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Cortical morphometric similarity
patterns and molecular signatures
across ischemic stroke recovery

Xiuen Chen', Jialan Liang®!, Chengdi Deng?, Zhilin Yu?,
Ziming Ye!, Chao Qin'* and Yanyan Tang’*

'Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi Province, China, 2Department of Radiology, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi Province, China

Background: Ischemic stroke is associated with widespread and dynamic
brain structural alterations, but the relationship between these changes and
underlying molecular signatures across different post-stroke stages remains
unclear. Therefore, we examined the brain structural difference of patients with
3T high resolution magnetic resonance, further explored special molecular
signatures across ischemic stroke recovery stages.

Methods: Among 170 participants were recruited, including 60 acute/subacute
ischemic stroke patients, 59 chronic ischemic stroke patients, and 51 healthy
controls. Morphometric similarity networks (MSNs) were constructed by
calculating Pearson correlations between cortical morphometric feature vectors
across 308 regions. Group differences in MSN strength were assessed using
covariate-adjusted linear regression. We further applied partial least squares
regression to link regional MSN differences with gene expression data from
the Allen Human Brain Atlas, identifying molecular signatures across ischemic
stroke recovery stages.

Results: Regional MSN differences differed by stroke stage, predominantly
involving frontal-temporal cortices in acute/subacute ischemic stroke and
widespread cortical areas in chronic ischemic stroke. Regional MSN differences
were associated with cortical transcriptional gradients, identifying key stroke-
related genes (e.g., KIF5B, C4orf3, APMAP, STOML1). Functional analysis
highlighted molecular signatures linked to neuronal changing, axonal transport,
and protein homeostasis.

Conclusion: Our findings demonstrate stage-specific morphometric differences
and molecular signatures associated with different stages of ischemic stroke,
highlighting regionally distinct structural and transcriptomic associations. These
insights may facilitate targeted interventions aimed at improving functional
outcomes across different stages of stroke.

KEYWORDS

ischemic stroke, morphometric similarity networks, cortical difference, gene
expression, stroke recovery

1 Introduction

Ischemic stroke (IS) is a leading cause of long-term disability and mortality worldwide,
with a growing burden on public health systems due to its high incidence and recurrence rate
(1). Understanding the neural and molecular signatures underlying stroke-induced brain
alterations across different stages of recovery remains a critical challenge in the field of
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neuroimaging and neurogenomics. While conventional magnetic
resonance imaging (MRI) and functional MRI (fMRI) techniques
have revealed considerable structural and functional alterations
following stroke (2-4), these methods are often insufficient to resolve
the intricate inter-regional structural differences and associated
molecular mechanisms that emerge over time.

Recently, Morphometric Similarity Networks (MSNs) have
emerged as a powerful framework to characterize macroscale brain
architecture by integrating multiple structural features derived from
high-resolution anatomical MRI (5). Unlike traditional measures that
focus solely on volume or cortical thickness, MSNs offer a more
comprehensive profile of cortical organization by assessing the
similarity in multivariate morphometric features between brain
regions. This method has shown high sensitivity in detecting subtle
structural disruptions in various neuropsychiatric and neurological
conditions, including schizophrenia, tremor, depressive disorder,
epilepsy (6-9). However, the application of MSNs to ischemic stroke,
particularly across different post-stroke stages, remains
largely unexplored.

In parallel, the integration of transcriptomic data with
neuroimaging phenotypes offers a novel avenue to elucidate the
molecular underpinnings of brain structural changes. The Allen
Human Brain Atlas (AHBA) provides spatially resolved gene
expression profiles across the adult human cortex, enabling researchers
to identify gene sets associated with regional brain phenotypes (10).
By combining MSN alterations with postmortem gene expression
data, it is possible to identify transcriptional patterns that are
associated with stroke-related cortical structural differences. Partial
least squares (PLS) regression has proven to be a robust multivariate
approach to map the relationship between spatially distributed gene
expression and imaging-derived metrics (11, 12).

Here, we present a comprehensive investigation of group-level
differences in cortical morphometric similarity across individuals at
different stages of IS, focusing on distinctions between the acute/
subacute and chronic phases. By constructing individual MSNs based
on six surface-based structural features and applying PLS regression
to AHBA-derived gene expression data, we aimed to explore potential
molecular correlates of stroke-related cortical network differences.
Furthermore, we performed gene ontology (GO) and pathway
enrichment analyses on stroke-related genes to characterize their
functional roles and biological relevance. The present study integrates
MSN-based cortical architecture with transcriptomic profiling in the
context of IS at different clinical stages, providing novel insights into
correlates associated with

the structural and molecular

stroke recovery.

