
Frontiers in Neurology 01 frontiersin.org

Detailed evaluation of sleep 
apnea using heart rate variability: 
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Background: Sleep apnea is a common sleep disorder associated with 
high degree of autonomic dysfunction and increased cardiovascular risk. 
Traditional diagnostic methods such as polysomnography (PSG) are costly, 
time-consuming, and sometimes unavailable. Heart rate variability (HRV), 
a noninvasively assessable measure, is another promising method for the 
assessment of autonomic perturbations during apneas. The objective of this 
study was to investigate the extent to which features derived from single-lead 
ECG are capable of differentiating apnea from non-apnea states in time-domain, 
frequency-domain and nonlinear HRV features.

Methods: Analysis was done on 18 subjects from the PhysioNet Apnea-ECG 
database. After preprocessing to extract R-R intervals, the ECG signals were 
divided into 1-min epochs and classified as either apnea or non-apnea. Kubios 
software was used to extract HRV features, and one-way ANOVA was used for 
statistical comparison.

Results: The predictability of HRV features was analyzed using machine learning 
classifiers Random Forest and XGBoost. Sympathetic markers (VLF and LF/
HF) increased, while parasympathetic-related features (HF, RMSSD, SampEn) 
decreased during apnea (p < 0.05). Nonlinear features, including SampEn, 
showed high discriminatory performance (Cohen’s d = 2.93). The AUC of 
XGBoost model reached to 0.98, demonstrating the usefulness of the HRV 
features in precise apnea detection.

Conclusion: HRV parameters can efficiently reflect autonomic disruption 
induced by SAAs, especially nonlinear and frequency domain indices. Augmented 
by machine learning, HRV analysis is a powerful and scalable technique toward 
real-time, non-invasive screening of sleep disordered breathing that can 
be implemented in to wearable health technology and digital sleep medicine.
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1 Introduction

Sleep apnea is a frequent and potentially deadly sleep disorder that is not sufficiently 
recognized or treated across the world. It is defined by recurrent partial or complete 
obstruction of the upper airway during sleep, with drops in oxygen, breathing disturbances, 
and brief awakenings from sleep. Such events may impose severe stress on a number of 
physiological systems due to acute changes in intrathoracic pressure (ITP), broken sleep 
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structure, and cyclical episodes of hypoxemia-re-oxygenation (1, 2). 
ARDS comes in two forms: central sleep Apnea (CSA) is caused by 
damage to the brain or spinal cord, which prevents the respiratory 
center from operating, and obstructive sleep apnea (OSA) is the 
closure of the airway at the back of the throat during sleep. Most are 
attributed to OSA, which is relatively common in middle-aged and 
older adults (3, 4). Obesity, alcohol consumption, and craniofacial 
anatomy are the commonly associated modifiable risk factors for 
OSA. There are important clinical consequences of sleep apnea. A 
chain of pathophysiological mechanisms, such as systemic 
inflammation, oxidative stress, endothelial dysfunction, and 
autonomic nervous system (ANS) imbalance, is initiated as a result of 
cyclic episodes of nocturnal hypoxia and sleep fragmentation (5–7). 
These changes are also associated with several of cardiometabolic 
symptoms (systemic hypertension, coronary artery disease, heart 
failure, insulin resistance, metabolic syndrome, and cerebrovascular 
accident (CVA)) (8–10). Additionally, sleep apnea is often related to 
mood disorders, such as depression, cognitive dysfunction, all-cause 
mortality, and sudden cardiac death (11, 12). Recent studies have 
explored the use of deep learning for HRV-based sleep apnea severity 
estimation, highlighting the potential of advanced models in capturing 
subtle physiological patterns for disease stratification. Integrating such 
approaches with our HRV framework may further enhance predictive 
performance and clinical relevance (13). Since the disease is 
asymptomatic during waking hours and the standard diagnostic 
method, namely, overnight polysomnography (PSG), is a time-
consuming examination, however, diagnosis remains arduous even 
with these serious health-related issues. Although PSG is the reference 
standard, it is expensive, time-consuming, and not universally 
accessible, particularly in low-resource areas. For these reasons, an 
urgent need to find less expensive and more accessible diagnostic 
alternatives than the current PSG that accurately reflect the 
pathological changes associated with sleep apnea was prompted. One 
promising such surrogate is Heart Rate Variability (HRV), which is 
widely used as a non-invasive index of ANS activity. HRV refers to the 
cyclic variations in the time intervals between consecutive heartbeats 
(14–16). HRV provides important information on the autonomic 
disorder that sleep apnea syndrome is. One such potential surrogate 
is heart rate variability (HRV), the variability of the intervals between 
consecutive heartbeats, which has been utilized as a non-invasive 
measure of the ANS activity (14–16). HRV offers useful information 
about the autonomic deregulation inherent to sleep apnea. In the 
apnea phase, hypoxia and arousal induce sympathetic activation and 
vagal withdrawal, reflected in modified HRV profiles. A large number 
of analytical domains are available for assessing these autonomic 
shifts: frequency-domain parameters (e.g., VLF, LF, HF, and LF/HF) 
characterize the way autonomic power is distributed over different 
frequency bands, time-domain profile (e.g., SDNN, RMSSD, pNN50) 
represents the complexity of overall variability, and nonlinear 
parameters (e.g., ApEn, SampEn, SD1, SD2) characterize signal 
complexity and irregularity that offer a deeper understanding of the 
dynamic behavior of the cardiovascular system (17–22). The HRV 
features and definition used in this study are displayed in Table 1.

