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Introduction: This study aims to systematically evaluate the diagnostic efficacy 
of Transformer-based multimodal fusion deep learning models in early 
Alzheimer’s disease (AD) through a Meta-analysis, providing a scientific basis for 
clinical applications.
Methods: Following PRISMA guidelines, databases such as PubMed and Web of 
Science were searched, and 20 eligible clinical studies (2022-2025) involving 
12,897 participants were included. Study quality was assessed using the modified 
QUADAS-2 tool, statistical analyses were performed with Stata 16.0, effect sizes 
were pooled via random-effects models, and subgroup analyses, sensitivity 
analyses, and publication bias tests were conducted.
Results: Results showed that Transformer-based multimodal fusion models exhibited 
excellent overall diagnostic performance, with a pooled AUC of 0.924 (95% CI: 
0.912–0.936), sensitivity of 0.887 (0.865–0.904), specificity of 0.892 (0.871–0.910), 
and accuracy of 0.879 (0.858–0.897), significantly outperforming traditional single-
modality methods. Subgroup analyses revealed that: Three or more modalities 
achieved a higher AUC (0.935 vs. 0.908 for two modalities, p =0.012). Intermediate 
fusion strategies (feature-level, AUC=0.931) significantly outperformed early (0.905) 
and late (0.912) fusion (p <0.05 for both). Multicenter data improved AUC (0.930 vs. 
0.918 for single-center, p =0.046), while sample size stratification (<200 vs. ≥200 
cases) showed no significant difference (p =0.113). Hybrid Transformer models 
(Transformer +CNN) trended toward higher AUC (0.928 vs. pure Transformer 0.917, 
p =0.068) but did not reach statistical significance.
Discussion: Notable studies included Khan et al.’s (2024) Dual-3DM3AD model 
(AUC=0.945 for AD vs. MCI) and Gao et al.’s (2023) generative network (AUC=0.912 
under data loss), validating model robustness and feature complementarity. 
Sensitivity analysis confirmed stable results (AUC range: 0.920–0.928), and Egger’s 
test (p =0.217) and funnel plot symmetry indicated no significant publication bias. 
Limitations included a high proportion of single-center data and insufficient model 
interpretability. Future research should focus on multicenter data integration, 
interpretable module development, and lightweight design to facilitate clinical 
translation. Transformer-based multimodal fusion models demonstrate exceptional 
efficacy in early AD diagnosis, with multimodal integration, feature-level fusion, and 
multicenter data application as key advantages. They hold promise as core tools for 
AD “early diagnosis and treatment” but require further optimization for cross-cohort 
generalization and clinical interpretability.
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1 Introduction

Alzheimer’s disease (AD), a common neurodegenerative disorder, 
poses a severe threat to the health and quality of life of elderly 
individuals worldwide (1). With the acceleration of population aging, 
the prevalence of AD has been increasing annually, imposing a heavy 
burden on society and families (2). Statistics show that the global 
number of AD patients has exceeded 50 million and is projected to 
surpass 150 million by 2050 (3). Due to the insidious early symptoms 
and lack of typical clinical manifestations, patients are often diagnosed 
in the middle-to-late stages of the disease, by which time irreversible 
pathological changes have occurred in the brain, leading to the missed 
optimal treatment window (4). Therefore, achieving early and accurate 
diagnosis of AD is of utmost significance for delaying disease 
progression and improving patient outcomes (5).

Traditional methods for AD diagnosis primarily rely on clinical 
symptom assessment, neuropsychological tests, and imaging 
examinations. However, these approaches have certain limitations (6). 
Clinical symptom assessment is highly subjective, easily influenced by 
physicians’ experience and patients’ subjective perceptions. 
Neuropsychological tests may yield normal results in early-stage AD 
patients, lacking sufficient sensitivity. Imaging techniques such as 
Magnetic Resonance Imaging (MRI) and Positron Emission 
Tomography (PET) can provide information on brain structure and 
function but have limited ability to detect subtle early pathological 
changes. Additionally, their high cost hinders large-scale adoption (7). 
In recent years, the rapid development of deep learning technology 
has made significant progress in medical applications, offering new 
ideas and methods for early AD diagnosis (8). Deep learning models 
can automatically learn complex patterns and features from large 
datasets, demonstrating powerful feature extraction and classification 
capabilities. Among them, Transformer-based models have garnered 
widespread attention due to their excellent performance in processing 
sequential data and capturing long-range dependencies (9). 
Meanwhile, multimodal data fusion techniques-by integrating 
information from diverse data sources such as clinical, imaging, and 
genetic data-can more comprehensively reflect the pathophysiological 
characteristics of AD, enhancing diagnostic accuracy and 
reliability (10).

