:' frontiers Frontiers in Neurology

@ Check for updates

OPEN ACCESS

EDITED BY

Dorin Dragos,

Carol Davila University of Medicine and
Pharmacy, Romania

REVIEWED BY

Jose Laffita Mesa,

Karolinska Institutet (KI), Sweden

Cristina Gallego Fabrega,

Sant Pau Institute for Biomedical Research,
Spain

*CORRESPONDENCE
Renli Deng
690891192@qg.com

RECEIVED 14 July 2025
ACCEPTED 27 October 2025
PUBLISHED 06 November 2025

CITATION

Feng J, Huang X, Wu R, Ding G, Liu M and
Deng R (2025) Accelerated biological aging
based on DNA methylation clocks is a
predictor of stroke occurrence: a systematic
review and meta-analysis.

Front. Neurol. 16:1640853.

doi: 10.3389/fneur.2025.1640853

COPYRIGHT

© 2025 Feng, Huang, Wu, Ding, Liu and
Deng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neurology

TYPE Systematic Review
PUBLISHED 06 November 2025
pol 10.3389/fneur.2025.1640853

Accelerated biological aging
based on DNA methylation clocks
Is a predictor of stroke
occurrence: a systematic review
and meta-analysis

Jiacai Feng?, Xingyu Huang?, Rongqing Wu?, Guohui Ding?,
Ming Liu® and Renli Deng'*
!Nursing Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,

2|nternational Human Phenome Institutes, Shanghai, China, *Peking University Health Centre-Macao
Polytechnic University, Macau, Macao SAR, China

Background: Although traditional vascular risk factors, such as hypertension
and diabetes, are incorporated into stroke risk prediction models, a significant
proportion of stroke events remain unexplained by these models. Increasing
evidence suggests that accelerated biological aging, as measured by DNA
methylation clocks, may reflect reduced organ function and heightened
susceptibility to disease. However, the relationship between epigenetic age
acceleration (EAA) and stroke risk remains poorly understood, with limited
comprehensive synthesis of the available evidence.

Methods: We conducted a systematic search of PubMed, Embase, Web
of Science, and Cochrane Library databases (up to January 10, 2025) for
observational studies examining the relationship between DNA methylation-
derived EAA and stroke risk. The study protocol was registered with PROSPERO
(CRD420251010621).

Results: Thirteen studies met the inclusion criteria. Random-effects meta-
analysis revealed a significant positive association between accelerated biological
aging and stroke risk (OR =1.16, 95% CI 1.13-1.19, I? =98.9%, p < 0.001).
Stratified analysis by stroke event demonstrated a stronger association with
incident stroke (OR = 1.28,95% Cl 1.25-1.35, > = 92.6%, p = 0.001) compared to
stroke recurrence (OR = 1.11, 95% CI11.06-1.16, > = 63.6%, p = 0.041). Sensitivity
analyses confirmed the robustness of these findings.

Conclusion: DNA methylation-derived measures of accelerated biological
aging are robust predictors of stroke. These findings provide new insights into
stroke risk assessment and emphasize potential biomarkers for early detection
and prevention. Further large-scale prospective studies are needed to validate
these associations and examine the role of additional modifying factors.
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1 Introduction

Stroke, ranked as the second leading cause of death globally and
the primary etiology of adult disability, has seen its pathogenesis and
precise risk factor identification remain a central focus in neuroscience
research (1, 2). Epidemiologically, one in four individuals will
experience a stroke during their lifetime, with one-third of survivors
developing long-term disabilities (3). Although improved secondary
prevention strategies have reduced stroke incidence in recent years, its
prevalence continues to rise due to increasing life expectancy.

