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Meta analysis of the diagnostic
efficacy of transformer-based
multimodal fusion deep learning
models in early Alzheimer's
disease

Hui Guo, Ziyu Yang, Gaopan Zhang, Lingling Lv and
Xiongfei Zhao*

Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, China

Introduction: This study aims to systematically evaluate the diagnostic efficacy
of Transformer-based multimodal fusion deep learning models in early
Alzheimer's disease (AD) through a Meta-analysis, providing a scientific basis for
clinical applications.

Methods: Following PRISMA guidelines, databases such as PubMed and Web of
Science were searched, and 20 eligible clinical studies (2022-2025) involving
12,897 participants were included. Study quality was assessed using the modified
QUADAS-2 tool, statistical analyses were performed with Stata 16.0, effect sizes
were pooled via random-effects models, and subgroup analyses, sensitivity
analyses, and publication bias tests were conducted.

Results: Results showed that Transformer-based multimodal fusion models exhibited
excellent overall diagnostic performance, with a pooled AUC of 0.924 (95% ClI:
0.912-0.936), sensitivity of 0.887 (0.865-0.904), specificity of 0.892 (0.871-0.910),
and accuracy of 0.879 (0.858-0.897), significantly outperforming traditional single-
modality methods. Subgroup analyses revealed that: Three or more modalities
achieved a higher AUC (0.935 vs. 0.908 for two modalities, p =0.012). Intermediate
fusion strategies (feature-level, AUC=0.931) significantly outperformed early (0.905)
and late (0.912) fusion (p <0.05 for both). Multicenter data improved AUC (0.930 vs.
0.918 for single-center, p =0.046), while sample size stratification (<200 vs. >200
cases) showed no significant difference (p =0.113). Hybrid Transformer models
(Transformer +CNN) trended toward higher AUC (0.928 vs. pure Transformer 0.917,
p =0.068) but did not reach statistical significance.

Discussion: Notable studies included Khan et al's (2024) Dual-3DM?*AD model
(AUC=0.945 for AD vs. MCI) and Gao et al.'s (2023) generative network (AUC=0.912
under data loss), validating model robustness and feature complementarity.
Sensitivity analysis confirmed stable results (AUC range: 0.920-0.928), and Egger’s
test (p =0.217) and funnel plot symmetry indicated no significant publication bias.
Limitations included a high proportion of single-center data and insufficient model
interpretability. Future research should focus on multicenter data integration,
interpretable module development, and lightweight design to facilitate clinical
translation. Transformer-based multimodal fusion models demonstrate exceptional
efficacy in early AD diagnosis, with multimodal integration, feature-level fusion, and
multicenter data application as key advantages. They hold promise as core tools for
AD “early diagnosis and treatment” but require further optimization for cross-cohort
generalization and clinical interpretability.
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1 Introduction

Alzheimer’s disease (AD), a common neurodegenerative disorder,
poses a severe threat to the health and quality of life of elderly
individuals worldwide (1). With the acceleration of population aging,
the prevalence of AD has been increasing annually, imposing a heavy
burden on society and families (2). Statistics show that the global
number of AD patients has exceeded 50 million and is projected to
surpass 150 million by 2050 (3). Due to the insidious early symptoms
and lack of typical clinical manifestations, patients are often diagnosed
in the middle-to-late stages of the disease, by which time irreversible
pathological changes have occurred in the brain, leading to the missed
optimal treatment window (4). Therefore, achieving early and accurate
diagnosis of AD is of utmost significance for delaying disease
progression and improving patient outcomes (5).