HRV changes in sleep apnea have been the subject of numerous 
studies, and the results consistently show elevated sympathetic indices 
(like LF and LF/HF ratio) and decreased parasympathetic markers 
(like HF and RMSSD). However, the existing literature is 
heterogeneous, with varying findings attributed to small sample sizes, 

inconsistent methodologies, and insufficient control for confounding 
variables (23–25).

Additionally, while frequency-domain analyses are more 
commonly employed, nonlinear HRV techniques—which are 
potentially more sensitive to subtle autonomic disturbances—remain 
underutilized. Furthermore, few studies have employed 
comprehensive statistical analyses to determine the reliability and 
discriminative power of HRV features across apnea and non-apnea 
conditions (26, 27).

In response to these gaps, the present study undertakes a 
comprehensive and statistically rigorous analysis of HRV metrics 
derived from ECG recordings of individuals experiencing sleep apnea. 
This investigation spans time-domain, frequency-domain, and 
nonlinear domains to capture a multidimensional view of autonomic 
modulation. Standardized techniques, including Fast Fourier 
Transform (FFT) and entropy-based algorithms, are utilized to extract 
HRV features, while robust statistical tests—such as one-way 

TABLE 1  Summary of heart rate variability (HRV) features across time 
domain, frequency domain, and nonlinear methods.

Feature Unit Description

Time domain features

SDNN ms
Standard deviation of all N.N. 

(normal-to-normal) intervals

rMSSD ms

Root mean square of 

successive differences between 

adjacent N.N. intervals

pNN50 %

Percentage of successive N.N. 

intervals differing by more 

than 50 ms

HRV Triangular Index -

Ratio of the total number of all 

N.N. intervals to the height of 

the histogram

Frequency domain features

VLF ms2
Very Low-Frequency power of 

HRV (0.0033–0.04 Hz)

LF ms2
Low-Frequency power of HRV 

(0.04–0.15 Hz)

HF ms2
High-Frequency power of 

HRV (0.15–0.4 Hz)

LF/HF Ratio -
Ratio of low-frequency power 

to high-frequency power

Nonlinear features

SD1 ms

Poincaré plot standard 

deviation perpendicular to the 

line of identity

SD2 ms

Poincaré plot standard 

deviation along the line of 

identity

ApEn -

Approximate entropy, 

quantifies regularity and 

complexity

SampEn -
Sample entropy, measures 

signal complexity
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ANOVA—are applied to evaluate the significance of changes between 
control and apnea states.

The ultimate objective of this study is to identify HRV features 
that are consistently associated with autonomic disruption during 
apnea episodes to improve the use of HRV as a diagnostic and 
monitoring tool in sleep medicine. The combination of classical and 
novel HRV indices offers new perspectives to study the 
cardiovascular-autonomic interactions during SDB. Furthermore, 
the results corroborate the increasing interest of HRV-based 
metrics for digital health applications, e.g., wearable biosensors and 
mobile health platforms, which provide scalable, non-invasive and 
real-time measurement of the SA severity in an out of 
clinic scenario.

2 Methods

2.1 Data source and subject selection

This study utilized the publicly available Apnea-ECG database 
from PhysioNet, which includes annotated single-lead ECG 
recordings from adults undergoing overnight monitoring for 
suspected sleep apnea (26, 27). To determine whether apnea or 
hypopnea episodes were present or absent, clinical professionals 
labeled each ECG signal minute by minute after it was sampled at 
100 Hz with 16-bit resolution.

This study chose a subset of 18 participants from the initial 35 
based on the following standards to guarantee data dependability and 
clinical relevance: An apnea-hypopnea index (AHI) of more than five 
events per hour is considered clinically significant apnea, as is a 
minimum signal duration of 8 h to capture adequate variability across 
sleep cycles and adequate signal quality for precise R-peak detection.

With a mean age of 45 and a mean BMI of 28 kg/m2, the final 
cohort was deemed overweight, a known risk factor for obstructive 
sleep apnea (OSA) (20). This selection ensured the inclusion of 
individuals likely to exhibit meaningful autonomic dysfunction during 
apnea episodes.

2.2 Signal preprocessing

Strong signal preprocessing was required in order to minimize 
noise and to optimize HRV analysis precision. A notch filter was 
initially applied to suppress powerline interference at 50 Hz, then 
subsequently high-pass filtered for removal of the baseline wander. 
Moreover, the R-peak detection was performed based on the threshold 
algorithm built on the Welch periodogram that approximates the 
power spectral density, in order to improve detection precision, 
particularly in long-duration, noisy and morphologically varied 
recordings (10). Following R-peak detection, R-R intervals were 
computed to construct the HRV time series. The signals were 
segmented into 1-min, non-overlapping epochs—a resolution shown 
to effectively capture autonomic changes while maintaining 
computational efficiency (17). Each epoch was labeled as “apnea” or 
“non-apnea” based on corresponding clinical annotations. Epochs 
containing either apnea or hypopnea events were collectively labeled 
as apnea-positive, in line with the apnea-hypopnea index (AHI) 
used clinically.

2.3 HRV feature extraction

To comprehensively capture autonomic nervous system (ANS) 
activity, the study extracted HRV features across three primary 
domains using Kubios HRV Premium v2.2, a validated platform 
widely used in both research and clinical contexts (17).

These included SDNN (standard deviation of NN intervals), 
RMSSD (root mean square of successive differences), pNN50 
(percentage of successive intervals differing by >50 ms), and the HRV 
Triangular Index. These features primarily reflect overall heart rate 
variability and vagal (parasympathetic) modulation. Reduced time-
domain metrics during apnea indicate parasympathetic withdrawal—a 
pattern confirmed in this study.