Current clinical risk assessment models incorporate traditional
factors such as hypertension, diabetes, and smoking. However, a
proportion of stroke events remain unexplained by existing models,
suggesting undiscovered biological mechanisms driving stroke event
(4, 5). In this context, epigenetic regulation—a critical bridge between
genotype and phenotype—has demonstrated groundbreaking
progress in aging-related disease research. Notably, deoxyribonucleic
acid (DNA) methylation-based epigenetic clocks quantify methylation
variations at specific cytosine-guanine dinucleotides (CpG) sites,
providing an innovative tool to assess biological aging rates (6).
Studies indicate that epigenetic age acceleration (the deviation
between DNA methylation age and chronological age) may reflect
pathophysiological processes like organ functional decline and
inflammatory activation, showing significant associations with
cardiovascular and neurodegenerative diseases (7). Multiple
independent teams have developed disease-specific methylation
clocks, including Horvath’s multi-tissue clock (8), Hannum’s blood
clock (9), and PhenoAge (10), with predictive efficacy validated across
chronic disease cohorts. Emerging prospective studies suggest a
potential link between epigenetic age acceleration and stroke risk.
Nevertheless, current evidence exhibits substantial heterogeneity: (1)
divergent predictive power among methylation clock models; (2)
potential confounding from variations in study design, ethnic
characteristics, and epigenetic data adjustment strategies. Crucially,
no systematic study has clarified whether epigenetic aging influences
stroke occurrence independently of traditional vascular risk factors.

To address these gaps, this study employs systematic review and
meta-analysis methodologies to synthesize existing evidence,
elucidating the association between biological aging and stroke risk.
Our findings aim to provide evidence-based insights for early clinical
identification and stroke prevention.

2 Methods
2.1 Search strategy

This meta-analysis and systematic review adhered to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (11) and was prospectively
registered in the PROSPERO database (CRD420251010621). A
comprehensive literature search was conducted across multiple
databases, including EMBASE, PubMed, Web of Science, and the
Cochrane Library, with the search period extending through
January 10, 2025. No limitations were imposed regarding
participants’ age, gender, racial background, or country of origin.
To ensure thorough coverage, we additionally examined the
reference lists of selected articles and pertinent review papers to
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identify other potentially relevant studies that might have been
missed by our initial search. The complete search methodology is
provided in Additional file 1: Supplementary Table S1. Briefly, main
search terms included the following terms: (“DNA methylation” OR
“methylation” OR “epigenetic” OR biological age) and (“Stroke” OR
Accident” OR  “Cerebral Stroke” OR
“Cerebrovascular Apoplexy” OR “Brain Vascular Accident” OR

“Cerebrovascular

“Apoplexy”). Two independent investigators (JF and RW), who
received standardized training, performed the initial screening of
relevant studies. Any discrepancies in their assessments were
resolved through discussion until a consensus was reached on the
final selection of records.

2.2 Inclusion and exclusion criteria

In accordance with the Population, Intervention, Comparison,
Outcomes, and Study (PICOS) framework, the inclusion criteria were
defined as follows:

(P) The study population was adult participants of all genders and
ethnic backgrounds; (I) (Intervention/Exposure) was accelerated
biological aging, which was assessed by DNA methylation clocks (e.g.,
Horvath’s multi-tissue clock, Hannum’s blood clock, PhenoAge) and
defined as the deviation between DNA methylation age and
chronological age (epigenetic age acceleration, EAA); (C) Controls
were participants with non-accelerated biological aging, i.e., those
whose DNA methylation age was close to or less than their
chronological age; (O) Study outcomes were stroke occurrence,
including incident stroke (first-ever stroke) and recurrent stroke, with
outcomes quantified by reporting odds ratio (OR), relative risk (RR),
or hazard ratio (HR) along with 95% confidence intervals (CIs); (S)
Study design included observational studies, specifically prospective
cohort studies, retrospective cohort studies, and case—control studies.

The following studies were excluded from the analysis:

(1) Reviews, letters, personal opinions, book chapters, case reports,
conference abstracts, and meeting proceedings; (2) Duplicate
publications; (3) Incomplete data; (4) In vitro or in vivo
animal experiments.