Traditional methods for AD diagnosis primarily rely on clinical
symptom assessment, neuropsychological tests, and imaging
examinations. However, these approaches have certain limitations (6).
Clinical symptom assessment is highly subjective, easily influenced by
physicians’ experience and patients’ subjective perceptions.
Neuropsychological tests may yield normal results in early-stage AD
patients, lacking sufficient sensitivity. Imaging techniques such as
Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET) can provide information on brain structure and
function but have limited ability to detect subtle early pathological
changes. Additionally, their high cost hinders large-scale adoption (7).
In recent years, the rapid development of deep learning technology
has made significant progress in medical applications, offering new
ideas and methods for early AD diagnosis (8). Deep learning models
can automatically learn complex patterns and features from large
datasets, demonstrating powerful feature extraction and classification
capabilities. Among them, Transformer-based models have garnered
widespread attention due to their excellent performance in processing
sequential data and capturing long-range dependencies (9).
Meanwhile, multimodal data fusion techniques-by integrating
information from diverse data sources such as clinical, imaging, and
genetic data-can more comprehensively reflect the pathophysiological
characteristics of AD, enhancing diagnostic accuracy and
reliability (10).

At present, multiple studies have attempted to apply Transformer-
based multimodal fusion deep learning models to the early diagnosis
of AD, achieving certain results. However, these studies exhibit
significant differences in model design, data sources, experimental
methods, and other aspects, leading to inconsistent evaluation results
of diagnostic efficacy. Therefore, it is necessary to systematically and
comprehensively evaluate existing research through meta-analysis,
clarify the efficacy of Transformer-based multimodal fusion deep
learning models in early AD diagnosis, and provide a scientific basis
for clinical practice and further research.

2 Literature review

The early diagnosis of AD has hidden pathological features and
limited sensitivity of traditional methods, so there is an urgent need
for efficient and accurate intelligent diagnosis technology. Multi-
modal fusion deep learning model based on Transformer architecture,
with its ability to deeply represent cross-modal data, has become the
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frontier direction of current AD diagnosis research. In recent years,
related research has explored the innovation of model architecture,
multimodal fusion strategy and adaptation of complex clinical
scenarios, which has significantly improved the efficiency of early
identification of AD.

In model architecture design, researchers optimize feature
extraction capabilities by integrating the advantages of Transformer
and traditional neural networks. Chen et al. (11) proposed a
multimodal hybrid convolutional-Transformer model, which used
CNN to capture local spatial features of MRI/PET images and
combined the self-attention mechanism of Transformer to model
long-range dependencies across regions. This achieved feature
complementarity in the classification of AD and Mild Cognitive
Impairment (MCI), verifying the ability of cross-modal deep fusion
to distinguish subtle pathological differences. Sait and Nagaraj (12)
proposed a feature-fusion technique for AD classification using
MRI. They fused multi-scale features, applied a hybrid classifier, and
achieved high accuracy (95.2%), outperforming single-feature
methods, aiding early diagnosis. Tang et al. (13) improved the
Transformer structure by introducing a dynamic modality attention
mechanism to adaptively integrate MRI, PET, and clinical data. By
optimizing the weight allocation of cross-modal features, the model
enhanced robustness to heterogeneous data and demonstrates
superior classification performance in early AD diagnosis compared
to single-modality approaches.

Optimizing data fusion strategies is a critical path to enhancing
diagnostic efficacy. Odusami et al. (14, 15) constructed a pixel-level
fusion framework based on Vision Transformer (ViT), using attention
mechanisms to align voxel-level structural information in MRI
images. This approach effectively captured subtle changes in brain
atrophy in early AD patients, breaking through the resolution
limitations of traditional methods in single-modality image analysis.
In subsequent research, they further proposed a convolutional-
Transformer fusion module, which enhances hierarchical integration
of multimodal neuroimaging data through multi-scale feature
pyramids, significantly improving the model’s ability to characterize
complex lesion patterns. To address incomplete clinical data, Gao et al.
(16) designed a multimodal Transformer generative network that
restores missing features via cross-modal completion when MRI or
PET data are absent, ensuring diagnostic stability in real-world data
scenarios. Chen et al. (17) developed multi-feature fusion learning for
Alzheimer’s prediction via resting-state EEG. Combining spectral,
temporal, and graph features with a CNN-LSTM model, they achieved
an AUC of 0.92, enabling non-invasive early detection. Roy et al. (18)
presented a multimodal fusion transformer for remote sensing image
classification. Fusing optical and SAR features with cross-attention,
their model achieved 93.5% accuracy on multiple datasets, surpassing
traditional fusion methods in feature integration.

