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Background: Sepsis-associated encephalopathy (SAE) is a frequent complication
of sepsis, manifesting as acute brain dysfunction and often resulting in persistent
cognitive deficits, neurological impairment, and increased mortality. Timely and
accurate diagnosis of SAE is essential to guide therapeutic decisions and improve
clinical outcomes. In recent years, neurogenic biomarkers have emerged as
potential serum-based indicators for the diagnosis and progression monitoring
of SAE.
Methods: A comprehensive search of PubMed/MEDLINE, Embase, the Cochrane
Library, Web of Science, and Scopus was conducted from inception to 30 April
2025. Weighted mean differences (WMDs) and 95% confidence intervals (CIs)
were calculated using a random-effects model.
Results: Forty-seven studies (50 arms) were included. Random-effects analysis
revealed significant differences in serum NSE levels between SAE and NE adult
patients (WMD = 6.82; 95% CI: 5.43, 8.21; P < 0.001), S100β levels (WMD = 0.48;
95% CI: 0.37, 0.60; P < 0.001), GFAP levels in the SAE group (WMD = 62.28; 95%
CI: 45.42, 79.14; P < 0.001), TAU levels in the SAE individuals (WMD = 1.73; 95%
CI: 0.95, 2.51; P < 0.001), UCH-L1 levels in SAE patients (WMD = 1.73; 95% CI:
0.95, 2.51; P < 0.001), APACHE II scores in the SAE group (WMD = 6.30; 95% CI:
4.61, 7.99; P < 0.001), and SOFA scores in SAE (WMD = 3.65; 95% CI: 2.96, 4.34;
P < 0.001).
Conclusion: Elevated serum levels of neurogenic biomarkers may serve as
potential predictors of SAE and are associated with increased mortality in
septic patients. These biomarkers show promise as reliable, minimally invasive
tools for diagnosis and longitudinal monitoring of SAE. However, these findings
should be interpreted with caution due to substantial heterogeneity across the
included studies.
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Introduction

Sepsis-associated encephalopathy (SAE) is a common and
severe complication of sepsis, manifesting as diffuse cerebral
dysfunction without overt central nervous system infection. The
reported incidence of SAE varies widely from 9% to over 70%
of septic patients, depending on diagnostic criteria and patient
populations, with some studies suggesting rates as high as 83.6%
in intensive care settings (1, 2). Clinically, SAE ranges from
subtle delirium to deep coma and is independently associated with
prolonged hospitalization, long-term cognitive impairment, and
increased mortality (3).

The pathogenesis of SAE is multifactorial. Systemic
inflammation disrupts the blood–brain barrier, allowing
cytokines and immune cells to infiltrate the brain; concomitant
microcirculatory dysfunction and metabolic derangements lead
to hypoxia, oxidative stress, and neurogenic injury. Activated
microglia and astrocytes further propagate neuroinflammation,
while neurotransmitter imbalances contribute to encephalopathy.
Although these mechanisms are well characterized, their relative
contributions vary among individuals, complicating early and
accurate diagnosis (4, 5).

Given the limitations of clinical evaluation and neuroimaging
in diagnosing SAE, there has been growing interest in circulating
neurogenic biomarkers as objective indicators of CNS injury.
Key candidates include neuron-specific enolase (NSE), S100
calcium-binding protein B (S100β), glial fibrillary acidic protein
(GFAP), tau protein (TAU), and ubiquitin C-terminal hydrolase L1
(UCH-L1) (6, 7). NSE and S100β originate predominantly from
neurons and astrocytes, respectively; elevated serum levels have
been linked to neurogenic damage and correlate with delirium
severity (8). GFAP reflects astroglial injury, while TAU and UCH-
L1 indicate microtubule disruption and ubiquitin-proteasome
pathway alterations (9, 10). Early studies demonstrated significant
increases in these biomarkers among SAE patients compared
to septic patients without encephalopathy (NE), suggesting their
potential utility in both diagnosis and prognostication (11–13).

