperative SEF, SEF ratio, and gamma 
band power can serve as independent predictors of POD.

The primary factors that can interfere with EEG monitoring 
include physiological disturbances, equipment and external influences, 
effects of anesthesia and medications, as well as operational and 
technical issues. To enhance the accuracy of EEG monitoring, 
thorough preoperative preparation and adherence to standardized 
procedures are essential. This includes: (1) Skin preparation: cleaning 

TABLE 2  Comparison of POD and POCD.

Identification point POD POCD

Clinical manifestations Acute confusion;

Disorientation, hallucinations, fluctuating between wakefulness and 

drowsiness

Memory loss;

Difficulty concentrating, executive dysfunction, and no obvious 

impairment of consciousness

Time of onset 24–72 h after surgery;

Lasts from several days to 1 week

1–3 months after surgery;

Last from several months to several years.

At least 10% of patients over 60 years of age develop persistent 

POCD 3 months after surgery (66).

EEG features

  Preoperatively Frontal lobe high α power;

α function connection enhancement;

Lower and preoperative γ bands are lower

The lower α frequency band has higher power and lower α peak 

frequency

  During the operation BIS < 40

  Postoperatively α frequency band power decreases;

δ frequency band power increases

δ frequency band power increases;

α frequency band recovery delay;

DMN connection strength decreases;

PDR becomes low frequency (<8 Hz).

Power peaks appeared in the θ band;

α band successively and persisted

Assessment tools CAM, CAM-ICU, 3D-CAM, Nu-DESC, delirium rating scale and 

4AT scale focus on state of consciousness assessment

MMSE, MoCA, with a focus on cognitive domain testing

Focus on care Real-time monitoring of delirium warnings (δ/α > 1.5) to prevent 

accidental injuries and regulate sleep–wake cycles

Long-term cognitive rehabilitation to improve α rhythm and 

enhance DMN connectivity (e.g., cognitive training, music therapy)

Prognostic association Associated with increased short-term mortality, with a reversible 

rate of about 70%

Associated with an increased risk of long-term dementia, 

approximately 30% develop chronic cognitive impairment
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the skin with alcohol wipes and scrubs to minimize skin impedance 
(target ≤ 5KΩ) and applying conductive paste to improve electrode 
contact and decrease electromyographic noise; (2) Proper electrode 
placement: utilizing the international 10–20 system for positioning, 
particularly focusing on the frontal, temporal, and parietal leads.

EEG monitoring in preoperative assessments indicates that alpha 
attenuation during periods of wakefulness, rest, and eye opening is 
linked to postoperative attention issues (70). Consequently, when 
baseline EEG data is available, nursing staff can identify high-risk 
patients for cognitive impairment using specific EEG biomarkers and 
tools like the MMSE and 4AT scales. Researches (29, 71) have 
identified age, preoperative cognitive deficits, stroke, and other health 
conditions as risk factors for postoperative neurological issues. While 
identifying high-risk patients with cognitive impairments does not 
alter the surgical method, it allows for the creation of a tailored plan 
with the anesthesiology team prior to surgery, focusing on manageable 
factors such as intraoperative hypotension, cerebral perfusion, and 
anesthesia duration and depth to mitigate the risk of POD and 
POCD. Additionally, a recent study (72) involving 251 elderly patients 
undergoing major non-cardiac surgery found that those who 
participated in 10 days of cognitive training or 1 hour of cognitive 
exercises before surgery experienced a reduction in POD rates from 
23.0 to 14.4%, although this difference was not statistically significant 
(p = 0.08). This suggests a potential avenue for future research, 
indicating that cognitive pre-habilitation may offer advantages for 
high-risk patients, warranting further trials to confirm its effectiveness.