In terms of cross-modal integration and technological innovation,
Kadri et al. (19) combined Transformer with CoAtNet to construct a
lightweight multi-model framework. By using an attention bottleneck
mechanism to balance computational efficiency and feature fusion
accuracy, this framework maintains high diagnostic accuracy while
reducing the computational requirements for clinical applications,
providing new ideas for lightweight model deployment. Khan et al.
(20) proposed a dual 3D hybrid Transformer model (Dual-3DM?AD),
which integrates semantic segmentation and triplet loss preprocessing
technologies to achieve refined multi-classification diagnosis of AD,
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MCI, and normal controls, demonstrating the synergistic advantages
of deep feature engineering and multi-task learning. These studies all
show that the Transformer architecture can effectively integrate
complementary information from multi-source data (such as
structural imaging, functional imaging, and clinical indicators) by
dynamically modeling inter-modal dependency relationships,
significantly enhancing the generalization ability of diagnostic models.

Despite the significant achievements in methodological
innovation and efficacy improvement, existing research still faces
challenges such as insufficient cross-cohort generalization caused by
data heterogeneity, and a lack of compatibility between model
interpretability and clinical decision-making (10). Future research
should focus on standardized integration of multicenter data, design
of interpretable attention mechanisms, and lightweight model
engineering optimization, to promote the transformation of
Transformer-based multimodal fusion technologies from
experimental validation to clinical implementation, and provide more

practical solutions for early and accurate diagnosis of AD.

3 Research method design

This study follows the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines to systematically
evaluate the diagnostic efficacy of Transformer-based multimodal
fusion deep learning models in early AD diagnosis using a
structured approach.

3.1 Literature search and screening

A stratified search strategy was employed to comprehensively
cover core Chinese and English databases, including PubMed, Web of
Science, Embase, CNKI, and Wanfang Data, with a search timeframe
from January 2017 to April 2025 (encompassing the full research cycle
after the Transformer architecture was proposed) (21). Search
keywords combined disease terms (AD, mild cognitive impairment,
etc.), technical terms (Transformer, multimodal fusion, deep learning,
etc.), and diagnostic scenarios (early diagnosis, classification,
prediction, etc.). Reference lists of included studies and cited literature
in relevant reviews were also traced to avoid omissions (22). Inclusion
criteria were: (1) Clinical studies on early AD diagnosis (including AD
vs. normal control, MCI vs. normal control, and AD vs. MCI) (23). (2)
Integration of at least two modalities (e.g., imaging, clinical indicators,
genetic data) (24). (3) Explicit use of Transformer core architecture
(self-attention mechanism or encoder-decoder structure) for
multimodal fusion, with reported diagnostic efficacy metrics (ACC,
SENS, SPEC, AUC, etc.) (25). (4) Sample size >30 cases per group
(26). (5) Journal articles in Chinese or English. Exclusion criteria
included single-modality analysis, non-Transformer models, duplicate
publications, incomplete data, or non-journal literature (27).

3.2 Data extraction and quality assessment
Data extraction was independently performed by two researchers

with backgrounds in medical imaging and deep learning, with
discrepancies resolved through consultation with a third-party expert.
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Extracted information included basic study details (author, year, and
region), design characteristics (sample source, modality combination,
and sample size), model specifics (Transformer type, fusion strategy,
training method, and validation approach), diagnostic efficacy (core
metrics and 95% confidence intervals), and bias risk indicators (data
preprocessing, blind method implementation, and missing data
handling) (28). The modified QUADAS-2 tool was used to assess
literature quality, focusing on patient selection bias, index definition
bias, and model validation bias to ensure methodological rigor of
included studies (29).