Power within VLF (0–0.04 Hz), LF (0.04–0.15 Hz) and HF (0.15–
0.4 Hz) was estimated using spectral decomposition analysis with Fast 
Fourier Transform (FFT). The LF/HF, as a measure of sympathovagal 
balance, was also determined (28, 29). Apneic events were generally 
marked by high sympathetic tone (as evidenced by increased LF/HF) 
and low parasympathetic modulation (represented by low HF), which 
was in agreement with our result.

The study included SD1 and SD2 (Poincaré plot descriptors) along 
with Approximate Entropy (ApEn) and Sample Entropy (SampEn). 
These metrics capture the complexity and irregularity of the R-R 
interval series. Entropy-based measures are especially sensitive to 
nonlinear and dynamic alterations in heart rate regulation (18, 30), 
which become dampened under stress or pathophysiological states 
like apnea. In our results, entropy features demonstrated high 
discriminative power and statistical significance, affirming their value.

2.4 Statistical analysis

One-way ANOVA analysis was used to determine whether or not 
the HRV features for the apnea epochs and the non-apnea epochs are 
different. The zero exposure hypothesis was that the mean feature 
value was the same across conditions. A p-value of 0.05 was used as 
the threshold of statistical significance. This validates the anticipated 
autonomic shifts during the apnea episodes, evidenced by large 
decreases in parasympathetically-associated variables (HF, SampEn) 
and increases in sympathetically- or stress-associated variables (VLF, 
LF/HF) (5). All analyses were implemented in MATLAB R2017a; 
enabling reproducibility and compatibility with preprocessing routines.

2.5 Machine learning classification

To explore the predictive utility of HRV features, we implemented 
a supervised machine learning framework. The labeled HRV dataset 
was divided into training (80%) and testing (20%) subsets using 
stratified random sampling to preserve class proportions.

Before training, feature standardization was applied (zero mean, 
unit variance). Four popular classifiers were evaluated due to their 
proven effectiveness in physiological data modeling Logistic 
Regression, Support Vector Machine (SVM), Random Forest, and 
XGBoost (34, 35).

Five-fold cross-validation performance on the training set was 
used to select the model. The performance was also calculated for test 
set’s metrics such as F1-score, AUC-ROC, recall, accuracy, and 
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precision. In addition, nonlinear and spectral features (e.g., SampEn, 
VLF, HF) were important to classification accuracy as measured by 
feature importance scores in ensemble models, and aligned well with 
statistical findings as well as the physiology.

2.6 Integration of statistical and predictive 
insights

By combining traditional statistical methods with machine 
learning, this study bridges the gap between group-level inference and 
individual-level prediction. While ANOVA identified features with 
significant mean differences between apnea and control states, 
machine learning assessed their ability to discriminate apnea epochs 
in real time. This two-pronged strategy makes HRV analysis more 
comprehensible as well as more applicable.

Furthermore, the statistically significant statistically significant 
(and of course biologically meaningful) features (such as the decreased 
SampEn, increased VLF and LF/HF ratios) seem to have a high 
predictive power also, indicating not only significance but also 
practical usefulness of HRV metrics in screening and monitoring 
applications. These results provide the basis for the design of wearable, 
real-time diagnostic systems for sleep apnea, based on physiological 
and data-driven validation.

2.7 Ethical considerations

This study used data from the publicly available Apnea-ECG 
database hosted on PhysioNet (26, 27). The original data collection 
was approved by the Institutional Review Board (IRB) of the 
University of Quebec at Montreal (approval no. IRP-2001-10-02), 
with protocols also reviewed and approved at participating 
institutions including McGill University (Montreal, Canada) and 
CHU de Bordeaux—Hôpital du Haut-Lévêque (Pessac, France). All 
participants provided written informed consent prior 
to enrollment.

Prior to publication at PhysioNet, all data sets were anonymized 
and scrambled to ensure privacy protection of the patients. The study 
was conducted in accordance with the ethical principles of the 
Declaration of Helsinki for research involving human subjects. The 
original study, although not prospectively registered, was done in 
accordance with contemporary ethical standards when the trial was 
initiated. For more information on the Apnea-ECG database, visit 
PhysioNet at: https://physionet.org/content/apnea-ecg/1.0.0/.

3 Results

Table  2 summarizes the demographic characteristics of study 
participants. Data are presented as mean ± standard deviation, except 
for gender distribution.

3.1 Sleep apnea duration and indexes

The mean total duration of monitoring for the subjects is 
presented in Table 3 (491 ± 5.3 min). The average A.I. was 21.8 ± 4.0, 

and the average H.I. was 6.1 ± 1.6. Of that duration, 186 ± 29 min 
(approx. 38%) showed episodes of apnea.

3.2 HRV feature analysis

3.2.1 Linear and non-linear HRV features
Summary mean HRV parameters during apnea and control are 

presented in Table 4. A prominent reduction in HF (11 1.0 vs. 8.4 1.0, 
p 0.05) and LF (24 2.0 vs. 18 1.7, p 0.05) was noted, denoting 
autonomic imbalance and parasympathetic withdrawal during apnea. 
Similarly, VLF (62 ± 2.4 vs.72 ± 2.4, p < 0.05) also increased 
significantly, representing a sympathetic activation. Finally, non-linear 
measures which demonstrate reduced data complexity with apnea are 
ApEn and SampEn (0.93 ± 0.04 and 0.8 ± 0.05, respectively).

3.2.2 Visualizations and statistical insights
Figure  1 expresses relevant features of the HRVs plotted in a 

groupwise manner; statistically significant differences between 
controls and in apnea are shown. During apnea, LF and HF power 
decreased, and VLF power doubled—in line with previously described 
mechanisms regulating HF power and LF power in response to IHO.