2 Methods
2.1 Participants

Participants diagnosed with IS at the First Affiliated Hospital of
Guangxi Medical University from January 2019 to March 2025 were
included in the study. IS was diagnosed according to the American
Heart Association and American Stroke Association criteria (13) and
confirmed by MRI or brain computed tomography. Acute/sub-acute
(AIS) and chronic IS (CIS) were identified according to characteristic
imaging features observed across various MRI sequences (14).
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Exclusion criteria were as follows: (a) severe aphasia and/or impaired
consciousness that compromised the ability to understand and follow
instructions; (b) a history of major systemic diseases, including severe
cardiac, hepatic, or renal dysfunction, autoimmune disorders, or other
psychiatric illnesses; (c) coexisting severe neurological disorders, such
as brain tumors or traumatic brain injury, which could potentially
confound the study outcomes; (d) contraindications to MRI scanning,
or poor image quality that did not meet the requirements for analysis.
The healthy control (HC) group was composed of 51 individuals with
comparable demographic characteristics to the patient group and had
received a thorough medical examination. The study procedures
received approval from the Ethics Committee of the First Affiliated
Hospital of Guangxi Medical University (2025-E0302), and informed
consent was obtained from each participant.

2.2 Imaging acquisition

Imaging data were acquired using a 3 T MRI scanner (SIEMENS,
Germany). High-resolution T1-weighted anatomical images were
acquired using a magnetization-prepared rapid gradient-echo
(MPRAGE) sequence with the following parameters: matrix
size =256 x 256, field of  view =256 x 256 mm?,
size =1 x 1 x 1 mm’, slice thickness = 1.0 mm with no inter-slice gap,

voxel

echo time = 2.98 ms, repetition time = 2,300 ms, flip angle = 9°,and a
total of 176 axial slices.

2.3 Imaging preprocessing

The three-dimensional T1-weighted images were preprocessed in
surface-based space using the Computational Anatomy Toolbox
(CAT12)! implemented in the Statistical Parametric Mapping software
(SPM12)* framework. Briefly, preprocessing included skull stripping,
tissue segmentation into gray matter, white matter, and cerebrospinal
fluid, as well as estimation and reconstruction of the cortical surface.
The cortical thickness was computed using the projection-based
thickness method, which involves correction for topological defects,
spherical mapping, and registration to a common surface template
(15). In addition, CAT 12 was also used to estimate other
morphological metrics, including fractal dimension, gyrification
index, central surface, mean curvature, square root of sulcal depth,
and cortical thickness (8, 16). We calculated these indices for each
participant using default parameter settings. The morphometric maps
were resampled to the fasverage template and smoothed using a
Gaussian kernel with full width at half maximum (FWHM) after they
were obtained. To be more precise, we took the cortical thickness
maps for each person and made them smoother using something
called a Gaussian kernel. The width of this kernel was 15 mm at full
width. Other maps (such as fractal dimension maps) were made
smooth using a Gaussian kernel with a FWHM of 25 mm, as explained
by Ruan et al. (17).

1 http://www.neuro.uni-jena.de/cat/

2 http://www filion.ucl.ac.uk/spm/softwarespm12
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2.4 Construction of MSNs

We utilized the methods of Seidlitz et al. (5) to generate MSNs with
the T1-weighted restricted parameters by using CAT 12. To be more
specific, the outer surfaces of the brain were divided into 308 sections,
of roughly equivalent dimensions (~500 mm?), by using a backtracking
algorithm (18). These sections were based on 68 sections of the brain as
shown in the Desikan-Killiany atlas (19). This Desikan-Killiany
parcellated atlas was transformed onto each participants surface to
obtain an individual surface parcellation. Six morphometric features (as
detailed in the Imaging processing section) extracted previously from
the T1-weighted images were used for each region. To take into account
differences in the values of the features, each MRI feature in each region
of each image was z normalize. Pearson correlation coefficients were
computed between the morphometric feature vectors of each pair of
regions, thereby generating a 308 x 308 node morphological similarity
matrix for each subject. This matrix was thresholded in order to
construct a weighted bipartite graph with an arbitrary connection
density. This process is also known as the construction of MSN. Regional
MSN strength was defined as the average weighted correlation
coefficient between a given region and all other regions, serving as an
index of region-specific morphometric connectivity.

2.5 Case—control analysis of MSN strength
in stroke subgroups

To assess group differences in MSN strength, we employed a linear
regression model (LRM), with MSN strength as the dependent variable
and group (AIS, CIS, or HC) as the main independent variable. Age,
sex, and their interaction (age X sex) were included as covariates. This
model was applied at both the global level (average MSN strength
across all regions) and the regional level (MSN; for each cortical
region). For regional analyses, the full model was specified as:
MSN; = intercept + f1 X age + P2 X sex + f5 X (age X sex) + 4 x group.
Here, the group variable was dummy-coded, and 4 represents the
group effect (i.e., AIS vs. HC or CIS vs. HC). This model was
independently fitted for each of the 308 cortical regions. Two-sided
t-tests were used to assess statistical significance for group
comparisons, and multiple comparisons were corrected using the
Benjamini-Hochberg false discovery rate (FDR) method (p < 0.05).
Regions showing significant differences in MSN strength were further
visualized using brain surface maps. Spatial correlations between case-
control t-values and healthy control MSN strength were assessed using
spin permutation tests to account for spatial autocorrelation. The spin
test is a spatial permutation method. It uses random rotations of
spherical projections at the cortical surface. This method is more
conservative than randomly shuffling locations. It preserves the data’s
spatial symmetry and contiguity. Specifically, the initial procedure
involved the generation of a null distribution through the
implementation of 10,000 random spatial rotations of the cortical
parcellation. Subsequently, the p-spin values were derived from the
comparison to the null models.