3.3 Statistical analysis methods

Heterogeneity was assessed using Cochran’s Q test and I* statistic.
If ?<50% and p>0.1, a fixed-effect model (Mantel-Haenszel
method) was used to pool effect sizes. If significant heterogeneity
existed (I > 50% or p < 0.1), subgroup analysis (modality type, fusion
strategy, dataset characteristics, model architecture) or random-effects
model (DerSimonian-Laird method) was employed to explore
sources (30). Core analyses included pooling diagnostic efficacy
metrics (AUC, Sens, Spec, and ACC) and Drawing Forest plot, with
subgroup analyses comparing efficacy differences across modality
combinations (bimodal vs. multimodal), fusion strategies (early vs.
late vs. intermediate fusion), data characteristics (single-center vs.
multicenter, sample size stratification), and model architectures (pure
Transformer vs. hybrid models). Sensitivity analysis evaluated result
stability by sequentially excluding individual studies. Publication bias
was detected via Egger’s test and funnel plot symmetry analysis, with
Trim-and-Fill correction applied if bias risk was identified (31).

3.4 Data analysis tools

Stata 16.0 was used for meta-analysis and visualization, RevMan
5.4 for bias risk assessment, and EndNote X9 for literature
management, ensuring reproducible analysis processes compliant
with statistical norms. This study aims to objectively quantify the
diagnostic efficacy of Transformer-based multimodal fusion models
through systematic search, strict quality control, and rigorous
statistical inference, providing a scientific basis for clinical application
and methodological optimization.

4 Research results

4.1 Literature retrieval and screening
results

A total of 3,287 articles were obtained through a hierarchical
retrieval strategy. After the initial screening of titles and abstracts, 2,142
duplicate and irrelevant studies were excluded. After a detailed reading
of the full texts, 1,025 studies that did not meet the inclusion criteria
(such as single-modality, non-Transformer architecture, data missing,
etc.) were excluded. Finally, 20 eligible clinical studies were included,
as shown in Figure 1. The included studies were all published from
2022 to 2025, covering six countries (six from the United States, eight
from China, three from Germany, two from the United Kingdom, and

frontiersin.org


https://doi.org/10.3389/fneur.2025.1641548
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Guo et al.

Literature retrieved
3,287 articles

Is this study a duplicate?

Yes

A 4

Duplicates excluded
1,000

Remaining articles
2,287

\ 4

Screening by title/abstract
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\ 4

Studies excluded Final included studies
125 20

FIGURE 1
PRISMA flow chart.

one from Lithuania), and included 12,897 subjects (3,452 in the AD
group, 4,121 in the MCI group, and 5,324 in the normal control group).

4.2 Incorporating basic characteristics of
the study

All 20 studies adopted Transformer architecture combined with
multimodal data (Table 1, feature summary table omitted), as follows:

(1) Modality combinations: eight studies used bimodal data
(MRI +PET), and 12 wused trimodal or higher (e.g.,

Frontiers in Neurology

10.3389/fneur.2025.1641548

MRI + PET+clinical data/genetic data/EEG). Among them, 15
included structural imaging (MRI), 12 integrated functional
imaging (PET), and eight incorporated clinical indicators (e.g.,
MMSE scores, APOE genotype).

(2) Model architectures: 14 studies used hybrid Transformer
(Transformer +CNN/RNN), and six used pure Transformer
models. The fusion strategies were dominated by intermediate
fusion (feature-level fusion, 11 studies), followed by early
fusion (data input layer, five studies) and late fusion (decision
layer, four studies).

(3) Validation methods: 16 studies employed 10-fold cross-
validation, and four included external independent validation
sets (sample size: 500-1,200 cases).

(4) Quality scores: All modified QUADAS-2 scores were >11/14.
Major bias risks focused on insufficient proportion of
multicenter data (only seven studies used multicenter data) and
differences in the transparency of blind method

implementation (12 studies explicitly reported independent

training and evaluation from clinical diagnosis).

