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Purpose: The aim of the study was to assess the effects of rehabilitation using the 
Biometrics device on the re-education of hand function in late stroke patients.
Methods: The data were collected from 1 August 2022 to 28 February 2023. 
The study was conducted among 120 people after stroke, who were randomly 
assigned to the test (n = 60) or control groups (n = 60). Both groups were 
provided with a 3-week rehabilitation program for 2 h a day. While the control 
group received traditional physiotherapy, the test group additionally underwent 
biofeedback training. Examinations were performed on the first day and the final 
day of the 3-week intervention program. The primary measurement included 
assessment of hand grip strength (key, three jaw chuck, tip-to-tip) using an 
electronic dynamometer and a Biometrics E-link pinchmeter. Secondary 
outcomes included hand motor function assessment, using the Fugl–Meyer 
Assessment-Hand Function scale, hand motor dexterity with the Box and Blocks 
test, hand grip functions according to the Frenchay scale, and functional fitness 
with the Barthel index.
Results: In the test group, significant rehabilitation effects were observed for 
the assessment of grip strength, finger compression strength, manual hand 
dexterity, grip function and activities of daily living (p < 0.001; p = 0.001), 
while in the control group results were improved for grip strength and finger 
compression strength (key and three-jaw chuck) of the right hand (p = 0.012; 
p = 0.017; p = 0.001) and manual dexterity (p < 0.001), motor abilities and 
activities of daily living (p < 0.001).
Conclusion: The study showed positive effects of hand function rehabilitation 
in chronic stroke patients in both groups. However, in the test group, which 
additionally underwent training that stimulated the central nervous system using 
the biofeedback method with the Biometrics device, better hand and finger grip 
function as well as hand motor and manual function were noted.
Clinical trial registration: https://clinicaltrials.gov/, Identifier NCT05486052.
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1 Introduction

Stroke is one of the leading causes of disability worldwide. People 
who survive a stroke show up to 80% of motor disorders in the upper 
limb and hand (1, 2).

Impairment of hand function makes it difficult to perform 
activities of daily living. The upper limb is one of the most utilized 
parts of the body, therefore regaining its function should be treated as 
a priority in brain injury. However, its improvement is considered one 
of the most difficult in the rehabilitation process, because 
complications after a stroke include impaired sensation, limitation of 
motor functions, dexterity, coordination, abnormal muscle strength 
and tension, which disrupt the ability of such people to function in 
society (3–5). New methods and various techniques of working with 
stroke patients are mainly aimed at improving this ability.

Brain plasticity is the ability to permanently transform the brain 
at the level of structures and functions based on information supplied 
to it, which allows us to learn, remember, and undergo developmental 
and compensatory changes. Research confirms that neurogenesis is 
constantly occurring in the brain, thanks to which a stroke can 
be  followed by a brain healing effect, so-called neural network 
reprogramming, potentially leading to faster recovery (6–8). The 
biofeedback phenomenon is related to processes that take place 
throughout the body, and so it can be used to stimulate a patient’s 
nervous system during treatment after stroke. The use of a biofeedback 
mechanism allows feedback to be provided to the patient, teaching 
them how to perform movements correctly, which is an important 
element of therapy when motor deficits occur (8, 9). Research shows 
that the use of biofeedback in robotic devices facilitates the 
phenomenon of brain neuroplasticity through multiple repetitions of 
a given movement, affecting the sensorimotor cortex (10).

Among the various techniques for using surrogate feedback, 
visual and auditory afferentation are most often used. This type of 
rehabilitation facilitates intensive training, which enables adaptation 
to new conditions. Research shows that working with such equipment 
not only improves motivation to exercise but also supports 
regeneration. Supplementing rehabilitation with modern devices 
supports the process of helping patients after stroke to regain 
functional fitness. In the case of functional disorders of the hand or 
the entire upper limb following a stroke, biofeedback methods are 
applied using devices such as: Biometrics (11), Armeo (12, 13), Luna 
(14, 15), Pablo (9) Gloreha glove (16), HandTutor (17), and Amadeo 
(18). Many researchers use robotic biofeedback devices to treat stroke 
patients, but most focus on the entire upper limb (19, 20).