To demonstrate the comparison of MSN strength between the HC
group and the stroke subgroups (AIS and CIS), We used the Pearson
correlation coefficient to compare MSN strength between the HC
group and the stroke subgroups (AIS and CIS). The following terms
were defined, similar to the descriptions by Dong D et al. (20).
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Decoupling: Positive correlation in the HC group and negative
correlation in the stroke groups indicates that structurally similar
regions become less similar. Dedifferentiation: Negative correlation in
the HC group and positive correlation in the stroke groups indicates
that structurally dissimilar regions become similar. Hypercoupling:
Positive correlation in both the HC group and the stroke groups but
stronger correlations in the stroke groups indicates that similar
regions become more similar. Hyperdedifferentiation: Negative
correlation in both the HC group and the stroke groups but weaker
correlations in the stroke groups indicates that dissimilar regions
become more dissimilar.

2.6 Correlation analyses between MSN
features and clinical severity

To investigate the associations between MSN features and clinical
severity, we conducted correlation analyses between MSN strength
and clinical scores, including the National Institutes of Health Stroke
Scale (NIHSS) and modified Rankin Scale (mRS), for both AIS and
CIS groups. Specifically, we examined: Global-level associations, by
computing Spearman’s rank correlation coefficients between mean
MSN strength across all 308 cortical regions and clinical scores;
Regional-level associations, by calculating Spearman correlations
between MSN strength in each cortical region (defined by the D-K308
atlas) and clinical scores. For the two subgroups, AIS and CIS, all
relevant analyses were conducted respectively, and the Benjamini-
Hochberg FDR correction method was adopted to control multiple
comparisons. The correlation results were considered statistically
significant when the p value was less than 0.05 (the p value after
FDR correction).

2.7 Regional gene expression profiling

To explore the molecular basis underlying cortical morphometric
similarity, we utilized transcriptomic data from the AHBA,* which
provides genome-wide microarray-based gene expression profiles
sampled from 3,702 anatomically localized sites across six adult
postmortem donors (mean age = 42.5 + 13.4 years; 5 males, 1 female)
(10). In line with established preprocessing pipelines, we employed the
Abagen toolbox* to map and preprocess gene expression data with
respect to the D-K308 region parcellation scheme (12, 21). The
preprocessing procedure included the following steps: (a) updating
probe annotations to gene-level identifiers; (b) excluding probes with
expression levels below the background threshold in more than 50%
of the samples; (c) retaining probes with the greatest spatial
consistency for each gene; (d) assigning each sample to a cortical
parcel based on a 2 mm Euclidean distance criterion; and (e) applying
robust sigmoid normalization to expression values within donors. As
the AHBA data comprises right hemisphere samples from merely two
donors, our analysis was restricted to the left hemisphere regions
(n =152). Although output files retained the “DK308” label for

3 http://human.brain-map.org
4 https://github.com/rmarkello/abagen
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consistency with the parcellation scheme, all subsequent analyses were
strictly limited to 152 left-hemisphere regions. This preprocessing
resulted in a gene expression matrix comprising 152 brain regions and
15,632 transcripts. To maintain whole-genome coverage, we did not
further filter low-expression or low-variance genes; instead, robustness
was ensured through subsequent bootstrapping and false discovery
rate (FDR) correction.

2.8 Association between MSN differences
and gene expression profiles in IS

To explore the molecular correlates of regional MSN differences
across the course of ischemic stroke, we employed PLS regression to
link spatial patterns of MSN change with transcriptomic data (22).
Specifically, we extracted t-statistics representing group-level
differences in MSN features between acute/subacute and chronic
stroke patients across 152 cortical regions of the left hemisphere.
These t-values served as the response variable, while gene expression
levels derived from the AHBA were used as predictors. Expression
data were matched to the D-K308 parcellation, restricted to the left
hemisphere regions for consistency.

The number of PLS components was determined by examining
the cumulative variance explained across the first 15 components.
Models including 1-15 components were constructed using the
plsregress function, and the percentage of variance explained in the
dependent variable was recorded for each component. A null
distribution was then established through 1,000 permutations, in
which the dependent variable was randomly shuffled and PLS was
recalculated 1,000 times. The variance explained by each component
was obtained. In the original data, the first component significantly
exceeded the random level (p = 0.001), while subsequent components
contributed less than 2% incremental variance. Therefore, only the
first two components were able to account for a substantial proportion
of variance in the response variable and exceeded the permutation-
based null distribution, which led us to focus on PLS1 and PLS2.
Ultimately, the first partial least squares component (PLSI),
representing a weighted combination of gene expression most strongly
associated with regional MSN differences in ischemic stroke, was
retained for further analysis.