Figure 2 illustrates the relative change in each HRV metric from 
control to apnea conditions. Metrics such as VLF and LF/HF ratio 
increased (green bars), while HF and RMSSD decreased (red bars), 
further confirming the autonomic shift.

Table 5 compares the calculated HRV measures during control 
and apnea. The pNN50, RR Triangular Index, VLF, LF, HF, LF/HF 
ratio, ApEn and SampEn differed significantly (p < 0.05) between the 
two groups. More importantly, VLF, LF, HF and SampEn reached large 
to very large effect sizes (Cohen’s d > 0.8), which provides evidence of 
a marked autonomic modulation during apnea episodes. The increase 
in VLF and decrease in HF and SampEn are consistent with 
heightened sympathetic activation and reduced parasympathetic and 

TABLE 2  Subject demographics.

Parameter Value

Gender
Male: 22 (63%)

Female: 13 (37%)

Age 45 ± 1.8 years

Weight 86 ± 3.5 kg

Height 175 ± 0.9 cm

BMI 28 ± 1.0 kg/m2

TABLE 3  Subjects’ apnea information.

Apnea information Data

Length 491 ± 5.3 min

Non-Apnea 305 ± 26 min

Apnea 186 ± 29 min

Hours with Apnea 5.0 ± 0.6 h

Apnea Index (A.I.) 21.8 ± 4.0

Hypopnea Index (H.I.) 6.1 ± 1.6

Apnea-Hypopnea Index (A.H.I.) 28 ± 4.6
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complexity-related modulation. These findings underscore the 
discriminative power of specific linear and nonlinear HRV parameters 
in differentiating apnea from non-apnea states.

Figure 3 presents a PCA plot of HRV features, revealing distinct 
clustering between apnea and control groups. This separation validates 
the discriminative power of HRV metrics for apnea detection.

3.3 Machine learning interpretability and 
performance

Figure  4 shows feature importance rankings from a Random 
Forest model. VLF, HF, and SampEn emerged as the most predictive 
features, aligning with physiological findings.

Figure 5 shows the ROC curves of XGBoost and RF classifiers. The 
best performing model was XGBoost with an AUC of 0.98 compared 
to 0.91 for Random Forest indicating good sensitivity and specificity 
for discriminating apneas from awake HRV data. In addition to the 
reported AUC of 0.98 with XGBoost in the classification task, the 
model has a recall of 0.96, precision of 0.95 and F1-score of 0.955 on 
the testing dataset, which exhibits balanced and high classification 
performance in terms of standard evaluation metrics.

3.4 Temporal and epoch-based HRV trends

Figure  6 provides time series plots for selected HRV metrics 
(RMSSD, LF/HF, HF), with shaded areas indicating apnea episodes. 
Expected shifts—reduction in HF and RMSSD and an increase in LF/
HF—occur during apnea, reinforcing the temporal consistency of 
autonomic disturbances.

4 Discussion

The present study conducted a comprehensive evaluation of heart 
rate variability (HRV) features derived from ECG signals to assess 
autonomic dysfunction in individuals with sleep apnea. Using the 

PhysioNet Apnea-ECG database and applying a combined statistical 
and machine learning (ML) approach, this study identified significant 
alterations in HRV metrics across time, frequency, and nonlinear 
domains between apnea and control states.

Characteristics of the cohort The cohort was composed of 
demographically middle-aged participants (mean age, 45 years; BMI, 
28 kg/m2), who were representative of a population at increased risk 
for OSA (20), as described in Table  2. Based on Table  3, most 
participants were categorized as moderate to severe apnea and an 
average Apnea-Hypopnea Index (AHI) was 28 ± 4.6. This provided a 
clinically relevant setting for HRV to be studied in. In the time domain 
HRV parameters, i.e., pNN50 and RMSSD, were reduced in the apnea 
condition. pNN50 reached statistical significance (p = 0.0225), 
showing decreased vagal modulation during apneas. The HRV 
Triangular Index was also significantly lower (p = 0.0001), indicating 
a reduced total variability.

These comparisons are in agreement with reports in the literature 
of parasympathetic withdrawal to IH and arousals (5, 8, 16). Significant 
differences were obtained through frequency-domain analysis. High 
frequency (HF) power, an important measure of parasympathetic tone, 
was markedly lowered during apnea (p < 0.0001; Cohen’s d = 2.96; see 
Table 5; Figures 1, 2). VLF: very-low-frequency; LF: low frequency; HF: 
high frequency; SD: standard deviation. LF power decreased 
significantly (p < 0.0001; d = 3.44). However, this decrease was less 
marked in lighter subjects (body weight < 60 kg), who showed no 
significant change (−9.57 ± 27.73 nu), as compared to heavier subjects 
(−38.9 ± 10.4 nu) (p < 0.0001; d = 6.21; Fig. X). A Sympathovagal 
imbalance was suggested by an elevated LF/HF ratio (p = 0.0109). 
These findings are consistent with previous physiological responses to 
apneic stimuli (7, 8, 16). Nonlinearity metrics were associated with 
biased value. Both SampEn and ApEn decreased with apnea, the 
difference between SampEn and ApEn was very significant (p < 0.0001; 
d = 2.93). These reductions reflect a diminishing of complexity and 
flexibility of the cardiac control, a characteristic of stress-induced 
autonomic dysfunction (18, 30).