2.3 Data extraction

Data extraction was performed independently by two authors (JF
and XH), who collected study characteristics and relevant outcomes
from the selected articles. Initial disagreements in extracted data were
resolved through mutual discussion, with any unresolved
discrepancies adjudicated by a third reviewer to achieve final
consensus. Extracted information included first author (year of
publishment), country, participants (including sample size, number of
stroke cases, age, and sex distribution), study design, biological sample
type used for DNA methylation analysis, epigenetic clock models
measured, adjustment for confounders in the statistical analysis, and
correlation index of DNA methylation clocks with stroke risk. Studies
were permitted to be included multiple times if they reported data
from different epigenetic clocks or examined distinct tissue types. For
publications containing multiple analytical results, we preferentially
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selected estimates that accounted for the greatest number of
confounding variables to ensure the most robust data extraction.

2.4 Assessment of study quality

We referenced Newcastle-Ottawa Scale (NOS) to evaluate the
quality of included studies (12). The NOS consisted of 8 items with 9
scores totally, among which assessed the selection (maximum 4 stars),
comparability (maximum 2 stars), and outcomes (maximum 3 stars)
for cohort study or exposure (maximum 3 stars) for case control study.
The Newcastle-Ottawa Scale (NOS) awards a maximum of 9 points,
and studies scoring> 7 points were deemed high-quality (13)
(Additional file 1: Supplementary Table S2).

2.5 Statistical analysis

This meta-analysis evaluated the relationship between DNA
methylation-based accelerated biological aging and stroke risk using
both unadjusted and adjusted OR with corresponding 95% confidence
intervals. For studies reporting RR or HR, these measures were
analytically treated as equivalent to OR (14). All such effect size
estimates were collectively categorized as original data for the
purposes of our quantitative synthesis. When OR >1 indicated a closer
correlation between DNA methylation-based Dbiological age
acceleration and stroke occurrence. The software of Stata 15.0 was
applied in this meta-analysis and the heterogeneity among studies was
evaluated by Cochran’s Q test and I* statistics (15). When significant
heterogeneity was detected (I* > 50% or p < 0.05), the random-effects
model was employed. Conversely, the fixed-effects model was applied
to calculate the observed OR (16). Subsequently, subgroup analyses
and meta-regression were conducted to investigate the sources of
heterogeneity. Sensitivity analysis was performed using the leave-
one-out method, which involves sequentially excluding one study at a
time, to assess the robustness of the overall estimates (17). Potential
publication bias was evaluated using Begg’s test (18) and Egger’s test
(19), funnel plot was also performed to examine publication bias. If
publication bias was identified, the trim-and-fill method was utilized
to assess the stability of the pooled results (20).

3 Results
3.1 Characteristics of the included studies

After searching the PubMed, Embase, Cochrane Library, and Web
of Science databases, we initially identified 1,150 articles. After
removing duplicates (n = 194), we screened the remaining records by
title and abstract, excluding 924 ineligible studies. The remaining
articles (n=32) underwent full-text evaluation. After thorough
screening of the study titles, abstracts, and full-texts, a total of 13
articles were included in the final analysis. A flow diagram of the study
selection process was shown in Figure 1. Among these 13 articles, 9
were prospective cohort studies (21-29), 3 were retrospective cohort
studies (30-32), and 1 was a case—control study (33). Of these studies,
4 were conducted in Asia [2 from Korea (28, 31) and 2 from China
(21, 30)], 8 in Europe [3 from the United Kingdom (22, 24, 26), 2 from
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Spain (32, 33), and 1 each from the Netherlands (23), Germany (25),
and Sweden (27)], with 1 study from North America (29). The primary
characteristics of included studies were shown in Additional file 1:
Supplementary Table S3.

3.2 Predictive value of DNA methylation
clocks

A total of 29 effect sizes were extracted from the 13 included
studies. Figure 2 presents the effect sizes of the association between
EAA (measured by DNA methylation clocks) and stroke risk across
the included studies, as well as the pooled result. In the forest plot,
each row represents an individual study, and the middle section uses
squares and horizontal lines to indicate the effect size of each study
and its 95% confidence interval (CI), respectively. The pooled analysis
revealed a significant association between biologically predicted age
acceleration and stroke incidence, with a combined odds ratio of 1.16
(95%CI 1.13-1.19, p < 0.001). A random-effects model was employed
due to substantial heterogeneity among the studies (I* = 98.9%).