Previous meta-analyses have demonstrated that elevated NSE
levels are significantly associated with SAE and poorer outcomes
(14), while higher S100β concentrations correlate moderately with
SAE incidence and mortality risk (15). However, these reviews
focused on single biomarkers and often exhibited high between-
study heterogeneity. Evidence for GFAP, TAU, and UCH-L1
remains limited to small cohorts, and few studies have evaluated all
five markers in parallel or examined their comparative diagnostic
performance (2, 16). Moreover, the influence of covariates such
as age, sepsis severity, sampling time, and assay variability on
biomarker levels has not been systematically assessed.

To address these gaps, our study aims to (1) quantify the
differences in serum levels of NSE, S100β, GFAP, TAU, and UCH-L1
between SAE and NE patients through pooled effect estimates; (2)
evaluate diagnostic accuracy using subgroup and meta-regression
analyses based on age, timing of sampling, and sample size; and (3)
explore associations between biomarker concentrations and clinical
outcomes, including organ dysfunction scores and mortality. By
integrating data across multiple neurogenic biomarkers, this meta-
analysis will clarify their relative and combined utility for the early
identification and risk stratification of SAE, ultimately informing
clinical decision-making and guiding future research.

Methods

Search strategy and selection criteria

This systematic review and meta-analysis was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (17). Two
investigators independently searched PubMed/MEDLINE,
Embase, the Cochrane Library, Web of Science, and Scopus
from database inception through April 30, 2025. The search
combined terms related to “sepsis,” “encephalopathy,” and each
neurogenic biomarker of interest (neuron-specific enolase,
S100β, glial fibrillary acidic protein, tau protein, ubiquitin
C-terminal hydrolase L1), using controlled vocabulary (e.g.,
MeSH and Emtree) and free-text keywords. No language
restrictions were applied. Reference lists of included studies and
relevant reviews were manually screened to identify additional
eligible reports.

Study selection

Titles and abstracts retrieved through electronic searches
were independently screened by two reviewers for relevance
to adult septic patients with and without encephalopathy. Full
texts were obtained for all studies deemed potentially eligible.
We included observational cohort and case–control studies that
reported quantitative serum or plasma levels of at least one
of the specified neurogenic biomarkers in both SAE and non-
encephalopathic sepsis (NE) groups. Studies were excluded if
they lacked a comparator group without encephalopathy, did not
report sufficient data to calculate mean differences and standard
deviations, involved pediatric populations exclusively, or were
case reports, reviews, conference abstracts, or animal studies.
Disagreements were resolved through discussion or consultation
with a third reviewer.

Data extraction

A standardized data collection form was used to extract
characteristics from each eligible study, including first author,
publication year, country, study design, patient demographics
(mean age, gender distribution), sepsis definitions, criteria for
encephalopathy, timing of biomarker sampling relative to sepsis
onset, assay methods, and sample size per group. Outcome
data comprised mean (and standard deviation) or median (and
interquartile range) biomarker concentrations for SAE and NE
groups, along with clinical outcomes such as APACHE II and
SOFA scores and mortality rates. When necessary, medians
and interquartile ranges were converted to means and standard
deviations using established formulas.

Quality assessment

Study quality and risk of bias were independently appraised by
two reviewers using the Cochrane-endorsed Quality Assessment of
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Diagnostic Accuracy Studies version 2 (QUADAS-2) tool (18). This
framework evaluates four key domains—patient selection, conduct
and interpretation of the index test, reference standard, and flow
and timing—to assign judgments on bias risk and applicability. Any
discrepancies between reviewers were discussed and reconciled to
reach a consensus.

