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Background: Myasthenia gravis (MG) is a chronic autoimmune disease caused
by autoantibodies attacking the neuromuscular junction. Traditional treatments
are often accompanied by side effects and lack specificity. Recent studies have
found that Th17 cells and the inflammatory factor IL-17, which they secrete, play
a key role in the pathogenesis of MG and have become potential therapeutic
targets. Secukinumab, an IL-17 inhibitor, has shown efficacy in other autoimmune
diseases, but its role in MG remains unexplored.

Objective: This study aimed to evaluate the clinical efficacy and
immunomodulatory effects of secukinumab in acetylcholine receptor antibody-
positive generalized MG (AChR+ gMG).

Methods: In this single-center retrospective study, 29 AChR+ gMG patients
received subcutaneous secukinumab (150 mg weekly for 4 weeks, then
monthly for 24 weeks). Clinical outcomes (QMG, MG-QOL15, MG-ADL scores),
AChR antibody titers, Th17 cell frequency, and IL-17 levels were assessed at
baseline and during treatment. Correlations between biomarkers and clinical
improvements were analyzed.

Results: By week 24, secukinumab treatment led to significant reductions in
disease severity scores (QMG: 60.7%; MG-QOL15: 58.3%; MG-ADL: 64.1%) and
AChR antibody levels (69.23%). Th17 cell frequency and IL-17 levels decreased
by 68 and 84.47%, respectively. Strong baseline correlations were observed
between IL-17, Th17, and clinical scores (r=0.642-0.970, p < 0.001), with
progressive uncoupling of these relationships during treatment. No severe
adverse events were reported.

Conclusion: Secukinumab demonstrated rapid and sustained clinical benefits
in AChR+ gMG, linked to suppression of the Th17/IL-17 pathway. These findings
highlight IL-17 inhibition as a promising targeted strategy for MG. Limitations
include small sample size and retrospective design, warranting validation in
larger randomized trials.
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1 Introduction

Myasthenia gravis (Myasthenia Gravis, MG) is an autoimmune
disease affecting the neuromuscular junction, characterized by muscle
weakness due to autoantibodies against certain proteins (I, 2).
Precision treatment strategies for MG are rapidly evolving, with
personalized treatment plans increasingly designed based on the
patient’s specific antibody characteristics. Traditional treatments such
as immunosuppressants and plasma exchange, while effective to some
extent, were not specifically developed for MG and may come with
various side effects (3). The successful experience of precision
medicine in cancer treatment has provided valuable insights for
personalized therapy in MG (4, 5). In recent years, innovative biologics
that target key mechanisms such as B cell activation, antibody
circulation, and complement system damage at neuromuscular
junctions have been proven effective and safe in clinical trials (6, 7).

Th17 cells and IL-17 play a crucial role in the pathogenesis of
myasthenia gravis (MG) (8). Studies have shown that an increase in
Th17 cells is significantly associated with the severity of MG (9). IL-17,
a cytokine secreted by Th17 cells, promotes inflammatory responses
and the production of autoantibodies in the pathological process of
MG (10). The production of IL-17 is closely linked to the increase in
Th17 cells in MG patients, which may lead to the loss of B cell
tolerance and the generation of pathogenic antibodies (11). In the
experimental autoimmune myasthenia gravis (EAMG) model,
inhibiting IL-17 activity can significantly alleviate disease symptoms
and reduce the level of anti-acetylcholine receptor (AChR)
IgG. Neutralizing IL-17 not only alters the distribution of Th cell
subsets but also increases the number of regulatory T cells, indicating
that IL-17 plays a crucial role in the immunopathology of MG (12).
Our previous studies have also confirmed that the IL-17 level of MG

10.3389/fneur.2025.1642938

patients is significantly higher than that of the healthy control group
and is positively correlated with the baseline severity of MG (13).

The available results suggest that IL-17-based therapeutic
strategies may have potential value in the management of MG (14, 15).
Secukinumab is currently the most widely used IL-17 inhibitor in
global clinical practice, with the richest safety and efficacy data (16,
17). Therefore, we chose it as the investigational drug for this study to
preliminarily explore the potential of IL-17 inhibition in the treatment
of MG, in order to provide evidence support for targeted therapy of
myasthenia gravis.