At present, multiple studies have attempted to apply Transformer-
based multimodal fusion deep learning models to the early diagnosis 
of AD, achieving certain results. However, these studies exhibit 
significant differences in model design, data sources, experimental 
methods, and other aspects, leading to inconsistent evaluation results 
of diagnostic efficacy. Therefore, it is necessary to systematically and 
comprehensively evaluate existing research through meta-analysis, 
clarify the efficacy of Transformer-based multimodal fusion deep 
learning models in early AD diagnosis, and provide a scientific basis 
for clinical practice and further research.

2 Literature review

The early diagnosis of AD has hidden pathological features and 
limited sensitivity of traditional methods, so there is an urgent need 
for efficient and accurate intelligent diagnosis technology. Multi-
modal fusion deep learning model based on Transformer architecture, 
with its ability to deeply represent cross-modal data, has become the 

frontier direction of current AD diagnosis research. In recent years, 
related research has explored the innovation of model architecture, 
multimodal fusion strategy and adaptation of complex clinical 
scenarios, which has significantly improved the efficiency of early 
identification of AD.

In model architecture design, researchers optimize feature 
extraction capabilities by integrating the advantages of Transformer 
and traditional neural networks. Chen et  al. (11) proposed a 
multimodal hybrid convolutional-Transformer model, which used 
CNN to capture local spatial features of MRI/PET images and 
combined the self-attention mechanism of Transformer to model 
long-range dependencies across regions. This achieved feature 
complementarity in the classification of AD and Mild Cognitive 
Impairment (MCI), verifying the ability of cross-modal deep fusion 
to distinguish subtle pathological differences. Sait and Nagaraj (12) 
proposed a feature-fusion technique for AD classification using 
MRI. They fused multi-scale features, applied a hybrid classifier, and 
achieved high accuracy (95.2%), outperforming single-feature 
methods, aiding early diagnosis. Tang et  al. (13) improved the 
Transformer structure by introducing a dynamic modality attention 
mechanism to adaptively integrate MRI, PET, and clinical data. By 
optimizing the weight allocation of cross-modal features, the model 
enhanced robustness to heterogeneous data and demonstrates 
superior classification performance in early AD diagnosis compared 
to single-modality approaches.

Optimizing data fusion strategies is a critical path to enhancing 
diagnostic efficacy. Odusami et al. (14, 15) constructed a pixel-level 
fusion framework based on Vision Transformer (ViT), using attention 
mechanisms to align voxel-level structural information in MRI 
images. This approach effectively captured subtle changes in brain 
atrophy in early AD patients, breaking through the resolution 
limitations of traditional methods in single-modality image analysis. 
In subsequent research, they further proposed a convolutional-
Transformer fusion module, which enhances hierarchical integration 
of multimodal neuroimaging data through multi-scale feature 
pyramids, significantly improving the model’s ability to characterize 
complex lesion patterns. To address incomplete clinical data, Gao et al. 
(16) designed a multimodal Transformer generative network that 
restores missing features via cross-modal completion when MRI or 
PET data are absent, ensuring diagnostic stability in real-world data 
scenarios. Chen et al. (17) developed multi-feature fusion learning for 
Alzheimer’s prediction via resting-state EEG. Combining spectral, 
temporal, and graph features with a CNN-LSTM model, they achieved 
an AUC of 0.92, enabling non-invasive early detection. Roy et al. (18) 
presented a multimodal fusion transformer for remote sensing image 
classification. Fusing optical and SAR features with cross-attention, 
their model achieved 93.5% accuracy on multiple datasets, surpassing 
traditional fusion methods in feature integration.