In addition, we estimated the stability of each gene’s loading on
PLSI using bootstrap resampling. For each gene, a Z score was
calculated as the ratio of its mean weight to the bootstrap-derived
standard deviation. Although the calculation of Z scores assumes
approximate normality, bootstrap resampling provides an empirical
estimate of weight variability, thereby reducing over-reliance on
To address the
indeterminacy of PLS, bootstrap weights were aligned to the direction

distributional assumptions. inherent sign
of the original PLS component to ensure consistency across resampling
iterations. Since the sign of PLS components is mathematically
arbitrary, our interpretation focused on the relative ranking of gene
weights rather than their absolute direction. Confidence intervals were
not computed for ROI-level PLS scores. Instead, uncertainty was
primarily quantified at the gene-weight level using bootstrap standard
errors, Z scores, and FDR-corrected p-values. The associations
between ROI-level PLS scores and MSN t-values were further
validated using account for

spin permutation tests to

spatial autocorrelation.
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Genes were then ranked according to their Z scores, and statistical
significance was determined using FDR correction with a threshold
of p < 0.05. Genes with PLS1 Z scores greater than 3.0 were designated
as PLS1+, while those with Z scores less than —3.0 were classified as
PLS1—. Only genes significantly associated with PLS1 were included
in subsequent spatial expression mapping and enrichment analyses.
PLSI scores were also correlated with MSN ¢-values to validate the
explanatory power of the PLS model.

2.9 Functional enrichment analysis of
stroke-associated PLS1 genes

To explore the potential biological functions of genes associated
with structural network differences in ischemic stroke, we conducted
GO and pathway enrichment analyses on the ranked gene lists
derived from PLS regression. Specifically, genes exhibiting statistically
significant differences in bootstrap-derived Z scores for each
condition (acute/subacute and chronic stroke) were analyzed
separately to identify enriched biological processes and signaling
pathways. Furthermore, to pinpoint genes that may play a role in both
early and late stages of stroke, we performed an intersection of PLS1
genes from the two time points, followed by functional enrichment
analyses on the overlapping set. All results were plotted by the
Bioinformatics online platform (last accessed April 1, 2025)°, which
provides integrated tools for GO term classification and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
(23). Statistically significant terms were determined with a threshold
of p < 0.05.

3 Results

3.1 Demographic and clinical
characteristics

A total of 170 patients with IS, including 60 in the AIS and 59 in
the CIS, along with 51 HCs, were included in the final analysis. The
demographic and vascular risk profiles of all participants are presented
in Table 1. No statistically significant differences were observed in age
(AIS: 55.98 + 8.91 years; CIS: 56.41 + 11.43 years; HC:
54.06 + 8.91 years) or gender distribution across the groups (p > 0.05).
Similarly, comparisons among groups revealed no significant
differences in the prevalence of major vascular risk factors, including
smoking, drinking, hypertension, diabetes mellitus, dyslipidemia,
coronary heart disease, and atrial fibrillation (all p > 0.05). Clinical
severity, as measured by the NIHSS and mRS, showed a trend toward
higher scores in the AIS group compared to the CIS group, although
these differences did not reach statistical significance (NIHSS:
p=0.053; mRS: p=0.060). These findings suggest comparable
baseline demographic and risk factor distributions among groups,
minimizing potential effects in

confounding subsequent

morphometric and transcriptomic analyses.

5 https://www.bioinformatics.com.cn
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TABLE 1 Demographic and risk characteristics.

10.3389/fneur.2025.1644413

Variables HC (n=51) TotalIS (n = 119) AIS (n = 60) CIS (n = 59)

Demographic characteristics

Age (years) 54.06 + 8.91 56.19 +10.19 0.196* 55.98 +8.91 56.41 +11.43 0.822*
Gender (M/F) 29/22 80/39 0.197° 42/18 38/21 0.516"
Risk factors

Smoking (%) 18 (35.3) 53 (44.5) 0.263" 29 (48.3) 24 (40.7) 0.401°
Drinking (%) 20 (39.2) 50 (42.0) 0.734 28 (46.7) 22(37.3) 0.300°
Hypertension (%) 30 (58.8) 86 (72.3) 0.084° 47 (78.3) 39 (66.1) 0.136°
Diabetes mellitus (%) 6(18.5) 22 (18.5) 0.279" 14 (23.3) 8(13.6) 0.170°
Dyslipidemia (%) 11 (21.6) 37 (31.1) 0.206" 23 (38.3) 14 (23.7) 0.085"
Coronary heart disease (%) 0 (0.0) 4(3.4) 0.185" 2(3.3) 2(3.4) 0.986"
Atrial fibrillation (%) 0(0.0) 1(0.8) 0.511° 1(1.7) 0(0.0) 0.319"
Clinical characteristics