5.2 Intraoperative monitoring and 
anesthesia depth optimization intervention

In 1937, Gibbs et  al. were the first to observe the impact of 
anesthetics on EEG, leading to the idea of using EEG to monitor the 
depth of anesthesia. Since the 1990s, EEG has become a common tool 
for assessing anesthesia and sedation levels in clinical settings (73). The 
European Society of Anesthesiology now recommends EEG-guided 
anesthesia monitoring to help prevent POD and POCD (74). Currently, 
quantitative EEG indicators are primarily utilized to monitor anesthesia 
depth during surgery, aiming to prevent intraoperative awareness or 
excessive anesthesia, thus minimizing perioperative complications, 
particularly postoperative neurocognitive disorders. Commonly used 
clinical indicators include the Bispectral Index (BIS), Patient State 
Index (PSI), entropy index, and phase lag entropy (PLE) (75, 76). 
Among these, BIS is the most frequently used EEG monitoring tool in 
clinical practice, with its values closely linked to consciousness levels. 
Typically, loss of consciousness is observed at BIS values between 68 
and 75 (77), while values between 40 and 60 indicate adequate 
maintenance of general anesthesia during procedures (78). Monitoring 
BIS intraoperatively helps prevent excessive anesthesia and significant 
fluctuations in anesthesia depth, thereby reducing cognitive impairment 
associated with surgery and anesthesia. A randomized controlled study 
(79) involving non-cardiac and non-neurological surgeries found that 
patients over 75 who experienced POD had lower BIS values compared 
to those without delirium. A predictive model incorporating BIS, 
MMSE, anemia, daily living activities, and blood urea nitrogen could 
serve as a tool for forecasting POD in older patients. In a trial of 
non-cardiac surgeries (80), including laparoscopic procedures, it was 
observed that patients who had BIS-guided anesthesia and maintained 

BIS values between 40 and 60 experienced a lower rate of POD and 
POCD with appropriate care. Another prospective controlled study 
(81) using attention network testing indicated that the BIS group 
significantly reduced the total dosage of propofol and remifentanil 
compared to the non-BIS group. BIS monitoring during anesthesia can 
facilitate quicker cognitive recovery and decrease acute delirium in 
elderly patients undergoing colon cancer surgery. A meta-analysis of 
clinical studies (82) conducted in 2020 also supported the conclusion 
that BIS monitoring has a protective effect against POD on day 1 and 
POCD on day 30. Furthermore, combining near-infrared spectroscopy 
with EEG can help identify intraoperative cerebral hypoperfusion 
events, particularly in situations where pneumoperitoneum raises 
intracranial pressure during complex laparoscopic surgeries.

It is important to note that anesthetics are typically identified by their 
effects on BIS values and a widespread increase in θ waves, whereas the 
physiological stress from laparoscopic surgery primarily appears in the 
EEG as a reduction in alpha waves (<8 Hz) and an increase in δ power 
(1–4 Hz), which coincide with a decrease in cerebral oxygen saturation.