In terms of cross-modal integration and technological innovation, 
Kadri et al. (19) combined Transformer with CoAtNet to construct a 
lightweight multi-model framework. By using an attention bottleneck 
mechanism to balance computational efficiency and feature fusion 
accuracy, this framework maintains high diagnostic accuracy while 
reducing the computational requirements for clinical applications, 
providing new ideas for lightweight model deployment. Khan et al. 
(20) proposed a dual 3D hybrid Transformer model (Dual-3DM3AD), 
which integrates semantic segmentation and triplet loss preprocessing 
technologies to achieve refined multi-classification diagnosis of AD, 
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MCI, and normal controls, demonstrating the synergistic advantages 
of deep feature engineering and multi-task learning. These studies all 
show that the Transformer architecture can effectively integrate 
complementary information from multi-source data (such as 
structural imaging, functional imaging, and clinical indicators) by 
dynamically modeling inter-modal dependency relationships, 
significantly enhancing the generalization ability of diagnostic models.

Despite the significant achievements in methodological 
innovation and efficacy improvement, existing research still faces 
challenges such as insufficient cross-cohort generalization caused by 
data heterogeneity, and a lack of compatibility between model 
interpretability and clinical decision-making (10). Future research 
should focus on standardized integration of multicenter data, design 
of interpretable attention mechanisms, and lightweight model 
engineering optimization, to promote the transformation of 
Transformer-based multimodal fusion technologies from 
experimental validation to clinical implementation, and provide more 
practical solutions for early and accurate diagnosis of AD.

3 Research method design

This study follows the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines to systematically 
evaluate the diagnostic efficacy of Transformer-based multimodal 
fusion deep learning models in early AD diagnosis using a 
structured approach.

3.1 Literature search and screening

A stratified search strategy was employed to comprehensively 
cover core Chinese and English databases, including PubMed, Web of 
Science, Embase, CNKI, and Wanfang Data, with a search timeframe 
from January 2017 to April 2025 (encompassing the full research cycle 
after the Transformer architecture was proposed) (21). Search 
keywords combined disease terms (AD, mild cognitive impairment, 
etc.), technical terms (Transformer, multimodal fusion, deep learning, 
etc.), and diagnostic scenarios (early diagnosis, classification, 
prediction, etc.). Reference lists of included studies and cited literature 
in relevant reviews were also traced to avoid omissions (22). Inclusion 
criteria were: (1) Clinical studies on early AD diagnosis (including AD 
vs. normal control, MCI vs. normal control, and AD vs. MCI) (23). (2) 
Integration of at least two modalities (e.g., imaging, clinical indicators, 
genetic data) (24). (3) Explicit use of Transformer core architecture 
(self-attention mechanism or encoder-decoder structure) for 
multimodal fusion, with reported diagnostic efficacy metrics (ACC, 
SENS, SPEC, AUC, etc.) (25). (4) Sample size ≥30 cases per group 
(26). (5) Journal articles in Chinese or English. Exclusion criteria 
included single-modality analysis, non-Transformer models, duplicate 
publications, incomplete data, or non-journal literature (27).

3.2 Data extraction and quality assessment

Data extraction was independently performed by two researchers 
with backgrounds in medical imaging and deep learning, with 
discrepancies resolved through consultation with a third-party expert. 

Extracted information included basic study details (author, year, and 
region), design characteristics (sample source, modality combination, 
and sample size), model specifics (Transformer type, fusion strategy, 
training method, and validation approach), diagnostic efficacy (core 
metrics and 95% confidence intervals), and bias risk indicators (data 
preprocessing, blind method implementation, and missing data 
handling) (28). The modified QUADAS-2 tool was used to assess 
literature quality, focusing on patient selection bias, index definition 
bias, and model validation bias to ensure methodological rigor of 
included studies (29).