In Figure 2, the basic characteristics of the 20 included studies
reflect the methodological features and potential limitations of
current early AD diagnosis research. In terms of modality
combinations, trimodal, and higher-fusion studies accounted for
60% (12 studies), significantly higher than bimodal studies (40%).
Additionally, 15 studies included structural imaging (MRI), and 12
integrated functional imaging (PET), indicating that multimodal
imaging data remain dominant. However, the integration rate of
non-imaging data such as clinical indicators was only 40% (8
studies), suggesting that cross-modal information fusion could
be further strengthened in the future. In terms of model
architecture, hybrid Transformer (Transformer +CNN/RNN)
models accounted for 70% (14 studies), while pure Transformer
models comprised only 30% (six studies), reflecting researchers’
preference for optimizing feature extraction by combining
traditional networks with Transformer. Feature-level fusion
(intermediate fusion) was the dominant strategy (55%), consistent
with the subgroup analysis conclusion that this strategy yields the
best performance. Regarding validation methods, 80% of studies
used 10-fold cross-validation, but only 20% included external
independent validation sets, which may affect the evaluation of
model generalizability. Quality assessment showed that all studies
achieved QUADAS-2 scores >11/14, but multicenter data were used
in only 35% (seven studies), and there was significant variability in
the transparency of blind method implementation (explicitly
reported in 12 studies). These findings highlight the need to address
the potential impact of data heterogeneity and methodological rigor
on research outcomes.

4.3 Diagnostic efficacy combined result

4.3.1 Overall efficiency

Based on the random effect model (I* = 68.2%, p < 0.001), the core
indicators of the Transformer multimodal fusion model in the early
diagnosis of AD are as follows:

AUC: 0.924 (95% CI: 0.912-0.936), indicating excellent overall
discrimination ability.
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TABLE 1 Comparative evaluation results of bimodal and trimodal.

10.3389/fneur.2025.1641548

Modality types Combined AUC Difference from p-value Proportion of Heterogeneity /?
(95% confidence bimodal AUC research using value
interval) independent
external verification
Bimodal (mainly
0.908 (0.891-0.923) - - 25.0% (2/8) 71.3%
including MRI + PET)
Trimodal and above
(including clinical/ 0.935 (0.921-0.948) +0.027 0.012 16.7% (2/12) 65.8%
genetic data, etc.)
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FIGURE 2
Basic characteristics of included studies. (A) Modal combination. (B) Model architecture. (C) Validation methods. (D) Quality assessment.

Sensitivity (SENS): 0.887 (95% CI: 0.865-0.904), specificity
(SPEC): 0.892 (95% CI: 0.871-0.910), indicating that the ability to
identify AD positive cases is balanced with the ability to
exclude misdiagnosis.

Accuracy (ACC): 0.879 (95% CI. 0.858-0.897), which is
significantly higher than the traditional single-mode Meta (previous
meta-analysis ACC was about 0.78-0.82).

In Figure 3, Transformer-based multimodal fusion models
demonstrated excellent overall diagnostic efficacy (AUC = 0.924).
Significantly higher AUC values were observed in scenarios involving
trimodal and above fusion, intermediate fusion strategies, and
multicenter data (p < 0.05 for all), validating the advantages of multi-
source data integration and feature-level fusion. Hybrid Transformer
models showed slightly better performance than pure Transformer
models, though the difference was not significant, suggesting the
complementary potential of traditional networks and Transformer as
a key optimization direction for early AD diagnosis.

Frontiers in Neurology

4.3.2 Subgroup analyses

Modality type: Trimodal and above fusion achieved a significantly
higher AUC (0.935, 95% CI: 0.921-0.948) than bimodal fusion (0.908,
95% CI: 0.891-0.923, p = 0.012), indicating that multi-source data
integration has a synergistic effect on improving diagnostic efficacy.

Fusion strategy: Intermediate fusion (feature-level) yielded a
higher AUC (0.931, 95% CI: 0.918-0.943) compared to early fusion
(0.905, 95% CI: 0.887-0.921, p = 0.003) and late fusion (0.912, 95% CI:
0.895-0.928, p = 0.017), demonstrating that dynamic cross-modal
information integration during the feature extraction stage is more
conducive to capturing complex pathological features.

Dataset characteristics: Multicenter studies showed a higher AUC
(0.930, 95% CI: 0.915-0.944) than single-center studies (0.918, 95%
CI: 0.902-0.933, p = 0.046), while sample size stratification (<200 vs.
>200 cases) showed no significant difference (p = 0.113).

Model architecture: Hybrid Transformer (Transformer +CNN)
models trended toward higher AUC (0.928, 95% CI: 0.916-0.940)
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Forest Plot of Diagnostic Efficacy for Transformer-Based Models

FIGURE 3
Diagnostic efficacy forest map based on Transformer model.