2 Materials and methods
2.1 Study population

This retrospective study enrolled patients diagnosed with
myasthenia gravis (MG) at the Department of Neurology, Peking
University People’s Hospital, between February 2023 and November
2024. Healthy controls were matched by admission date (Figure 1).
Controls had no history of hospitalization or active diseases within the
preceding 6 months. After screening, 29 patients were included for
statistical analysis and matched with 29 healthy controls (HCs). The
two groups were compared in terms of age, gender distribution,
disease duration, etc. (Table 1).

2.2 Diagnostic and eligibility criteria

The MG diagnosis was confirmed based on clinical history,
neurological examination, laboratory assessments, including

declined to participate(n=3)

with other more serious autoimmune

diseases(n=2)

with dyspnea (n = 2)

Missing key follow-up indicators (n=4)
Died unexpectedly (n=1)

41patients screened for treatment with
Secukinumab between
Enrollment
February 2023 and November 2024
assessment 34 patients screened for exclusion criteria
le—
Analysis Patients enrolled (n=29)
FIGURE 1
Study flowchart.
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TABLE 1 Patient characteristics.

Characteristics MG HC (n =29) p-value
(n=29)

Age (years), mean (SD) 54.14 + 14.60 52.07 £ 15.34 0.60

Female, 1 (%) 16 (55.17%) 15 (51.72%) 0.79

Disease duration (years), 248 £+ 1.54 - -

(SD)

Thymoma (thymectomy),
n (%)

5(17.24%) - -

Time from Thymoma 2.28 £0.85 - -

(years), (SD)

AChR antibody (nmol/L),
median (IQR)

25.9(18.3-38.4) - -

MGFA type, n (%) - -

Ila 1(3.45%) - -
1Ib 11(37.93%) - -
ITIa 3(10.34%) - -
1Ib 9(31.05%) - -
IVa 3(10.34%) - -
IVb 2(6.89%) - -
MGFA-QMG score, 19(16-24) - -
median (IQR)

MG-QOL15 score, 20(17-25) - -
median (IQR)

MG-ADL score, median 12(8-15) - _

(IQR)

AChR, acetylcholine receptor; MGFA-QMG, Myasthenia Gravis Foundation of America
Quantitative Myasthenia Gravis Score; MGQOL-15, 15-item Myasthenia Gravis Quality of
Life Scale; MG-ADL, MG-associated Activities of Daily Living score.

anti-acetylcholine  receptor  antibody  positivity,  and

electrophysiological evidence of neuromuscular
transmission defects.

Inclusion criteria:

AChR antibody-positive MG;

Aged 18-85 years with MG Foundation of America (MGFA)
clinical classification Ila-1Vb;

Capacity to provide informed consent.

Exclusion criteria:

Active malignancy (except thymoma);

Severe hepatitis B/C or active tuberculosis;

Severe hepatic/renal insufficiency or multiorgan failure;

Active infections, severe allergies, or pregnancy/lactation.

2.3 Intervention

The secukinumab administration regimen adopted in this study
(150 MG per week for 4 weeks, followed by 150 MG every 4 weeks for
24 weeks) is a reference to the standard loading dose of secukinumab
in autoimmune diseases such as ankylosing spondylitis. The dosages
of concomitant therapies (pyridostigmine, corticosteroids, or existing
immunosuppressants) were adjusted based on the therapeutic
response to secukinumab. A gradual reduction (e.g., of corticosteroids)
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was allowed upon clinical improvement. No new immunosuppressants
were introduced beyond those used at baseline.

2.4 Outcome assessments

Peripheral blood samples were collected at baseline, 4, 12, and
24 weeks for antibody titers, cytokine profiling, and flow cytometry
analysis (performed strictly per kit protocols) by the Department of
Clinical Laboratory (Central Lab) of hospital and any sample with a
coefficient of variation (CV) between duplicate measurements
exceeding 10% was automatically repeated. Clinical severity was
evaluated by two independent neurologists using:

@ Quantitative Myasthenia Gravis Score (QMG): 13-item
clinician-rated scale (0-39); a 2-point change indicates
clinical significance;

® 15-item Myasthenia Gravis Quality of Life Questionnaire
(MG-QOLI5): Patient-reported outcomes (0-45, higher scores
indicate worse quality of life);

® Myasthenia Gravis Activities of Daily Living (MG-ADL): 8-item
patient-reported symptom scale (0-24); a 2-point improvement is
clinically meaningful.

