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As laparoscopic surgery becomes more complex, the early detection and
management of postoperative neurological issues, particularly postoperative
delirium and cognitive dysfunction, have gained prominence in clinical nursing.
In recent years, electroencephalogram (EEG) monitoring has emerged as a non-
invasive, real-time method for assessing brain function, and is increasingly being
utilized in postoperative care. This includes evaluating the quality of anesthesia
recovery, monitoring the balance of cerebral oxygen supply and demand, protecting
neurological function, and overseeing postoperative sleep, demonstrating its
potential benefits. This article provides a comprehensive review of the technical
principles and application contexts of EEG monitoring in the nursing care of
laparoscopic surgery patients, aiming to develop an optimized nursing model
that encompasses the preoperative, intraoperative, and postoperative phases.
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1 Introduction

Laparoscopic surgery is commonly utilized across various surgical specialties. As clinical
demand rises, more intricate laparoscopic procedures that involve lengthy operation times,
deep anatomical layers, significant technical challenges, and elevated perioperative risks are
being performed. In the United States, 2 million cases of these surgeries are conducted each
year (1). However, laparoscopic surgery continues to encounter technical challenges and
potential complications. Most prior researches have concentrated on traditional complications
like intraoperative bleeding and infections, while comprehensive studies on the objective
monitoring and care of nerve damage and postoperative cognitive dysfunction—such as
delirium and cognitive decline—are still limited. The underlying pathological and physiological
mechanisms associated with laparoscopic surgery may significantly contribute to postoperative
nerve damage and cognitive issues, with 10-50% of elderly patients experiencing delirium
post-surgery (2). Postoperative delirium (POD) and postoperative neurocognitive dysfunction
(POCD) are signs of reversible nerve injury, with incidence rates ranging from 36.6% in
younger individuals to 42.4% in older adults (3), and they are closely linked to an increased
risk of long-term dementia (4, 5). In the U.S., the healthcare costs related to POD are estimated
at $32.9 billion annually (6), and the daily expenses for patients with delirium are double those
of non-delirious patients, totaling between $38 billion and $152 billion each year (7).
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Electroencephalography (EEG) serves as a non-invasive, cost-
effective method for dynamically assessing fluctuations in brain
function. It can provide a baseline evaluation of patients brain function
prior to laparoscopic surgery, quantify anesthesia depth through EEG
biomarkers during the procedure, and offer early warnings regarding
cognitive recovery post-surgery, as well as indicate the extent of brain
function recovery (8). For surgical nursing staff, enhancing perioperative
management of patients under EEG monitoring is crucial for improving
patient outcomes and alleviating the burden on families and society.

This review seeks to systematically combine EEG-based
applications and creates an optimized nursing model aimed at
minimizing neurological injury complications during laparoscopic
surgery, particularly focusing on POD and POCD. The review will
address the following scientific topics: (1) neurological complications
following laparoscopic surgery; (2) the mechanisms behind POD and
POCD:; (3) how EEGs can help prevent and monitor these conditions;
and (4) the development of a comprehensive postoperative care model
for laparoscopic surgery utilizing EEG monitoring. By addressing
these areas, the goal is to establish a monitoring system based on EEGs
and develop an effective nursing approach that can reduce
postoperative neurocognitive disorders, enhance patients’ quality of
life, and alleviate the burden on families and the healthcare system.

2 Postoperative neurological
complications after laparoscopic
surgery

Postoperative neurological issues following laparoscopic surgery
can arise from various factors, including pneumoperitoneum pressure,
extended use of specific positions (like low head and high foot or
lithotomy), and electrosurgical techniques. These complications may
include autonomic dysfunction, peripheral nerve damage, and central
nervous system issues. The likelihood of experiencing these
complications is significantly influenced by the type of surgery
performed, its duration, and the patient’s pre-existing health conditions.

2.1 Autonomic dysfunction

Once pneumoperitoneum is established, the rise in abdominal
pressure affects the autonomic nervous system balance through
several mechanisms: (1) Increased tension in the vagus nerve: Traction
on the peritoneum activates the vagus nerve, which can result in
bradycardia and, in severe instances, cardiac arrest (9). (2) Stimulation
of the sympathetic nervous system: Elevated carbon dioxide levels
(PaCO, > 50 mmHg) and the pressure from pneumoperitoneum
activate the sympathetic nervous system, leading to significant
fluctuations in blood pressure (over 20% from baseline) and
postoperative nausea and vomiting (PONV) (10-13). The incidence
of PONV can be as high as 80% in female patients, potentially due to
hormonal changes and variations in drug metabolism (14).

2.2 Peripheral nerve complications

The primary causes of complications during surgical procedures
are mechanical compression, electrical injury, and positional factors.
Common types of nerve injuries include brachial plexus paralysis (15),
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obturator nerve injury (16), sciatic nerve injury (17), and femoral
nerve injury (18), among others.

2.3 Central nervous system complications

Conventional complications of the central nervous system usually
involve structural damage, like cerebral edema and cerebral infarction,
as well as functional and metabolic disorders. These issues are
uncommon in laparoscopic surgery and generally include brain
injuries related to hypercapnia (19), cerebral infarction (20), and
metabolic encephalopathy (21). Furthermore, POD and POCD are
also considered central nervous system complications, but they are
their
pathophysiological mechanisms and clinical presentations. This article

often categorized separately because of distinct

primarily focuses on these two types of complications.

