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Background: Although traditional vascular risk factors, such as hypertension 
and diabetes, are incorporated into stroke risk prediction models, a significant 
proportion of stroke events remain unexplained by these models. Increasing 
evidence suggests that accelerated biological aging, as measured by DNA 
methylation clocks, may reflect reduced organ function and heightened 
susceptibility to disease. However, the relationship between epigenetic age 
acceleration (EAA) and stroke risk remains poorly understood, with limited 
comprehensive synthesis of the available evidence.
Methods: We conducted a systematic search of PubMed, Embase, Web 
of Science, and Cochrane Library databases (up to January 10, 2025) for 
observational studies examining the relationship between DNA methylation-
derived EAA and stroke risk. The study protocol was registered with PROSPERO 
(CRD420251010621).
Results: Thirteen studies met the inclusion criteria. Random-effects meta-
analysis revealed a significant positive association between accelerated biological 
aging and stroke risk (OR = 1.16, 95% CI 1.13–1.19, I2  = 98.9%, p <  0.001). 
Stratified analysis by stroke event demonstrated a stronger association with 
incident stroke (OR = 1.28, 95% CI 1.25–1.35, I2 = 92.6%, p = 0.001) compared to 
stroke recurrence (OR = 1.11, 95% CI 1.06–1.16, I2 = 63.6%, p = 0.041). Sensitivity 
analyses confirmed the robustness of these findings.
Conclusion: DNA methylation-derived measures of accelerated biological 
aging are robust predictors of stroke. These findings provide new insights into 
stroke risk assessment and emphasize potential biomarkers for early detection 
and prevention. Further large-scale prospective studies are needed to validate 
these associations and examine the role of additional modifying factors.
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1 Introduction

Stroke, ranked as the second leading cause of death globally and 
the primary etiology of adult disability, has seen its pathogenesis and 
precise risk factor identification remain a central focus in neuroscience 
research (1, 2). Epidemiologically, one in four individuals will 
experience a stroke during their lifetime, with one-third of survivors 
developing long-term disabilities (3). Although improved secondary 
prevention strategies have reduced stroke incidence in recent years, its 
prevalence continues to rise due to increasing life expectancy.

Current clinical risk assessment models incorporate traditional 
factors such as hypertension, diabetes, and smoking. However, a 
proportion of stroke events remain unexplained by existing models, 
suggesting undiscovered biological mechanisms driving stroke event 
(4, 5). In this context, epigenetic regulation—a critical bridge between 
genotype and phenotype—has demonstrated groundbreaking 
progress in aging-related disease research. Notably, deoxyribonucleic 
acid (DNA) methylation-based epigenetic clocks quantify methylation 
variations at specific cytosine-guanine dinucleotides (CpG) sites, 
providing an innovative tool to assess biological aging rates (6). 
Studies indicate that epigenetic age acceleration (the deviation 
between DNA methylation age and chronological age) may reflect 
pathophysiological processes like organ functional decline and 
inflammatory activation, showing significant associations with 
cardiovascular and neurodegenerative diseases (7). Multiple 
independent teams have developed disease-specific methylation 
clocks, including Horvath’s multi-tissue clock (8), Hannum’s blood 
clock (9), and PhenoAge (10), with predictive efficacy validated across 
chronic disease cohorts. Emerging prospective studies suggest a 
potential link between epigenetic age acceleration and stroke risk. 
Nevertheless, current evidence exhibits substantial heterogeneity: (1) 
divergent predictive power among methylation clock models; (2) 
potential confounding from variations in study design, ethnic 
characteristics, and epigenetic data adjustment strategies. Crucially, 
no systematic study has clarified whether epigenetic aging influences 
stroke occurrence independently of traditional vascular risk factors.

To address these gaps, this study employs systematic review and 
meta-analysis methodologies to synthesize existing evidence, 
elucidating the association between biological aging and stroke risk. 
Our findings aim to provide evidence-based insights for early clinical 
identification and stroke prevention.