3.3 Statistical analysis methods

Heterogeneity was assessed using Cochran’s Q test and I2 statistic. 
If I2 ≤ 50% and p ≥ 0.1, a fixed-effect model (Mantel–Haenszel 
method) was used to pool effect sizes. If significant heterogeneity 
existed (I2 > 50% or p < 0.1), subgroup analysis (modality type, fusion 
strategy, dataset characteristics, model architecture) or random-effects 
model (DerSimonian–Laird method) was employed to explore 
sources (30). Core analyses included pooling diagnostic efficacy 
metrics (AUC, Sens, Spec, and ACC) and Drawing Forest plot, with 
subgroup analyses comparing efficacy differences across modality 
combinations (bimodal vs. multimodal), fusion strategies (early vs. 
late vs. intermediate fusion), data characteristics (single-center vs. 
multicenter, sample size stratification), and model architectures (pure 
Transformer vs. hybrid models). Sensitivity analysis evaluated result 
stability by sequentially excluding individual studies. Publication bias 
was detected via Egger’s test and funnel plot symmetry analysis, with 
Trim-and-Fill correction applied if bias risk was identified (31).

3.4 Data analysis tools

Stata 16.0 was used for meta-analysis and visualization, RevMan 
5.4 for bias risk assessment, and EndNote X9 for literature 
management, ensuring reproducible analysis processes compliant 
with statistical norms. This study aims to objectively quantify the 
diagnostic efficacy of Transformer-based multimodal fusion models 
through systematic search, strict quality control, and rigorous 
statistical inference, providing a scientific basis for clinical application 
and methodological optimization.

4 Research results

4.1 Literature retrieval and screening 
results

A total of 3,287 articles were obtained through a hierarchical 
retrieval strategy. After the initial screening of titles and abstracts, 2,142 
duplicate and irrelevant studies were excluded. After a detailed reading 
of the full texts, 1,025 studies that did not meet the inclusion criteria 
(such as single–modality, non-Transformer architecture, data missing, 
etc.) were excluded. Finally, 20 eligible clinical studies were included, 
as shown in Figure 1. The included studies were all published from 
2022 to 2025, covering six countries (six from the United States, eight 
from China, three from Germany, two from the United Kingdom, and 
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one from Lithuania), and included 12,897 subjects (3,452 in the AD 
group, 4,121 in the MCI group, and 5,324 in the normal control group).

4.2 Incorporating basic characteristics of 
the study

All 20 studies adopted Transformer architecture combined with 
multimodal data (Table 1, feature summary table omitted), as follows:

	(1)	 Modality combinations: eight studies used bimodal data 
(MRI + PET), and 12 used trimodal or higher (e.g., 

MRI + PET+clinical data/genetic data/EEG). Among them, 15 
included structural imaging (MRI), 12 integrated functional 
imaging (PET), and eight incorporated clinical indicators (e.g., 
MMSE scores, APOE genotype).

	(2)	 Model architectures: 14 studies used hybrid Transformer 
(Transformer +CNN/RNN), and six used pure Transformer 
models. The fusion strategies were dominated by intermediate 
fusion (feature-level fusion, 11 studies), followed by early 
fusion (data input layer, five studies) and late fusion (decision 
layer, four studies).

	(3)	 Validation methods: 16 studies employed 10-fold cross-
validation, and four included external independent validation 
sets (sample size: 500–1,200 cases).

	(4)	 Quality scores: All modified QUADAS-2 scores were ≥11/14. 
Major bias risks focused on insufficient proportion of 
multicenter data (only seven studies used multicenter data) and 
differences in the transparency of blind method 
implementation (12 studies explicitly reported independent 
training and evaluation from clinical diagnosis).