5.3 Postoperative monitoring and 
neurocognitive rehabilitation intervention

The occurrence of POD and POCD is linked to the inhibition of the 
central cholinergic system and reduced neuronal activity. Research 
indicates that a decrease in alpha frequency band power (8–13 Hz) and 
an increase in delta frequency band power (1–4 Hz) following surgery 
may indicate a disruption in the thalamocortical feedback mechanism 
and mitochondrial synaptic dysfunction (83). This serves as the 
pathophysiological foundation for utilizing postoperative EEG to 
monitor neurocognitive disorders in patients. The systemic 
inflammatory response triggered by surgical trauma intensifies 
neuroinflammation via the blood–brain barrier, which inhibits brain 
electrical activity and disrupts cognitive network connectivity. An 
increase in slow wave activity observed in postoperative EEG may 
signify a mismatch between the brain’s metabolic demands and oxygen 
supply, directly correlating with the onset of delirium. Consequently, 
the rise in delta frequency band power and the delayed recovery of 
alpha frequency band activity within 24–72 h post-surgery are 
associated with delirium occurrence (84). Additionally, integrating the 
CAM-ICU scale can enhance diagnostic accuracy (85). In the 
postoperative phase, one-minute EEG monitoring from a single channel 
(Fp2-Pz) revealed a significant increase in delta frequency band power 
among elderly patients with PND (52). When POD manifested, the 
posterior dominant rhythm (PDR) was found in the lower frequency 
band, and the severity of delirium was positively correlated with the 
relative power of the occipital lobe theta waves. Over time, patients with 
cognitive impairment showed a shift in EEG relative power toward 
higher frequencies, with power spectral peaks emerging in the theta and 
alpha bands, indicating cognitive recovery (60). Furthermore, studies 
have shown that POD is linked to a reduction in the connectivity 
strength of the default mode network (DMN) as observed in EEG, with 
surgical stress and inflammation causing functional disconnection 
within the DMN, leading to decreased correlation between the posterior 
cingulate gyrus and the frontal lobe (86). Evidence supporting the use 
of quantitative EEG monitoring for POD, based on increased relative 
delta power and decreased beta power, is growing (87). Nursing staff 
can help mitigate patients’ exposure to blue light at night, enhance 
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natural daylight, and lower the risk of POD by regulating alpha wave 
rhythms, as research suggests that lighting can influence the power of 
certain EEG waves, particularly alpha waves (88). For patients at high 
risk for postoperative neurocognitive disorders, multimodal 
interventions such as EEG neurofeedback training to boost alpha waves 
(89), music therapy to synchronize theta/gamma waves (90), and 
cognitive training to enhance DMN connectivity (91) can be employed 
to facilitate cognitive rehabilitation.

EEG is capable of not only tracking the typical changes associated 
with POD and POCD but also offering early indications of potential 
neurocognitive disorders by assessing sleep quality. Researches 
indicate (92, 93) that poor sleep quality is linked to a higher risk of 
POD, and EEG monitoring provides a more objective measure of 
patients’ sleep quality. EEG serves as a crucial diagnostic tool for sleep 
disorders, and when used alongside polysomnography, it allows for a 
thorough evaluation of sleep structure and irregular patterns. For 
instance, patients with insomnia often experience delayed sleep onset, 
reduced N3 sleep phase, and the presence of high-frequency beta 
waves (94). When detrimental changes in brainwaves affecting sleep 
are identified, this can provide objective evidence for nursing staff. 
Numerous large-scale meta-analyses (95, 96) have demonstrated that 
using earplugs, either alone or in combination with eye masks, can 
enhance sleep quality and help prevent delirium in postoperative 
patients. Furthermore, a clinical study (97) on the effectiveness of 
biofeedback therapy for insomnia revealed that a biofeedback 
approach, which modifies EEG and electromyography power, can 
enable patients to gain voluntary control over their physiological 
timing, thus alleviating sleep disorders and indirectly lowering the 
risk of POD.

The use of EEG monitoring, guidance, and treatment during sleep 
offers nursing staff a direct and non-invasive approach to enhance 
patient sleep quality, particularly in noisy settings like the ICU. In the 
future, advancements in portable EEG monitoring devices and further 

research on perioperative EEG characteristics may enable clinical 
nursing staff to establish warning thresholds for POD by continuously 
monitoring and analyzing EEG data. For patients at high risk of 
postoperative cognitive decline, early cognitive rehabilitation training 
can be initiated.

EEG monitoring can help eliminate evaluation bias, whether it is 
used preoperatively, intraoperatively, or postoperatively, especially for 
patients who are comatose or have language impairments. 
Additionally, it allows for real-time monitoring of brain function 
changes, facilitating personalized interventions. Its objectivity, real-
time capabilities, and non-invasive nature are leading to its increasing 
adoption throughout the entire surgical process (Table 3).

6 Benefits

By enhancing perioperative management strategies, such as 
implementing an optimized nursing model based on EEG monitoring, 
numerous advantages can be  realized across various levels. For 
patients, this approach can decrease POD, alleviate pain and 
complications, speed up recovery, lessen the caregiving burden on 
families by supporting independent living, and effectively prevent 
chronic cognitive decline and long-term mortality. For healthcare 
professionals, it can enhance their skills while minimizing medical 
disputes and reducing occupational stress. On a societal level, this 
intervention model can lead to significant reductions in acute 
hospitalization costs and long-term care expenses, improve the 
allocation of medical resources, and provide public health benefits by 
easing the burden on families and society, as well as facilitating the 
recovery of work capabilities. In the long term, it will also encourage 
advancements in anesthesia monitoring technology and the 
development of the smart healthcare industry, fostering a positive 
cycle of policy support and coordinated industry growth.