2 Methods

2.1 Search strategy

This meta-analysis and systematic review adhered to the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (11) and was prospectively 
registered in the PROSPERO database (CRD420251010621). A 
comprehensive literature search was conducted across multiple 
databases, including EMBASE, PubMed, Web of Science, and the 
Cochrane Library, with the search period extending through 
January 10, 2025. No limitations were imposed regarding 
participants’ age, gender, racial background, or country of origin. 
To ensure thorough coverage, we  additionally examined the 
reference lists of selected articles and pertinent review papers to 

identify other potentially relevant studies that might have been 
missed by our initial search. The complete search methodology is 
provided in Additional file 1: Supplementary Table S1. Briefly, main 
search terms included the following terms: (“DNA methylation” OR 
“methylation” OR “epigenetic” OR biological age) and (“Stroke” OR 
“Cerebrovascular Accident” OR “Cerebral Stroke” OR 
“Cerebrovascular Apoplexy” OR “Brain Vascular Accident” OR 
“Apoplexy”). Two independent investigators (JF and RW), who 
received standardized training, performed the initial screening of 
relevant studies. Any discrepancies in their assessments were 
resolved through discussion until a consensus was reached on the 
final selection of records.

2.2 Inclusion and exclusion criteria

In accordance with the Population, Intervention, Comparison, 
Outcomes, and Study (PICOS) framework, the inclusion criteria were 
defined as follows:

(P) The study population was adult participants of all genders and 
ethnic backgrounds; (I) (Intervention/Exposure) was accelerated 
biological aging, which was assessed by DNA methylation clocks (e.g., 
Horvath’s multi-tissue clock, Hannum’s blood clock, PhenoAge) and 
defined as the deviation between DNA methylation age and 
chronological age (epigenetic age acceleration, EAA); (C) Controls 
were participants with non-accelerated biological aging, i.e., those 
whose DNA methylation age was close to or less than their 
chronological age; (O) Study outcomes were stroke occurrence, 
including incident stroke (first-ever stroke) and recurrent stroke, with 
outcomes quantified by reporting odds ratio (OR), relative risk (RR), 
or hazard ratio (HR) along with 95% confidence intervals (CIs); (S) 
Study design included observational studies, specifically prospective 
cohort studies, retrospective cohort studies, and case–control studies.

The following studies were excluded from the analysis:

	(1)	 Reviews, letters, personal opinions, book chapters, case reports, 
conference abstracts, and meeting proceedings; (2) Duplicate 
publications; (3) Incomplete data; (4) In vitro or in  vivo 
animal experiments.

2.3 Data extraction

Data extraction was performed independently by two authors (JF 
and XH), who collected study characteristics and relevant outcomes 
from the selected articles. Initial disagreements in extracted data were 
resolved through mutual discussion, with any unresolved 
discrepancies adjudicated by a third reviewer to achieve final 
consensus. Extracted information included first author (year of 
publishment), country, participants (including sample size, number of 
stroke cases, age, and sex distribution), study design, biological sample 
type used for DNA methylation analysis, epigenetic clock models 
measured, adjustment for confounders in the statistical analysis, and 
correlation index of DNA methylation clocks with stroke risk. Studies 
were permitted to be included multiple times if they reported data 
from different epigenetic clocks or examined distinct tissue types. For 
publications containing multiple analytical results, we preferentially 
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selected estimates that accounted for the greatest number of 
confounding variables to ensure the most robust data extraction.

2.4 Assessment of study quality

We referenced Newcastle-Ottawa Scale (NOS) to evaluate the 
quality of included studies (12). The NOS consisted of 8 items with 9 
scores totally, among which assessed the selection (maximum 4 stars), 
comparability (maximum 2 stars), and outcomes (maximum 3 stars) 
for cohort study or exposure (maximum 3 stars) for case control study. 
The Newcastle-Ottawa Scale (NOS) awards a maximum of 9 points, 
and studies scoring≥ 7 points were deemed high-quality (13) 
(Additional file 1: Supplementary Table S2).