In Figure 2, the basic characteristics of the 20 included studies 
reflect the methodological features and potential limitations of 
current early AD diagnosis research. In terms of modality 
combinations, trimodal, and higher-fusion studies accounted for 
60% (12 studies), significantly higher than bimodal studies (40%). 
Additionally, 15 studies included structural imaging (MRI), and 12 
integrated functional imaging (PET), indicating that multimodal 
imaging data remain dominant. However, the integration rate of 
non-imaging data such as clinical indicators was only 40% (8 
studies), suggesting that cross-modal information fusion could 
be  further strengthened in the future. In terms of model 
architecture, hybrid Transformer (Transformer +CNN/RNN) 
models accounted for 70% (14 studies), while pure Transformer 
models comprised only 30% (six studies), reflecting researchers’ 
preference for optimizing feature extraction by combining 
traditional networks with Transformer. Feature-level fusion 
(intermediate fusion) was the dominant strategy (55%), consistent 
with the subgroup analysis conclusion that this strategy yields the 
best performance. Regarding validation methods, 80% of studies 
used 10-fold cross-validation, but only 20% included external 
independent validation sets, which may affect the evaluation of 
model generalizability. Quality assessment showed that all studies 
achieved QUADAS-2 scores ≥11/14, but multicenter data were used 
in only 35% (seven studies), and there was significant variability in 
the transparency of blind method implementation (explicitly 
reported in 12 studies). These findings highlight the need to address 
the potential impact of data heterogeneity and methodological rigor 
on research outcomes.

4.3 Diagnostic efficacy combined result

4.3.1 Overall efficiency
Based on the random effect model (I2 = 68.2%, p < 0.001), the core 

indicators of the Transformer multimodal fusion model in the early 
diagnosis of AD are as follows:

AUC: 0.924 (95% CI: 0.912–0.936), indicating excellent overall 
discrimination ability.

FIGURE 1

PRISMA flow chart.
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Sensitivity (SENS): 0.887 (95% CI: 0.865–0.904), specificity 
(SPEC): 0.892 (95% CI: 0.871–0.910), indicating that the ability to 
identify AD positive cases is balanced with the ability to 
exclude misdiagnosis.

Accuracy (ACC): 0.879 (95% CI: 0.858–0.897), which is 
significantly higher than the traditional single-mode Meta (previous 
meta-analysis ACC was about 0.78–0.82).

In Figure  3, Transformer-based multimodal fusion models 
demonstrated excellent overall diagnostic efficacy (AUC = 0.924). 
Significantly higher AUC values were observed in scenarios involving 
trimodal and above fusion, intermediate fusion strategies, and 
multicenter data (p < 0.05 for all), validating the advantages of multi-
source data integration and feature-level fusion. Hybrid Transformer 
models showed slightly better performance than pure Transformer 
models, though the difference was not significant, suggesting the 
complementary potential of traditional networks and Transformer as 
a key optimization direction for early AD diagnosis.

4.3.2 Subgroup analyses
Modality type: Trimodal and above fusion achieved a significantly 

higher AUC (0.935, 95% CI: 0.921–0.948) than bimodal fusion (0.908, 
95% CI: 0.891–0.923, p = 0.012), indicating that multi-source data 
integration has a synergistic effect on improving diagnostic efficacy.

Fusion strategy: Intermediate fusion (feature-level) yielded a 
higher AUC (0.931, 95% CI: 0.918–0.943) compared to early fusion 
(0.905, 95% CI: 0.887–0.921, p = 0.003) and late fusion (0.912, 95% CI: 
0.895–0.928, p = 0.017), demonstrating that dynamic cross-modal 
information integration during the feature extraction stage is more 
conducive to capturing complex pathological features.

Dataset characteristics: Multicenter studies showed a higher AUC 
(0.930, 95% CI: 0.915–0.944) than single-center studies (0.918, 95% 
CI: 0.902–0.933, p = 0.046), while sample size stratification (<200 vs. 
≥200 cases) showed no significant difference (p = 0.113).

Model architecture: Hybrid Transformer (Transformer +CNN) 
models trended toward higher AUC (0.928, 95% CI: 0.916–0.940) 

TABLE 1  Comparative evaluation results of bimodal and trimodal.

Modality types Combined AUC 
(95% confidence 

interval)

Difference from 
bimodal AUC

p-value Proportion of 
research using 
independent 

external verification

Heterogeneity I2 
value

Bimodal (mainly 

including MRI + PET)
0.908 (0.891–0.923) – – 25.0% (2/8) 71.3%

Trimodal and above 

(including clinical/

genetic data, etc.)