3 The manifestations and
pathogenesis of postoperative
heurocognitive disorders

3.1 Clinical manifestations and
epidemiology

Postoperative neurocognitive dysfunction (PND) is a syndrome
of cognitive impairment that occurs after surgery, caused by factors
related to the surgery and anesthesia. It is a complex condition that
primarily includes POD and POCD (22). These two conditions differ
notably in their clinical symptoms, patterns of cognitive impairment,
and epidemiological characteristics, as outlined below.

3.1.1 POD

POD is defined as the sudden onset of impaired consciousness
and cognitive dysfunction following surgery. It is marked by acute
confusion, attention deficits, and fluctuating cognitive abilities.
Symptoms include disorientation (misrecognition of time, place, and
person), hallucinations or delusions, confused speech, behavioral
agitation or suppression (“quiet delirium”), and temporary memory
loss. The condition typically fluctuates significantly, usually emerging
within 24 to 72 h after surgery and lasting from several hours to a few
days. The overall incidence of POD is about 23%, but it can reach up
to 50% in high-risk surgeries (23). In complex laparoscopic
procedures, the incidence varies between 8 and 60%, depending on
the surgical site and type (24-27). POD is closely linked to POCD,
often considered an early stage of POCD, with an incidence ranging
from 10 to 54% (28). The hallmark cognitive features of POD are acute
impairments in attention and consciousness, affecting critical
cognitive domains such as attention and awareness.

3.1.2 POCD

POCD refers to ongoing cognitive decline following surgery,
characterized by a notable reduction in abilities such as memory,
attention, and executive function compared to pre-surgery levels. This
impairment lasts for more than 1 week after the operation, often
persisting for several weeks, months, or even longer (28, 29). Unlike
the sudden and temporary changes seen in POD, POCD develops
more gradually and is primarily evident through decreased ability to
perform daily activities—for example, memory lapses causing
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TABLE 1 EEG correlation table of laparoscopic surgery specificity and anesthesia-related mechanisms.

Laparoscopic surgery-specific mechanisms

Pneumoperitoneum-related injuries: Pneumoperitoneum pressure (10-12 mmHg)
leads to hypercapnia (PaCO, > 50 mmHg), causing cerebral vasodilation, increased
intracranial pressure, and imbalance of cerebral oxygen supply and demand; At the
same time, peritoneal traction activates the vagus nerve and exacerbates the

neuroinflammatory response.

Posture impact: Special positions such as reverse Trendelenburg position change
cerebral hemodynamics, resulting in cerebral hypoperfusion, prefrontal cortex and

hippocampal metabolism abnormalities.

Surgical stress: Prolonged surgery (>3 h) and electrosurgical procedures cause tissue
damage, release pro-inflammatory factors such as IL-1, IL-6, TNF-a, disrupt the

blood-brain barrier, activate microglia, and lead to a neuroinflammatory cascade.

Metabolic disorders: Acidosis due to pneumoperitoneum affects synaptic function,
mitochondrial electron transport chain abnormalities, decreased ATP production,

and exacerbates neuronal damage.

EEG

a inhibition: When the pneumoperitoneal pressure was > 10 mmHg, the frontal lobe
a wave power decreased by > 30%, indicating that the brain perfusion was
insufficient, and the pneumoperitoneum pressure and position needed to be adjusted
together.

& dynamics: postoperative § wave power increases by > 40% and lasts for > 6 h,
which is associated with blood-brain barrier disruption and requires enhanced
anti-inflammatory interventions (such as optimized fluid management);

SEF: Intraoperative SEF ratio < 1.0 suggests inhibition of cerebral metabolism, and

hypercapnia should be corrected in combination with blood gas analysis.

Anesthesia-related mechanisms

Direct drug inhibition: Propofol, benzodiazepines inhibit the thalamic-cortical arousal
system by enhancing GABA ergic neurotransmission, resulting in a decrease in

wave power and an increase in § waves.

Abnormal depth of anesthesia: Excessive anesthesia at BIS<40 can lead to suppression
of neuronal activity, while fluctuations in depth (BIS variant> 20) increase the

metabolic burden on the brain.

Cholinergic system interference: Anesthetic drugs reduce acetylcholine release, affect
hippocampal memory function, and are directly related to postoperative cognitive

decline.

Abnormal BIS value;

6 (4-8 Hz) are diffuse and can be partially reversed with discontinuation.

repeated forgetting of medical instructions, and executive dysfunction
leading to difficulties in completing complex tasks. The occurrence of
POCD typically ranges from 10 to 54% and is closely linked to POD,
with many studies suggesting that POD may be an early indicator of
POCD (3, 26). Factors influencing its incidence include patient age,
type of surgery, and preoperative cognitive reserve. Elderly patients
and those undergoing complex laparoscopic procedures, such as
radical gastrectomy, face a significantly higher risk of developing
POCD (28, 29). This condition involves persistent impairment across
multiple cognitive areas, particularly affecting memory, executive
function, and the speed of information processing.

3.2 Mechanism

Postoperative neurocognitive impairment following laparoscopic
surgery arises from various mechanisms, primarily neuroinflammation
and disruptions in the cholinergic system. Additionally, certain
complex laparoscopic procedures involve unique factors such as
extended pneumoperitoneum and hypercapnia, which can lead to
reduced blood flow to the brain and metabolic irregularities, further
worsening the damage (Table 1).