TABLE 3  Framework of perioperative EEG monitoring optimized nursing mode.

Section Preoperative Intraoperative Postoperative

EEG markers Frontal α power;

SEF;

γ frequency band power

BIS;

Brain oxygen saturation (near-infrared 

spectroscopy combined with EEG)

δ and α band recovery delay;

Sleep architecture;

Weakened DMN connectivity

Potential mechanisms Baseline cognitive impairment Cerebral hypoperfusion/CO₂ retention Neuroinflammation / Metabolic 

Suppression

Nursing intervention

  Time point Admission assessment and pre anesthesia 

visit

Anesthesia induction until the end of the 

surgery

Before discharge

  Core monitoring EEG;

MMSE/4AT

BIS monitoring;

Dynamic SEF tracking;

Cerebral oxygen saturation measurement

EEG;

Sleep architecture analysis;

Daily CAM-ICU assessment;

  Intervention strategy Identifying high-risk patients;

Optimizing anesthesia plans;

Cognitive pre rehabilitation

Adjust the pneumoperitoneum pressure 

and appropriately adjust the patient’s 

position to maintain normal PaCO₂ levels;

Regulate the depth of anesthesia

Reduce blue light exposure, music therapy;

Sleep optimization (earplugs, eye masks);

Cognitive rehabilitation (multimodal 

cognitive stimulation)

Expectations Identify high-risk populations for POD/

POCD;

Reduce the risk of intraoperative brain 

injury

Avoid excessive or insufficient anesthesia to 

maintain the balance between brain 

metabolism and supply–demand

Early identification of delirium;

Promotion of cognitive function recovery;

Reduction of long-term risks
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POD and POCD following laparoscopic surgery arise from a 
combination of various high-risk factors, including older age, 
pre-existing cognitive issues, and the toxicity of anesthesia drugs, as 
well as pathological processes like neuroinflammation and 
disruptions to the blood–brain barrier. In current clinical practice, 
while some preoperative risk assessment methods (such as the Mini 
Mental State Examination, tailored anesthesia plans, and cognitive 
pre-habilitation) have been implemented in perioperative care, their 
effectiveness is hindered by challenges like the absence of real-time 
neurological monitoring tools, reliance on subjective assessment 
scales, and difficulties in detecting subtle brain function impairments 
during surgery. Additionally, the relationship between cognitive 
pre-habilitation before surgery and anesthesia management during 
the procedure remains unclear, and there is a lack of targeted 
interventions for postoperative sleep disorders based on EEG data. 
Therefore, a comprehensive strategy that includes accurately 
identifying high-risk patients preoperatively (for instance, by 
combining EEG alpha wave power with inflammatory marker levels), 
optimizing anesthesia depth dynamically during surgery, and 
providing early warnings and interventions postoperatively (such as 
monitoring EEG slow wave activity related to sleep deprivation) 
could help reduce the rates of POD and POCD. EEG monitoring 
offers a promising approach for “early warning and early intervention” 
in addressing POD and POCD by tracking changes in brain function, 
thereby lowering the risk of neurological complications. 
Consequently, a “preoperative, intraoperative, postoperative” 
precision nursing model is proposed. Future efforts should focus on 
developing portable EEG devices and deep learning-based EEG 
pattern recognition systems to assess the effectiveness of preoperative 
cognitive pre-habilitation, enable real-time alerts for postoperative 
neurocognitive dysfunction, and incorporate these advancements 
into standardized nursing protocols, ultimately achieving precision 
nursing objectives. With advancements in this research, EEG 
monitoring could evolve from being merely an “auxiliary tool” to a 
“decision engine,” enhancing postoperative neurocognitive care from 
an empirical to a precision medicine approach.
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