The Biometrics device is a diagnostic and measurement tool that 
uses the biofeedback method as the basis of hand and finger grip 
strength exercises that make it possible to perform training to restore 
hand dexterity and the function of the entire upper limb (12, 21). 
Biofeedback allows the patient to visualize movements they are 
performing, which has a positive effect on engagement and increases 
the range of movement and muscle strength. The Biometrics device 
has been used many times by researchers for rehabilitation of patients 
with various disorders (22, 23).

A literature review showed that the Biometrics LTD device has 
been used in the treatment of patients with rheumatoid arthritis (24), 
cerebral palsy (25), and studies have been conducted using the device 
to improve the performance of prosthetic hands (26) as well as with 
spinal cord injury (27). However, no studies were found on the 

rehabilitation of chronic stroke patients. Although chronic stroke 
patients typically exhibit limited potential for recovery due to 
plateaued neuroplastic processes, biofeedback-based therapy may still 
activate residual neuroplasticity through targeted, repetitive, and 
feedback-driven training. Therefore, the aim of our study was to assess 
the effects of rehabilitation using the Biometrics device on the 
re-education of hand function in chronic stroke patients.

2 Materials and methods

2.1 Study design

The research was conducted as a two-group randomized 
controlled trial.

The research received a positive opinion from the Local Bioethics 
Commission of the University (No. 2022/085). The study was 
registered in the clinical trials register at the site ClinicalTrials.gov 
(registration number NCT05486052). Registration date (18.07.2022). 
The data were collected from 1 August 2022 to 28 February 2023.

2.2 Setting

The study was conducted among chronic stroke patients in the 
Spa and Rehabilitation Hospital.

2.3 Sample size calculation

The required sample was taken a priori based on the minimal 
clinically important difference (MCID) for the FMA-UE scale, 4.25 
points (28). Using the G*Power program (version 3.1.9.4; F. Faul, 
University of Cologne, Germany), with a statistical power of 90% (1-β) 
and a significance level of α = 0.05, a minimum required sample size 
was calculated as 38 participants in each group (76 in total). However, 
due to the specific characteristics of those examined, more 
conservative assumptions regarding oversampling (approximately 
25–30%) were deliberately made. 120 patients were enrolled in the 
study. After applying a 0% elimination estimate, the final sample size, 
distributed across units, ultimately yielded very high statistical power.

2.4 Study population

Chronic stroke patients were randomly assigned to two groups (test 
and control). Randomization was performed by the double-blind 
method, in which both participants and outcome assessors were blinded 
to group allocation. Due to the nature of the intervention, the therapists 
administering the treatment were not blinded. Randomization was 
performed using a computer-generated random number sequence 
created in Microsoft Excel (Microsoft Corp., Redmond, WA, USA). To 
ensure concealment of allocation, sealed, opaque envelopes were 
prepared by an investigator not involved in participant recruitment or 
outcome. The inclusion criteria were: first ischemic stroke, medical 
examination confirming participation in exercises, basic gripping ability 
for the upper limbs and hand, modified Ashworth scale not higher than 
3, Brunnström scale 4–5, Rankin scale 3, time since stroke greater than 

https://doi.org/10.3389/fneur.2025.1643336
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://ClinicalTrials.gov


Leszczak et al.� 10.3389/fneur.2025.1643336

Frontiers in Neurology 03 frontiersin.org

6 months, written informed consent to participate in the study. The 
exclusion criteria were: non-ischemic stroke, lack of informed consent 
from the patient to participate in the study, mechanical, thermal injuries 
and comorbidities that may impair hand-grip function, unstable 
health state.

2.5 Interventions

The rehabilitation program lasted 3 weeks (from Monday to 
Friday) and took 2 h a day for both groups. All patients participated 
in individual and group exercises, massages, physical treatments and 
treatments using natural resources. In addition, patients in the test 
group participated in 30 min per day of exercises using a biofeedback 
method, which were performed on the Biometrics dynamometer 
device and aimed at improving hand motor function (29). These 
activities were conducted within the existing 2-h sessions, rather than 
as extra therapy time. The training took place on the basis of tasks 
stimulating the central nervous system with the help of visual and 
acoustic biofeedback. These tasks consisted of catching the correct 
colors of balls for a basket (a), shooting balls into a goal (b), laying 
colored blocks (c) (Figure 1).