3.2.1 Neuroinflammation and blood—brain barrier
disruption

The involvement of neuroinflammation, disruption of the blood-
brain barrier, and oxidative stress in postoperative neurocognitive
disorders has been thoroughly researched and validated (30, 31).
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Studies (32) have shown that pro-inflammatory cytokines are
increased in the serum and cerebrospinal fluid of POD and
POCD. During surgical procedures, damaged tissues release oxygen
free radicals, neurotrophic factors, interleukin-1, interleukin-6, tumor
necrosis factor alpha (TNF-a), and other substances (33). These
elements can either pass through the relatively permeable ventricles,
actively cross the blood-brain barrier, or directly enter the brain
through the compromised blood-brain barrier, where they bind to
specific receptors in the central nervous system. This process activates
microglia and endothelial cells, worsening postoperative inflammatory
responses and leading to cognitive decline (34). Additionally, a study
(35) using a rat model to investigate postoperative neurological
dysfunction revealed issues with neurotrophic factors in memory-
related regions like the hippocampus and prefrontal cortex. A recent
prospective cohort study (36) indicated a direct link between POD
and blood-brain barrier disruption, noting that the barrier’s
permeability fluctuates with neuroinflammation and lactate levels,
further influencing the onset of delirium. Furthermore, minimizing
intraoperative bleeding may help reverse this disruption of the blood-
brain barrier.

3.2.2 Imbalance of cerebral oxygen supply and
demand and perfusion abnormalities

Complex laparoscopic surgeries, particularly those involving the
gastrointestinal tract, often necessitate a reverse Trendelenburg
position and extended pneumoperitoneum to achieve an optimal
surgical view and a smooth operating environment. Typically, the use
of carbon dioxide pneumoperitoneum and the reverse Trendelenburg

frontiersin.org


https://doi.org/10.3389/fneur.2025.1645814
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Xu and Lv

position can lead to significant alterations in cerebral blood flow and
an increase in intracranial pressure (37, 38). Previous research (39) has
that
pneumoperitoneum pressure is maintained between 10 and 12 mmHg,

shown brain oxygenation notably declines when
which is linked to cognitive changes. A study examining the effects on
short-term cognitive function in patients who underwent robot-
assisted radical prostatectomy (40) revealed that some individuals
experienced lower Mini Mental State Examination (MMSE) scores,
POD, elevated intracranial pressure, and mild cognitive impairment.
Furthermore, acidosis resulting from carbon  dioxide
pneumoperitoneum can disrupt synaptic nervous function, dilate
cerebral blood vessels, raise intracranial pressure, enhance the release
of vascular factors, and lead to venous short circuits, ultimately

contributing to cognitive dysfunction (41).

3.2.3 Oxidative stress and mitochondrial
dysfunction

Mitochondria serve various roles, including metabolite and redox
signaling, energy production in the form of adenosine triphosphate
(ATP), and the regulation of nuclear gene expression and epigenetics.
They respond to stress by continuously undergoing division and
fusion (42, 43). Surgical stress can disrupt the mitochondrial electron
transport chain. Recent studies (44) have indicated that disorders in
mitochondrial energy metabolism and associated biological changes
are closely linked to the development of neurocognitive disorders after
surgery. The mechanisms behind the imbalance in mitochondrial
homeostasis related to POCD involve mitochondrial dynamics and
dysfunction (45). Furthermore, mitochondrial damage, such as
oxidative stress, can cause an imbalance in the production and
removal of oxygen free radicals, which can further impair
mitochondrial function (43).

3.2.4 Other factors such as surgical and
anesthesia specificity

Complex laparoscopic surgeries involve high-risk procedures such
as extended pneumoperitoneum, pelvic lymph node dissection (which
can harm the autonomic nerve plexus), and gastrointestinal
reconstruction (which may involve traction on the vagus nerve), all of
which can have direct or indirect impacts on neurological function.
Furthermore, the choice and dosage of anesthetic agents can influence
the occurrence of postoperative neurocognitive disorders and elevate
the risk of POD (46, 47). Recent research has also indicated that
abnormal buildup of f-amyloid protein and synaptic function
impairment (48, 49), along with disruptions in the gut-brain
(50), can
neurocognitive issues.

microbiota  axis contribute to  postoperative

3.2.5 Differences in mechanisms between POD
and POCD

Although both POD and POCD fall under the category of PNDs
and share fundamental pathological features like neuroinflammation
and blood-brain barrier disruption, they differ significantly in terms
of timing of injury, reversibility, and key mechanisms. These
differences mainly highlight the contrast between “acute reversible
injury” and “chronic potentially persistent injury”: (1) Timing of
POD is
neuroinflammatory response. Within hours to days following surgical

neuroinflammation: closely linked to an acute

trauma, pro-inflammatory factors (such as IL-6 and TNF-a) rapidly
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increase and penetrate the blood-brain barrier, triggering excessive
microglial activation and a central acute inflammatory reaction. This
inflammation typically diminishes gradually as systemic inflammation
is controlled post-surgery and is characterized by short-term, intense
effects (34, 36). In contrast, neuroinflammation in POCD presents as
Although
pro-inflammatory factor levels decrease after surgery compared to the