Data synthesis and statistical analysis

Meta-analyses were conducted using a random-effects model
(DerSimonian and Laird) to account for between-study variability
(19). Weighted mean differences (WMDs) with corresponding
95% confidence intervals (CIs) were calculated for each biomarker
comparing the SAE to the NE groups. Heterogeneity was quantified
using the I² statistic, with values above 50% indicating substantial
heterogeneity, and tested for significance using Cochran’s Q. To
explore the sources of heterogeneity, subgroup analyses were
planned a priori by patient age, timing of sample collection, and
study sample size. Meta-regression was performed to evaluate the

impact of continuous covariates, including mean APACHE II score,
assay type (e.g., ELISA vs. automated analyzer), and publication
year, on effect estimates when at least 10 studies were available.

Potential publication bias was assessed through visual
inspection of funnel plots and quantitatively tested with Egger’s
regression (20) and Begg’s rank correlation tests (21). Duval and
Tweedie’s trim-and-fill method was applied to adjust the pooled
estimates if asymmetry suggested missing studies (22). Sensitivity
analyses were conducted by sequentially omitting each study
(leave-one-out) to evaluate the influence of individual studies
on overall results. All statistical analyses were performed using
Stata version 17, with two-sided P-values of <0.05 considered
statistically significant.

Results

Study characteristics

Figure 1 presents the PRISMA flowchart detailing the study
selection process. The electronic databases search yielded 59,867

FIGURE 1

Study selection flow diagram.
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TABLE 1 Summary of included studies.

Author Year N total Sex Age SAE (year) Age NE (year) Sample collection time
(day)

Lin et al. 2024 224 Both 44.45 - 1, 2

Tan et al. 2024 177 Both 71.55 - -

Cao et al. 2023 100 Both 58.51 57.69 Day of the medical visit

Chen et al. 2023 90 Both 64.3 - -

Cui et al. 2022 200 Both 72.78 72.86 Within 48 h

Li et al. 2022 41 Both 37 38 12, 24, 48 h

Wang et al. 2022 80 Both 55.42 56.37 1, 3 day

Xiao et al. 2022 149 Both 42.78 40.26 ICU admission

Yu et al. 2022 162 Both 70.3 69.7 NR

Zhao1 et al. 2022 60 Both 55.89 55.23 NR

Zhao-2 et al. 2022 163 Both NR NR ICU admission

Zhu et al. 2022 186 Both 55.45 55.48 Within 48 h

de Araujo et al. 2022 27 Both 3–6 months - -

Cui et al. 2022 200 Both 72.78 72.86 Within 48 h

Li et al. 2022 41 Both 37 38 12, 24, 48 h

Wang et al. 2022 80 Both 55.42 56.37 1, 3 day

Yu et al. 2022 162 Both 70.3 69.7 NR

Zhao et al. 2022 60 Both 55.89 55.23 NR

Kang et al. 2022 47 Both 27.5 21 Within 24 h

Li et al. 2022 41 Both 37 - 1, 2

Li-2 et al. 2022 72 Both 58.29 - 1

Yang et al. 2022 88 NR 80 - NR

Zhang et al. 2022 75 Both 75.72 71.46 1, 4 day

Guo et al. 2021 120 Both 57.61 56.91 NR

Nong et al. 2021 96 Both 8.68 - -

Jiang et al. 2021 64 Both 42.45 41.2 4 h

Chen et al. 2020 42 Both 68 58 ICU admission

Meng et al. 2020 178 Both 59.54 60.32 NR

Yuan-1 et al. 2020 184 Both 58.6 56.7 NR

Hui et al. 2020 60 Both 50.5 50.8 24 h after admission

Yuan (NE) et al. 2020 56 Both - 56.07 NR

Yuan (SAE) et al. 2020 128 Both 58.6 - NR

Zhou et al. 2019 38 Both 53 46 1 day

Yan et al. 2019 58 Both 55.8 55.0 Within 24 h

Wu et al. 2019 58 Both NR NR Within 24 h

Orthun et al. 2019 86 Both 53.2 - The first few hours

El Shimy et al. 2018 96 Both Neonates Neonates After birth follow up

Erikson et al. 2019 22 Both 62.4 61.8 When CAM-ICU assessed

Kristo et al. 2018 22 Both 64.2 - -

Liao et al. 2017 38 Both 55 51 1, 3 day

Feng et al. 2017 59 Both 52 57 1, 3 day

(Continued)
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TABLE 1 (Continued)