3.3 Subgroup analyses and
meta-regression

To elucidate the sources of heterogeneity, subgroup analyses and
univariate meta-regression were conducted on the included effect sizes
that were derived from more than three studies. The details could be seen
in the Table 1. The results of meta-regression analysis demonstrated that
study population (p = 0.074), sample size (p = 0.866), age (p = 0.236),
stroke subtype (p = 0.279), sex distribution (p = 0.264), epigenetic clock
type (p=0.773), tissue type (p=0.949), and follow-up duration
(p = 0.877) were not significant sources of heterogeneity. In contrast,
study design (p = 0.027) and stroke event classification (p = 0.002) were
identified as statistically significant sources of heterogeneity for the
association between epigenetic age acceleration and stroke risk. However,
subsequent subgroup analyses stratified by study design and event
classification revealed persistent high heterogeneity within certain
subgroups (I” > 50%), indicating that these identified factors alone could
not fully account for the observed variation. These findings suggest that
while the meta-regression detected statistically significant moderators,
they likely represent partial rather than exhaustive explanations for
heterogeneity. We posit that this residual heterogeneity may stem from
both the limited number of included studies (n = 13) and unmeasured
confounding variables, particularly baseline population characteristics
that were inconsistently reported across studies. Notably, although not
reaching statistical significance in our analysis, population demographics
(age distribution and ethnic composition) and choice of epigenetic clock
methodology emerged as clinically plausible sources of heterogeneity
that warrant consideration in future research.

3.4 Publication bias and sensitivity analysis

Publication bias was assessed through visual inspection of funnel
plot symmetry and formal statistical testing using Begg’s and Egger’s
tests. Visual inspection of the funnel plot suggested asymmetry,
(Additional file 2:

indicating potential publication bias
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FIGURE 1

The PRISMA flow diagram showing process of study selection for inclusion in our meta-analyses.

Supplementary Figure S1). In our meta-analysis, Begg’s test indicated
no significant publication bias (p =0.053) (Additional file 2:
Supplementary Figure S2), whereas Egger’s test revealed evidence of
potential publication bias in the estimates of the biological aging-stroke
association (p = 0.006) (Additional file 2: Supplementary Figure S3).
Following adjustment for funnel plot asymmetry using the trim-and-
fill method, the significant association between DNA methylation-
based age acceleration and stroke risk remained robust (Additional file
2: Supplementary Figure S4). Sensitivity analysis demonstrated the
stability of our findings, as shown in Figure 3, where the sequential
exclusion of individual studies did not substantially alter the overall
effect estimate, confirming the reliability of our meta-analytic results.

4 Discussion

This study, through a systematic review and meta-analysis,
elucidates the association between DNA methylation-derived
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accelerated biological aging and stroke risk, addressing prior
inconclusive evidence and the lack of comprehensive synthesis in this
area. The results confirm a significant positive association between
EAA and stroke incidence (OR =1.16, 95% CI 1.13-1.19), with a
stronger correlation observed in incident stroke (OR = 1.28, 95% CI
1.25-1.35) compared to recurrent stroke (OR = 1.11, 95% CI 1.06-
1.16). This finding suggests that EAA could serve as a novel biomarker
for stroke risk assessment, particularly for identifying individuals at
risk of a first-ever stroke.

Increasing evidence suggests that epigenetic age, as measured
through DNA methylation clocks, is a more reliable biomarker of
biological aging and disease susceptibility than chronological age (34,
35), thus supporting our findings on EAA and stroke. As previously
noted, advanced epigenetic clocks (e.g., DNAm PhenoAge, DNAm
GrimAge) integrate clinical biomarkers and methylation signatures
linked to lifestyle factors, thus enhancing predictive accuracy for
various conditions, including cardiovascular diseases, cancer, and
neurodegenerative disorders (10). This predictive capacity also
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FIGURE 2

Forest plot of the association between biological aging predicted by DNA methylation clock and stroke occurrence risk (OR, odds ratio; Cl, confidential

interval).

extends to stroke-related outcomes: a 10-year longitudinal study
found that accelerated biological aging is associated with a higher
mortality risk among stroke patients (HR = 1.33, 95% CI 1.26-1.41)
(36), emphasizing the relevance of epigenetic aging not only to stroke
incidence but also to post-stroke prognosis.