a subacute or chronic persistent condition.
acute phase seen in POD, the inflammation lasts much longer (up to
several weeks or even months) and is accompanied by ongoing
microglial activation and accumulation of neurotoxic substances,
resulting in long-term damage to cognitive-related brain regions such
as the hippocampus (30, 31). (2) Differences in the reversibility of
blood-brain barrier damage: In patients with POD, blood-brain
barrier disruption is dynamically reversible and is mainly influenced
by factors like acute hypercapnia and fluctuations in intracranial
pressure during surgery. Research indicates that minimizing
intraoperative bleeding can significantly reverse this abnormal
permeability (36). As pneumoperitoneum is relieved and the balance
between cerebral oxygen supply and demand is restored, blood-brain
barrier function can gradually recover over several days. In contrast,
blood-brain barrier damage in POCD tends to cause structural
alterations. Prolonged inflammatory stimulation leads to ongoing
disruption of tight junctions in vascular endothelial cells, along with
the accumulation of toxic substances such as beta-amyloid, making
full restoration of barrier function difficult and resulting in axonal
injury and synaptic loss (49). (3) Differences in the duration of
cerebral metabolism and perfusion abnormalities: The imbalance
between cerebral oxygen supply and demand in POD primarily arises
from acute intraoperative events, such as sudden increases in
pneumoperitoneum pressure (notably reducing cerebral oxygenation
at 10-12 mmHg) and transient cerebral blood flow fluctuations caused
by specific surgical positions. These issues can be rapidly resolved by
adjusting pneumoperitoneum pressure and optimizing patient
positioning, making the metabolic disturbances mostly temporary
(39, 40). Conversely, POCD is linked to prolonged cerebral
hypoperfusion and reduced metabolic reserve. Even if oxygenation is
restored during surgery, cognitive-related brain regions (like the
prefrontal cortex) may remain in a low metabolic state for an extended
period due to persistent mitochondrial dysfunction (including
insufficient ATP production and buildup of oxidative stress products)
and impaired cerebral blood vessel autoregulation. (4) Differences
between the cholinergic system and synaptic damage: In POD,
inhibition of the cholinergic system is an acute functional suppression,
primarily due to short-term acetylcholine depletion caused by
anesthetic agents (like anticholinergic drugs) and surgical stress. This
results in sudden symptoms such as confusion and attention deficits.
Once the medication is stopped or stress is alleviated, normal function
can quickly return (41). In contrast, POCD involves structural damage
to cholinergic neurons, with prolonged inflammation and oxidative
stress causing cell death and reduced synaptic density in the basal
forebrain. It is also linked to impaired synaptic plasticity (for example,
dysfunction of neurotrophic factors), leading to lasting impairments
in cognitive areas like memory and executive function, with longer
recovery times and a risk of progressing to chronic cognitive decline
(34, 48). (5) Other specific mechanistic differences: POD is also
associated with acute disruptions in the sleep-wake cycle and
temporary functional disconnection of the default mode network
(DMN). EEG findings may show sudden increases in § power and a
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shift toward lower frequencies in the dominant rhythm (51, 52). On
the other hand, POCD is more related to chronic pathological
processes such as long-term disturbances in the gut microbiota-brain
axis and abnormal f-amyloid protein accumulation. These factors
continuously impact neuroendocrine and immune regulation
pathways, causing gradual cognitive decline (49, 50). In summary,
POD is characterized by acute, reversible, and functional impairments,
whereas POCD involves chronic, potentially lasting, and structural
damage. Understanding these mechanistic differences offers a
theoretical foundation for accurate diagnosis and targeted treatment,
including clinical approaches like EEG monitoring.

4 Diagnosis of POD and POCD

The primary clinical assessment tools for diagnosing POD include
the Confusion Assessment Method (CAM) (53), the ICU Confusion
Assessment Method (CAM-ICU), and additional tools like the
Delirium Rating Scale and the 4AT Scale (54). CAM is considered the
gold standard for assessing POD (55). Diagnosing postoperative
cognitive dysfunction primarily depends on neuropsychological tests
such as the MMSE and the Montreal Cognitive Assessment (MoCA)
(56). Due to technical challenges and complex procedures, there are
limited clinical applications for biomarker detection, including
cerebrospinal fluid analysis and blood markers related to astrocyte
injury and blood-brain barrier disruption, as well as functional
magnetic resonance imaging to monitor abnormalities in hippocampal
blood oxygen levels and PET-CT for brain metabolism assessment
(56). However, it is undeniable that some postoperative patients,
particularly elderly individuals, show low cooperation with scale
assessments, and these assessment methods are often affected by the
experience and subjectivity of medical personnel. International studies
have found that nurses’ sensitivity and specificity in evaluating delirium
were 47 and 98%, respectively (57). This finding is not isolated; several
international multicenter studies have confirmed that nursing staff
commonly exhibit insufficient sensitivity when using traditional
delirium assessment tools. For instance, a study involving 234 elderly
hospitalized patients across 12 countries (55) found that despite
standardized training, nurses using the CAM scale to detect delirium
had an overall sensitivity of only 51%. This was mainly due to the
fluctuating nature of delirium (such as “quiet delirium” being easily
missed) and variations in nurses’ ability to recognize subtle symptoms.
Additionally, a meta-analysis focusing on ICU patients (57) reported
that the sensitivity of nursing staff using only the CAM-ICU ranged
from 35 to 58%, which was significantly lower than the 82 to 91%
sensitivity achieved through assessments by multidisciplinary teams,
highlighting the limitations of traditional tools in nursing practice.

