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Cortical morphometric similarity 
patterns and molecular signatures 
across ischemic stroke recovery
Xiuen Chen 1†, Jialan Liang 1†, Chengdi Deng 2, Zhilin Yu 1, 
Ziming Ye 1, Chao Qin 1* and Yanyan Tang 1*
1 Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 
Guangxi Province, China, 2 Department of Radiology, The First Affiliated Hospital of Guangxi Medical 
University, Nanning, Guangxi Province, China

Background: Ischemic stroke is associated with widespread and dynamic 
brain structural alterations, but the relationship between these changes and 
underlying molecular signatures across different post-stroke stages remains 
unclear. Therefore, we examined the brain structural difference of patients with 
3 T high resolution magnetic resonance, further explored special molecular 
signatures across ischemic stroke recovery stages.
Methods: Among 170 participants were recruited, including 60 acute/subacute 
ischemic stroke patients, 59 chronic ischemic stroke patients, and 51 healthy 
controls. Morphometric similarity networks (MSNs) were constructed by 
calculating Pearson correlations between cortical morphometric feature vectors 
across 308 regions. Group differences in MSN strength were assessed using 
covariate-adjusted linear regression. We  further applied partial least squares 
regression to link regional MSN differences with gene expression data from 
the Allen Human Brain Atlas, identifying molecular signatures across ischemic 
stroke recovery stages.
Results: Regional MSN differences differed by stroke stage, predominantly 
involving frontal-temporal cortices in acute/subacute ischemic stroke and 
widespread cortical areas in chronic ischemic stroke. Regional MSN differences 
were associated with cortical transcriptional gradients, identifying key stroke-
related genes (e.g., KIF5B, C4orf3, APMAP, STOML1). Functional analysis 
highlighted molecular signatures linked to neuronal changing, axonal transport, 
and protein homeostasis.
Conclusion: Our findings demonstrate stage-specific morphometric differences 
and molecular signatures associated with different stages of ischemic stroke, 
highlighting regionally distinct structural and transcriptomic associations. These 
insights may facilitate targeted interventions aimed at improving functional 
outcomes across different stages of stroke.
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1 Introduction

Ischemic stroke (IS) is a leading cause of long-term disability and mortality worldwide, 
with a growing burden on public health systems due to its high incidence and recurrence rate 
(1). Understanding the neural and molecular signatures underlying stroke-induced brain 
alterations across different stages of recovery remains a critical challenge in the field of 

OPEN ACCESS

EDITED BY

Alkis Hadjiosif,  
Harvard Medical School, United States

REVIEWED BY

Rashi Verma,  
Morehouse School of Medicine, United States
Sushma Jaiswal,  
Guru Ghasidas Vishwavidyalaya, India
Dongsuk Sung,  
MGH/MIT/HMS Athinoula A. Martinos Center 
for Biomedical Imaging, United States

*CORRESPONDENCE

Yanyan Tang  
 yuji0301@126.com  

Chao Qin  
 mdqc2019@126.com

†These authors have contributed equally to 
this work

RECEIVED 10 June 2025
ACCEPTED 28 October 2025
PUBLISHED 19 November 2025

CITATION

Chen X, Liang J, Deng C, Yu Z, Ye Z, 
Qin C and Tang Y (2025) Cortical 
morphometric similarity patterns and 
molecular signatures across ischemic stroke 
recovery.
Front. Neurol. 16:1644413.
doi: 10.3389/fneur.2025.1644413

COPYRIGHT

© 2025 Chen, Liang, Deng, Yu, Ye, Qin and 
Tang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  19 November 2025
DOI  10.3389/fneur.2025.1644413

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1644413&domain=pdf&date_stamp=2025-11-19
https://www.frontiersin.org/articles/10.3389/fneur.2025.1644413/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1644413/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1644413/full
mailto:yuji0301@126.com
mailto:mdqc2019@126.com
https://doi.org/10.3389/fneur.2025.1644413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1644413


Chen et al.� 10.3389/fneur.2025.1644413

Frontiers in Neurology 02 frontiersin.org

neuroimaging and neurogenomics. While conventional magnetic 
resonance imaging (MRI) and functional MRI (fMRI) techniques 
have revealed considerable structural and functional alterations 
following stroke (2–4), these methods are often insufficient to resolve 
the intricate inter-regional structural differences and associated 
molecular mechanisms that emerge over time.

Recently, Morphometric Similarity Networks (MSNs) have 
emerged as a powerful framework to characterize macroscale brain 
architecture by integrating multiple structural features derived from 
high-resolution anatomical MRI (5). Unlike traditional measures that 
focus solely on volume or cortical thickness, MSNs offer a more 
comprehensive profile of cortical organization by assessing the 
similarity in multivariate morphometric features between brain 
regions. This method has shown high sensitivity in detecting subtle 
structural disruptions in various neuropsychiatric and neurological 
conditions, including schizophrenia, tremor, depressive disorder, 
epilepsy (6–9). However, the application of MSNs to ischemic stroke, 
particularly across different post-stroke stages, remains 
largely unexplored.

In parallel, the integration of transcriptomic data with 
neuroimaging phenotypes offers a novel avenue to elucidate the 
molecular underpinnings of brain structural changes. The Allen 
Human Brain Atlas (AHBA) provides spatially resolved gene 
expression profiles across the adult human cortex, enabling researchers 
to identify gene sets associated with regional brain phenotypes (10). 
By combining MSN alterations with postmortem gene expression 
data, it is possible to identify transcriptional patterns that are 
associated with stroke-related cortical structural differences. Partial 
least squares (PLS) regression has proven to be a robust multivariate 
approach to map the relationship between spatially distributed gene 
expression and imaging-derived metrics (11, 12).