2.5 Statistical analysis

This meta-analysis evaluated the relationship between DNA 
methylation-based accelerated biological aging and stroke risk using 
both unadjusted and adjusted OR with corresponding 95% confidence 
intervals. For studies reporting RR or HR, these measures were 
analytically treated as equivalent to OR (14). All such effect size 
estimates were collectively categorized as original data for the 
purposes of our quantitative synthesis. When OR >1 indicated a closer 
correlation between DNA methylation-based biological age 
acceleration and stroke occurrence. The software of Stata 15.0 was 
applied in this meta-analysis and the heterogeneity among studies was 
evaluated by Cochran’s Q test and I2 statistics (15). When significant 
heterogeneity was detected (I2 ≥ 50% or p ≤ 0.05), the random-effects 
model was employed. Conversely, the fixed-effects model was applied 
to calculate the observed OR (16). Subsequently, subgroup analyses 
and meta-regression were conducted to investigate the sources of 
heterogeneity. Sensitivity analysis was performed using the leave-
one-out method, which involves sequentially excluding one study at a 
time, to assess the robustness of the overall estimates (17). Potential 
publication bias was evaluated using Begg’s test (18) and Egger’s test 
(19), funnel plot was also performed to examine publication bias. If 
publication bias was identified, the trim-and-fill method was utilized 
to assess the stability of the pooled results (20).

3 Results

3.1 Characteristics of the included studies

After searching the PubMed, Embase, Cochrane Library, and Web 
of Science databases, we  initially identified 1,150 articles. After 
removing duplicates (n = 194), we screened the remaining records by 
title and abstract, excluding 924 ineligible studies. The remaining 
articles (n = 32) underwent full-text evaluation. After thorough 
screening of the study titles, abstracts, and full-texts, a total of 13 
articles were included in the final analysis. A flow diagram of the study 
selection process was shown in Figure 1. Among these 13 articles, 9 
were prospective cohort studies (21–29), 3 were retrospective cohort 
studies (30–32), and 1 was a case–control study (33). Of these studies, 
4 were conducted in Asia [2 from Korea (28, 31) and 2 from China 
(21, 30)], 8 in Europe [3 from the United Kingdom (22, 24, 26), 2 from 

Spain (32, 33), and 1 each from the Netherlands (23), Germany (25), 
and Sweden (27)], with 1 study from North America (29). The primary 
characteristics of included studies were shown in Additional file 1: 
Supplementary Table S3.

3.2 Predictive value of DNA methylation 
clocks

A total of 29 effect sizes were extracted from the 13 included 
studies. Figure 2 presents the effect sizes of the association between 
EAA (measured by DNA methylation clocks) and stroke risk across 
the included studies, as well as the pooled result. In the forest plot, 
each row represents an individual study, and the middle section uses 
squares and horizontal lines to indicate the effect size of each study 
and its 95% confidence interval (CI), respectively. The pooled analysis 
revealed a significant association between biologically predicted age 
acceleration and stroke incidence, with a combined odds ratio of 1.16 
(95%CI 1.13–1.19, p < 0.001). A random-effects model was employed 
due to substantial heterogeneity among the studies (I2 = 98.9%).

3.3 Subgroup analyses and 
meta-regression

To elucidate the sources of heterogeneity, subgroup analyses and 
univariate meta-regression were conducted on the included effect sizes 
that were derived from more than three studies. The details could be seen 
in the Table 1. The results of meta-regression analysis demonstrated that 
study population (p = 0.074), sample size (p = 0.866), age (p = 0.236), 
stroke subtype (p = 0.279), sex distribution (p = 0.264), epigenetic clock 
type (p = 0.773), tissue type (p = 0.949), and follow-up duration 
(p = 0.877) were not significant sources of heterogeneity. In contrast, 
study design (p = 0.027) and stroke event classification (p = 0.002) were 
identified as statistically significant sources of heterogeneity for the 
association between epigenetic age acceleration and stroke risk. However, 
subsequent subgroup analyses stratified by study design and event 
classification revealed persistent high heterogeneity within certain 
subgroups (I2 > 50%), indicating that these identified factors alone could 
not fully account for the observed variation. These findings suggest that 
while the meta-regression detected statistically significant moderators, 
they likely represent partial rather than exhaustive explanations for 
heterogeneity. We posit that this residual heterogeneity may stem from 
both the limited number of included studies (n = 13) and unmeasured 
confounding variables, particularly baseline population characteristics 
that were inconsistently reported across studies. Notably, although not 
reaching statistical significance in our analysis, population demographics 
(age distribution and ethnic composition) and choice of epigenetic clock 
methodology emerged as clinically plausible sources of heterogeneity 
that warrant consideration in future research.