In recent years, optimization tools for nursing situations have
increasingly been implemented in clinical practice, partially
addressing the limitations of traditional methods: (1) 3-min
Diagnostic Interview for Delirium (3D-CAM): This simplified version
of the CAM tool targets key symptoms such as “acute onset, attention
deficits, and altered consciousness” through structured questions. A
recent systematic review and meta-analysis (58) reported that
3D-CAM has a sensitivity of 92% and specificity of 95%, with an
administration time reduced to under 3 min, making it well-suited for
busy postoperative nursing environments. (2) Nursing Delirium
Screening Scale (Nu-DESC): This bedside screening tool is specifically
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designed for nursing staff. By evaluating five symptoms—restlessness,
inattention, clouded consciousness, hallucinations, and fluctuation—
its sensitivity ranges from 76 to 82% in elderly postoperative patients,
and its agreement with neurologists’ diagnoses is significantly better
than that of CAM-ICU (55). Nonetheless, CAM/CAM-ICU remains
the predominant tool in clinical use, and the adoption and
standardization of alternative tools require improvement. Therefore,
it is essential to accurately detect postoperative neurocognitive
disorders through technological advancements and the development
of an objective evaluation system based on EEG monitoring. EEG can
provide an objective complement to scale assessments, creating a
combined “subjective + objective” evaluation model alongside scales,
thereby enhancing the early detection accuracy of delirium. This
approach not only impacts patient outcomes but also reduces
healthcare costs, representing a crucial strategy to address the
challenges posed by an aging population (Table 2).

5 The role and nursing application of
EEG in preventing and monitoring
postoperative cognitive impairment

EEG monitoring is a non-invasive, real-time, and cost-effective
method for assessing brain function, proving to be particularly valuable
in systemic neuroprotective strategies related to POD and POCD (59).
Research indicates (60-62) that POD and POCD are associated with
specific spectral features of EEG, particularly frontal lobe alpha waves,
which reflect the balance between arousal and sedation. This balance
can be disrupted by neuroinflammation and anesthesia responses
during surgery. The American Society for the Advancement of
Rehabilitation and Perioperative Quality advises anesthesiologists to
utilize EEG, including raw waveforms, spectrograms, and processed
indices, to guide anesthesia (59). The characteristics of preoperative
raw EEG, such as time-frequency and power spectrum analysis, along
with the dual frequency index (BIS) derived from complex EEG
algorithms, may serve as predictive markers for POD and POCD in
patients (63, 64). It is important to note that the BIS primarily indicates
the depth of anesthesia, and its link to POD/POCD is largely based on
pharmacological factors like excessive sedation from anesthetic drugs
and individual patient sensitivity. However, physiological stressors
unique to laparoscopic surgery—such as pneumoperitoneum pressure,
CO, retention, and changes in cerebral perfusion—can cause
neurocognitive impairment through mechanisms unrelated to
anesthesia depth, including neuroinflammation and imbalances in
cerebral oxygen supply and demand (Table 1). For instance, (1) certain
positions (like Trendelenburg) can reduce venous return, resulting in
inadequate cerebral perfusion; (2) hypercapnia from carbon dioxide
pneumoperitoneum can diffuse into brain tissue, lower cerebrospinal
fluid pH, inhibit brain cell metabolism, cause cerebral vasodilation,
increase cerebral blood flow, and raise intracranial pressure, all of
which affect neuronal electrical activity (65). These pathological and
physiological changes are directly observable in the EEG, making EEG
a vital tool for monitoring brain function during the perioperative
period. Common EEG indicators include: suppressed a power, which
signals reduced attention or metabolic inhibition; increased & power,
linked to postoperative delirium and cerebral metabolic disturbances;
and abnormal y frequency bands, which suggest neuroinflammation
or synaptic dysfunction. By continuously monitoring these biomarkers,
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TABLE 2 Comparison of POD and POCD.

Identification point

Clinical manifestations

POD

Acute confusion;
Disorientation, hallucinations, fluctuating between wakefulness and

drowsiness

10.3389/fneur.2025.1645814

POCD

Memory loss;
Difficulty concentrating, executive dysfunction, and no obvious

impairment of consciousness

Time of onset

24-72 h after surgery;

Lasts from several days to 1 week

1-3 months after surgery;

Last from several months to several years.

At least 10% of patients over 60 years of age develop persistent
POCD 3 months after surgery (66).

EEG features

Preoperatively

Frontal lobe high a power;
o function connection enhancement;

Lower and preoperative y bands are lower

The lower o frequency band has higher power and lower a peak

frequency

During the operation

BIS < 40

Postoperatively

a frequency band power decreases;

8 frequency band power increases

8 frequency band power increases;
o frequency band recovery delay;
DMN connection strength decreases;

PDR becomes low frequency (<8 Hz).

Power peaks appeared in the 6 band;

o band successively and persisted

Assessment tools

CAM, CAM-ICU, 3D-CAM, Nu-DESC, delirium rating scale and

4AT scale focus on state of consciousness assessment

MMSE, MoCA, with a focus on cognitive domain testing

Focus on care

Real-time monitoring of delirium warnings (6/a > 1.5) to prevent

accidental injuries and regulate sleep-wake cycles

Long-term cognitive rehabilitation to improve o rhythm and

enhance DMN connectivity (e.g., cognitive training, music therapy)

Prognostic association

Associated with increased short-term mortality, with a reversible

Associated with an increased risk of long-term dementia,

rate of about 70%

approximately 30% develop chronic cognitive impairment

clinical teams can identify patients at high risk early on and adjust
perioperative management accordingly—such as optimizing
ventilation settings, controlling pneumoperitoneum pressure, or
applying neuroprotective measures—to help lower the incidence of
POD/POCD.