Here, we present a comprehensive investigation of group-level 
differences in cortical morphometric similarity across individuals at 
different stages of IS, focusing on distinctions between the acute/
subacute and chronic phases. By constructing individual MSNs based 
on six surface-based structural features and applying PLS regression 
to AHBA-derived gene expression data, we aimed to explore potential 
molecular correlates of stroke-related cortical network differences. 
Furthermore, we  performed gene ontology (GO) and pathway 
enrichment analyses on stroke-related genes to characterize their 
functional roles and biological relevance. The present study integrates 
MSN-based cortical architecture with transcriptomic profiling in the 
context of IS at different clinical stages, providing novel insights into 
the structural and molecular correlates associated with 
stroke recovery.

2 Methods

2.1 Participants

Participants diagnosed with IS at the First Affiliated Hospital of 
Guangxi Medical University from January 2019 to March 2025 were 
included in the study. IS was diagnosed according to the American 
Heart Association and American Stroke Association criteria (13) and 
confirmed by MRI or brain computed tomography. Acute/sub-acute 
(AIS) and chronic IS (CIS) were identified according to characteristic 
imaging features observed across various MRI sequences (14). 

Exclusion criteria were as follows: (a) severe aphasia and/or impaired 
consciousness that compromised the ability to understand and follow 
instructions; (b) a history of major systemic diseases, including severe 
cardiac, hepatic, or renal dysfunction, autoimmune disorders, or other 
psychiatric illnesses; (c) coexisting severe neurological disorders, such 
as brain tumors or traumatic brain injury, which could potentially 
confound the study outcomes; (d) contraindications to MRI scanning, 
or poor image quality that did not meet the requirements for analysis. 
The healthy control (HC) group was composed of 51 individuals with 
comparable demographic characteristics to the patient group and had 
received a thorough medical examination. The study procedures 
received approval from the Ethics Committee of the First Affiliated 
Hospital of Guangxi Medical University (2025-E0302), and informed 
consent was obtained from each participant.

2.2 Imaging acquisition

Imaging data were acquired using a 3 T MRI scanner (SIEMENS, 
Germany). High-resolution T1-weighted anatomical images were 
acquired using a magnetization-prepared rapid gradient-echo 
(MPRAGE) sequence with the following parameters: matrix 
size = 256 × 256, field of view = 256 × 256 mm2, voxel 
size = 1 × 1 × 1 mm3, slice thickness = 1.0 mm with no inter-slice gap, 
echo time = 2.98 ms, repetition time = 2,300 ms, flip angle = 9°, and a 
total of 176 axial slices.

2.3 Imaging preprocessing

The three-dimensional T1-weighted images were preprocessed in 
surface-based space using the Computational Anatomy Toolbox 
(CAT12)1 implemented in the Statistical Parametric Mapping software 
(SPM12)2 framework. Briefly, preprocessing included skull stripping, 
tissue segmentation into gray matter, white matter, and cerebrospinal 
fluid, as well as estimation and reconstruction of the cortical surface. 
The cortical thickness was computed using the projection-based 
thickness method, which involves correction for topological defects, 
spherical mapping, and registration to a common surface template 
(15). In addition, CAT 12 was also used to estimate other 
morphological metrics, including fractal dimension, gyrification 
index, central surface, mean curvature, square root of sulcal depth, 
and cortical thickness (8, 16). We calculated these indices for each 
participant using default parameter settings. The morphometric maps 
were resampled to the fasverage template and smoothed using a 
Gaussian kernel with full width at half maximum (FWHM) after they 
were obtained. To be more precise, we took the cortical thickness 
maps for each person and made them smoother using something 
called a Gaussian kernel. The width of this kernel was 15 mm at full 
width. Other maps (such as fractal dimension maps) were made 
smooth using a Gaussian kernel with a FWHM of 25 mm, as explained 
by Ruan et al. (17).

1  http://www.neuro.uni-jena.de/cat/

2  http://www.fil.ion.ucl.ac.uk/spm/softwarespm12
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2.4 Construction of MSNs

We utilized the methods of Seidlitz et al. (5) to generate MSNs with 
the T1-weighted restricted parameters by using CAT 12. To be more 
specific, the outer surfaces of the brain were divided into 308 sections, 
of roughly equivalent dimensions (~500 mm2), by using a backtracking 
algorithm (18). These sections were based on 68 sections of the brain as 
shown in the Desikan–Killiany atlas (19). This Desikan–Killiany 
parcellated atlas was transformed onto each participant’s surface to 
obtain an individual surface parcellation. Six morphometric features (as 
detailed in the Imaging processing section) extracted previously from 
the T1-weighted images were used for each region. To take into account 
differences in the values of the features, each MRI feature in each region 
of each image was z normalize. Pearson correlation coefficients were 
computed between the morphometric feature vectors of each pair of 
regions, thereby generating a 308 × 308 node morphological similarity 
matrix for each subject. This matrix was thresholded in order to 
construct a weighted bipartite graph with an arbitrary connection 
density. This process is also known as the construction of MSN. Regional 
MSN strength was defined as the average weighted correlation 
coefficient between a given region and all other regions, serving as an 
index of region-specific morphometric connectivity.