2.6 Outcome measures

The first examination was performed on the first day of 
rehabilitation, and the second on the last day of the 3-week 
intervention program (at discharge).

The primary measurement of hand grip and finger strength (key, 
three jaw chuck, tip-to-tip) was based on an objective method, using 
an electronic dynamometer and a Biometrics E-link pinchmeter. The 
former registers forces from less than 0.1 kg/lb. to 90 kg (200 lb) while 
the latter records finger pinch strength up to 22 kg (50 lb) (29, 30).

All measurements were taken according to the American Society 
of Hand Therapists (ASHT) guidelines and the Biometrics E-link 

device reliability assessment methodology for assessing hand grip and 
finger pinch strength in healthy individuals (29, 31).

Secondary results included an assessment of hand motor function, 
performed using the Fugl–Meyer Assessment-Hand Function (FMA-
Hand) scale (32) to assess precise movements and grips: motor control 
of finger flexion and extension, thumb adduction, finger resistance, 
cylindrical and spherical grip. The patient received 2 points for 
making a full movement, 1 point for a partial movement, 0 points for 
no movement. The Fugl–Meyer Motor Assessment Scale for Upper 
Extremity (FMA-UE) consists of 7 items (FMA-UE headings 24 to 30) 
giving a maximum possible 14 points (5, 33–35). Hand motor skills 
were assessed using the Box and Blocks (BBT) test. The patient was 
asked to move as many blocks (2.5 cm) as possible in a wooden box 
(53.7 cm x 25.4 cm x 8.5 cm) divided by a partition into two parts 
within 60 s. The higher the number of blocks moved, the better the 
patient’s manual hand dexterity (36–38). Hand grip was assessed 
according to the Frenchay scale, which consists of 7 tasks, for which 
the patient receives 1 point when performing them correctly, and 0 
points for failing to perform them, giving a maximum possible 7 
points. The higher the patient’s score, the better their hand dexterity 
(39, 40). The patients’ functional status was assessed using the Barthel 
Index (BI), which consists of 10 items assessing activities of daily 
living. The results of all items are added together to determine the 
patient’s condition: 86–100 pts. – patient’s condition “light”; 21–85 
points  – patient’s condition “moderately severe”; 0–20 points  – 
patient’s condition “very severe” (41–43).

2.7 Data analysis

Statistical analysis of the collected material was performed in the 
Statistica 13.3 package. The database and the graphical elaboration of 
the results were prepared in Microsoft Excel and Microsoft Word.

Descriptive statistics were calculated: number, mean value, 
median, minimum and maximum values, upper and lower quartile 
and standard deviation. For the assessment of statistical differences 

FIGURE 1

Biofeedback exercises: (a) catching the correct colors of balls for a basket, (b) shooting balls into a goal, (c) laying colored blocks.
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between the test and control groups in the first and second 
examinations, and for the assessment of the effects of rehabilitation, 
the student-t test for independent samples was used, or due to 
non-compliance with the assumptions of parametric tests (lack of 
compliance of the variable distribution with the normal distribution 
verified by the Shapiro–Wilk test or a dependent variable of an ordinal 
character), the non-parametric Mann Whitney U test was used. The 
Wilcoxon non-parametric test was used to assess the effects of 
rehabilitation between the first and second examinations in the test 
and control groups because of the lack of compliance of the 
distribution of differences with the normal distribution.

The level of statistical significance was p < 0.05.

3 Results

Among 200 patients admitted to the Spa and Rehabilitation 
Hospital, preliminary qualification was performed based on the 
criteria of inclusion and exclusion for the study. 64 people did not 
meet the criteria, and 16 people did not agree to participate in the 
study. The study included 120 stroke patients (n = 60 test group, n = 60 
control group) who completed the 3-week rehabilitation program 
(Figure 2).

In both groups, a slight and insignificant majority consisted of 
men (66.7 and 65.0%) and people with left-sided paresis (58.3% each). 
The mean age in the test group was x̄ = 62.7, and in the control group 
x̄ = 63.6. The mean time since stroke in the test group was x̄ = 
43.4 months and in the control group x̄ = 43.5 (Table 1).