NIHSS score (P25-P75) NA 2(2-4) NA 3(2-4) 2(1-3) 0.053¢
mRS score (P25-P75) NA 2(1-2) NA 2(1-2) 2(1-2) 0.060°

HC, Healthy controls; IS, Ischemic Stroke; AIS, Acute ischemic stroke; CIS, Chronic Ischemic Stroke; M/F, Male/female; NIHSS, NIH Stroke Scale; mRS, Modified Rankin Scale; P25-P75, 25th

Percentile-75th Percentile.
“Unpaired ¢ test.

"Chi-square test.

‘Mann-Whitney U-test (two-sided).

3.2 MSN differences across stroke stages

We first constructed individual MSNs by computing interregional
Pearson correlations across six cortical features derived from
T1-weighted MRI data. At the group level, no statistically significant
differences in global MSN strength were observed between AIS or CIS
patients and healthy controls (Figure 1A). Therefore, we further
examined region-specific differences in MSN to identify localized
changes associated with stroke. Regional case-control t-maps
(AIS-HC and CIS-HC) were generated by conducting linear regression
analyses at each cortical region, controlling for age and sex. For each
comparison, two-sided t-statistics were computed to quantify
differences in regional MSN strength between stroke patients and
healthy controls. Positive t-values indicate regions with increased
MSN in AIS or CIS relative to controls, while negative t-values reflect
decreased MSN. The spatial patterns of these t-values revealed distinct
region-specific disruptions in morphometric similarity associated
with the acute/subacute and chronic phases of IS. In the AIS group,
significant differences in MSN strength relative to HC were
predominantly observed in the frontal and temporal cortices, with
additional involvement of parietal, occipital, and limbic regions
(Figure 1B; Supplementary Table S1). Notably, regions showing
reduced MSN strength included bilateral superior and middle frontal
areas, the precentral gyrus, middle temporal cortex, and lingual gyrus.
Conversely, increased MSN strength was identified in regions such as
the temporal pole, insula, entorhinal cortex, cingulate cortex, and
inferior parietal lobule. These findings suggest widespread and
regionally divergent MSN difference during the acute/subacute phase
of IS. In the CIS group, widespread differences in MSN strength were
observed across multiple cortical regions compared to HC (Figure 1C;
Supplementary Table S1). Reduced MSN strength was mainly
observed in the bilateral prefrontal cortex, including the caudal
middle frontal, rostral anterior cingulate, superior frontal,
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orbitofrontal, and medial prefrontal areas, as well as in the precentral
gyrus, posterior cingulate cortex, parietal regions (including
precuneus, supramarginal, inferior parietal), and occipital regions
(including lingual and lateral occipital gyri). Increased MSN strength
was primarily located in right hemisphere regions, including the
caudal middle frontal, fusiform, entorhinal, insula, inferior parietal,
and lateral orbitofrontal cortices, as well as the frontal pole and
supramarginal gyrus. These results indicate that distinct MSN patterns
are observed in the chronic phase, characterized by both enduring
disruptions and regionally elevated similarity in specific cortical hubs.
In both AIS and CIS groups, altered MSN connections were
predominantly characterized by decoupling (39%), followed by
dedifferentiation (AIS: 25%, CIS: 26%), hypercoupling (AIS: 28%, CIS:
21%), and hyperdedifferentiation (AIS: 8%, CIS: 7%) (Figure 1D). A
significant negative correlation was observed between MSN strength
in healthy controls and group differences (AIS: Spearman’s r = —0.35,
p-spin < 0.001; CIS: Spearman’s r = —0.58, p-spin < 0.001), indicating
that in the comparison between the HC group and the stroke patient
group (AIS and CIS), areas with higher MSN strength in the HC group
often exhibit lower MSN strength in the stroke patient group, and
conversely. This negative correlation suggests that regional differences
in MSN strength between the HC group and the stroke patient group
are negatively correlated with MSN strength itself in the HC group.
Most significantly changed connections were located in the decoupling
and dedifferentiation quadrants, reflecting disrupted integration of
structurally coherent regions following stroke.

3.3 Associations between MSN features
and clinical severity

To explore the associations between MSN features and clinical
severity, we performed Spearman correlation analyses between both
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global mean MSN strength and regional MSN values (based on
D-K308 atlas) and clinical scores (NIHSS and mRS), separately for
the AIS and CIS groups. After applying FDR correction (p > 0.05,
Supplementary Table S2), no statistically significant correlations were
observed between global mean MSN strength and either NIHSS or
mRS scores in the AIS or CIS groups. At the regional level, prior to
FDR correction, region-specific associations between MSN values
and clinical scores were observed (Figure 2). However, after
correcting for multiple comparisons, none of the associations
between regional MSN values and clinical severity remained
statistically significant (p > 0.05, Supplementary Table S3).