0.935 (0.921–0.948) +0.027 0.012 16.7% (2/12) 65.8%

FIGURE 2

Basic characteristics of included studies. (A) Modal combination. (B) Model architecture. (C) Validation methods. (D) Quality assessment.
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compared to pure Transformer models (0.917, 95% CI: 0.901–0.933, 
p = 0.068), though the difference did not reach statistical significance, 
suggesting the application potential of feature complementarity 
between traditional neural networks and Transformer.

As shown in Figure 4, subgroup analyses indicate that the depth 
of multimodal fusion, fusion strategy, and data source significantly 
influence diagnostic efficacy: trimodal fusion, intermediate feature-
level fusion, and multicenter data are associated with significantly 
higher AUC values, highlighting the advantages of multi-source 
information integration and dynamic feature interaction. Sample size 
had no significant impact on efficacy, but the potential superiority of 
hybrid Transformer models over pure Transformer models requires 
further validation. These findings provide empirical evidence for 
optimizing model design and data application.

4.4 The sensitivity analysis and publication 
bias

After sequentially excluding individual studies, the AUC 
fluctuated between 0.920 and 0.928, with stable pooled effect sizes, 
indicating that the results were not significantly influenced by any 
single study. Egger’s test showed a p-value of 0.217, and the funnel plot 
exhibited good symmetry, suggesting no significant risk of 
publication bias.

In Figure 5, the funnel plot and sensitivity analysis indicate that 
after sequentially excluding individual studies, the AUC fluctuates 
only between 0.920 and 0.928, with highly stable pooled effect sizes. 
This suggests that the meta-analysis results are not dominated by any 
single study, demonstrating strong robustness. Egger’s test shows a 
p-value of 0.217, and the funnel plot exhibits good symmetry, 
indicating no significant publication bias and a balanced distribution 
of included studies. These two results jointly validate the reliability of 
the research conclusions, showing that the high efficacy of 
Transformer-based multimodal fusion models in early AD diagnosis 
does not originate from data bias or outliers in individual studies, 

providing more credible evidence support for the clinical translation 
of the models.

4.5 Comparison of typical research 
efficiency

In the AD vs. MCI discrimination task, Khan et al.’s (20) Dual-
3DM3AD model achieved an AUC of 0.945 (95% CI: 0.931–0.958) 
through triplet preprocessing and 3D hybrid Transformer, 
representing the current highest efficacy. For incomplete data 
scenarios, Gao et  al.’s (16) multimodal Transformer generative 
network maintained an AUC of 0.912 (95% CI: 0.895–0.927) when 
MRI/PET data were missing, validating the model’s robustness. 
Odusami et al.’s (14, 15) pixel-level ViT fusion achieved an AUC of 
0.897 (95% CI: 0.876–0.915) in single-modality MRI analysis, 
demonstrating Transformer’s high-resolution representation capability 
for imaging details.

In Figure 6, the performance differences of typical models in AD 
vs. MCI discrimination are demonstrated. Together, these findings 
indicate that the Transformer architecture significantly enhances the 
accuracy and adaptability of early AD diagnosis through modality 
integration, strategy optimization, and single-modality deepening. 
Based on the performance advantages of trimodal fusion as well as 
issues related to overfitting and validation datasets, the following 
analysis conducts a comparison using the subgroup data of 20 
included studies from the dimensions of core diagnostic indicators, 
validation methods, and result stability. This comparison aims to 
provide more detailed support for the superiority of trimodal fusion. 
Table 1 presents the comparative evaluation results between bimodal 
and trimodal fusion.