This implies that non-linear characteristics are the most 
responsive to autonomic alterations related to sleep-disordered 
breathing. This discriminative utility of HRV features was also 
confirmed by PCA shown in Figure 3, demonstrating that control and 
apnea epochs are separated in a space defined by these features with a 
relatively high accuracy. Interpretability analysis of machine learning 
(Figure  4) showed nonlinearity (SampEn), VLF and HF as the 
strongest predictors for Random Forest models. Receiver operating 
characteristic (ROC) curves presented in Figure 5 indicated good 
classification performance, in which XGBoost provided an AUC value 
of 0.98 and was superior to Random Forest (0.91). These findings 
emphasize the application value of HRV characteristics for the 
automatic apnea recognition (11, 12).

Temporal analyses further reinforced these trends. Figure  7 
illustrated consistent shifts in HRV metrics across epochs, with apnea 
periods showing elevated VLF and LF/HF and reduced HF and 
complexity-related metrics. Figure  6 showed time series plots of 
RMSSD, LF/HF, and HF, with shaded apnea regions reflecting 
expected HRV shifts during apneic episodes. These consistent patterns 
validate the robustness of HRV alterations over time.

The study identified statistically significant reductions in 
parasympathetic and complexity-related HRV metrics and elevations 
in sympathetic activity markers during apnea. These findings support 

TABLE 4  HRV attributes in control and apnea situations.

Feature Control Apnea Trend

SDNN 98 ± 8.7 102 ± 13 ↑

RMSSD 58 ± 4.8 53 ± 9.2 ↓

pNN50 12 ± 3.1 11 ± 3.3 ↓

RR Trin 25 ± 2.4 22 ± 2.6 ↓

VLF 62 ± 2.4 72 ± 2.4* ↑

LF 24 ± 2.0 18 ± 1.7* ↓

HF 11 ± 1.0 8.4 ± 1.0* ↓

LF/HF 2.3 ± 0.2 2.5 ± 0.2 ↑

SD1 41 ± 3.4 37 ± 6.4 ↓

SD2 132 ± 12 140 ± 17 ↑

ApEn 0.98 ± 0.03 0.95 ± 0.04 ↓

SampEn 0.93 ± 0.04 0.8 ± 0.05 ↓

*Significant difference between control vs. apnea (p < 0.05).
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HRV’s role as a sensitive biomarker for autonomic dysregulation in 
sleep apnea and underscore its potential in wearable, real-time 
diagnostic tools. Although this study has demonstrated the clinical 
value of HRV parameters for detecting autonomic dysfunction related 
to sleep apnea, several limitations should be  acknowledged. The 
current study utilized a binary classification approach (apnea vs. 
non-apnea) for model development.

Future work will incorporate apnea severity stratification to 
enhance clinical utility and align predictions with the full spectrum of 
disease severity. Additionally, the lack of external validation on 
independent datasets is a limitation, and future studies will aim to 
evaluate the model on external and multicenter cohorts to confirm 
robustness and generalizability. The study employed one-way ANOVA 
and standard 5-fold cross-validation, which do not explicitly capture 

temporal dependencies or intra-subject variability inherent in 
physiological time-series data. Future work will explore advanced 
modeling techniques, such as mixed-effects models and sequence-
based deep learning, to address these dependencies. While the study 
suggests real-time applicability of HRV-based apnea detection, no 
evaluation of model inference time, computational efficiency, or 
hardware deployment feasibility was conducted. These facets will 
be investigated in future work for real-world deployment validation, 
such as wearable or low-resource devices.

First, only one database (PhysioNet Apnea-ECG as an open-
source without multicenter validation) was used in the study, the 
results lack the generalization ability. Second, a small number of cases 
(n = 18) were used in the study, which restricted the generalizability 
of the findings to other clinical populations. Third, the sample was 

FIGURE 1

HRV features (control vs. apnea).

FIGURE 2

Relative change in HRV features (apnea vs. control).
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homogeneous demographically in terms of age, race, and 
comorbidities. To de-emphasize these limitations, in future, large 
multicenter demographically balanced cohorts can be used to confirm 
the robustness and clinical utility of HRV based sleep apnea detection. 
First, demographics of the study are homogeneous for its diversity 
reflection, as the age, BMI, and without the broader racial diversity 
and comorbidities of the participant population. Further studies are 
needed to overcome these limitations with larger, multicenter, and 
more diverse cohorts to confirm the robustness and practicality of 
HRV-based sleep apnea detection.

The defining feature of sleep apnea is recurrent partial or complete 
obstruction of the upper airway, which leads to intermittent hypoxia, 
hypercapnia, and sleep fragmentation. Similarly, specific HRV 
patterns have been related to acute and chronic changes in ANS 
function as a consequence of these physiologic stresses (1, 5, 6). 
Parasympathetic withdrawal, mainly through vagal inhibition, is 
indicated by the notable decrease in high-frequency (HF) power 
during apnea episodes (Table  5). Suppression of HF is a sign of 
decreased parasympathetic input during apneic stress because it is a 
reflection of respiratory sinus arrhythmia and is intimately associated 
with vagal tone (6, 7). An additional indication of this autonomic 
imbalance is the rise in the low-frequency to high-frequency ratio 
(LF/HF), a proxy for sympathovagal balance. A higher LF/HF ratio 
during apnea denotes heightened sympathetic dominance, consistent 
with findings from both physiological and clinical studies (7, 16).

The observed increase in very-low-frequency (VLF) power during 
apnea (mean 72.25 vs. 61.79, p < 0.0001; Cohen’s d = −4.47) is 
particularly notable (Table 5). VLF is believed to reflect long-term 
regulatory mechanisms including thermoregulation, hormonal 
influences, and particularly sympathetic activation via renin-
angiotensin and inflammatory pathways. During apneic episodes, 
hypoxemia triggers chemoreceptor-mediated sympathetic surges, 
leading to vasoconstriction, elevated blood pressure, and increased 
VLF activity (5, 10). This suggests that VLF may serve as a biomarker 
for sympathetic overdrive during sleep-disordered breathing.