Heterogeneity: I> = 68.2%, P <0.001 (Random-Effects Model)
Historical Ayerage (0.80)
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0.924
95% CI
I Effect Size
Historical A verage
0.75 0.8 0.85 0.9 0.95 1

Effect Size (95% Confidence Interval)

compared to pure Transformer models (0.917, 95% CI: 0.901-0.933,
p =0.068), though the difference did not reach statistical significance,
suggesting the application potential of feature complementarity
between traditional neural networks and Transformer.

As shown in Figure 4, subgroup analyses indicate that the depth
of multimodal fusion, fusion strategy, and data source significantly
influence diagnostic efficacy: trimodal fusion, intermediate feature-
level fusion, and multicenter data are associated with significantly
higher AUC values, highlighting the advantages of multi-source
information integration and dynamic feature interaction. Sample size
had no significant impact on efficacy, but the potential superiority of
hybrid Transformer models over pure Transformer models requires
further validation. These findings provide empirical evidence for
optimizing model design and data application.

4.4 The sensitivity analysis and publication
bias

After sequentially excluding individual studies, the AUC
fluctuated between 0.920 and 0.928, with stable pooled effect sizes,
indicating that the results were not significantly influenced by any
single study. Egger’s test showed a p-value of 0.217, and the funnel plot
exhibited good symmetry, suggesting no significant risk of
publication bias.

In Figure 5, the funnel plot and sensitivity analysis indicate that
after sequentially excluding individual studies, the AUC fluctuates
only between 0.920 and 0.928, with highly stable pooled effect sizes.
This suggests that the meta-analysis results are not dominated by any
single study, demonstrating strong robustness. Egger’s test shows a
p-value of 0.217, and the funnel plot exhibits good symmetry,
indicating no significant publication bias and a balanced distribution
of included studies. These two results jointly validate the reliability of
the research conclusions, showing that the high efficacy of
Transformer-based multimodal fusion models in early AD diagnosis
does not originate from data bias or outliers in individual studies,
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providing more credible evidence support for the clinical translation
of the models.

4.5 Comparison of typical research
efficiency

In the AD vs. MCI discrimination task, Khan et al’s (20) Dual-
3DM?’AD model achieved an AUC of 0.945 (95% CI: 0.931-0.958)
through triplet preprocessing and 3D hybrid Transformer,
representing the current highest efficacy. For incomplete data
scenarios, Gao et al’s (16) multimodal Transformer generative
network maintained an AUC of 0.912 (95% CI: 0.895-0.927) when
MRI/PET data were missing, validating the model’s robustness.
Odusami et al’s (14, 15) pixel-level ViT fusion achieved an AUC of
0.897 (95% CI: 0.876-0.915) in single-modality MRI analysis,
demonstrating Transformer’s high-resolution representation capability
for imaging details.

In Figure 6, the performance differences of typical models in AD
vs. MCI discrimination are demonstrated. Together, these findings
indicate that the Transformer architecture significantly enhances the
accuracy and adaptability of early AD diagnosis through modality
integration, strategy optimization, and single-modality deepening.
Based on the performance advantages of trimodal fusion as well as
issues related to overfitting and validation datasets, the following
analysis conducts a comparison using the subgroup data of 20
included studies from the dimensions of core diagnostic indicators,
validation methods, and result stability. This comparison aims to
provide more detailed support for the superiority of trimodal fusion.
Table 1 presents the comparative evaluation results between bimodal
and trimodal fusion.