2.5 Case–control analysis of MSN strength 
in stroke subgroups

To assess group differences in MSN strength, we employed a linear 
regression model (LRM), with MSN strength as the dependent variable 
and group (AIS, CIS, or HC) as the main independent variable. Age, 
sex, and their interaction (age × sex) were included as covariates. This 
model was applied at both the global level (average MSN strength 
across all regions) and the regional level (MSNᵢ for each cortical 
region). For regional analyses, the full model was specified as: 
MSNᵢ = intercept + β₁ × age + β₂ × sex + β₃ × (age × sex) + β4 × group. 
Here, the group variable was dummy-coded, and β₄ represents the 
group effect (i.e., AIS vs. HC or CIS vs. HC). This model was 
independently fitted for each of the 308 cortical regions. Two-sided 
t-tests were used to assess statistical significance for group 
comparisons, and multiple comparisons were corrected using the 
Benjamini-Hochberg false discovery rate (FDR) method (p < 0.05). 
Regions showing significant differences in MSN strength were further 
visualized using brain surface maps. Spatial correlations between case–
control t-values and healthy control MSN strength were assessed using 
spin permutation tests to account for spatial autocorrelation. The spin 
test is a spatial permutation method. It uses random rotations of 
spherical projections at the cortical surface. This method is more 
conservative than randomly shuffling locations. It preserves the data’s 
spatial symmetry and contiguity. Specifically, the initial procedure 
involved the generation of a null distribution through the 
implementation of 10,000 random spatial rotations of the cortical 
parcellation. Subsequently, the p-spin values were derived from the 
comparison to the null models.

To demonstrate the comparison of MSN strength between the HC 
group and the stroke subgroups (AIS and CIS), We used the Pearson 
correlation coefficient to compare MSN strength between the HC 
group and the stroke subgroups (AIS and CIS). The following terms 
were defined, similar to the descriptions by Dong D et  al. (20). 

Decoupling: Positive correlation in the HC group and negative 
correlation in the stroke groups indicates that structurally similar 
regions become less similar. Dedifferentiation: Negative correlation in 
the HC group and positive correlation in the stroke groups indicates 
that structurally dissimilar regions become similar. Hypercoupling: 
Positive correlation in both the HC group and the stroke groups but 
stronger correlations in the stroke groups indicates that similar 
regions become more similar. Hyperdedifferentiation: Negative 
correlation in both the HC group and the stroke groups but weaker 
correlations in the stroke groups indicates that dissimilar regions 
become more dissimilar.

2.6 Correlation analyses between MSN 
features and clinical severity

To investigate the associations between MSN features and clinical 
severity, we conducted correlation analyses between MSN strength 
and clinical scores, including the National Institutes of Health Stroke 
Scale (NIHSS) and modified Rankin Scale (mRS), for both AIS and 
CIS groups. Specifically, we examined: Global-level associations, by 
computing Spearman’s rank correlation coefficients between mean 
MSN strength across all 308 cortical regions and clinical scores; 
Regional-level associations, by calculating Spearman correlations 
between MSN strength in each cortical region (defined by the D-K308 
atlas) and clinical scores. For the two subgroups, AIS and CIS, all 
relevant analyses were conducted respectively, and the Benjamini-
Hochberg FDR correction method was adopted to control multiple 
comparisons. The correlation results were considered statistically 
significant when the p value was less than 0.05 (the p value after 
FDR correction).

2.7 Regional gene expression profiling

To explore the molecular basis underlying cortical morphometric 
similarity, we utilized transcriptomic data from the AHBA,3 which 
provides genome-wide microarray-based gene expression profiles 
sampled from 3,702 anatomically localized sites across six adult 
postmortem donors (mean age = 42.5 ± 13.4 years; 5 males, 1 female) 
(10). In line with established preprocessing pipelines, we employed the 
Abagen toolbox4 to map and preprocess gene expression data with 
respect to the D-K308 region parcellation scheme (12, 21). The 
preprocessing procedure included the following steps: (a) updating 
probe annotations to gene-level identifiers; (b) excluding probes with 
expression levels below the background threshold in more than 50% 
of the samples; (c) retaining probes with the greatest spatial 
consistency for each gene; (d) assigning each sample to a cortical 
parcel based on a 2 mm Euclidean distance criterion; and (e) applying 
robust sigmoid normalization to expression values within donors. As 
the AHBA data comprises right hemisphere samples from merely two 
donors, our analysis was restricted to the left hemisphere regions 
(n = 152). Although output files retained the “DK308” label for 

3  http://human.brain-map.org

4  https://github.com/rmarkello/abagen
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consistency with the parcellation scheme, all subsequent analyses were 
strictly limited to 152 left-hemisphere regions. This preprocessing 
resulted in a gene expression matrix comprising 152 brain regions and 
15,632 transcripts. To maintain whole-genome coverage, we did not 
further filter low-expression or low-variance genes; instead, robustness 
was ensured through subsequent bootstrapping and false discovery 
rate (FDR) correction.

2.8 Association between MSN differences 
and gene expression profiles in IS

To explore the molecular correlates of regional MSN differences 
across the course of ischemic stroke, we employed PLS regression to 
link spatial patterns of MSN change with transcriptomic data (22). 
Specifically, we  extracted t-statistics representing group-level 
differences in MSN features between acute/subacute and chronic 
stroke patients across 152 cortical regions of the left hemisphere. 
These t-values served as the response variable, while gene expression 
levels derived from the AHBA were used as predictors. Expression 
data were matched to the D-K308 parcellation, restricted to the left 
hemisphere regions for consistency.