3.4 Publication bias and sensitivity analysis

Publication bias was assessed through visual inspection of funnel 
plot symmetry and formal statistical testing using Begg’s and Egger’s 
tests. Visual inspection of the funnel plot suggested asymmetry, 
indicating potential publication bias (Additional file 2: 
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Supplementary Figure S1). In our meta-analysis, Begg’s test indicated 
no significant publication bias (p = 0.053) (Additional file 2: 
Supplementary Figure S2), whereas Egger’s test revealed evidence of 
potential publication bias in the estimates of the biological aging-stroke 
association (p = 0.006) (Additional file 2: Supplementary Figure S3). 
Following adjustment for funnel plot asymmetry using the trim-and-
fill method, the significant association between DNA methylation-
based age acceleration and stroke risk remained robust (Additional file 
2: Supplementary Figure S4). Sensitivity analysis demonstrated the 
stability of our findings, as shown in Figure 3, where the sequential 
exclusion of individual studies did not substantially alter the overall 
effect estimate, confirming the reliability of our meta-analytic results.

4 Discussion

This study, through a systematic review and meta-analysis, 
elucidates the association between DNA methylation-derived 

accelerated biological aging and stroke risk, addressing prior 
inconclusive evidence and the lack of comprehensive synthesis in this 
area. The results confirm a significant positive association between 
EAA and stroke incidence (OR = 1.16, 95% CI 1.13–1.19), with a 
stronger correlation observed in incident stroke (OR = 1.28, 95% CI 
1.25–1.35) compared to recurrent stroke (OR = 1.11, 95% CI 1.06–
1.16). This finding suggests that EAA could serve as a novel biomarker 
for stroke risk assessment, particularly for identifying individuals at 
risk of a first-ever stroke.

Increasing evidence suggests that epigenetic age, as measured 
through DNA methylation clocks, is a more reliable biomarker of 
biological aging and disease susceptibility than chronological age (34, 
35), thus supporting our findings on EAA and stroke. As previously 
noted, advanced epigenetic clocks (e.g., DNAm PhenoAge, DNAm 
GrimAge) integrate clinical biomarkers and methylation signatures 
linked to lifestyle factors, thus enhancing predictive accuracy for 
various conditions, including cardiovascular diseases, cancer, and 
neurodegenerative disorders (10). This predictive capacity also 

FIGURE 1

The PRISMA flow diagram showing process of study selection for inclusion in our meta-analyses.
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extends to stroke-related outcomes: a 10-year longitudinal study 
found that accelerated biological aging is associated with a higher 
mortality risk among stroke patients (HR = 1.33, 95% CI 1.26–1.41) 
(36), emphasizing the relevance of epigenetic aging not only to stroke 
incidence but also to post-stroke prognosis.

Notably, our subgroup analysis revealed that study design 
(p = 0.027) and stroke event classification (p = 0.002) were significant 
sources of heterogeneity, while clock type (p = 0.773) was not, despite 
the biological differences between clocks. For example, PhenoAge, 
which integrates clinical biomarkers (e.g., albumin, C-reactive 
protein) (10), might be more closely tied to vascular physiological 
aging than Horvath’s multi-tissue clock, yet our analysis did not detect 
a significant difference in effect size. This may be due to the small 
number of studies using each clock, which limits statistical power to 

detect clock-specific effects—a gap that future studies with larger 
clock-stratified samples should address.