Perioperative care is essential for ensuring patient safety and
facilitating recovery, encompassing everything from pre-surgery
preparation to long-term follow-up. In the context of high-risk
postoperative care, like laparoscopic surgery, nursing teams can
greatly minimize complications, speed up recovery, and enhance
patients” quality of life by employing comprehensive interventions and
collaborating across disciplines, all while utilizing accurate and

objective EEG monitoring.

5.1 Preoperative evaluation and cognitive
rehabilitation intervention

Identifying patients at risk for POD and POCD after laparoscopic
surgery early on can facilitate the implementation of timely brain
health interventions and optimal care strategies, preventing irreversible
brain function deterioration. Analyzing multi-lead raw EEG data from
perioperative patients can yield valuable cognitive-related insights. The
alpha frequency band of EEG, which originates from the thalamus,
plays a role in regulating wakefulness, attention, and other essential
cognitive functions. Previous research (51) has indicated that
preoperative high alpha wave power, increased alpha functional
connectivity, and structural damage in the frontal lobe can help identify
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patients at high risk for POD. In elderly patients undergoing abdominal
surgery, those with preoperative cognitive decline show reduced alpha
frequency power and peak alpha frequency during anesthesia
maintenance, possibly because these patients are more likely to reach
deep anesthesia with standard anesthesia doses (67). This finding aligns
with a study that examined preoperative biomarkers linked to delayed
neurocognitive recovery (68), which found that patients experiencing
delayed recovery after surgery exhibited higher power in the low alpha
frequency band of baseline EEG and lower alpha peak frequency.

Besides the alpha frequency band, other EEG frequency band
indicators are also linked to postoperative cognitive dysfunction. A
separate study (69) investigating the connection between changes in
perioperative EEG and POD in older patients revealed that the
preoperative low spectral edge frequency (SEF) and gamma band
(30.1-45 Hz) in those who experienced POD were significantly lower
compared to those who did not. An SEF of 17.75 Hz or lower before
surgery showed high sensitivity (94.4%) and a negative predictive value
(97.7%) for POD. The SEF ratio for patients with POD from wakefulness
to anesthesia induction was nearly 1, while for those without POD, it
was above 1, suggesting that POD patients did not exhibit the typical
EEG slowing response. Thus, preoperative SEE SEF ratio, and gamma
band power can serve as independent predictors of POD.

The primary factors that can interfere with EEG monitoring
include physiological disturbances, equipment and external influences,
effects of anesthesia and medications, as well as operational and
technical issues. To enhance the accuracy of EEG monitoring,
thorough preoperative preparation and adherence to standardized
procedures are essential. This includes: (1) Skin preparation: cleaning
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the skin with alcohol wipes and scrubs to minimize skin impedance
(target < 5KQ) and applying conductive paste to improve electrode
contact and decrease electromyographic noise; (2) Proper electrode
placement: utilizing the international 10-20 system for positioning,
particularly focusing on the frontal, temporal, and parietal leads.
EEG monitoring in preoperative assessments indicates that alpha
attenuation during periods of wakefulness, rest, and eye opening is
linked to postoperative attention issues (70). Consequently, when
baseline EEG data is available, nursing staff can identify high-risk
patients for cognitive impairment using specific EEG biomarkers and
tools like the MMSE and 4AT scales. Researches (29, 71) have
identified age, preoperative cognitive deficits, stroke, and other health
conditions as risk factors for postoperative neurological issues. While
identifying high-risk patients with cognitive impairments does not
alter the surgical method, it allows for the creation of a tailored plan
with the anesthesiology team prior to surgery, focusing on manageable
factors such as intraoperative hypotension, cerebral perfusion, and
anesthesia duration and depth to mitigate the risk of POD and
POCD. Additionally, a recent study (72) involving 251 elderly patients
undergoing major non-cardiac surgery found that those who
participated in 10 days of cognitive training or 1 hour of cognitive
exercises before surgery experienced a reduction in POD rates from
23.0 to 14.4%, although this difference was not statistically significant
(p=0.08). This suggests a potential avenue for future research,
indicating that cognitive pre-habilitation may offer advantages for
high-risk patients, warranting further trials to confirm its effectiveness.