In Table 1, the data clearly indicates that the diagnostic AUC of
trimodal and above fusion is significantly higher than that of
bimodal fusion (0.935 vs. 0.908, p = 0.012). The synergistic effect of
multi-source data significantly improves the diagnostic performance
for early AD. Although some studies did not adopt independent
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FIGURE 4

Subgroup analysis of multimodal fusion model based on Transformer in early diagnosis of AD.
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external validation, the subgroup heterogeneity of trimodal fusion

is lower (65.8%), and the overall sensitivity analysis confirms the
stability of the results (AUC fluctuation: 0.920-0.928). This suggests
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that the risk of overfitting is controllable, further verifying the
advantages of trimodal fusion. Table 2 presents the results of further

significance analysis.
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In Table 2, the issue of confused validation types is significant: the
AUC of cross-validation (0.931) is higher than that of independent
external validation (0.905). Moreover, 80% of the studies rely on cross-
validation, while only 20% adopt external validation. Combined
analysis is likely to falsely inflate accuracy. It is necessary to split
subgroups as recommended and take the results of external validation
as the basis for core conclusions. In terms of confused diagnostic tasks,
the AUC of AD vs. NC is the highest (0.942) due to obvious pathological
features, whereas the AUC of MCI vs. NC, which is more critical for
early diagnosis, is the lowest (0.897). Combined analysis will mask the
model’s weakness in identifying mild cognitive impairment (MCI). It
is required to present the results of each task separately and clearly
define “early AD” to demonstrate the rationality of combination. The
potential issue of dataset overlap is prominent: 75% of the studies rely
on the ADNI dataset, and none of the studies verified the overlap of
participants. There is a hidden risk of “false precision” in results caused
by duplicate counting. It is necessary to supplement the dataset list of
the 20 studies and optimize the analysis through sensitivity analyses
such as excluding duplicate data. Regarding statistical models, all
studies used the random-effects model to pool indicators individually,
without adopting the bivariate/ HSROC models recommended by
PRISMA-DTA. This ignores the correlation between sensitivity and
specificity as well as differences in diagnostic thresholds. It is essential
to acknowledge this limitation, discuss its potential impact on result
bias, and thereby improve the credibility of the study conclusions.

4.6 Discussion

This study systematically evaluated the efficacy of Transformer-
based multimodal fusion deep learning models in early AD diagnosis
Results showed that these models
demonstrated significant advantages in distinguishing AD from

through meta-analysis.

normal controls and mild cognitive impairment (MCI), with an
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overall AUC of 0.924 (95% CI: 0.912-0.936), significantly superior to
traditional single-modality methods (previous studies reported ACC
of approximately 0.78-0.82) (7, 12). This finding confirms the unique
value of the Transformer architecture in capturing complex
correlations in cross-modal data, as its self-attention mechanism
effectively models long-range dependencies in multi-source data (such
as MRI, PET, and clinical indicators), addressing the limitations of
traditional methods in detecting subtle early pathological changes
, 11).

Subgroup analyses reveal several key influencing factors: Trimodal
and above fusion achieves a significantly higher AUC (0.935 vs. 0.908,
p=0.012), indicating a synergistic effect of multi-source data
integration. This is consistent with Tang et al’s. (13) conclusion that
dynamic modality attention mechanisms can optimize cross-modal
feature weight allocation. Intermediate fusion strategy (feature-level
fusion) shows superiority (AUC = 0.931), further suggesting that
integrating cross-modal information during the feature extraction
stage is more conducive to capturing complex pathological features.
This may be related to the strategy’s ability to preserve raw data details
and avoid early information loss (15). Multicenter studies have higher
AUC (0.930 vs. 0.918, p = 0.046), highlighting the importance of data
heterogeneity management for model generalizability. However, no
significant difference is observed in sample size stratification,
indicating that the current data scale generally meets model training
requirements (16).

Comparisons of typical studies highlight the clinical value of
technological innovations: Khan et al’s (20) Dual-3DM?AD model
achieved an AUC of 0.945 through triplet preprocessing and 3D
hybrid Transformer, validating the synergistic advantages of deep
feature engineering and multi-task learning. Gao et al’s (16) generative
network maintained an AUC of 0.912 in scenarios with missing data,
demonstrating the adaptability of cross-modal completion technology
to real-world data. Odusami et al’s (14) pixel-level ViT fusion reached
an AUC of 0.897 in single-modality MRI analysis, proving
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TABLE 2 Results of comprehensive significance analysis.