3.4 Transcriptomic correlates of MSN
differences across stroke stages

In an exploratory PLS regression, spatial patterns of MSN
disruption were associated with cortical gene expression gradients.
Spatial distribution of PLS1-weighted gene expression maps found
distinct anterior-posterior gradients, broadly mirroring the
topography of MSN disruptions (Figures 3A,B). Furthermore,
regional PLSI scores were positively correlated with case—control
t-values in both AIS (Spearman’s r = 0.33, p-spin < 0.001) and CIS
(Spearman’s r = 0.28, p-spin < 0.001), indicating that transcriptional
patterns aligned with the degree of MSN disruption across cortical
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regions (Figures 3C,D). These exploratory findings suggest that
stroke-related MSN differences are spatially coupled with intrinsic
cortical gene expression architecture. We identified differentially
expressed genes based on PLS1 scores with a threshold of
p-FDR < 0.005. In the AIS group, 37 PLS1* genes (positive scores)
were up regulated, while 215 PLS1~ genes (negative scores) were
down regulated (Figure 3E). In the CIS group, a larger number of
genes exhibited significant changes, with 148 PLS1* genes upregulated
and 648 PLS1- (Figure  3E,
Supplementary Table S4).

genes  downregulated

To further identify key genes involved in the pathogenesis of IS,
we analyzed the intersection of differentially expressed genes (DEGs)
between AIS and CIS. We identified 234 overlapping genes shared by
AIS and CIS DEGs. Subsequently, we performed spatial correlation
analysis between the expression levels of these overlapping genes and
case—control t-values. Genes were ranked based on the Spearman’s
r-value and statistical significance (FDR-adjusted p < 0.05) (Figure 3F,
Supplementary Table S5). Notably, genes such as KIF5B (r = 0.30,
P <0.001), C4orf3 (Spearmans r = 0.31, p-spin < 0.001), APMAP
(Spearman’s r=—0.32, p-spin < 0.001) and STOML1 (Spearman’s
r=—0.36, p-spin < 0.001) exhibited strong correlations with case-
control t-values. The expression levels of the most highly ranked
positively (or negatively) associated genes showed consistency with
(or in contrast to) the distribution of variant regional changes in MSN
strength (Figures 3G-]).
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B NIHSS-related regions of CIS

”

FIGURE 2

Associations between regional MSN strength and clinical scores. (A, B) Brain regions where MSN strength correlates with NIHSS scores in AIS and
ClSpatients. (C, D) Brain regions where MSN strength correlates with mRS scores in AIS and CIS groups. Color scale indicates correlation coefficients
(r-values) without FDR correction, with positive and negative associations shown in orange and blue, respectively.

3.5 Functional enrichment of
stroke-related genes

To elucidate the biological signatures across cortical MSN
differences, GO and KEGG enrichment analyses were performed on
DEGs identified in the AIS and CIS groups. In the AIS group,
biological process (BP) terms were mainly enriched in dendritic
extension, cellular amino acid metabolism, and insulin secretion
regulation. Cellular component (CC) terms involved neuron
projection cytoplasm and synaptic membranes, while molecular
function (MF) terms were related to glycine binding and protein
kinase activity (Figure 4A). KEGG analysis indicated significant
enrichment in motor proteins, Parkinson disease, and
neurodegeneration pathways (Figure 4B). In the CIS group, BP terms
highlighted neuronal projection regeneration and microtubule-based
transport. CC terms involved synaptic vesicle membranes and
proteasome complexes, and MF terms were enriched in GTP binding
and nucleotide binding (Figure 4C). KEGG analysis showed overlap
with  AIS,

neurodegenerative disease pathways (Figure 4D). Analysis of

including motor proteins, phagosome, and

overlapping DEGs revealed common enrichment in dendritic
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extension, axon cytoplasm, and organic acid binding (BP, CC, MF
respectively; Figure 4E). Shared pathways were mainly related to
motor proteins, Parkinson disease, and multiple neurodegenerative
disorders (Figure 4F). Gene-pathway network analysis identified hub
genes bridging key biological functions. FZD1 and PRKCG were
linked to motor protein regulation and neuronal signaling. KIF27,
KIF5B, and ACTRIA were associated with axonal transport and
cytoskeletal organization. TUBB6, TUBB4B, and TUBB2A were
central to microtubule stability. PSMC1, NDUFC2, UCHLI1, TXN,
UBA52, and MAP2K7 were related to protein degradation and
oxidative stress regulation. These hub genes are associated with
cortical MSN differences in stroke and may reflect coordinated
changes related to neuronal structure, intracellular transport, and
protein homeostasis.