Notably, our subgroup analysis revealed that study design
(p = 0.027) and stroke event classification (p = 0.002) were significant
sources of heterogeneity, while clock type (p = 0.773) was not, despite
the biological differences between clocks. For example, PhenoAge,
which integrates clinical biomarkers (e.g., albumin, C-reactive
protein) (10), might be more closely tied to vascular physiological
aging than Horvath’s multi-tissue clock, yet our analysis did not detect
a significant difference in effect size. This may be due to the small
number of studies using each clock, which limits statistical power to

Frontiers in Neurology

05

detect clock-specific effects—a gap that future studies with larger
clock-stratified samples should address.

To explain the association between EAA and stroke risk, we draw
on plausible biological mechanisms supported by existing evidence
and our findings. First, vascular aging, a key driver of stroke, is tightly
regulated by DNA methylation. Genes such as ELOVL2 (fatty acid
elongase) and KLF14 (transcription factor) (37), whose methylation
status defines EAA, are essential for vascular elasticity and endothelial
function. Accelerated methylation of these genes suppresses their
expression, promoting arteriosclerosis and endothelial dysfunction.
These processes are more evident in first-ever stroke (OR = 1.28),
which reflects the greater impact of cumulative vascular damage from
biological aging. Second, chronic inflammation—a hallmark of both
aging and stroke (38)—is amplified by EAA. Hypomethylation of
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TABLE 1 Subgroup analysis and meta-regression on DNA methylation clock and stroke.

Subgroup Studies Pooled OR Meta-regression Heterogeneity
I? p

Population 0.074

Asian 6 1.1 99.70% 0.001

Others 23 1.19 98.90% 0.001
Study design 0.05

Prospective cohort 6 1.1 99.70% 0.001

Retrospective cohort 21 12 97.50% 0.001
Sample size 0.866

<5,000 17 1.13 48.60% 0.013

>5,000 12 1.17 99.60% 0.001
Age (years old) 0.236

<60 8 1.21 99.60% 0.001

>60 20 1.13 51.10% 0.005
Stroke type 0.279

Stroke 15 1.13 99.40% 0.001

Ischemic stroke 14 1.21 94.20% 0.001

Female percentage 0.264

<50 12 1.14 99.40% 0.001

>50 17 1.19 97.90% 0.001
Clock type 0.773

PhenoAge 8 1.17 97.90% 0.001

KDMAge 5 12 99% 0.001
Tissue 0.949

Blood 16 1.18 95.70% 0.001

Multi-tissue 6 1.18 98.70% 0.001
Event 0.002

Recurrence 4 111 63.60% 0.041

Incidence 13 1.28 92.60% 0.001
Follow up years 0.877

<10 9 1.19 98.50% 0.001

>10 12 1.16 99.20% 0.001

P> 50% with the random effects model; I* < 50% with the fixed-effects model; OR, odds ratio.

pro-inflammatory cytokines (IL-6, TNF-a) (39, 40) sustains
inflammation, damages the vascular endothelium, and accelerates
atherosclerosis. In recurrent stroke, where vascular damage is already
established, the additional contribution of EAA and its related
inflammation may be smaller, consistent with the lower OR of 1.11.
Third, impairment of the neurovascular unit (NVU)—a central
pathological feature of stroke—can be exacerbated by EAA. Increased
methylation of SIRT1 (a neuroprotective gene) (41) suppresses its
expression, weakens the blood-brain barrier (BBB), and heightens
brain vulnerability to ischemic injury. Collectively, these mechanisms
indicate that EAA functions as a “biological integrator” of vascular,
inflammatory, and neural damage, thereby contributing to stroke risk
in a subtype-specific manner.