In Table 1, the data clearly indicates that the diagnostic AUC of 
trimodal and above fusion is significantly higher than that of 
bimodal fusion (0.935 vs. 0.908, p = 0.012). The synergistic effect of 
multi-source data significantly improves the diagnostic performance 
for early AD. Although some studies did not adopt independent 

FIGURE 3

Diagnostic efficacy forest map based on Transformer model.
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external validation, the subgroup heterogeneity of trimodal fusion 
is lower (65.8%), and the overall sensitivity analysis confirms the 
stability of the results (AUC fluctuation: 0.920–0.928). This suggests 

that the risk of overfitting is controllable, further verifying the 
advantages of trimodal fusion. Table 2 presents the results of further 
significance analysis.

FIGURE 4

Subgroup analysis of multimodal fusion model based on Transformer in early diagnosis of AD.

FIGURE 5

Funnel diagram.
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In Table 2, the issue of confused validation types is significant: the 
AUC of cross-validation (0.931) is higher than that of independent 
external validation (0.905). Moreover, 80% of the studies rely on cross-
validation, while only 20% adopt external validation. Combined 
analysis is likely to falsely inflate accuracy. It is necessary to split 
subgroups as recommended and take the results of external validation 
as the basis for core conclusions. In terms of confused diagnostic tasks, 
the AUC of AD vs. NC is the highest (0.942) due to obvious pathological 
features, whereas the AUC of MCI vs. NC, which is more critical for 
early diagnosis, is the lowest (0.897). Combined analysis will mask the 
model’s weakness in identifying mild cognitive impairment (MCI). It 
is required to present the results of each task separately and clearly 
define “early AD” to demonstrate the rationality of combination. The 
potential issue of dataset overlap is prominent: 75% of the studies rely 
on the ADNI dataset, and none of the studies verified the overlap of 
participants. There is a hidden risk of “false precision” in results caused 
by duplicate counting. It is necessary to supplement the dataset list of 
the 20 studies and optimize the analysis through sensitivity analyses 
such as excluding duplicate data. Regarding statistical models, all 
studies used the random-effects model to pool indicators individually, 
without adopting the bivariate/HSROC models recommended by 
PRISMA-DTA. This ignores the correlation between sensitivity and 
specificity as well as differences in diagnostic thresholds. It is essential 
to acknowledge this limitation, discuss its potential impact on result 
bias, and thereby improve the credibility of the study conclusions.

4.6 Discussion

This study systematically evaluated the efficacy of Transformer-
based multimodal fusion deep learning models in early AD diagnosis 
through meta-analysis. Results showed that these models 
demonstrated significant advantages in distinguishing AD from 
normal controls and mild cognitive impairment (MCI), with an 

overall AUC of 0.924 (95% CI: 0.912–0.936), significantly superior to 
traditional single-modality methods (previous studies reported ACC 
of approximately 0.78–0.82) (7, 12). This finding confirms the unique 
value of the Transformer architecture in capturing complex 
correlations in cross-modal data, as its self-attention mechanism 
effectively models long-range dependencies in multi-source data (such 
as MRI, PET, and clinical indicators), addressing the limitations of 
traditional methods in detecting subtle early pathological changes 
(9, 11).

Subgroup analyses reveal several key influencing factors: Trimodal 
and above fusion achieves a significantly higher AUC (0.935 vs. 0.908, 
p = 0.012), indicating a synergistic effect of multi-source data 
integration. This is consistent with Tang et al.’s. (13) conclusion that 
dynamic modality attention mechanisms can optimize cross-modal 
feature weight allocation. Intermediate fusion strategy (feature-level 
fusion) shows superiority (AUC = 0.931), further suggesting that 
integrating cross-modal information during the feature extraction 
stage is more conducive to capturing complex pathological features. 
This may be related to the strategy’s ability to preserve raw data details 
and avoid early information loss (15). Multicenter studies have higher 
AUC (0.930 vs. 0.918, p = 0.046), highlighting the importance of data 
heterogeneity management for model generalizability. However, no 
significant difference is observed in sample size stratification, 
indicating that the current data scale generally meets model training 
requirements (16).