5.2 Intraoperative monitoring and
anesthesia depth optimization intervention

In 1937, Gibbs et al. were the first to observe the impact of
anesthetics on EEG, leading to the idea of using EEG to monitor the
depth of anesthesia. Since the 1990s, EEG has become a common tool
for assessing anesthesia and sedation levels in clinical settings (73). The
European Society of Anesthesiology now recommends EEG-guided
anesthesia monitoring to help prevent POD and POCD (74). Currently,
quantitative EEG indicators are primarily utilized to monitor anesthesia
depth during surgery, aiming to prevent intraoperative awareness or
excessive anesthesia, thus minimizing perioperative complications,
particularly postoperative neurocognitive disorders. Commonly used
clinical indicators include the Bispectral Index (BIS), Patient State
Index (PSI), entropy index, and phase lag entropy (PLE) (75, 76).
Among these, BIS is the most frequently used EEG monitoring tool in
clinical practice, with its values closely linked to consciousness levels.
Typically, loss of consciousness is observed at BIS values between 68
and 75 (77), while values between 40 and 60 indicate adequate
maintenance of general anesthesia during procedures (78). Monitoring
BIS intraoperatively helps prevent excessive anesthesia and significant
fluctuations in anesthesia depth, thereby reducing cognitive impairment
associated with surgery and anesthesia. A randomized controlled study
(79) involving non-cardiac and non-neurological surgeries found that
patients over 75 who experienced POD had lower BIS values compared
to those without delirium. A predictive model incorporating BIS,
MMSE, anemia, daily living activities, and blood urea nitrogen could
serve as a tool for forecasting POD in older patients. In a trial of
non-cardiac surgeries (80), including laparoscopic procedures, it was
observed that patients who had BIS-guided anesthesia and maintained
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BIS values between 40 and 60 experienced a lower rate of POD and
POCD with appropriate care. Another prospective controlled study
(81) using attention network testing indicated that the BIS group
significantly reduced the total dosage of propofol and remifentanil
compared to the non-BIS group. BIS monitoring during anesthesia can
facilitate quicker cognitive recovery and decrease acute delirium in
elderly patients undergoing colon cancer surgery. A meta-analysis of
clinical studies (82) conducted in 2020 also supported the conclusion
that BIS monitoring has a protective effect against POD on day 1 and
POCD on day 30. Furthermore, combining near-infrared spectroscopy
with EEG can help identify intraoperative cerebral hypoperfusion
events, particularly in situations where pneumoperitoneum raises
intracranial pressure during complex laparoscopic surgeries.

It is important to note that anesthetics are typically identified by their
effects on BIS values and a widespread increase in 0 waves, whereas the
physiological stress from laparoscopic surgery primarily appears in the
EEG as a reduction in alpha waves (<8 Hz) and an increase in § power
(1-4 Hz), which coincide with a decrease in cerebral oxygen saturation.

5.3 Postoperative monitoring and
neurocognitive rehabilitation intervention

The occurrence of POD and POCD is linked to the inhibition of the
central cholinergic system and reduced neuronal activity. Research
indicates that a decrease in alpha frequency band power (8-13 Hz) and
an increase in delta frequency band power (1-4 Hz) following surgery
may indicate a disruption in the thalamocortical feedback mechanism
and mitochondrial synaptic dysfunction (83). This serves as the
pathophysiological foundation for utilizing postoperative EEG to
monitor neurocognitive disorders in patients. The systemic
inflammatory response triggered by surgical trauma intensifies
neuroinflammation via the blood-brain barrier, which inhibits brain
electrical activity and disrupts cognitive network connectivity. An
increase in slow wave activity observed in postoperative EEG may
signify a mismatch between the brain’s metabolic demands and oxygen
supply, directly correlating with the onset of delirium. Consequently,
the rise in delta frequency band power and the delayed recovery of
alpha frequency band activity within 24-72h post-surgery are
associated with delirium occurrence (84). Additionally, integrating the
CAM-ICU scale can enhance diagnostic accuracy (85). In the
postoperative phase, one-minute EEG monitoring from a single channel
(Fp2-Pz) revealed a significant increase in delta frequency band power
among elderly patients with PND (52). When POD manifested, the
posterior dominant rhythm (PDR) was found in the lower frequency
band, and the severity of delirium was positively correlated with the
relative power of the occipital lobe theta waves. Over time, patients with
cognitive impairment showed a shift in EEG relative power toward
higher frequencies, with power spectral peaks emerging in the theta and
alpha bands, indicating cognitive recovery (60). Furthermore, studies
have shown that POD is linked to a reduction in the connectivity
strength of the default mode network (DMN) as observed in EEG, with
surgical stress and inflammation causing functional disconnection
within the DMN, leading to decreased correlation between the posterior
cingulate gyrus and the frontal lobe (86). Evidence supporting the use
of quantitative EEG monitoring for POD, based on increased relative
delta power and decreased beta power, is growing (87). Nursing staff
can help mitigate patients’ exposure to blue light at night, enhance
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TABLE 3 Framework of perioperative EEG monitoring optimized nursing mode.

Section

EEG markers

Preoperative

Frontal o power;
SEF;

y frequency band power

Intraoperative

BIS;
Brain oxygen saturation (near-infrared

spectroscopy combined with EEG)

10.3389/fneur.2025.1645814

Postoperative
8 and a band recovery delay;
Sleep architecture;

Weakened DMN connectivity

Potential mechanisms

Baseline cognitive impairment

Cerebral hypoperfusion/CO, retention

Neuroinflammation / Metabolic

Suppression

Nursing intervention

Time point

Admission assessment and pre anesthesia

visit

Anesthesia induction until the end of the

surgery

Before discharge

Core monitoring

EEG;
MMSE/4AT

BIS monitoring;
Dynamic SEF tracking;

Cerebral oxygen saturation measurement

EEG;
Sleep architecture analysis;

Daily CAM-ICU assessment;

Intervention strategy

Identifying high-risk patients;
Optimizing anesthesia plans;

Cognitive pre rehabilitation

Adjust the pneumoperitoneum pressure
and appropriately adjust the patient’s
position to maintain normal PaCO, levels;

Regulate the depth of anesthesia

Reduce blue light exposure, music therapy;
Sleep optimization (earplugs, eye masks);
Cognitive rehabilitation (multimodal

cognitive stimulation)

Expectations

Identify high-risk populations for POD/
POCD;

Reduce the risk of intraoperative brain

Avoid excessive or insufficient anesthesia to
maintain the balance between brain

metabolism and supply-demand

Early identification of delirium;
Promotion of cognitive function recovery;

Reduction of long-term risks

injury

natural daylight, and lower the risk of POD by regulating alpha wave
rhythms, as research suggests that lighting can influence the power of
certain EEG waves, particularly alpha waves (88). For patients at high
risk for postoperative neurocognitive disorders, multimodal
interventions such as EEG neurofeedback training to boost alpha waves
(89), music therapy to synchronize theta/gamma waves (90), and
cognitive training to enhance DMN connectivity (91) can be employed
to facilitate cognitive rehabilitation.