To explain the association between EAA and stroke risk, we draw 
on plausible biological mechanisms supported by existing evidence 
and our findings. First, vascular aging, a key driver of stroke, is tightly 
regulated by DNA methylation. Genes such as ELOVL2 (fatty acid 
elongase) and KLF14 (transcription factor) (37), whose methylation 
status defines EAA, are essential for vascular elasticity and endothelial 
function. Accelerated methylation of these genes suppresses their 
expression, promoting arteriosclerosis and endothelial dysfunction. 
These processes are more evident in first-ever stroke (OR = 1.28), 
which reflects the greater impact of cumulative vascular damage from 
biological aging. Second, chronic inflammation—a hallmark of both 
aging and stroke (38)—is amplified by EAA. Hypomethylation of 

FIGURE 2

Forest plot of the association between biological aging predicted by DNA methylation clock and stroke occurrence risk (OR, odds ratio; CI, confidential 
interval).
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pro-inflammatory cytokines (IL-6, TNF-α) (39, 40) sustains 
inflammation, damages the vascular endothelium, and accelerates 
atherosclerosis. In recurrent stroke, where vascular damage is already 
established, the additional contribution of EAA and its related 
inflammation may be smaller, consistent with the lower OR of 1.11. 
Third, impairment of the neurovascular unit (NVU)—a central 
pathological feature of stroke—can be exacerbated by EAA. Increased 
methylation of SIRT1 (a neuroprotective gene) (41) suppresses its 
expression, weakens the blood–brain barrier (BBB), and heightens 
brain vulnerability to ischemic injury. Collectively, these mechanisms 
indicate that EAA functions as a “biological integrator” of vascular, 
inflammatory, and neural damage, thereby contributing to stroke risk 
in a subtype-specific manner.

Despite support from the aforementioned mechanisms, the 
clinical application of EAA warrants cautious consideration, 

particularly because of its modest effect size (OR = 1.16). Compared 
with established stroke risk factors (e.g., hypertension; diabetes 
mellitu), the independent contribution of EAA is substantially lower. 
Therefore, EAA cannot replace traditional risk assessment tools such 
as the CHA₂DS₂-VASc score. Nevertheless, EAA holds potential as 
a complementary biomarker. It can provide biological information 
not captured by traditional factors, aid in optimizing risk 
stratification, and offer additional support for clinical decision-
making. The core challenges in translating EAA into clinical practice 
currently include two aspects. First, there is no international 
consensus on defining the quantitative threshold for “high-risk 
EAA” (i.e., the number of years of accelerated biological aging that 
can be  deemed as an elevation in stroke risk). Second, existing 
studies have only confirmed the association between EAA and stroke 
risk, but have not verified whether intervening in EAA (e.g., 

TABLE 1  Subgroup analysis and meta-regression on DNA methylation clock and stroke.

Subgroup Studies Pooled OR Meta-regression Heterogeneity

I2 p

Population 0.074

 � Asian 6 1.1 99.70% 0.001

 � Others 23 1.19 98.90% 0.001

Study design 0.05

 � Prospective cohort 6 1.1 99.70% 0.001

 � Retrospective cohort 21 1.2 97.50% 0.001

Sample size 0.866

 � <5,000 17 1.13 48.60% 0.013

 � ≥5,000 12 1.17 99.60% 0.001

Age (years old) 0.236

 � <60 8 1.21 99.60% 0.001

 � ≥60 20 1.13 51.10% 0.005

Stroke type 0.279

 � Stroke 15 1.13 99.40% 0.001

 � Ischemic stroke 14 1.21 94.20% 0.001

 � Female percentage 0.264

 � <50 12 1.14 99.40% 0.001

 � ≥50 17 1.19 97.90% 0.001

Clock type 0.773

 � PhenoAge 8 1.17 97.90% 0.001

 � KDMAge 5 1.2 99% 0.001

Tissue 0.949

 � Blood 16 1.18 95.70% 0.001

 � Multi-tissue 6 1.18 98.70% 0.001

Event 0.002

 � Recurrence 4 1.11 63.60% 0.041

 � Incidence 13 1.28 92.60% 0.001

Follow up years 0.877

 � <10 9 1.19 98.50% 0.001

 � ≥10 12 1.16 99.20% 0.001

I2 > 50% with the random effects model; I2 < 50% with the fixed-effects model; OR, odds ratio.
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regulating relevant methylation sites) can reduce the incidence 
of stroke.