Author Year N total Sex Age SAE (year) Age NE (year) Sample collection time
(day)

Lu et al. 2016 86 Both 59 58 NR

Nguyen et al. 2014 128 NR 65 - ICU admission, 4 day

Yao et al. 2014 112 Both 56 52 1 day

Zhan et al. 2013 34 Both 57 - 1 h

Zhang et al. 2012 232 Both 51.5 - -

Lin et al. 2012 50 Both 51 51 -

Li et al. 2011 50 Both 52 48 -

Hamed et al. 2009 40 NR 51.75 - NR

Weigand et al. 2000 29 NR - - 1 day

articles, of which 16,263 articles were detected as duplicates.
Accordingly, 43,604 studies underwent a screening process based
on titles and abstracts, leading to 210 articles retained for full-
text evaluation. Eventually, 47 studies (50 arms) matched our
inclusion criteria and were included in the meta-analysis. Study
characteristics of all included studies are provided in Table 1. The
included studies were conducted from 2000 to 2024, with mean
ages of adult participants ranging from 27 to 80 years. Both genders
(men and women) were included. Samples were collected over
periods ranging from 1 to 3 days.

Methodological quality

Quality assessment was conducted using the QUADAS-2 tool
and is presented in Figure 2. The quality of the included studies
varied. Overall, concerns regarding the applicability of the included
studies to the review question were less significant than our
concerns about the risk of bias. High risk of bias was mainly focused
on flow and timing, and high applicability concerns mostly came
from patient selection and index text, which may be attributed to
various diagnostic criteria of SAE.

Meta-analysis results

NSE in adults
A total of 31 studies (23–42) encompassing 3,216 participants

were included in the analysis comparing serum NSE levels between
patients with SAE and those without encephalopathy (NE).
Random-effects analysis revealed a significant difference in serum
NSE levels between SAE and NE adult patients (WMD = 6.82;
95% CI: 5.43, 8.21; P < 0.001; I² = 98.9%, P < 0.001; Figure 3A).
Subgroup analysis based on age demonstrated that serum NSE
level in both SAE and NE adults was significantly elevated in
both younger (<55 years) and older (>55 years) individuals (P
< 0.05; Table 2). Moreover, subgroup analysis based on timing of
sample collection showed that NSE levels were significantly higher
in patients with SAE compared to those without NE, both when
samples were collected within 1 day (P < 0.001) and after 1 day (P <

0.001) of sepsis onset. This finding indicates a significant elevation
of NSE in SAE patients regardless of sampling time. In addition,
serum NSE levels were significantly elevated in studies with sample
sizes both below 100 and those with 100 or more participants. A
small-study effect was observed in Egger’s and Begg’s tests (P =
0.020 and 0.012, respectively). However, visual inspection of the
funnel plot (Figure 3B) revealed asymmetric distribution.

NSE in children
A total of four studies encompassing 315 children showed a

significant difference in serum NSE level between SAE and NE
children (WMD = 19.70; 95% CI: 9.53, 29.88; P < 0.001; I² =
96.9%, P < 0.001; Figure 4).

S100β

A total of 33 studies encompassing 2,819 participants were
included in the analysis comparing S100β levels between patients
with SAE and NE patients. The pooled analysis demonstrated that
S100β levels were significantly higher in SAE patients compared
to NE patients (WMD = 0.48; 95% CI: 0.37, 0.60; P < 0.001; I²
= 99.7%, P < 0.001; Figure 5A). In addition, subgroup analysis
indicated that S100β levels were significantly elevated in both
younger (<55 years) and older (>55 years) adults, regardless of
whether they had SAE or NE (P < 0.001; Table 2). Moreover, S100β

levels were significantly higher in SAE patients compared to those
without NE, both when samples were collected within 1 day (P <

0.001) and after 1 day (P < 0.001) of sepsis onset. In addition, serum
S100β levels were significantly elevated in studies with sample
sizes both below 100 and those with 100 or more participants. A
significant small-study effect was observed in Egger’s and Begg’s
tests (P = 0.034 and 0.001, respectively). However, visual inspection
of the funnel plot (Figure 5B) revealed an asymmetric distribution.