The analysis of the results from the first (baseline) study did not 
show statistically significant differences between the test and control 
groups in any of the evaluated demographic and clinical variables 
(p > 0.05 for all comparisons). The groups were comparable in terms 
of age, body weight, BMI, and time since stroke. Similarly, no 
significant between-group differences were found in baseline 
measurements of grip and finger pinch strength, manual dexterity, or 
functional assessments. This confirms that the randomization process 
successfully created two homogeneous groups before the 
intervention began.

Using a dynamometer and a pinchmeter, respectively, hand grip 
strength and finger compression strength (key) in the test and control 
groups were examined in the first and second examinations. In both 
groups, the effects of rehabilitation on the right hand were shown to 
be effective (p < 0.001; p = 0.012). Left hand scores were significantly 
improved only in patients participating in rehabilitation supplemented 
with biofeedback therapy (p < 0.001), which also translated into better 
rehabilitation outcomes (p < 0.001) in this group (Table 2).

There were no inter-group differences (p > 0.05) for the finger 
compression strength (three-jaw chuck) assessment. After the therapy, 
the results for the right hand were significantly improved in both 
groups (p < 0.001; p = 0.001), while for the left hand only in people 
undergoing rehabilitation supplemented with biofeedback (p = 0.001). 
A similar situation is presented in assessment of the results of the 
finger compression strength (tip-tip) in the right and left hands. Only 
in the test group were significant effects of rehabilitation reported 
(p < 0.001). After the second measurement, people in the test group 
were characterized by higher finger compression strength in the right 

FIGURE 2

Flow diagram.
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hand than people in the control group. In the left hand, the effects of 
therapy were more beneficial in the test group than in the control 
group (p = 0.017) (Table 3).

In terms of manual hand dexterity, it was noted that both 
conventional and biofeedback rehabilitation brought the assumed 
benefits (p < 0.001). The effects of the therapy on the non-dominant 
hand were significantly better in the test group (p = 0.028). Hand grip 
function and hand motor abilities were significantly improved in both 
groups after measurement II (p < 0.001). Significantly better results of 
therapy were reported in people using rehabilitation supplemented 
with biofeedback. The final tool used was the Barthel scale, which 
assessed activities of daily living. There were no inter-group differences 
in either the first or second examinations, or in the effect assessment, 
but it was noted that both groups obtained more favorable results after 
rehabilitation than before the therapy (p < 0.001) (Table 4).

4 Discussion

The main aim of the study was to check the effects of rehabilitation 
of chronic stroke patients in terms of changes in hand motor function 
and self-reliance, and then to determine the differences in these effects 
depending on the method used, i.e., biofeedback method and 
conventional method. The study showed that patients improved 
manual dexterity in both the test and control groups, but better effects 
of therapy were noted for the group of patients using rehabilitation 
combined with biofeedback.

A similar study was conducted by Dziemian et  al., using 
biofeedback exercises during hand rehabilitation. As in our own study, 
a statistically significant improvement in hand function was shown on 
the Fugl–Meyer scale and manual hand dexterity in the Box and 
Blocks test after biofeedback therapy in the test group. The authors 
draw conclusions on the benefits of implementing biofeedback 
therapy to improve impaired upper limb function. However, it is 
worth adding that the study included only 10 patients after stroke, 

including 8 after ischemic stroke and 2 after haemorrhagic stroke, so 
the group was heterogeneous and small (44). In our own study, 
we examined a relatively large and homogeneous group of 120 patients 
in the chronic phase after a single ischemic stroke, all at a similar 
motor recovery level. This sample size strengthens the reliability of our 
findings regarding the positive effects of biofeedback in post-
stroke rehabilitation.