To enhance the translational value of DNA methylation–based 
EAA in stroke risk assessment, future research should prioritize 
standardized methodological frameworks. These include adopting 
validated, vascular health–specific epigenetic clocks and using 
uniform stroke outcome definitions—explicitly excluding transient 
ischemic attack and standardizing subtype classification—to 
minimize heterogeneity. At the same time, cohort diversity should 
be expanded to include underrepresented populations from Africa, 
South America, and Oceania, enabling race-stratified analyses that 
clarify ethnic specificity in the EAA–stroke association. In addition, 
future studies should aim to establish causality through Mendelian 
randomization, using EAA-related genetic variants as instrumental 
variables. They should also evaluate interventional efficacy in trials 
targeting EAA (e.g., lifestyle modification or epigenetic regulators), 
and integrate EAA into traditional risk models to assess incremental 
predictive value using metrics such as AUC and net reclassification 
improvement. Finally, defining quantifiable “high-risk EAA” 
thresholds through dose–response meta-analyses or machine 
learning, and validating these across diverse populations, will 
be essential to advancing EAA from a biological marker to a clinically 
actionable tool in stroke prevention.

One of the strengths of this study lies in its pioneering nature: to our 
knowledge, this is the first study to conduct a systematic review and 
meta-analysis of the association between DNA methylation clocks and 
stroke risk, representing a comprehensive approach that, even if not 
exhaustive, can better elucidate the relationship between this potentially 
promising biomarker and stroke. Additionally, all studies included in this 
analysis were of high quality, with scores above 7 on the NOS, thereby 

ensuring reliability. All articles included in this analysis were published 
within the past decade, reflecting the latest research in this field.

Despite these strengths, several limitations of this study must 
be  acknowledged. First, substantial heterogeneity remained across 
studies even after subgroup analysis (I2 = 98.9%). This may be explained 
by unmeasured factors such as inconsistent confounder adjustment, 
variation in tissue types used for methylation detection, and unreported 
baseline characteristics (e.g., socioeconomic status, dietary patterns). 
Second, Egger’s test indicated publication bias (p = 0.006), which may 
reduce the reliability of the pooled effect size. Although we applied 
trim-and-fill adjustment to reduce this bias, residual distortion cannot 
be excluded, especially given the small number of included studies 
(n = 13), which limits the effectiveness of correction methods. Third, 
small-sample bias may have influenced the results. Six of the 13 studies 
included fewer than 5,000 participants, and these smaller studies tended 
to report more variable effect sizes, potentially amplifying the observed 
heterogeneity. Fourth, the lack of individual-level data prevented 
adjustment for detailed confounders (e.g., baseline BMI, insulin 
resistance, smoking intensity). These factors may correlate with both 
EAA and stroke risk, introducing residual confounding that could bias 
the observed association. Fifth, insufficient data prevented evaluation 
of differences in the predictive ability of specific clocks for stroke risk.

5 Conclusion

This systematic review and meta-analysis demonstrates that DNA 
methylation clocks represent a potentially promising tool for stroke risk 
prediction. However, further research is needed to better identify 
stratification algorithms and develop specific epigenetic clocks and 

FIGURE 3

Sensitivity analysis of the association between biological age predicted by DNA methylation clock and stroke occurrence risk.
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measurements, which must be validated across diverse populations. The 
growing body of literature on epigenetic measures calls for systematic 
organization and classification to reduce heterogeneity between studies 
and facilitate the translation of these tools into clinical practice and 
preventive strategies. In the future, personalized aging assessment 
systems based on DNA methylation clocks may emerge as a critical 
breakthrough in precision medicine for cerebrovascular diseases.
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