GFAP
Seven studies (16, 27, 28, 37, 41, 42), including 871 patients,

compared GFAP levels between SAE and NE patients and found
that GFAP levels were significantly higher in the SAE group (WMD
= 62.28; 95% CI: 45.42, 79.14; P < 0.001), indicating pronounced
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FIGURE 2

Quality assessment.
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FIGURE 3

Forest plot (A) and funnel plot (B) evaluate the association between serum neurogenic biomarker levels and NSE.
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TABLE 2 Subgroup analyses for the comparison between outcomes.

Subgroups NO SMD (95% CI) P-within I2 (%) P-heterogeneity

NSE

Age SAE patients (year)

≤50 11 8.12 (3.47, 12.76) 0.001 99.3 <0.001

>50 18 6.51 (5.07, 7.95) <0.001 98.2 <0.001

NR 2 0.91 (0.13, 1.70) 0.023 69.9 0.068

Age NE patients (year)

≤50 12 9.03 (4.86, 13.20) <0.001 99.2 <0.001

>50 17 5.71 (4.29, 7.13) <0.001 98.0 <0.001

NR 2 0.91 (0.13, 1.70) 0.023 69.9 0.068

Sample collection time (day)

≤1 12 9.41 (6.18, 12.64) <0.001 98.3 <0.001

>1 8 8.82 (4.14, 13.51) <0.001 99.5 <0.001

NR 11 2.96 (1.96, 3.95) <0.001 95.7 <0.001

Sample size

≤100 17 8.66 (5.28, 12.03) <0.001 99.0 <0.001

>100 14 4.67 (3.39, 5.95) <0.001 98.4 <0.001

S100β

Age SAE patients (year)

≤50 12 0.74 (0.42, 1.05) <0.001 99.9 <0.001

>50 17 0.36 (0.27, 0.45) <0.001 97.4 <0.001

NR 4 0.20 (0.03, 0.36) 0.023 97.2 <0.001

Age NE patients (year)

≤50 0.90 (0.53, 1.27) <0.001 99.9 <0.001

>50 0.30 (0.21, 0.38) <0.001 96.9 <0.001

NR 0.18 (0.08, 0.27) <0.001 96.6 <0.001

Sample collection time (day)

≤1 15 0.51 (0.37, 0.66) <0.001 99.3 <0.001

>1 10 0.64 (0.30, 0.98) <0.001 99.9 <0.001

NR 8 0.23 (0.15, 0.31) <0.001 93.1 <0.001

Sample size

≤100 20 0.65 (0.48, 0.83) <0.001 99.8 <0.001

>100 13 0.22 (0.16, 0.27) <0.001 94.2 <0.001

TAU

Sample collection time (day) 0.020

≤1 4 1.66 (0.26, 3.06) <0.001 97.3 <0.001

>1 6 1.78 (0.96, 2.60) 90.2 <0.001

Mortality

Age SAE patients (year)

≤50 3 −0.09 (−3.97, 3.79) 0.963 98.4 <0.001

>50 12 −3.61 (−5.96, −1.25) 0.003 95.1 <0.001

NR 2 −5.72 (−9.55, −1.90) 0.003 71.6 0.060

(Continued)
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TABLE 2 (Continued)

NO SMD (95% CI) P-within I2 (%) P-heterogeneity

Age NE patients (year)

≤50 3 4.11 (−2.64, 10.86) 0.233 96.2 <0.001

>50 5 −0.25 (−3.07, 2.58) 0.865 96.5 <0.001

NR 9 −7.96 (−10.50, −5.42) <0.001 89.0 <0.001

Sample collection time (day)