The number of PLS components was determined by examining 
the cumulative variance explained across the first 15 components. 
Models including 1–15 components were constructed using the 
plsregress function, and the percentage of variance explained in the 
dependent variable was recorded for each component. A null 
distribution was then established through 1,000 permutations, in 
which the dependent variable was randomly shuffled and PLS was 
recalculated 1,000 times. The variance explained by each component 
was obtained. In the original data, the first component significantly 
exceeded the random level (p = 0.001), while subsequent components 
contributed less than 2% incremental variance. Therefore, only the 
first two components were able to account for a substantial proportion 
of variance in the response variable and exceeded the permutation-
based null distribution, which led us to focus on PLS1 and PLS2. 
Ultimately, the first partial least squares component (PLS1), 
representing a weighted combination of gene expression most strongly 
associated with regional MSN differences in ischemic stroke, was 
retained for further analysis.

In addition, we estimated the stability of each gene’s loading on 
PLS1 using bootstrap resampling. For each gene, a Z score was 
calculated as the ratio of its mean weight to the bootstrap-derived 
standard deviation. Although the calculation of Z scores assumes 
approximate normality, bootstrap resampling provides an empirical 
estimate of weight variability, thereby reducing over-reliance on 
distributional assumptions. To address the inherent sign 
indeterminacy of PLS, bootstrap weights were aligned to the direction 
of the original PLS component to ensure consistency across resampling 
iterations. Since the sign of PLS components is mathematically 
arbitrary, our interpretation focused on the relative ranking of gene 
weights rather than their absolute direction. Confidence intervals were 
not computed for ROI-level PLS scores. Instead, uncertainty was 
primarily quantified at the gene-weight level using bootstrap standard 
errors, Z scores, and FDR-corrected p-values. The associations 
between ROI-level PLS scores and MSN t-values were further 
validated using spin permutation tests to account for 
spatial autocorrelation.

Genes were then ranked according to their Z scores, and statistical 
significance was determined using FDR correction with a threshold 
of p < 0.05. Genes with PLS1 Z scores greater than 3.0 were designated 
as PLS1+, while those with Z scores less than −3.0 were classified as 
PLS1−. Only genes significantly associated with PLS1 were included 
in subsequent spatial expression mapping and enrichment analyses. 
PLS1 scores were also correlated with MSN t-values to validate the 
explanatory power of the PLS model.

2.9 Functional enrichment analysis of 
stroke-associated PLS1 genes

To explore the potential biological functions of genes associated 
with structural network differences in ischemic stroke, we conducted 
GO and pathway enrichment analyses on the ranked gene lists 
derived from PLS regression. Specifically, genes exhibiting statistically 
significant differences in bootstrap-derived Z scores for each 
condition (acute/subacute and chronic stroke) were analyzed 
separately to identify enriched biological processes and signaling 
pathways. Furthermore, to pinpoint genes that may play a role in both 
early and late stages of stroke, we performed an intersection of PLS1 
genes from the two time points, followed by functional enrichment 
analyses on the overlapping set. All results were plotted by the 
Bioinformatics online platform (last accessed April 1, 2025)5, which 
provides integrated tools for GO term classification and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
(23). Statistically significant terms were determined with a threshold 
of p < 0.05.

3 Results

3.1 Demographic and clinical 
characteristics

A total of 170 patients with IS, including 60 in the AIS and 59 in 
the CIS, along with 51 HCs, were included in the final analysis. The 
demographic and vascular risk profiles of all participants are presented 
in Table 1. No statistically significant differences were observed in age 
(AIS: 55.98 ± 8.91 years; CIS: 56.41 ± 11.43 years; HC: 
54.06 ± 8.91 years) or gender distribution across the groups (p > 0.05). 
Similarly, comparisons among groups revealed no significant 
differences in the prevalence of major vascular risk factors, including 
smoking, drinking, hypertension, diabetes mellitus, dyslipidemia, 
coronary heart disease, and atrial fibrillation (all p > 0.05). Clinical 
severity, as measured by the NIHSS and mRS, showed a trend toward 
higher scores in the AIS group compared to the CIS group, although 
these differences did not reach statistical significance (NIHSS: 
p = 0.053; mRS: p = 0.060). These findings suggest comparable 
baseline demographic and risk factor distributions among groups, 
minimizing potential confounding effects in subsequent 
morphometric and transcriptomic analyses.

5  https://www.bioinformatics.com.cn
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3.2 MSN differences across stroke stages

We first constructed individual MSNs by computing interregional 
Pearson correlations across six cortical features derived from 
T1-weighted MRI data. At the group level, no statistically significant 
differences in global MSN strength were observed between AIS or CIS 
patients and healthy controls (Figure  1A). Therefore, we  further 
examined region-specific differences in MSN to identify localized 
changes associated with stroke. Regional case–control t-maps 
(AIS-HC and CIS-HC) were generated by conducting linear regression 
analyses at each cortical region, controlling for age and sex. For each 
comparison, two-sided t-statistics were computed to quantify 
differences in regional MSN strength between stroke patients and 
healthy controls. Positive t-values indicate regions with increased 
MSN in AIS or CIS relative to controls, while negative t-values reflect 
decreased MSN. The spatial patterns of these t-values revealed distinct 
region-specific disruptions in morphometric similarity associated 
with the acute/subacute and chronic phases of IS. In the AIS group, 
significant differences in MSN strength relative to HC were 
predominantly observed in the frontal and temporal cortices, with 
additional involvement of parietal, occipital, and limbic regions 
(Figure  1B; Supplementary Table S1). Notably, regions showing 
reduced MSN strength included bilateral superior and middle frontal 
areas, the precentral gyrus, middle temporal cortex, and lingual gyrus. 
Conversely, increased MSN strength was identified in regions such as 
the temporal pole, insula, entorhinal cortex, cingulate cortex, and 
inferior parietal lobule. These findings suggest widespread and 
regionally divergent MSN difference during the acute/subacute phase 
of IS. In the CIS group, widespread differences in MSN strength were 
observed across multiple cortical regions compared to HC (Figure 1C; 
Supplementary Table S1). Reduced MSN strength was mainly 
observed in the bilateral prefrontal cortex, including the caudal 
middle frontal, rostral anterior cingulate, superior frontal, 