4 Discussion

This study compared patients in the AIS and CIS phases of
ischemic stroke to investigate stage-specific differences in cortical
MSN patterns. Using a data-driven, multimodal approach,
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FIGURE 4

Functional enrichment of stage-specific and shared DEGs. GO (A) and KEGG (B) enrichment analysis of DEGs specifically identified in the AIS group.
GO (C) and KEGG (D) enrichment analysis of DEGs specific to the CIS group. GO (E) and KEGG (F) enrichment of DEGs shared between AlS and CIS
groups, reflecting common molecular signatures. In (F), the gene-pathway network illustrates associations between hub genes and enriched pathways,
where larger nodes represent pathway terms (scaled by —log; adjusted p-value) and smaller nodes represent related genes.

we characterized the spatial distribution of morphometric changes  presence of stage-dependent cortical structural differences during
and explored their transcriptomic associations. Although no  different stroke phases.

statistically significant associations between clinical severity and MSN At the regional level, uncorrected correlation results showed
features were observed after multiple comparison correction,  that in the AIS group, higher NIHSS scores were associated with
exploratory analyses revealed certain spatial trends, suggesting the ~ lower MSN values in the left frontal, cingulate, and occipital
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regions, as well as the right caudal middle frontal cortex; in contrast,
positive correlations were observed in the right occipital and
precentral regions. In the CIS group, negative correlation trends
were noted in the left middle and superior frontal cortices and the
right frontal pole, while positive associations were found in the
bilateral inferior parietal lobules and right precuneus. Similar
exploratory spatial distributions were observed for mRS scores: in
the AIS group, negative trends appeared in the frontal and occipital
cortices, while positive associations were found in the parietal and
orbitofrontal cortices; in the CIS group, mixed positive and negative
associations emerged in regions such as the middle temporal gyrus,
postcentral gyrus, and superior parietal lobule. Although these
results did not reach statistical significance after FDR correction,
they are consistent with the concept of transneuronal diaschisis, in
which focal brain injury induces remote structural and functional
disturbances through mechanisms such as transneuronal
degeneration, inflammatory responses, maladaptive plasticity,
excitotoxicity, and necroptosis (24-30). Neuroimaging evidence
shows degeneration in connected areas after stroke and severe loss
of connectivity in disconnected areas (31-33). Therefore, although
these trends were not statistically robust, they provided directions
for hypothesis-driven research in future longitudinal or large-
sample studies.

Despite the lack of statistically significant structure-function
between MSN and

transcriptomic analyses exploratory found spatial relationships

correlations clinical severity, our
between MSN patterns and cortical gene expression profiles. In
both AIS and CIS groups, an anterior-posterior gradient in
PLS1-weighted gene expression was observed (Figures 3A-D),
that

topographically associated with regional variation in cortical

indicate intrinsic  transcriptional architecture is
MSN patterns. This finding aligns with prior evidence indicating
that brain-wide morphometric and functional networks are
constrained by spatial gene expression gradients (34, 35). The
positive correlations between PLS1 scores and case-control
t-values in both AIS and CIS groups underscore that regions
exhibiting greater morphometric disruption also exhibit distinct
transcriptomic signatures. Notably, a larger number of DEGs
were detected in the CIS group, suggesting more extensive
transcriptional reprogramming in the chronic phase, potentially
reflecting long-term neurological changes (36) and inflammatory
responses. Fury et al. used a mouse model of transient middle
cerebral artery occlusion. They performed transcriptomic
profiling at 10 time points after stroke. Immune responses were
found to be especially affected. Immune cells persisted in distant
brain regions for up 2 months (37).

Shared DEGs between AIS and CIS, including genes such as
KIF5B, C4orf3, APMAP, and STOMLI (Figures 3E-]), may reflect
common molecular signatures associated with stroke across
different clinical stages. KIF5B, a kinase motor protein, facilitates
the transport of mitochondrial and synaptic cargo and is critical
for synaptic plasticity, axonal integrity and spine stability (38-41).
This gene may be associated with stroke-related cortical structural
variation, potentially linked to molecular pathways involving
intracellular transport and neuroplasticity. C4orf3, also known as
ALN, modulates ER-mediated Ca®* cycling and thermogenesis,
and is enriched in immune-related macrophage populations (42,
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43). Given its known roles in energy balance and inflammation,
this gene may be associated with molecular features relevant to
metabolic and immune processes in stroke. Among the negatively
correlated genes, APMAP and STOMLI1 showed notable
associations with MSN disruption. APMAP encodes a membrane-
associated protein that negatively regulates amyloid-f production
by modulating y-secretase-APP interactions and autophagy-
lysosome pathways (44, 45). Its down regulation post-stroke may
reflect impaired protein homeostasis and contribute to
maladaptive neurodegenerative-like processes. STOMLYI, a protein
expressed in sensory neurons, modulates ion channels and is
linked to brain morphology (46-48). Its down regulation post-
stroke may disrupt ion homeostasis and contribute to network
vulnerability in structurally affected cortical regions.