≤1 8 −2.02 (−4.21, 0.17) 0.070 94.8 <0.001

>1 2 −18.63 (−22.19, −15.06) <0.001 0.0 0.512

NR 7 −1.87 (−4.62, 0.88) 0.182 96.2 <0.001

Sample size

≤100 11 −5.88 (−7.36, −4.40) <0.001 94.3 <0.001

>100 6 4.27 (−2.91, 11.45) 0.243 96.6 <0.001

FIGURE 4

Forest plot evaluates the association between serum neurogenic biomarker levels and NSE in children.

astroglial injury. Considerable heterogeneity was observed across
studies (I² = 99.9%, P < 0.001; Figure 6).

TAU
A total of 10 studies (990 participants) (38, 43), comparing Tau

protein levels between patients with SAE and NE patients, were

included in the analysis. The combined effect analysis elucidated
that TAU levels were significantly higher in SAE individuals
(WMD = 1.73; 95% CI: 0.95, 2.51; P < 0.001; I² = 96.1%, P <

0.001; Figure 7). Furthermore, subgroup analysis based on time of
sampling indicated that TAU levels were significantly elevated in
SAE patients compared to those with NE, both when samples were
collected within 1 day (P < 0.001) and after 1 day (P < 0.001) of
sepsis onset (Table 2).
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FIGURE 5

Forest plot (A) and funnel plot (B) evaluate the association between serum neurogenic biomarker levels and S100β.
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FIGURE 6

Forest plot evaluating the association between serum neurogenic biomarker levels and GFAP.

UCH-L1
Two studies evaluated UCH-L1 levels between SAE and NE

patients, and the pooled analysis showed elevated levels of UCH-
L1 in SAE compared to NE patients (WMD = 1.73; 95% CI: 0.95,
2.51; P < 0.001). In addition, there was significant heterogeneity
between studies (I² = 96.1%, P < 0.001; Figure 8).

APACHE II
Six studies attempted to compare the APACHE II score between

SAE and NE patients and demonstrated that APACHE II scores
were significantly higher in the SAE group (WMD = 6.30; 95%
CI: 4.61, 7.99; P < 0.001). Substantial heterogeneity was observed
among studies (I² = 99.7%, P < 0.001; Figure 9).

SOFA
The pooled effect size of four studies evaluating the SOFA

scores between SAE and NE patients showed that the SOFA scores
were significantly increased in SAE compared to NE patients
(WMD = 3.65; 95% CI: 2.96, 4.34; P < 0.001), pointing to greater
organ dysfunction. In addition, moderate to high heterogeneity was
observed among the studies (I² = 65.3%, P = 0.034; Figure 10).

Death
Pooled data from 17 studies (948 survival vs. 446 deaths)

comparing mortality between patients with SAE and NE
demonstrated significantly lower mortality in the NE group
(WMD = −3.15; 95% CI: −4.74 to −1.55; P < 0.001). Substantial
heterogeneity was observed across studies (I² = 95.6%, P < 0.001;
Figure 11A). Subgroup analysis indicated that, among NE patients,
mortality was significantly lower in older adults (>55 years; P =
0.003), whereas no significant difference was observed in younger
adults (P = 0.0963). In the NE group, mortality differences
between older (P = 0.865) and younger (P = 0.233) adults were
also non-significant. In addition, mortality was significantly lower
when samples were collected after 1 day of sepsis onset in SAE
patients (P < 0.001). While there was no significant difference in
mortality when samples were collected within 1 day (P = 0.070;
Table 2). No small-study effect was detected based on Egger’s
test (P = 0.290) and Begg’s test (P = 0.650). Additionally, visual
inspection of the funnel plot (Figure 11B) revealed an asymmetric
distribution, suggesting potential publication bias.

Sensitivity analysis
In the sensitivity analysis, the removal of any single study did

not affect the overall ES estimate for NSE, S100β, APACHE II,
GFAP, TAU, UCH-L1, SOFA, and mortality.
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FIGURE 7

Forest plot evaluates the association between serum neurogenic biomarker levels and TAU.