orbitofrontal, and medial prefrontal areas, as well as in the precentral 
gyrus, posterior cingulate cortex, parietal regions (including 
precuneus, supramarginal, inferior parietal), and occipital regions 
(including lingual and lateral occipital gyri). Increased MSN strength 
was primarily located in right hemisphere regions, including the 
caudal middle frontal, fusiform, entorhinal, insula, inferior parietal, 
and lateral orbitofrontal cortices, as well as the frontal pole and 
supramarginal gyrus. These results indicate that distinct MSN patterns 
are observed in the chronic phase, characterized by both enduring 
disruptions and regionally elevated similarity in specific cortical hubs. 
In both AIS and CIS groups, altered MSN connections were 
predominantly characterized by decoupling (39%), followed by 
dedifferentiation (AIS: 25%, CIS: 26%), hypercoupling (AIS: 28%, CIS: 
21%), and hyperdedifferentiation (AIS: 8%, CIS: 7%) (Figure 1D). A 
significant negative correlation was observed between MSN strength 
in healthy controls and group differences (AIS: Spearman’s r = −0.35, 
p-spin < 0.001; CIS: Spearman’s r = −0.58, p-spin < 0.001), indicating 
that in the comparison between the HC group and the stroke patient 
group (AIS and CIS), areas with higher MSN strength in the HC group 
often exhibit lower MSN strength in the stroke patient group, and 
conversely. This negative correlation suggests that regional differences 
in MSN strength between the HC group and the stroke patient group 
are negatively correlated with MSN strength itself in the HC group. 
Most significantly changed connections were located in the decoupling 
and dedifferentiation quadrants, reflecting disrupted integration of 
structurally coherent regions following stroke.

3.3 Associations between MSN features 
and clinical severity

To explore the associations between MSN features and clinical 
severity, we performed Spearman correlation analyses between both 

TABLE 1  Demographic and risk characteristics.

Variables HC (n = 51) Total IS (n = 119) p AIS (n = 60) CIS (n = 59) p

Demographic characteristics

Age (years) 54.06 ± 8.91 56.19 ± 10.19 0.196a 55.98 ± 8.91 56.41 ± 11.43 0.822a

Gender (M/F) 29/22 80/39 0.197b 42/18 38/21 0.516b

Risk factors

Smoking (%) 18 (35.3) 53 (44.5) 0.263b 29 (48.3) 24 (40.7) 0.401b

Drinking (%) 20 (39.2) 50 (42.0) 0.734b 28 (46.7) 22 (37.3) 0.300b

Hypertension (%) 30 (58.8) 86 (72.3) 0.084b 47 (78.3) 39 (66.1) 0.136b

Diabetes mellitus (%) 6 (18.5) 22 (18.5) 0.279b 14 (23.3) 8 (13.6) 0.170b

Dyslipidemia (%) 11 (21.6) 37 (31.1) 0.206b 23 (38.3) 14 (23.7) 0.085b

Coronary heart disease (%) 0 (0.0) 4 (3.4) 0.185b 2 (3.3) 2 (3.4) 0.986b

Atrial fibrillation (%) 0 (0.0) 1 (0.8) 0.511b 1 (1.7) 0 (0.0) 0.319b

Clinical characteristics

NIHSS score (P25-P75) NA 2 (2–4) NA 3 (2–4) 2 (1–3) 0.053c

mRS score (P25-P75) NA 2 (1–2) NA 2 (1–2) 2 (1–2) 0.060c

HC, Healthy controls; IS, Ischemic Stroke; AIS, Acute ischemic stroke; CIS, Chronic Ischemic Stroke; M/F, Male/female; NIHSS, NIH Stroke Scale; mRS, Modified Rankin Scale; P25–P75, 25th 
Percentile–75th Percentile.
aUnpaired t test.
bChi-square test.
cMann–Whitney U-test (two-sided).
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global mean MSN strength and regional MSN values (based on 
D-K308 atlas) and clinical scores (NIHSS and mRS), separately for 
the AIS and CIS groups. After applying FDR correction (p > 0.05, 
Supplementary Table S2), no statistically significant correlations were 
observed between global mean MSN strength and either NIHSS or 
mRS scores in the AIS or CIS groups. At the regional level, prior to 
FDR correction, region-specific associations between MSN values 
and clinical scores were observed (Figure  2). However, after 
correcting for multiple comparisons, none of the associations 
between regional MSN values and clinical severity remained 
statistically significant (p > 0.05, Supplementary Table S3).