The reductions in nonlinear HRV features—Sample Entropy 
(SampEn) and Approximate Entropy (ApEn)—further reflect 

autonomic rigidity and reduced complexity of cardiovascular control 
during apnea. In physiological terms, lower entropy values indicate a 
loss of adaptability and reduced responsiveness of the cardiac system 
to environmental and internal stimuli. Pathological conditions like 
diabetes, heart failure, and severe autonomic dysfunction frequently 
exhibit these alterations (17, 18, 30). Their inclusion in this group 
emphasizes how profoundly sleep apnea affects autonomic control.

During apnea, time-domain metrics that are primarily 
impacted by parasympathetic input, like pNN50 and RMSSD, also 
decreased. These results support a well-established phenomenon 
in the pathophysiology of sleep apnea: the transition from vagal 
to sympathetic dominance (6, 21). The overall decrease in 
variability during apneic episodes is further demonstrated by the 
decreased HRV Triangular Index, which suggests a blunted 
cardiovascular adaptability under autonomic stress. In addition to 
serving as indicators of the severity of the condition, the 
cumulative effects of these autonomic changes are also linked to 
the etiology of cardiovascular problems like systemic 
hypertension, arrhythmias, heart failure, and sudden cardiac 
death that are frequently linked to sleep apnea (5, 7, 8). Vascular 
pathology is accelerated by the combination of endothelial 
dysfunction, sympathetic overactivation, and repetitive hypoxia, 
which results in a chronic pro-inflammatory and pro-oxidative 
state (6, 16).

Further, the episodic arousals and mechanical stresses imposed 
by apneas produce instantaneous shifts in intrathoracic pressures 
that compound the cardiovascular challenge of the respiratory load. 
This dynamic autonomic stress is evidenced by the short-term 
variability contained in HRV features (i.e., fHRV), stressing the 
physiological dimension of HRV as a not only diagnostic means, but 
also as a mirror of systemic cardiovascular burden. The HRV 
alterations in the present study-version, such as the decreased HF, 
RMSSD, and entropy parameters, and increased VLF and LF/HF, 
are in accordance to the pathophysiological framework of 
sympathetic overactivity and parasympathetic disbalance 
throughout sleep apnea phenomena. These results suggest that HRV 
could be a useful non-invasive biomarker for evaluating autonomic 
impairment and help guide treatment monitoring and risk 
stratification in patients with OSA. Previous studies of HRV in sleep 
apnea have reported consistent findings of disturbed cardiac 
autonomic control, including decreased parasympathetic activity 
and increased sympathetic control. Yet, these studies are frequently 
marred by methodological shortcomings like small sample sizes, 
inefficient feature extraction, heterogeneous preprocessing 
protocols or inadequate statistical verification (23–25). Instead, the 
current study presents a complete and improved methodology to 
evaluate HRV slopes in sleep apnea based on signal processing 
techniques, detailed feature extraction and machine learning 
methods (31–33).

One of the key distinctions lies in the breadth of HRV features 
analyzed. Earlier studies have primarily relied on time-domain and 
frequency-domain metrics—for instance, reduced RMSSD and HF, 
and elevated LF/HF were frequently observed during apneic 
episodes (6, 16, 24). The proposed study not only confirmed these 
classical patterns (e.g., significant decrease in HF and increase in LF/
HF) but also incorporated nonlinear dynamics (e.g., SampEn and 
ApEn), which were shown to have stronger discriminative power 
(Cohen’s d = 2.93 for SampEn) (Table 6). Nonlinear analysis remains 

TABLE 5  Comparison of heart rate variability (HRV) features between 
control and apnea groups.

Feature Control 
mean ± 

SD

Apnea 
mean ± SD

p-value Cohen’s 
d

SDNN 97.81 ± 6.50 101.01 ± 13.66 0.3505 −0.30

RMSSD 56.29 ± 4.55 54.38 ± 8.54 0.3825 0.28

pNN50 10.08 ± 3.20 12.35 ± 2.82 0.0225 −0.75

RR Trin 25.14 ± 1.99 21.82 ± 2.83 0.0001 1.36

VLF 61.79 ± 2.05 72.25 ± 2.59 <0.0001 −4.47

LF 24.97 ± 2.49 18.11 ± 1.33 <0.0001 3.44

HF 11.30 ± 0.79 8.66 ± 0.98 <0.0001 2.96

LF/HF 2.29 ± 0.22 2.44 ± 0.14 0.0109 −0.85

SD1 40.41 ± 2.80 38.67 ± 6.14 0.2581 0.36

SD2 132.43 ± 9.84 138.61 ± 14.14 0.1169 −0.51

ApEn 0.98 ± 0.03 0.94 ± 0.06 0.0021 1.04

SampEn 0.94 ± 0.05 0.80 ± 0.05 <0.0001 2.93
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underutilized in much of the literature, despite its sensitivity to 
autonomic and complexity changes under pathophysiological 
conditions (18, 30).

From a data perspective, earlier works often lacked high-
resolution annotations or used synthetic datasets. In contrast, this 
study utilized the PhysioNet Apnea-ECG database, which contains 
clinically annotated minute-by-minute apnea events based on full 
overnight monitoring (26, 27). This allowed the authors to segment 
ECG data into precise 1-min epochs, improving temporal resolution 
and statistical power—an approach rarely adopted with such rigor in 
earlier research.

The signal preprocessing pipeline used in the proposed study also 
represents an improvement. By applying high-pass filtering, notch 
filtering, and Welch periodogram-based R-peak detection, the authors 
addressed common ECG artifacts and enhanced R-R interval 
accuracy. In contrast, prior studies often applied basic peak detection 

methods that are prone to error, particularly in noisy overnight 
recordings (4, 10).