Discussion

SAE is an important complication of sepsis and requires critical
management. In this regard, several neurogenic biomarkers and
clinical severity scoring systems have been developed. To this
end, this updated meta-analysis evaluated a panel of neurogenic
biomarkers, including NSE, S100β, APACHE II, GFAP, TAU, UCH-
L1, SOFA, and mortality, to differentiate between sepsis patients
with and without encephalopathy. These biomarkers provide
valuable insights into the underlying SAE pathophysiology and
disease severity using the APACHE II and SOFA scoring systems.
Moreover, mortality rates were also evaluated and compared
between SAE and NE patients.

Accordingly, serum NSE levels were significantly elevated in
SAE patients compared to NE patients. NSE, an enolase isoenzyme
expressed in neurons, enters the bloodstream following neurogenic
injury (11). An excessive increase in released NSE indicates
neuroinflammation, which has important clinical implications.
Despite the high heterogeneity (I2 = 98.9%), the increase in NSE
was consistent across both age subgroups (<50 and >50 years)
in SAE patients, suggesting that the neurogenic injury is an age-
independent phenomenon. Similarly, despite high heterogeneity,

elevated NSE levels were also observed in NE patients across both
age subgroups (<50 and >50 years). This finding suggests that
neurological dysfunction may occur even in the absence of sepsis.
Furthermore, subgroup analysis demonstrated that elevated NSE
levels can be observed regardless of the timing of sample collection
(within 1 day or beyond 1 day after sepsis onset). These findings
suggest that elevated NSE levels may reflect neuroinflammation
during the acute phase and subsequent neurodegeneration during
the prolonged phase. We also explored the pediatric population,
though limited studies were available, and found that serum NSE
levels were significantly higher in the SAE group than in the NE
group, both in adults and children. Thus, there appears to be no
age limitation for the diagnostic value of serum NSE in SAE. This
finding is consistent with a previous study (15).

Pooled data showed that serum S100β levels were significantly
higher in SAE patients compared to NE patients. S100β is
predominantly expressed by astrocytes and is released into the
peripheral circulation in response to neurogenic injury (44).
Similarly, elevated serum levels of S100β have been widely
recognized as a surrogate marker of blood–brain barrier (BBB)
dysfunction, which plays an important role in the development of
neuroinflammation (45). Thus, increased S100β levels may serve
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FIGURE 8

Forest plot evaluates the association between serum neurogenic biomarker levels and UCH-L1.

FIGURE 9

Forest plot evaluates the association between serum neurogenic biomarker levels and APACHI.
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FIGURE 10

Forest plot evaluates the association between serum neurogenic biomarker levels and SOFA.

as a hallmark of BBB permeability. As indicated in the subgroup
analysis based on age groups, S100β levels were significantly
elevated in both younger (<55 years) and older (>55 years) adults,
in both SAE and NE groups, despite the presence of substantial
heterogeneity (I2 = 99.7%). This finding underscores that glial
response to sepsis may occur in all age groups. However, Weigand
et al. reported no significant difference in serum S100β between
sepsis survivors and non-survivors (46). Although Glasgow Coma
Scale (GCS) scores have been shown to be correlated with S100β

levels in the diagnosis of SAE (23), additional diagnostic approaches
and complementary methodologies are warranted to enhance
diagnostic accuracy and support the development of treatment
guidelines. In this regard, Cohen et al. introduced S100β as a marker
for cognitive dysfunction in SAE too (47). Similarly, Calsavara
et al. pointed to the possible association between serum S100β

and anxiety and depression in SAE individuals (48). Previous
studies have suggested a bidirectional association between S100β

and SAE, indicating that elevated S100β levels may contribute to
the development of SAE, while SAE itself may further elevate S100β

levels through an as-yet unknown mechanism. Zhang et al. found
that S100B may regulate mitochondrial dynamics through the
RAGE/ceramide pathway, which results in cognitive dysfunction
(49). Although each biomarker represents distinct mechanisms,
the combined evaluation of NSE and S100β may provide insights
into neuronal damage and blood–brain barrier disruption, which
contribute to increased sensitivity and efficacy of SAE diagnosis.