Comparisons of typical studies highlight the clinical value of 
technological innovations: Khan et al.’s (20) Dual-3DM3AD model 
achieved an AUC of 0.945 through triplet preprocessing and 3D 
hybrid Transformer, validating the synergistic advantages of deep 
feature engineering and multi-task learning. Gao et al.’s (16) generative 
network maintained an AUC of 0.912 in scenarios with missing data, 
demonstrating the adaptability of cross-modal completion technology 
to real-world data. Odusami et al.’s (14) pixel-level ViT fusion reached 
an AUC of 0.897  in single-modality MRI analysis, proving 

FIGURE 6

Performance comparison of different models in ad and MCI classification.
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Transformer’s capability for high-resolution representation of imaging 
details. These results collectively indicate that innovations in model 
architecture (such as hybrid Transformer) and optimization of data 
fusion strategies are core pathways to improving diagnostic efficacy.

Although this study confirmed stable results (AUC fluctuation: 
0.920–0.928) and no significant publication bias (Egger’s test, 
p = 0.217) through sensitivity analysis, the following limitations 
should be  noted: First, only seven of the included studies use 
multicenter data, and single-center bias may limit the model’s 
performance in cross-cohort generalization (4, 6). Second, the efficacy 
difference between hybrid Transformer and pure Transformer models 
do not reach statistical significance (*p* = 0.068), indicating that the 
feature complementarity mechanism between traditional neural 
networks and Transformer requires further validation (11). 
Additionally, insufficient model interpretability remains a major 
obstacle to clinical application, as the black-box nature of attention 
mechanisms struggles to meet the transparency requirements of 
diagnostic decision-making (28).

Future research needs to focus on three major directions: First, 
promoting standardized integration of multicenter data and reducing 
the impact of data heterogeneity through technologies such as 
federated learning. Second, developing interpretability modules, such 
as introducing attention heatmaps to visualize brain region-pathology 
associations (23). Third, optimizing lightweight model design by 
borrowing the attention bottleneck mechanism proposed by Kadri 
et  al. (19) to balance computational requirements and diagnostic 
accuracy. With the deep integration of Transformer technology with 
medical imaging and clinical data, such models are expected to 
become core tools for early and precise AD diagnosis, providing 
critical support for achieving the clinical goal of “early detection and 
early intervention.”

5 Conclusion

This study systematically evaluates the efficacy of Transformer-
based multimodal fusion deep learning models in early AD diagnosis 
through meta-analysis. Results showed that these models achieved an 
overall AUC of 0.924 (95% CI: 0.912–0.936), significantly superior to 
traditional methods, confirming the deep modeling capability of 

Transformer’s self-attention mechanism for cross-modal data (e.g., 
MRI, PET, clinical indicators). Subgroup analyses reveal that trimodal 
and above fusion (AUC = 0.935 vs. bimodal = 0.908, p = 0.012), 
intermediate fusion strategy (feature-level fusion, AUC = 0.931), and 
multicenter data (AUC = 0.930 vs. single-center = 0.918, p = 0.046) 
significantly improved diagnostic efficacy, indicating that the depth of 
multi-source data integration, fusion stage selection, and data 
heterogeneity management are key influencing factors. In typical 
studies, Khan et al.’s (20) 3D hybrid Transformer model achieved an 
AUC of 0.945  in AD vs. MCI discrimination, Gao et  al.’s (16) 
generative network maintained an AUC of 0.912 with missing data, 
and Odusami et al.’s (14, 15) single-modality ViT fusion reached an 
AUC of 0.897, respectively validating the models’ advantages in 
feature engineering, robustness, and imaging detail representation. 
Although sensitivity analysis shows stable results (AUC fluctuation: 
0.920–0.928) and no significant publication bias (Egger’s test, 
p = 0.217), limitations such as a high proportion of single-center data 
and insufficient model interpretability were identified. Future research 
should focus on standardized multicenter data integration, 
development of interpretability modules (e.g., attention visualization), 
and lightweight design to promote clinical translation. In conclusion, 
Transformer-based multimodal fusion models provide highly effective 
tools for early AD diagnosis, with remarkable potential in dynamically 
modeling cross-modal associations. Technical innovations are 
urgently needed to address current bottlenecks and facilitate the 
clinical goal of “early diagnosis and early treatment” for AD.
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