Importantly, while earlier work such as Baharav et al. and Zhang 
et  al.(24, 25) focused primarily on descriptive or threshold-based 
methods for apnea detection, the current study integrated statistical 
testing (ANOVA) with machine learning models (Random Forest, 
XGBoost) to validate feature relevance. As shown in Figure  5, 
XGBoost achieved an AUC of 0.98, exceeding typical classification 
performance reported in previous literature (usually ranging between 
0.80–0.90) (34, 35).

Another significant advancement is the interpretability of the ML 
models. Feature importance rankings (Figure  4) validated 
physiological expectations—highlighting VLF, HF, and SampEn as top 
predictors—bridging the gap between clinical insight and algorithmic 
decision-making. Few prior studies have provided such integration 
between physiological validity and predictive modeling (19, 35).

FIGURE 3

PCA of HRV features.

FIGURE 4

Feature importance (Random Forest).
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The proposed work demonstrated the temporal consistency of 
HRV changes across sleep epochs (Figures 6, 7), offering stronger 
evidence of autonomic disruption during apnea. This is in contrast to 
prior studies that primarily averaged HRV over entire nights, 
potentially missing transient but clinically relevant events (25). These 
improvements establish HRV as a feasible and non-invasive diagnostic 
tool for sleep apnea that could be incorporated in wearable devices for 
health monitoring and real time control systems. In contrast, sleep 
apnea, especially obstructive sleep apnea (OSA), represents a common 
but underdiagnosed sleep disorder with significant public health 

relevance. It is estimated that this syndrome affects 9–38% of the adult 
population worldwide and it has a strong correlation with chronic 
diseases such as hypertension, obesity, CVD, stroke, diabetes, 
cognitive deterioration, and depression (5–8).

However, despite these severe consequences, a large number of 
OSA are undiagnosed because the standard tools diagnose the OSE 
are polysomnography (PSG), also which is costly, laborious, and not 
universally available, includes under resourced countries (2, 14, 15). 
This work overcomes these diagnostic shortcomings by validating 
HRV as a non-invasive, inexpensive and scalable marker for 
autonomic disruption due to OSA. Through observing substantial 
variations in both conventional (e.g., HF, LF/HF) and new (e.g., 
SampEn, ApEn) HRV parameters during apneic episodes, the work 
substantiates the premise for wearable or remote monitoring devices 
for real-time detection of sleep-disordered breathing (15, 20). Such 
systems can change the landscape of SDB diagnostics, from in lab to 
at-home procedures, making it more available and compliance-
friendly. The added value to digital health is the use of machine 
learning (ML) algorithms in our study. The high (XGBoost AUC: 0.98) 
classification accuracy and interpretability of the generated ML 
models demonstrate that automated HRV-based screeners are able to 
accurately distinguish apnea and non-apnea states, providing clinical 
decision support to sleep physicians and general practitioners alike 
(34, 35). The model’s high AUC of 0.98 was supported by a recall of 
0.96, precision of 0.95, and an F1-score of 0.955, underscoring its 
strong and balanced performance.

These tools are especially useful to control high risk population, 
like obesity, resistive hypertension of heart failure, where its precocious 
identification may substantially avoid morbidity and mortality (6, 8, 
20). Furthermore, continuous HRV monitoring allows for longitudinal 

FIGURE 6

Time series of selected HRV metrics.

FIGURE 5

Receiver operating characteristic (ROC) curve analysis for XGBoost 
and Random Forest.
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measurement of disease progression and treatment response, making 
it a key component in the assessment of the efficacy of interventions 
like CPAP therapy. Historic follow-up is often missing such 
physiological feedback; through HRV analyses, such a gap could 
be addressed toward personalized and dynamic care pathways. From 
the standpoint of public health, the early and easy detection of sleep 
apnea could help reduce the burden on healthcare systems by avoiding 
downstream comorbidities and hospitalization, and creating a positive 
impact on QoL for millions of undiagnosed patients (8, 23).

Furthermore, as HRV can be  monitored by commercially 
available ECG or photoplethysmography (PPG) sensors, it is 
economically viable for broad usage. This work constitutes a 
meaningful step forward in the sleep medicine literature by 
providing HRV with a high level of validity as a stand-alone, 
interpretable, and deployable biosignal in the context of sleep 
apnea. Its applications range from clinical to technological to public 
health, all of which support more inclusive, efficient, and patient-
centric care models.

FIGURE 7

Simulated HRV feature trends across epochs.
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Prospective studies studying 24-h HRV profile variations may 
help gaining better understanding of chronic autonomic load 
attributable to sleep apnea. Moreover, although the study had 
employed one-way ANOVA and machine learning models in feature 
selection and classification, a more advanced statistical approach (e.g., 
mixed-effects models or deep learning) can better handle robustness, 
especially in considering intra-subject variability and the temporal 
dynamics of the data (34, 35). The effect of clinical interventions on 
HRV metrics such as continuous positive airway pressure (CPAP) 
therapy was also never evaluated. In future, it would be interesting to 
study HRV changes before and after treatment as HRV is another 
non-invasive tool for evaluating adherence to treatment. Finally, while 
machine learning models such as XGBoost achieved high classification 
accuracy (AUC = 0.98), external validation on independent clinical 
datasets are warranted for deployment in clinical practice. The 
performance of the model has to be assessed in real time in wearable 
applications, as noise and signal quality can drastically affect reliability.