In this study, the recognized minimum clinically important
difference (MCID) values were adopted: the MG-ADL score and
QMG score improved by >2 points compared to the baseline, and the
MG-QOLI5 score improved by >6 points compared to the baseline.
Baseline data (defined as the last assessment prior to secukinumab
initiation) were used to calculate changes in biomarkers and

clinical scores.

2.5 Safety monitoring

Adverse events (AEs) were monitored via patient-reported
symptoms, vital signs, physical examinations, and laboratory tests. AE
severity was classified using Common Terminology Criteria for
Adverse Events (CTCAE) v5.0, and safety was evaluated descriptively.

2.6 Statistical analysis

Continuous variables are expressed as mean + standard deviation
(SD), while categorical variables are summarized as frequency counts
and percentages. Nonparametric tests were applied to compare
unpaired continuous data (Mann-Whitney U test) and categorical
variables (Pearsons chi-square test). The normality of continuous
variables was evaluated using the Shapiro-Wilk test. Based on the
results, intra-group comparisons were conducted using the parametric
paired t-test or the non-parametric Wilcoxon signed rank sum test.
p-values for all within-group comparisons were corrected with the
false discovery rate (FDR) control method (Benjamini-Hochberg
procedure). Absolute and relative declines in outcome measures were
calculated as follows:

Absolute decline: Baseline value — value at each post-
treatment timepoint.

Relative decline: (Absolute decline / Baseline value) x 100%.

Correlations between variables were evaluated using Spearman’s
rank correlation coeflicient. A two-tailed threshold of p < 0.05 defined
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statistical significance. All analyses were conducted with IBM SPSS
Statistics, version 22.0 (IBM Corp., Armonk, NY, United States) and
GraphPad Prism, version 9.5 (GraphPad Software Inc., La Jolla, CA,
United States).

3 Results

3.1 Study population and baseline
characteristics

This retrospective study analyzed 41 AChR-Ab-positive
generalized myasthenia gravis (MG) patients treated with
secukinumab at Peking University People’s Hospital between February
2023 and November 2024. After screening out conditions such as
concurrent use of other more severe autoimmune diseases, concurrent
use of other new biological agents, and lack of key follow-up
indicators, 29 patients were included for statistical analysis and
matched with 29 healthy controls (HCs). No significant differences
were observed in baseline age (MG cohort: 54.14 + 14.60 years vs. HC:
52.07 + 15.34 years; p = 0.60) or gender distribution (female: 55.17%
vs. 51.72%; p = 0.79). The MG cohort exhibited a median disease
duration of 2.48 years (IQR 1.54), with 17.24% having thymoma
history (all resected). Baseline disease severity scores included median

10.3389/fneur.2025.1642938

MGFA-QMG (19 [IQR 16-24]), MG-QOL15 (20 [IQR 17-25]), and
MG-ADL (12 [IQR 8-15]). The baseline demographic and clinical
characteristics of the included patients are summarized in Table 1 and
Supplementary material 1.

3.2 Clinical outcome improvements

Secukinumab demonstrated time-dependent therapeutic efficacy
across all clinical scales. Initial reductions at 2-4 weeks were
non-significant (p > 0.05). By week 8, MGFA-QMG scores decreased
by 25.0% from baseline (19.6 + 5.7 vs. 14.7 + 4.3, A = 4.9, 95%CI
3.1-6.7, p < 0.01), reaching cumulative reductions of 60.7% at week
24. Parallel improvements were observed in quality-of-life
(MG-QOL15: 58.3% reduction) and functional capacity (MG-ADL:
64.1% reduction) by study endpoint (Figure 2).