3.4 Transcriptomic correlates of MSN 
differences across stroke stages

In an exploratory PLS regression, spatial patterns of MSN 
disruption were associated with cortical gene expression gradients. 
Spatial distribution of PLS1-weighted gene expression maps found 
distinct anterior–posterior gradients, broadly mirroring the 
topography of MSN disruptions (Figures  3A,B). Furthermore, 
regional PLS1 scores were positively correlated with case–control 
t-values in both AIS (Spearman’s r = 0.33, p-spin < 0.001) and CIS 
(Spearman’s r = 0.28, p-spin < 0.001), indicating that transcriptional 
patterns aligned with the degree of MSN disruption across cortical 

regions (Figures  3C,D). These exploratory findings suggest that 
stroke-related MSN differences are spatially coupled with intrinsic 
cortical gene expression architecture. We  identified differentially 
expressed genes based on PLS1 scores with a threshold of 
p-FDR < 0.005. In the AIS group, 37 PLS1+ genes (positive scores) 
were up regulated, while 215 PLS1− genes (negative scores) were 
down regulated (Figure 3E). In the CIS group, a larger number of 
genes exhibited significant changes, with 148 PLS1+ genes upregulated 
and 648 PLS1− genes downregulated (Figure  3E, 
Supplementary Table S4).

To further identify key genes involved in the pathogenesis of IS, 
we analyzed the intersection of differentially expressed genes (DEGs) 
between AIS and CIS. We identified 234 overlapping genes shared by 
AIS and CIS DEGs. Subsequently, we performed spatial correlation 
analysis between the expression levels of these overlapping genes and 
case–control t-values. Genes were ranked based on the Spearman’s 
r-value and statistical significance (FDR-adjusted p < 0.05) (Figure 3F, 
Supplementary Table S5). Notably, genes such as KIF5B (r = 0.30, 
p < 0.001), C4orf3 (Spearman’s r = 0.31, p-spin < 0.001), APMAP 
(Spearman’s r = −0.32, p-spin < 0.001) and STOML1 (Spearman’s 
r = −0.36, p-spin < 0.001) exhibited strong correlations with case–
control t-values. The expression levels of the most highly ranked 
positively (or negatively) associated genes showed consistency with 
(or in contrast to) the distribution of variant regional changes in MSN 
strength (Figures 3G–J).

FIGURE 1

MSN differences across stroke stages. (A) Regional MSN strength maps for healthy controls (HC), acute/subacute stroke (AIS), and chronic stroke (CIS). 
(B) AIS vs. HC: t-maps (top) and significant regions (bottom) showing MSN differences. (C) CIS vs. HC: t-maps (top) and significant clusters (bottom) 
highlighting widespread changes. (D) Scatterplots of HC MSN strength vs. case–control t-values for AIS (left) and CIS (right), illustrating patterns of 
dedifferentiation, hypercoupling, hyper-dedifferentiation and decoupling.
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3.5 Functional enrichment of 
stroke-related genes

To elucidate the biological signatures across cortical MSN 
differences, GO and KEGG enrichment analyses were performed on 
DEGs identified in the AIS and CIS groups. In the AIS group, 
biological process (BP) terms were mainly enriched in dendritic 
extension, cellular amino acid metabolism, and insulin secretion 
regulation. Cellular component (CC) terms involved neuron 
projection cytoplasm and synaptic membranes, while molecular 
function (MF) terms were related to glycine binding and protein 
kinase activity (Figure  4A). KEGG analysis indicated significant 
enrichment in motor proteins, Parkinson disease, and 
neurodegeneration pathways (Figure 4B). In the CIS group, BP terms 
highlighted neuronal projection regeneration and microtubule-based 
transport. CC terms involved synaptic vesicle membranes and 
proteasome complexes, and MF terms were enriched in GTP binding 
and nucleotide binding (Figure 4C). KEGG analysis showed overlap 
with AIS, including motor proteins, phagosome, and 
neurodegenerative disease pathways (Figure  4D). Analysis of 
overlapping DEGs revealed common enrichment in dendritic 

extension, axon cytoplasm, and organic acid binding (BP, CC, MF 
respectively; Figure  4E). Shared pathways were mainly related to 
motor proteins, Parkinson disease, and multiple neurodegenerative 
disorders (Figure 4F). Gene-pathway network analysis identified hub 
genes bridging key biological functions. FZD1 and PRKCG were 
linked to motor protein regulation and neuronal signaling. KIF27, 
KIF5B, and ACTR1A were associated with axonal transport and 
cytoskeletal organization. TUBB6, TUBB4B, and TUBB2A were 
central to microtubule stability. PSMC1, NDUFC2, UCHL1, TXN, 
UBA52, and MAP2K7 were related to protein degradation and 
oxidative stress regulation. These hub genes are associated with 
cortical MSN differences in stroke and may reflect coordinated 
changes related to neuronal structure, intracellular transport, and 
protein homeostasis.