However, the combined analysis of these studies illustrated
increased levels of glial and neurogenic components, including

GFAP, TAU, and UCH-L1, in SAE compared to NE individuals. The
pronounced elevation of GFAP (WMD = 62.28; 95% CI: 45.42–
79.14) points to a key role for astroglial activation and injury in SAE
pathophysiology. This finding supports the possible use of GFAP
as a threshold indicator for severe SAE, pending further studies to
establish cut-off values. In addition, the consistent elevation of TAU
and UCH-1 reveals axonal and neuronal degeneration involved in
SAE pathophysiology.

Beyond neurogenic markers, clinical severity scores, including
APACHE II and SOFA, were significantly higher in patients with
SAE compared to NE individuals. These scoring systems are
recognized for assessing the extent of physiological dysfunction in
critically ill patients. The elevated scores observed in the SAE group
suggest that encephalopathy may be linked to greater systemic
severity, which may be driven by an increased inflammatory
condition or multi-organ failure. Encephalopathy indicates a poor
prognosis for patients suffering from sepsis (50). The elevated
levels of neurogenic biomarkers alongside clinical severity indices
such as APACHE II and SOFA highlight their role in the
disease burden.

Overall, significant differences were observed between SAE and
NE patients in studied outcomes, including NSE, S100β, and a
particularly larger effect size for GFAP, underscoring the evaluation
of the multi-biomarker panel approach. Future studies should
investigate whether the combined assessment of NSE + S100β +
GFAP can improve the sensitivity and specificity of SAE diagnosis
compared with single markers specifically. Similarly, well-designed
prospective studies are warranted to address this study gap and to
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FIGURE 11

Forest plot (A) and funnel plot (B) evaluate the association between serum neurogenic biomarker levels and death in patients.

validate the clinical utility of combined biomarker assessment in
SAE. Accordingly, such studies will help translate biomarker-based
panels into clinically applicable diagnostic tools.

In addition, the mortality rate was significantly lower in NE vs.
SAE. The high heterogeneity across studies may trigger controversy
over the results. As subgroup analysis provided further insights
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into age-related differences, mortality was significantly lower in
older adults (>55 years) than among SAE patients. Age-specific
physiological conditions and earlier recognition and treatment in
older individuals may be responsible for these differences in the
results. Whereas, mortality did not differ significantly across age
groups in NE patients. Moreover, the mortality rate was lower in
SAE individuals when sample collection was carried out more than
24 h after sepsis onset.

One of the strengths of this study is its evaluation of a
broader range of neurogenic and severity-scoring biomarkers,
offering a more comprehensive approach. However, this study
has some limitations too. First, the diagnostic criteria for sepsis
1.0 have high sensitivity with low specificity. Second, there was
considerable variability in the diagnostic criteria for SAE, which
may undermine the robustness of comparisons and contribute to
observed heterogeneity. It is recommended to use a standardized
diagnostic marker. Third, this study has potential publication
bias. Fourth, various assay methods, sample processing techniques,
and timing of sampling may introduce variability in the results
and deserve further elaboration in future research. Fifth, the
limited number of included studies and their small sample sizes
restrict the generalizability of findings, particularly for UCH-
L1, SOFA, and APACHE II scores, as well as NSE outcomes in
pediatric populations.

Conclusion

This study highlights promising pharmacological targets for
preventing SAE. In total, increased levels of common serum
neurogenic biomarkers and mortality were associated with SAE,
which may be useful in the diagnosis of SAE patients. The findings
for UCH-L1, SOFA, and APACHE II scores should be interpreted
cautiously, as they preliminarily suggest potential value but require
further validation in larger, well-designed studies.
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