3.3 AChR antibody dynamics

AChR-AD levels showed rapid decline post-treatment: 59.80%
reduction at 4 weeks and 69.23% cumulative reduction by week 24.
Absolute decreases ranged 16.94-19.61 nmol/L from baseline
(28.32 nmol/L) to treatment phases (8.71-11.39 nmol/L) (Figure 3).
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3.4 Th17/IL-17 pathway modulation

Baseline IL-17 (production of CD4+T cells) levels were
significantly elevated in MG patients vs. HCs (24.72 + 13.46 pg./mL
vs. 4.78 £ 7.08 pg./mL, p < 0.01), decreasing by 84.47% at week 24
(p <0.001). Th17 (CXCR3 — CCR6" in CD4") cell proportions
followed similar kinetics: baseline levels (7.10% +4.35% vs.
1.67% + 0.95% in HCs, p < 0.01) reduced to 2.27% + 1.24% (A = 68%;
p <0.01) (Figures 4, 5).

3.5 Individualized heatmap analysis and
multi-indicator correlations

Longitudinal assessments revealed progressive declines in Th17
cell frequency, IL-17 levels, and anti-acetylcholine receptor (AChR)
antibody titers over the 24-week treatment course. Concurrently, the
Quantitative Myasthenia Gravis (QMG) score, reflecting disease
severity, demonstrated a downward trajectory, achieving maximal
improvement by week 24 (Figure 6). Patient-reported outcomes,
including the Myasthenia Gravis Quality of Life (MG-QOL) and
Myasthenia Gravis Activities of Daily Living (MG-ADL) scales,
exhibited synchronized optimization, with statistically significant
enhancements observed after week 12 (Supplementary material 2).

Baseline correlation heatmaps identified moderate-to-strong
positive correlations (r=0.642-0.970, p < 0.001) between AChR
antibody titers and clinical severity indices (QMG, MG-QOL, and
MG-ADL), reinforcing AChR’s role as a biomarker for disease burden.

Dynamic shifts in immune-inflammatory interactions
were observed:

Early-phase correlations: At weeks 4 and 12, Th17 cell frequencies
showed moderate positive correlations with IL-17 levels (week 4:
r=0.536,95% CI [0.182, 0.761], p = 0.003; week 12: r = 0.547, 95% CI
[0.224, 0.761], p =0.002), indicating coordinated activity during

early immunomodulation.
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Temporal decoupling: The Th17/IL-17 correlation coefficient
attenuated progressively from 0.536 (week 4) to 0.258 (week 24),
paralleling reductions in AChR-clinical score correlations (r = 0.919
vs. 0.198; p < 0.01). The correlation between Th17 cells and IL-17
attenuated progressively from week 4 (r=0.536, 95% CI [0.182,
0.761], p =0.003) to week 24 (r=0.258, 95% CI [—0.126, 0.571],
p=0.177). This dissociation implies therapeutic uncoupling of
pathogenic Th17-driven inflammation from downstream clinical
manifestations (Figure 6).

4 Discussion

IL-17 not only further exacerbates the pathological changes in MG
by promoting the expression of inflammatory cytokines and inflammatory
responses at neuromuscular junctions (15-18), but also disrupts immune
tolerance by affecting the function of regulatory T cells (Treg), leading to
the immune system’s attack on self-antigens (19). Studies have found that
IL-17 can promote the recruitment and activation of inflammatory cells
through multiple signaling pathways, thereby exacerbating damage at
neuromuscular junctions (20). This retrospective study provides the first
clinical evidence supporting the therapeutic potential of secukinumab, an
IL-17 inhibitor, in acetylcholine receptor antibody-positive generalized
myasthenia gravis (AChR+ gMG). The observed time-dependent
improvements in clinical outcomes—60.7% reduction in QMG scores,
58.3% in MG-QOLI15, and 64.1% in MG-ADL at week 24—were
paralleled by significant declines in pathogenic biomarkers, including
AChR antibody titers (69.23% reduction), IL-17 levels (84.47%
suppression), and Th17 cell frequency (68% decrease). These findings
align with preclinical evidence highlighting the Th17/IL-17 axis as a
central driver of MG immunopathology (19, 21, 22), where IL-17
promotes B-cell dysregulation, autoantibody production, and
neuromuscular junction inflammation (23). The observed temporal
decoupling of Th17/IL-17 correlations from clinical scores (r=0.919 at
baseline vs. r=0.198 at week 24) further suggests that secukinumab
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Changes in Th17 cell levels over the study period. (A,B) Two graphs are presented to show the changes in Th17 cell levels during the study period.
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Secukinumab 4 weeks