Despite support from the aforementioned mechanisms, the
clinical application of EAA warrants cautious consideration,
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particularly because of its modest effect size (OR = 1.16). Compared
with established stroke risk factors (e.g., hypertension; diabetes
mellitu), the independent contribution of EAA is substantially lower.
Therefore, EAA cannot replace traditional risk assessment tools such
as the CHA,DS,-VASc score. Nevertheless, EAA holds potential as
a complementary biomarker. It can provide biological information
not captured by traditional factors, aid in optimizing risk
stratification, and offer additional support for clinical decision-
making. The core challenges in translating EAA into clinical practice
currently include two aspects. First, there is no international
consensus on defining the quantitative threshold for “high-risk
EAA’ (i.e., the number of years of accelerated biological aging that
can be deemed as an elevation in stroke risk). Second, existing
studies have only confirmed the association between EAA and stroke
risk, but have not verified whether intervening in EAA (e.g.,
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Sensitivity analysis of the association between biological age predicted by DNA methylation clock and stroke occurrence risk.

1.22

regulating relevant methylation sites) can reduce the incidence
of stroke.

To enhance the translational value of DNA methylation-based
EAA in stroke risk assessment, future research should prioritize
standardized methodological frameworks. These include adopting
validated, vascular health-specific epigenetic clocks and using
uniform stroke outcome definitions—explicitly excluding transient
ischemic attack and standardizing subtype classification—to
minimize heterogeneity. At the same time, cohort diversity should
be expanded to include underrepresented populations from Africa,
South America, and Oceania, enabling race-stratified analyses that
clarify ethnic specificity in the EAA-stroke association. In addition,
future studies should aim to establish causality through Mendelian
randomization, using EAA-related genetic variants as instrumental
variables. They should also evaluate interventional efficacy in trials
targeting EAA (e.g., lifestyle modification or epigenetic regulators),
and integrate EAA into traditional risk models to assess incremental
predictive value using metrics such as AUC and net reclassification
improvement. Finally, defining quantifiable “high-risk EAA”
thresholds through dose-response meta-analyses or machine
learning, and validating these across diverse populations, will
be essential to advancing EAA from a biological marker to a clinically
actionable tool in stroke prevention.

One of the strengths of this study lies in its pioneering nature: to our
knowledge, this is the first study to conduct a systematic review and
meta-analysis of the association between DNA methylation clocks and
stroke risk, representing a comprehensive approach that, even if not
exhaustive, can better elucidate the relationship between this potentially
promising biomarker and stroke. Additionally, all studies included in this
analysis were of high quality, with scores above 7 on the NOS, thereby
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ensuring reliability. All articles included in this analysis were published
within the past decade, reflecting the latest research in this field.
Despite these strengths, several limitations of this study must
be acknowledged. First, substantial heterogeneity remained across
studies even after subgroup analysis (I* = 98.9%). This may be explained
by unmeasured factors such as inconsistent confounder adjustment,
variation in tissue types used for methylation detection, and unreported
baseline characteristics (e.g., socioeconomic status, dietary patterns).
Second, Egger’s test indicated publication bias (p = 0.006), which may
reduce the reliability of the pooled effect size. Although we applied
trim-and-fill adjustment to reduce this bias, residual distortion cannot
be excluded, especially given the small number of included studies
(n = 13), which limits the effectiveness of correction methods. Third,
small-sample bias may have influenced the results. Six of the 13 studies
included fewer than 5,000 participants, and these smaller studies tended
to report more variable effect sizes, potentially amplifying the observed
heterogeneity. Fourth, the lack of individual-level data prevented
adjustment for detailed confounders (e.g., baseline BMI, insulin
resistance, smoking intensity). These factors may correlate with both
EAA and stroke risk, introducing residual confounding that could bias
the observed association. Fifth, insufficient data prevented evaluation
of differences in the predictive ability of specific clocks for stroke risk.

5 Conclusion

This systematic review and meta-analysis demonstrates that DNA
methylation clocks represent a potentially promising tool for stroke risk
prediction. However, further research is needed to better identify
stratification algorithms and develop specific epigenetic clocks and
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measurements, which must be validated across diverse populations. The
growing body of literature on epigenetic measures calls for systematic
organization and classification to reduce heterogeneity between studies
and facilitate the translation of these tools into clinical practice and
preventive strategies. In the future, personalized aging assessment
systems based on DNA methylation clocks may emerge as a critical
breakthrough in precision medicine for cerebrovascular diseases.
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