EEG is capable of not only tracking the typical changes associated
with POD and POCD but also offering early indications of potential
neurocognitive disorders by assessing sleep quality. Researches
indicate (92, 93) that poor sleep quality is linked to a higher risk of
POD, and EEG monitoring provides a more objective measure of
patients’ sleep quality. EEG serves as a crucial diagnostic tool for sleep
disorders, and when used alongside polysomnography;, it allows for a
thorough evaluation of sleep structure and irregular patterns. For
instance, patients with insomnia often experience delayed sleep onset,
reduced N3 sleep phase, and the presence of high-frequency beta
waves (94). When detrimental changes in brainwaves affecting sleep
are identified, this can provide objective evidence for nursing staff.
Numerous large-scale meta-analyses (95, 96) have demonstrated that
using earplugs, either alone or in combination with eye masks, can
enhance sleep quality and help prevent delirium in postoperative
patients. Furthermore, a clinical study (97) on the effectiveness of
biofeedback therapy for insomnia revealed that a biofeedback
approach, which modifies EEG and electromyography power, can
enable patients to gain voluntary control over their physiological
timing, thus alleviating sleep disorders and indirectly lowering the
risk of POD.

The use of EEG monitoring, guidance, and treatment during sleep
offers nursing staff a direct and non-invasive approach to enhance
patient sleep quality, particularly in noisy settings like the ICU. In the
future, advancements in portable EEG monitoring devices and further
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research on perioperative EEG characteristics may enable clinical
nursing staff to establish warning thresholds for POD by continuously
monitoring and analyzing EEG data. For patients at high risk of
postoperative cognitive decline, early cognitive rehabilitation training
can be initiated.

EEG monitoring can help eliminate evaluation bias, whether it is
used preoperatively, intraoperatively, or postoperatively, especially for
patients who are comatose or have language impairments.
Additionally, it allows for real-time monitoring of brain function
changes, facilitating personalized interventions. Its objectivity, real-
time capabilities, and non-invasive nature are leading to its increasing
adoption throughout the entire surgical process (Table 3).

6 Benefits

By enhancing perioperative management strategies, such as
implementing an optimized nursing model based on EEG monitoring,
numerous advantages can be realized across various levels. For
patients, this approach can decrease POD, alleviate pain and
complications, speed up recovery, lessen the caregiving burden on
families by supporting independent living, and effectively prevent
chronic cognitive decline and long-term mortality. For healthcare
professionals, it can enhance their skills while minimizing medical
disputes and reducing occupational stress. On a societal level, this
intervention model can lead to significant reductions in acute
hospitalization costs and long-term care expenses, improve the
allocation of medical resources, and provide public health benefits by
easing the burden on families and society, as well as facilitating the
recovery of work capabilities. In the long term, it will also encourage
advancements in anesthesia monitoring technology and the
development of the smart healthcare industry, fostering a positive
cycle of policy support and coordinated industry growth.
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POD and POCD following laparoscopic surgery arise from a
combination of various high-risk factors, including older age,
pre-existing cognitive issues, and the toxicity of anesthesia drugs, as
well as pathological processes like neuroinflammation and
disruptions to the blood-brain barrier. In current clinical practice,
while some preoperative risk assessment methods (such as the Mini
Mental State Examination, tailored anesthesia plans, and cognitive
pre-habilitation) have been implemented in perioperative care, their
effectiveness is hindered by challenges like the absence of real-time
neurological monitoring tools, reliance on subjective assessment
scales, and difficulties in detecting subtle brain function impairments
during surgery. Additionally, the relationship between cognitive
pre-habilitation before surgery and anesthesia management during
the procedure remains unclear, and there is a lack of targeted
interventions for postoperative sleep disorders based on EEG data.
Therefore, a comprehensive strategy that includes accurately
identifying high-risk patients preoperatively (for instance, by
combining EEG alpha wave power with inflammatory marker levels),
optimizing anesthesia depth dynamically during surgery, and
providing early warnings and interventions postoperatively (such as
monitoring EEG slow wave activity related to sleep deprivation)
could help reduce the rates of POD and POCD. EEG monitoring
offers a promising approach for “early warning and early intervention”
in addressing POD and POCD by tracking changes in brain function,
thereby lowering the risk of neurological complications.
Consequently, a “preoperative, intraoperative, postoperative”
precision nursing model is proposed. Future efforts should focus on
developing portable EEG devices and deep learning-based EEG
pattern recognition systems to assess the effectiveness of preoperative
cognitive pre-habilitation, enable real-time alerts for postoperative
neurocognitive dysfunction, and incorporate these advancements
into standardized nursing protocols, ultimately achieving precision
nursing objectives. With advancements in this research, EEG
monitoring could evolve from being merely an “auxiliary tool” to a
“decision engine,” enhancing postoperative neurocognitive care from
an empirical to a precision medicine approach.
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