Secukinumab 12 weeks Secukinumab 24 weeks

Changes in IL-17 levels over the study period. (A,B) Two graphs are presented to show the changes in IL-17 levels during the study period. ***p < 0.001.

disrupts the Th17-driven inflammatory cascade, uncoupling immune
dysregulation from symptom progression. This mechanistic insight
distinguishes secukinumab from complement inhibitors like eculizumab,
which target downstream effector pathways rather than upstream T-cell
activation. The strong baseline correlations between IL-17 levels, Th17
frequency, and disease severity (QMG: r = 0.970; MG-QOL15: r = 0.879)
align with prior reports (24) implicating Th17 cells in breaking B-cell
tolerance and promoting autoantibody production.

Studies have shown that IL-17 not only directly affects B cell function
but also indirectly promotes autoantibody production by influencing the
balance of T cell subsets (11). These findings position IL-17 as a central
therapeutic target, complementing existing strategies focused on B-cell
depletion or complement inhibition (25, 26). The sustained
improvements in patient-reported outcomes (MG-QOL15, MG-ADL)

Frontiers in Neurology

emphasize secukinumab’s potential to enhance quality of life, a critical
endpoint often overlooked in MG trials. This study is the first to directly
link IL-17 inhibition to clinical amelioration in human MG, extending
prior experimental models (27). The early reduction in AChR antibodies
(59.80% by week 4) suggests that secukinumab may accelerate disease
modification, offering advantages over conventional
immunosuppressants with delayed onset. Furthermore, secukinumab’s
subcutaneous administration and favorable safety profile (no severe AEs
reported) position it as a viable option for refractory or corticosteroid-
dependent patients (27, 28). During the 24-week study period of this
study, 2 patients out of 29 had mild skin reactions (redness, pain, or
pruritus, which resolved on their own) after injection, and 1 patient
had influenza-like symptoms during treatment, no serious adverse

reactions occurred in the rest.
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The present study provides novel insights into the therapeutic
potential of secukinumab, an IL-17 inhibitor, in acetylcholine receptor
antibody-positive gravis (MG). By
demonstrating significant reductions in Th17 cell frequency, IL-17 levels,

generalized myasthenia

and clinical severity scores, our findings underscore the pivotal role of
the Th17/IL-17 axis in MG immunopathology (21, 29) and highlight
secukinumab as a promising targeted therapy. While our study
demonstrates a marked reduction in AChR-ab titers following IL-17
inhibition, the precise immunopathological mechanisms—such as the
potential effects on total IgG levels, B-cell subset differentiation, and
germinal center responses—remain to be fully elucidated. This study has
several limitations. First, its retrospective design introduces potential
selection bias, and the small sample size (1 = 29) limits generalizability.
Although post hoc efficacy analysis indicated that the sample size was
sufficient for detecting the observed significant therapeutic effect (Power
> 0.8). Second, the absence of a placebo or active comparator group
precludes definitive conclusions about secukinumab’s superiority over
standard therapies. Third, the 24-week follow-up duration does not
address long-term efficacy, safety, or relapse risks. Finally, the exclusion

Frontiers in Neurology

of non-AChR antibody-positive MG subtypes (e.g., MuSK-MG) restricts
applicability to a broader MG population. Prospective randomized
controlled trials with larger cohorts are needed to validate these findings.
Investigations into combination therapies (e.g., secukinumab with
complement inhibitors or B-cell-targeting agents) could explore
synergistic effects. Longitudinal studies should assess durability of
response and long-term safety, particularly regarding infection risks
associated with IL-17 inhibition. Additionally, the notable placebo
responses observed in high-quality randomized controlled trials for MG,
including the ADAPT (efgartigimod) and REGAIN (eculizumab)
studies, underscore the need to account for this effect in the design of
future clinical investigations (30, 31).

5 Conclusion

In summary, our study provides preliminary evidence that
secukinumab, by targeting the Th17/IL-17 pathway, may represent

a promising novel therapeutic “option” for AChR
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antibody-positive MG. While limitations inherent to retrospective
analyses caution overinterpretation, the robust correlations
between biomarker modulation and clinical improvement
underscore the translational promise of IL-17 inhibition. These
findings warrant further investigation in rigorous clinical trials to
establish secukinumab’s role in the evolving landscape of precision
MG therapeutics.
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