In our own study, in measurements using a dynamometer and 
pinchmeter, patients who used biofeedback equipment also performed 
better. The analysis of the finger compression strength measurements 
was carried out in three positions – key, tip-tip, three-jaw chuck. An 
important element of the study was to record improvements in finger 
compression strength (in the key and three-jaw chuck positions) for 
patients who received biofeedback-enhanced therapy. Similar effects 
were noted for the tip-tip compression strength. Bayidir et al. also 
assessed grip and finger pinch strength (tip-tip) in a randomized-
controlled study of patients following stroke, and their results 
confirmed better effects for a group of patients who received 
biofeedback-enriched therapy (17). Hsu et al. studied the effects of 
robot-assisted training, in combination with conventional 
rehabilitation, on hand function chronic stroke patients. Their 
observations showed an improvement in hand function. However, the 
test group was small, at just 12 people, so the authors recommend 
further research to confirm the validity of their reports (45).

The above results of both our own and other authors’ research 
indicate that the use of biofeedback methods together with traditional 
rehabilitation gives good therapeutic effects in terms of manual 
function and hand grip strength in chronic stroke patients. It is worth 
adding, however, that there are conflicting reports in the literature 
regarding rehabilitation using biofeedback methods. It should 
be noted that although significant differences were obtained, we did 
not obtain clinically important differences (MCID). The MCID for the 
FMA = grasping ability 4.25, releasing ability 5.25 (28), and our 
patients improved by 1.28–1.63 points. The late post-stroke period in 
which our subjects were present may have influenced this result. 
However, we noted the need for continued exercise and ongoing hand 
rehabilitation in our patients. When analyzing the literature on this 
topic, numerous studies indicate positive effects from using robotic 
equipment with biofeedback for improving upper limbs, including the 
hand, after a stroke (19, 46–49). However, while some studies 
unambiguously confirm the benefits of robotic therapy, others find no 
significant differences in fitness improvement between classical 
rehabilitation and biofeedback methods (50). Therefore, there was a 
need and rationale to conduct this study in a homogeneous group of 
stroke patients in order to assess the effects of hand rehabilitation 
using biofeedback methods. The obtained results allowed us to 
confirm the hypothesis of higher effectiveness of biofeedback methods 
compared to the conventional method in hand rehabilitation of 
chronic stroke patients. The practical application of these studies will 
enable the development of rehabilitation programs for chronic stroke 
patients, in whom the adaptive use of a fixed movement pattern may 
have occurred. The observed advantage of biofeedback-based therapy 
can be explained by its underlying neurophysiological mechanisms. 
Firstly, sensory feedback  – visual, auditory or proprioceptive 
information  – provided during exercise, improves sensorimotor 
integration and enables error correction, which promotes the 
phenomenon of neuroplasticity  – the strengthening of synaptic 
connections through the interaction of sensory and motor cortices. A 

TABLE 1  Differences in age, body weight [kg], body height [cm], BMI and 
time since stroke in the test group and control group.

Characteristics Test group 
(n = 60)

Control 
group 

(n = 60)

p-value

Age (years)
62.7 (7.80) 63.6 (6.04)

0.551
63.5 (55.5–69.5) 64.5 (59.0–68.0)

Body weight (kg)
76.4 (11.09) 77.3 (12.01)

0.633
77.8 (69.1–81.2) 78.8 (70.2–83.2)

Body height (cm)

170.3 (7.21) 169.1 (6.98)

0.364
170.0 (165.0–176.0)

169.0 (164.0–

173.0)

BMI (kg/m2)
26.3 (3.28) 27.0 (3.43)

0.300*
26.8 (24.8–28.0) 26.6 (24.9–28.7)

Time since stroke 

(months)

43.4 (45.63) 43.5 (43.27)
0.904

24.0 (10.5–60.5) 23.5 (10.0–77.0)

Data are presented in two rows: the first row shows Mean (Standard Deviation), and the 
second row shows Median (Lower Quartile – Upper Quartile).
p-values were calculated using the independent t-test* or Mann–Whitney U test to compare 
the test and control groups at baseline.
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review of biofeedback studies for neuromotor rehabilitation by Huang 
et al. showed that biofeedback can increase plasticity by engaging 
additional sensory stimuli (51). Second, biofeedback requires intense 
attentional engagement, which modulates cortical excitability and 
facilitates learning-dependent changes in the motor cortex. A review 
by Proulx et al. on somatosensory, visual, and auditory feedback and 
their interactions applied to upper limb neurorehabilitation 

technology showed that the response of the somatosensory cortex is 
crucial for improving motor skills after stroke (52). Third, task 
repetition and specificity are key indicators of neuroplasticity for 
motor learning. Research indicates that repetition of intentional 
movements leads to long-term potentiation, reorganization of cortical 
maps and unblocking of synaptic latencies, even in chronic stages after 
stroke (53–55).