In line with these transcriptomic associations, functional
enrichment analysis of stage-specific and overlapping DEGs
identified the biological pathways potentially associated with
cortical MSN differences observed across stroke stages (Figure 4).
In the AIS group, early transcriptional responses were enriched in
dendritic extension, synaptic function, and insulin signaling
regulation, suggesting acute-phase adaptations aimed at restoring
neuronal communication and metabolic stability. By contrast, the
CIS group demonstrated enrichment in pathways related to
microtubule transport and synaptic vesicle cycling, reflecting
chronic-stage demands on intracellular trafficking and synaptic
maintenance. Notably, overlapping DEGs between AIS and CIS
showed enrichment in pathways related to motor protein
regulation and neurodegenerative disease pathways, suggesting
common molecular features associated with neuronal structure
and function across stroke stages. This convergence supports the
that
neurodegeneration-like processes involving disrupted cytoskeletal

notion ischemic stroke may initiate long-lasting,
dynamics, impaired proteostasis, and oxidative stress (49-51).
Axonal transport within neurons is the process by which transport
proteins transport corresponding proteins and other substances
to axon terminals through the cytoskeleton. Defects in axonal
transport components have been demonstrated to be associated
with a wide range of neurological diseases, especially in the
context of neurodevelopmental and neurodegenerative diseases.
The restoration of axonal transport has been regarded as a
potential therapeutic approach to decelerate the progression of
neurodegenerative diseases for an extended period (52). The
impact of ischaemic stroke on cerebral white matter is
characterized by defects in axonal function, thus, protecting
axonal function is of great significance for the recovery of
ischemic stroke (53). Protein homeostasis is the balance of protein
synthesis, folding, repair and degradation in cells. Disruptions
cause diseases, including neurodegeneration. In the context of
ischaemic stroke, the maintenance of protein homeostasis is
pivotal for cell proliferation and functional recovery (54). Hub
genes such as KIF5B, TUBB4B and UCHLI1 were central to these
networks, reflecting their respective roles in neuronal signaling,
cytoskeletal organization and protein homeostasis (40, 41, 55, 56).
Importantly, identifying molecular signatures shared across stroke
stages highlights potential targets for future investigation into
biological processes relevant to brain adaptation and long-

term outcomes.
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In summary, although this study did not reveal statistically
significant structure—function relationships between MSN features
and clinical scores, the combination of exploratory morphometric
trends and consistent molecular signatures provided new insights
into the spatial and biological signatures of post-stroke cortical
deferences. These findings suggest that integrating neuroimaging
with transcriptomic data may help elucidate regional structural
vulnerability and potential therapeutic targets in stroke recovery.
However, several limitations should be noted. First, the cross-
sectional design limits causal inference and the ability to capture
intra-individual dynamic changes, making it impossible to directly
observe alterations in brain structure and molecular mechanisms at
the individual level. Second, the gene expression data were derived
from the Allen Human Brain Atlas, which is based on postmortem
samples from non-stroke individuals and may therefore not fully
reflect stroke-specific transcriptomic features. Third, the retrospective
nature of clinical data collection precluded control of key
confounders, such as lesion volume, lesion location, and time since
stroke onset, all of which may significantly influence imaging and
clinical outcomes. Fourth, methodological considerations related to
partial least squares (PLS) analysis also warrant attention. The same
dataset was used for component selection, model fitting, and gene
weight inference, which could introduce a risk of overfitting.
Although we employed permutation testing to establish a null
distribution for component selection, bootstrap resampling to
estimate the stability of gene weights, and spin permutation tests to
account for spatial autocorrelation, these steps cannot fully substitute
for cross-validation or external replication. In addition, the
calculation of bootstrap-based Z scores assumes approximate
normality, which may not hold for all genes. To address the arbitrary
sign indeterminacy inherent in PLS, we aligned bootstrap weights
with the direction of the original components to ensure stability
across iterations, but we avoided making strong directional biological
interpretations. Finally, confidence intervals for ROI-level PLS scores
were not computed, and uncertainty was primarily quantified at the
gene-weight level. These limitations have been described in detail in
the Methods section, and the PLS results are explicitly labeled
as exploratory.

To confirm the robustness and generalizability of these findings,
future prospective studies should implement formal cross-validation
and include independent or longitudinal cohorts, incorporate more
individual-level transcriptomic data, improve measurement of
unmeasured factors, and include relevant covariates. Such efforts will
better support elucidating the structural-molecular interactions
underlying cortical reorganization after stroke.

5 Conclusion

In summary, our study sheds new light on stage-specific
differences in cortical morphometric similarity and its exploratory
molecular correlates in ischemic stroke, highlighting the intricate
spatial relationships between structural features and gene expression
profiles. These findings offer insights into the structural and molecular
characteristics of stroke at different clinical stages, which may inform
future investigations into neurobiological processes relevant
to recovery.
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