4 Discussion

This study compared patients in the AIS and CIS phases of 
ischemic stroke to investigate stage-specific differences in cortical 
MSN patterns. Using a data-driven, multimodal approach, 

FIGURE 2

Associations between regional MSN strength and clinical scores. (A, B) Brain regions where MSN strength correlates with NIHSS scores in AIS and 
CISpatients. (C, D) Brain regions where MSN strength correlates with mRS scores in AIS and CIS groups. Color scale indicates correlation coefficients 
(r-values) without FDR correction, with positive and negative associations shown in orange and blue, respectively.
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FIGURE 3

Transcriptomic correlates of MSN differences across stroke stages. (A, B) Case–control t-maps of MSN strength differences and PLS1-weighted gene 
expression maps in AIS and CIS groups, showing spatial correspondence. (C, D) Scatterplots showing significant correlations between regional PLS1 
scores and MSN t-values in AIS (r = 0.33) and CIS (r = 0.28) groups. (E) Top differentially exploratory expressed genes (PLS1+ and PLS1−) identified for 
AIS and CIS groups based on PLS1 loading scores. (F) Shared and stage-specific differentially exploratory expressed genes (DEGs) associated with 
regional MSN differences. Left and right tables list representative DEGs in the AIS and CIS groups, respectively, ranked by Spearman r-values 
(FDR < 0.05); positively and negatively correlated genes are shown in red and blue. The central Venn diagram illustrates the number of overlapping and 
unique DEGs between AIS and CIS groups. (G–J) Examples of positively correlated genes (KIF5B, C4orf3) and negatively correlated genes (APMAP, 
STOML1), showing gene expression-MSN associations and spatial expression patterns aligned with t-map distributions.
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we characterized the spatial distribution of morphometric changes 
and explored their transcriptomic associations. Although no 
statistically significant associations between clinical severity and MSN 
features were observed after multiple comparison correction, 
exploratory analyses revealed certain spatial trends, suggesting the 

presence of stage-dependent cortical structural differences during 
different stroke phases.

At the regional level, uncorrected correlation results showed 
that in the AIS group, higher NIHSS scores were associated with 
lower MSN values in the left frontal, cingulate, and occipital 

FIGURE 4

Functional enrichment of stage-specific and shared DEGs. GO (A) and KEGG (B) enrichment analysis of DEGs specifically identified in the AIS group. 
GO (C) and KEGG (D) enrichment analysis of DEGs specific to the CIS group. GO (E) and KEGG (F) enrichment of DEGs shared between AIS and CIS 
groups, reflecting common molecular signatures. In (F), the gene-pathway network illustrates associations between hub genes and enriched pathways, 
where larger nodes represent pathway terms (scaled by –log₁₀ adjusted p-value) and smaller nodes represent related genes.
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regions, as well as the right caudal middle frontal cortex; in contrast, 
positive correlations were observed in the right occipital and 
precentral regions. In the CIS group, negative correlation trends 
were noted in the left middle and superior frontal cortices and the 
right frontal pole, while positive associations were found in the 
bilateral inferior parietal lobules and right precuneus. Similar 
exploratory spatial distributions were observed for mRS scores: in 
the AIS group, negative trends appeared in the frontal and occipital 
cortices, while positive associations were found in the parietal and 
orbitofrontal cortices; in the CIS group, mixed positive and negative 
associations emerged in regions such as the middle temporal gyrus, 
postcentral gyrus, and superior parietal lobule. Although these 
results did not reach statistical significance after FDR correction, 
they are consistent with the concept of transneuronal diaschisis, in 
which focal brain injury induces remote structural and functional 
disturbances through mechanisms such as transneuronal 
degeneration, inflammatory responses, maladaptive plasticity, 
excitotoxicity, and necroptosis (24–30). Neuroimaging evidence 
shows degeneration in connected areas after stroke and severe loss 
of connectivity in disconnected areas (31–33). Therefore, although 
these trends were not statistically robust, they provided directions 
for hypothesis-driven research in future longitudinal or large-
sample studies.

Despite the lack of statistically significant structure–function 
correlations between MSN and clinical severity, our 
transcriptomic analyses exploratory found spatial relationships 
between MSN patterns and cortical gene expression profiles. In 
both AIS and CIS groups, an anterior–posterior gradient in 
PLS1-weighted gene expression was observed (Figures 3A–D), 
indicate that intrinsic transcriptional architecture is 
topographically associated with regional variation in cortical 
MSN patterns. This finding aligns with prior evidence indicating 
that brain-wide morphometric and functional networks are 
constrained by spatial gene expression gradients (34, 35). The 
positive correlations between PLS1 scores and case–control 
t-values in both AIS and CIS groups underscore that regions 
exhibiting greater morphometric disruption also exhibit distinct 
transcriptomic signatures. Notably, a larger number of DEGs 
were detected in the CIS group, suggesting more extensive 
transcriptional reprogramming in the chronic phase, potentially 
reflecting long-term neurological changes (36) and inflammatory 
responses. Fury et al. used a mouse model of transient middle 
cerebral artery occlusion. They performed transcriptomic 
profiling at 10 time points after stroke. Immune responses were 
found to be especially affected. Immune cells persisted in distant 
brain regions for up 2 months (37).

Shared DEGs between AIS and CIS, including genes such as 
KIF5B, C4orf3, APMAP, and STOML1 (Figures 3E–J), may reflect 
common molecular signatures associated with stroke across 
different clinical stages. KIF5B, a kinase motor protein, facilitates 
the transport of mitochondrial and synaptic cargo and is critical 
for synaptic plasticity, axonal integrity and spine stability (38–41). 
This gene may be associated with stroke-related cortical structural 
variation, potentially linked to molecular pathways involving 
intracellular transport and neuroplasticity. C4orf3, also known as 
ALN, modulates ER-mediated Ca2+ cycling and thermogenesis, 
and is enriched in immune-related macrophage populations (42, 

43). Given its known roles in energy balance and inflammation, 
this gene may be associated with molecular features relevant to 
metabolic and immune processes in stroke. Among the negatively 
correlated genes, APMAP and STOML1 showed notable 
associations with MSN disruption. APMAP encodes a membrane-
associated protein that negatively regulates amyloid-β production 
by modulating γ-secretase-APP interactions and autophagy-
lysosome pathways (44, 45). Its down regulation post-stroke may 
reflect impaired protein homeostasis and contribute to 
maladaptive neurodegenerative-like processes. STOML1, a protein 
expressed in sensory neurons, modulates ion channels and is 
linked to brain morphology (46–48). Its down regulation post-
stroke may disrupt ion homeostasis and contribute to network 
vulnerability in structurally affected cortical regions.