While this study demonstrates the potential of HRV features 
extracted from ECG signals for detecting autonomic dysfunction 
during sleep apnea, several limitations warrant discussion. First, the 
analysis was conducted on a relatively small, demographically 
homogeneous cohort (n = 18) from a single open-source database 
(PhysioNet Apnea-ECG). This may limit the generalizability of the 
findings to broader clinical populations with diverse age, race, and 
comorbidity profiles. Future studies should incorporate larger, 
multicenter datasets to validate the robustness and applicability of 
HRV-based apnea detection across diverse clinical environments.

Second, the analysis relied solely on single-lead ECG-derived HRV 
features, which, while practical for wearable implementation, may not 
capture the full complexity of cardiorespiratory interactions. Future 
research should consider integrating multimodal physiological signals, 
such as respiratory effort, oxygen saturation, and photoplethysmography 
(PPG), to enhance detection sensitivity and specificity. Incorporating 
these modalities may provide a more comprehensive assessment of 
sleep-disordered breathing and improve clinical utility (15, 25).

Third, while machine learning models (e.g., XGBoost) 
demonstrated high classification performance (AUC = 0.98), the 
models have not yet been validated on independent external 
datasets or under real-world wearable conditions where signal 
quality and noise may impact performance. Future work should 
include prospective validation on independent cohorts and real-
time deployment tests on wearable platforms to evaluate 
computational efficiency, inference latency, and robustness under 
various conditions.

Additionally, the current binary classification approach (apnea vs. 
non-apnea) does not capture the severity spectrum of sleep apnea. 
Future studies should explore severity stratification using HRV and 
multimodal signals to provide clinically actionable insights aligned 
with apnea-hypopnea index (AHI) categories. Longitudinal HRV 
monitoring should also be investigated to evaluate treatment response 
and disease progression, particularly in patients undergoing CPAP 
therapy or other interventions.

Lastly, while traditional statistical methods and machine 
learning models were employed in this study, advanced analytical 

TABLE 6  Comparison of previous studies and the proposed study.

Aspect Previous Studies Proposed Study References

Data source
Small cohorts or synthetic datasets; 

limited annotation granularity

18 subjects from PhysioNet Apnea-

ECG, annotated minute-by-minute
(1, 2, 25)

Feature domains
Mostly time- and frequency-domain 

HRV features

Includes time-domain, frequency-

domain, and nonlinear features (e.g., 

SampEn, ApEn)

(6, 8–10)

Signal preprocessing
Basic R-peak detection; minimal 

filtering

Advanced filtering and Welch 

periodogram-based R-peak detection 

for accuracy

(4, 10, 17)

Statistical analysis
Limited or no rigorous statistical 

validation

One-way ANOVA and Cohen’s d for 

effect size on all features
(10, 16, 21)

Nonlinear metrics Rarely included

Key part of analysis, showed highest 

discriminative power (e.g., SampEn, 

d = 2.93)

(8, 9, 18)

Classification methods
Threshold-based or basic classifiers 

(e.g., logistic regression)

Machine learning models: XGBoost 

(AUC = 0.98), Random Forest 

(AUC = 0.91)

(11, 12)

Model interpretability Not emphasized

Feature importance analysis matches 

physiological expectations (VLF, HF, 

SampEn)

Figure 4

Temporal resolution HRV averaged over long periods
Epoch-by-epoch (1-min) analysis 

improves granularity
Figures 6, 7

Validation
Rarely conducted or single-layer 

validation

Combined statistical and predictive 

validation for robust conclusions
Full Results and Discussion sections

Practical application
Lacks integration with wearable 

technology

Advocates for real-time wearable 

diagnostics, supported by scalable, 

validated HRV features

(15, 20, 21)
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approaches such as sequence-based deep learning and mixed-
effects models could better capture intra-subject variability and 
temporal dependencies inherent in physiological signals. Future 
research should incorporate explainable AI (XAI) frameworks to 
enhance transparency and clinical interpretability of automated 
decisions, fostering trust in HRV-based screening tools for 
sleep medicine.

By addressing these limitations, future work can advance the 
development of real-time, multimodal, and wearable systems for sleep 
apnea detection and monitoring, supporting the integration of 
HRV-based diagnostics into personalized and scalable digital sleep 
health solutions.

5 Conclusion

The study have shown that HRV features extracted from ECG 
recordings constitute a non-invasive tool for sensing autonomic 
activity for SA. We found significant differences for HF, RMSSD and 
SampEn (decrease) and VLF and LF/HF (increase) between the 
apnea and non-apnea states based on an extensive pool of time- and 
frequency-domain and nonlinear HRV features. These alterations 
were consistent with the central pathophysiological change, i.e., a 
movement toward sympathetic dominance and diminished 
cardiovascular complexity in apnea. Further, the high classification 
performance of ML algorithms (AUC = 0.98 for XGBoost) when 
combined with a strong statistical analysis, not only, endorse the 
relative importance of HRV features (both SampEn and VLF, in 
particular) in separating s/pIUGR from c/pIUGR s, but also, 
highlights their clinical relevance. The research also demonstrated 
that nonlinear parameters are more sensitive to subtle autonomic 
disturbances not detected by standard HRV parameters. Using public 
ECG databases and common analysis methods, the results advocate 
for HRV-based diagnostics as a feasible and affordable alternative to 
conventional polysomnography. This is especially beneficial for 
resource-constrained environments and provides a basis for future 
real-time sleep apnea detection and monitoring in wearable health 
devices. While limited in the generalizability of outcomes to clinical 
populations, this study contributes to the development of a digital 
sleep medicine framework by demonstrating the measurement 
validity of HRV as a physiological marker and practical tool for apnea 
detection, lending support for emerging data-driven and patient-
centered solutions for sleep health management.
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