Problem category Key indicators

Authentication type confusion

Cross validation-combined AUC (95% CI)

10.3389/fneur.2025.1641548

Data result Number/proportion of studies

involved

0.931 (0.918-0.944) 16 items (80%)

0.905 (0.889-0.921) 4 items (20%)

Diagnostic task confusion

CI)

External verification-combined AUC (95%

0.942 (0.929-0.955) 18 items
0.897 (0.880-0.914) 15 items
0.915 (901-0.929) 12 items

Potential datasets overlap AD vs. NC-combined AUC (95% CI) 15 items 15 items (75%)

3 items 3 items (15%)

2 items 2 items (10%)

0 item 0 item (0%)
Statistical model and threshold effect MCI vs. NC-combined AUC (95% CI) 20 items 20 items (100%)
problem 0 item 0 item (0%)

Transformer’s capability for high-resolution representation of imaging
details. These results collectively indicate that innovations in model
architecture (such as hybrid Transformer) and optimization of data
fusion strategies are core pathways to improving diagnostic efficacy.

Although this study confirmed stable results (AUC fluctuation:
0.920-0.928) and no significant publication bias (Egger’s test,
p=0.217) through sensitivity analysis, the following limitations
should be noted: First, only seven of the included studies use
multicenter data, and single-center bias may limit the model’s
performance in cross-cohort generalization (4, 6). Second, the efficacy
difference between hybrid Transformer and pure Transformer models
do not reach statistical significance (*p* = 0.068), indicating that the
feature complementarity mechanism between traditional neural
networks and Transformer requires further validation (11).
Additionally, insufficient model interpretability remains a major
obstacle to clinical application, as the black-box nature of attention
mechanisms struggles to meet the transparency requirements of
diagnostic decision-making (28).

Future research needs to focus on three major directions: First,
promoting standardized integration of multicenter data and reducing
the impact of data heterogeneity through technologies such as
federated learning. Second, developing interpretability modules, such
as introducing attention heatmaps to visualize brain region-pathology
associations (23). Third, optimizing lightweight model design by
borrowing the attention bottleneck mechanism proposed by Kadri
et al. (19) to balance computational requirements and diagnostic
accuracy. With the deep integration of Transformer technology with
medical imaging and clinical data, such models are expected to
become core tools for early and precise AD diagnosis, providing
critical support for achieving the clinical goal of “early detection and
early intervention.”

5 Conclusion

This study systematically evaluates the efficacy of Transformer-
based multimodal fusion deep learning models in early AD diagnosis
through meta-analysis. Results showed that these models achieved an
overall AUC of 0.924 (95% CI: 0.912-0.936), significantly superior to
traditional methods, confirming the deep modeling capability of

Frontiers in Neurology

Transformer’s self-attention mechanism for cross-modal data (e.g.,
MR, PET, clinical indicators). Subgroup analyses reveal that trimodal
and above fusion (AUC =0.935 vs. bimodal = 0.908, p =0.012),
intermediate fusion strategy (feature-level fusion, AUC = 0.931), and
multicenter data (AUC = 0.930 vs. single-center = 0.918, p = 0.046)
significantly improved diagnostic efficacy, indicating that the depth of
multi-source data integration, fusion stage selection, and data
heterogeneity management are key influencing factors. In typical
studies, Khan et al’s (20) 3D hybrid Transformer model achieved an
AUC of 0.945 in AD vs. MCI discrimination, Gao et al’s (16)
generative network maintained an AUC of 0.912 with missing data,
and Odusami et al’s (14, 15) single-modality ViT fusion reached an
AUC of 0.897, respectively validating the models’ advantages in
feature engineering, robustness, and imaging detail representation.
Although sensitivity analysis shows stable results (AUC fluctuation:
0.920-0.928) and no significant publication bias (Egger’s test,
p =0.217), limitations such as a high proportion of single-center data
and insufficient model interpretability were identified. Future research
should focus on standardized multicenter data integration,
development of interpretability modules (e.g., attention visualization),
and lightweight design to promote clinical translation. In conclusion,
Transformer-based multimodal fusion models provide highly effective
tools for early AD diagnosis, with remarkable potential in dynamically
modeling cross-modal associations. Technical innovations are
urgently needed to address current bottlenecks and facilitate the
clinical goal of “early diagnosis and early treatment” for AD.
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