In line with these transcriptomic associations, functional 
enrichment analysis of stage-specific and overlapping DEGs 
identified the biological pathways potentially associated with 
cortical MSN differences observed across stroke stages (Figure 4). 
In the AIS group, early transcriptional responses were enriched in 
dendritic extension, synaptic function, and insulin signaling 
regulation, suggesting acute-phase adaptations aimed at restoring 
neuronal communication and metabolic stability. By contrast, the 
CIS group demonstrated enrichment in pathways related to 
microtubule transport and synaptic vesicle cycling, reflecting 
chronic-stage demands on intracellular trafficking and synaptic 
maintenance. Notably, overlapping DEGs between AIS and CIS 
showed enrichment in pathways related to motor protein 
regulation and neurodegenerative disease pathways, suggesting 
common molecular features associated with neuronal structure 
and function across stroke stages. This convergence supports the 
notion that ischemic stroke may initiate long-lasting, 
neurodegeneration-like processes involving disrupted cytoskeletal 
dynamics, impaired proteostasis, and oxidative stress (49–51). 
Axonal transport within neurons is the process by which transport 
proteins transport corresponding proteins and other substances 
to axon terminals through the cytoskeleton. Defects in axonal 
transport components have been demonstrated to be associated 
with a wide range of neurological diseases, especially in the 
context of neurodevelopmental and neurodegenerative diseases. 
The restoration of axonal transport has been regarded as a 
potential therapeutic approach to decelerate the progression of 
neurodegenerative diseases for an extended period (52). The 
impact of ischaemic stroke on cerebral white matter is 
characterized by defects in axonal function, thus, protecting 
axonal function is of great significance for the recovery of 
ischemic stroke (53). Protein homeostasis is the balance of protein 
synthesis, folding, repair and degradation in cells. Disruptions 
cause diseases, including neurodegeneration. In the context of 
ischaemic stroke, the maintenance of protein homeostasis is 
pivotal for cell proliferation and functional recovery (54). Hub 
genes such as KIF5B, TUBB4B and UCHL1 were central to these 
networks, reflecting their respective roles in neuronal signaling, 
cytoskeletal organization and protein homeostasis (40, 41, 55, 56). 
Importantly, identifying molecular signatures shared across stroke 
stages highlights potential targets for future investigation into 
biological processes relevant to brain adaptation and long-
term outcomes.
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In summary, although this study did not reveal statistically 
significant structure–function relationships between MSN features 
and clinical scores, the combination of exploratory morphometric 
trends and consistent molecular signatures provided new insights 
into the spatial and biological signatures of post-stroke cortical 
deferences. These findings suggest that integrating neuroimaging 
with transcriptomic data may help elucidate regional structural 
vulnerability and potential therapeutic targets in stroke recovery. 
However, several limitations should be  noted. First, the cross-
sectional design limits causal inference and the ability to capture 
intra-individual dynamic changes, making it impossible to directly 
observe alterations in brain structure and molecular mechanisms at 
the individual level. Second, the gene expression data were derived 
from the Allen Human Brain Atlas, which is based on postmortem 
samples from non-stroke individuals and may therefore not fully 
reflect stroke-specific transcriptomic features. Third, the retrospective 
nature of clinical data collection precluded control of key 
confounders, such as lesion volume, lesion location, and time since 
stroke onset, all of which may significantly influence imaging and 
clinical outcomes. Fourth, methodological considerations related to 
partial least squares (PLS) analysis also warrant attention. The same 
dataset was used for component selection, model fitting, and gene 
weight inference, which could introduce a risk of overfitting. 
Although we  employed permutation testing to establish a null 
distribution for component selection, bootstrap resampling to 
estimate the stability of gene weights, and spin permutation tests to 
account for spatial autocorrelation, these steps cannot fully substitute 
for cross-validation or external replication. In addition, the 
calculation of bootstrap-based Z scores assumes approximate 
normality, which may not hold for all genes. To address the arbitrary 
sign indeterminacy inherent in PLS, we aligned bootstrap weights 
with the direction of the original components to ensure stability 
across iterations, but we avoided making strong directional biological 
interpretations. Finally, confidence intervals for ROI-level PLS scores 
were not computed, and uncertainty was primarily quantified at the 
gene-weight level. These limitations have been described in detail in 
the Methods section, and the PLS results are explicitly labeled 
as exploratory.

To confirm the robustness and generalizability of these findings, 
future prospective studies should implement formal cross-validation 
and include independent or longitudinal cohorts, incorporate more 
individual-level transcriptomic data, improve measurement of 
unmeasured factors, and include relevant covariates. Such efforts will 
better support elucidating the structural-molecular interactions 
underlying cortical reorganization after stroke.

5 Conclusion

In summary, our study sheds new light on stage-specific 
differences in cortical morphometric similarity and its exploratory 
molecular correlates in ischemic stroke, highlighting the intricate 
spatial relationships between structural features and gene expression 
profiles. These findings offer insights into the structural and molecular 
characteristics of stroke at different clinical stages, which may inform 
future investigations into neurobiological processes relevant 
to recovery.
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