TABLE 2  Comparison of hand grip and key pinch strength outcomes.

Variable Group Baseline Post-intervention p-valuea p-valueb

Hand grip strength Right 

hand (kg)

Test

(n = 60)

23.6 (12.76) 28.9 (15.45)
<0.001

0.246
21.3 (17.6–28.0) 26.7 (20.0–34.5)

Control

(n = 60)

20.3 (12.55) 23.6 (17.39)
0.012

18.4 (12.5–24.0) 19.4 (10.0–32.3)

Hand grip strength - Left 

hand (kg)

Test

(n = 60)

20.2 (17.55) 25.3 (19.41)
<0.001

0.001
15.1 (8.8–26.7) 22.7 (13.8–28.7)

Control

(n = 60)

20.8 (10.59) 21.8 (12.21)
0.213

20.0 (13.0–28.8) 18.6 (12.0–29.6)

Key pinch - Right hand 

(kg)

Test

(n = 60)

6.4 (4.43) 8.3 (6.08)
<0.001

0.159
5.9 (4.1–7.8) 7.2 (5.5–9.0)

Control

(n = 60)

5.7 (3.91) 6.4 (4.06)
0.017

5.0 (3.3–6.9) 5.0 (3.9–8.3)

Key pinch - Left hand (kg)

Test

(n = 60)

5.3 (4.42) 6.8 (5.12)
<0.001

0.008
3.9 (2.4–6.7) 5.9 (3.3–8.3)

Control

(n = 60)

5.9 (3.44) 6.2 (3.75)
0.433

5.4 (3.3–7.0) 5.1 (3.9–8.1)

Data are presented in two rows for each group: the first row shows Mean (Standard Deviation), and the second row shows Median (Lower Quartile – Upper Quartile).
p-valuea for within-group changes was calculated using the Wilcoxon signed-rank test (Baseline vs. Post-intervention).
p-valueb for the comparison of changes between groups was calculated using the Mann–Whitney U test.

TABLE 3  Comparison of finger pinch strength outcomes.

Variable Group Baseline Post-intervention p-valuea p-valueb

Three-jaw chuck - Right 

hand (kg)

Test
6.4 (4.58) 7.8 (5.28)

<0.001

0.808
5.3 (4.0–7.8) 7.0 (4.3–9.3)

Control
5.3 (3.76) 6.5 (4.91)

0.001
4.6 (2.4–6.7) 4.7 (3.5–7.6)

Three-jaw chuck - Left 

hand (kg)

Test
5.4 (4.41) 6.5 (4.50)

0.001

0.237
4.0 (2.2–7.6) 5.0 (3.8–7.8)

Control
5.2 (3.35) 5.8 (3.64)

0.129
4.5 (3.1–6.9) 4.7 (3.5–8.3)

Tip to tip pinch - Right 

hand (kg)

Test
5.8 (4.31) 6.5 (4.09)

<0.001

0.199
4.8 (3.7–6.6) 5.8 (4.4–7.2)

Control
4.5 (2.57) 5.0 (2.98)

0.054
4.2 (2.8–5.3) 4.2 (2.8–6.0)

Tip to tip pinch - Left 

hand (kg)

Test
4.2 (3.00) 5.4 (3.62)

<0.001

0.017
3.4 (2.0–5.2) 4.4 (3.0–6.9)

Control
4.3 (2.83) 4.6 (2.51)

0.138
3.7 (2.2–6.1) 3.9 (2.8–6.1)

Data are presented in two rows for each group: the first row shows Mean (Standard Deviation), and the second row shows Median (Lower Quartile – Upper Quartile).
p-valuea for within-group changes was calculated using the Wilcoxon signed-rank test (Baseline vs. Post-intervention).
p-valueb for the comparison of changes between groups was calculated using the Mann–Whitney U test.
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Importantly, our study found significant functional improvements 
in people in chronic stages after stroke, a population often thought to 
have reached a plateau in functional recovery. However, abundant 
scientific evidence from biofeedback shows that plasticity still exists 
when a rich sensory environment and task-specific training are 
provided (56–60). The mechanism of action includes cortical 
remapping, thanks to activity dependent on the type of training and 
repetition, additionally sensory stimulation and exercise increase 
connectivity in the somatomotor network, (53). Biofeedback therapy, 
by combining sensory stimuli, cognitive engagement, and intense 
motor repetition, likely reactivates dormant neural pathways and 
promotes reorganization in cortical areas. This provides a 
physiological rationale for the observed improvement and supports 
the inclusion of biofeedback even in rehabilitation protocols for the 
late stage after stroke.

4.1 Limitations

One of the limitations is the age of the patients, as it was conducted 
in people over 50 years of age. Scientific reports show that stroke 
occurs more often in people over that age, but since the incidence of 
stroke is becoming more frequent among younger people, they should 
also be included in further studies. Another limitation is the time 
since stroke. The studies were conducted among chronic stroke 
patients, a group of patients that is not often analyzed in terms of 
improving their fixed hand patterns. Further studies should also 
include people in the early period and also analyze their hand function 

during this time. Although both groups received the same total 
duration of therapy (2 h per day over 3 weeks), the integration of 
biofeedback within the intervention sessions may have introduced 
differences in cognitive engagement or patient motivation. This 
potential influence, while not related to therapy time per se, could 
be considered a confounding factor and should be taken into account 
when interpreting the superiority of biofeedback-based rehabilitation. 
Further studies are warranted to isolate the specific contribution of 
biofeedback mechanisms.

5 Conclusion

The study showed positive effects of hand function rehabilitation 
in chronic stroke patients in both groups. However, in the test group, 
which additionally underwent training that stimulated the central 
nervous system using the biofeedback method with the Biometrics 
device, better hand and finger grip function as well as hand motor and 
manual function were noted. Therefore, it can be  concluded that 
exercises using the Biometrics device have clinical application in the 
re-education of hand function.
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the article/supplementary material, further inquiries can be directed 
to the corresponding author.

TABLE 4  Comparison of functional and dexterity outcomes.

Variable Group Baseline Post-intervention p-valuea p-valueb

Box & Blocks - Dominant 

hand (blocks)

Test
30.9 (13.01) 35.1 (13.76)

<0.001

0.267
32.0 (24.0–40.0) 37.5 (25.5–44.5)

Control
28.6 (11.06) 32.4 (13.20)

<0.001
29.0 (21.0–34.0) 31.5 (23.5–39.5)

Box & Blocks - Non-

dominant hand (blocks)

Test
26.5 (11.95) 31.3 (12.27)

<0.001

0.028
25.5 (17.0–33.0) 30.0 (23.0–37.0)

Control
27.6 (10.71) 30.1 (10.48)

<0.001
26.0 (20.0–34.0) 29.5 (23.0–36.0)

Frenchay scale (points)

Test
4.1 (0.91) 5.5 (0.69)

<0.001

<0.001
4.5 (3.3–5.0) 5.5 (5.0–6.0)

Control
4.4 (0.88) 5.2 (0.89)

<0.001
4.5 (4.0–5.0) 5.5 (4.5–6.0)

Fugl-Meyer scale (points)

Test
8.8 (1.28) 10.3 (1.39)

<0.001

<0.001
9.0 (8.0–9.0) 11.0 (9.0–11.0)

Control
9.1 (1.62) 9.6 (1.63)

<0.001
9.0 (9.0–10.0) 10.0 (9.0–11.0)

Barthel Index (points)

Test
80.6 (8.34) 85.5 (7.46)

<0.001

0.053
85.0 (75.0–85.0) 87.5 (80.0–90.0)

Control
79.1 (8.26) 82.4 (8.71)

<0.001
80.0 (75.0–85.0) 85.0 (75.0–90.0)

Data are presented in two rows for each group: the first row shows Mean (Standard Deviation), and the second row shows Median (Lower Quartile – Upper Quartile).
p-valuea for within-group changes was calculated using the Wilcoxon signed-rank test (Baseline vs. Post-intervention).
p-valueb for the comparison of changes between groups was calculated using the Mann–Whitney U test.
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