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Detailed evaluation of sleep
apnea using heart rate variability:
a machine learning and statistical
method using ECG data

Eyad Talal Attar*

Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz
University, Jeddah, Saudi Arabia

Background: Sleep apnea is a common sleep disorder associated with
high degree of autonomic dysfunction and increased cardiovascular risk.
Traditional diagnostic methods such as polysomnography (PSG) are costly,
time-consuming, and sometimes unavailable. Heart rate variability (HRV),
a noninvasively assessable measure, is another promising method for the
assessment of autonomic perturbations during apneas. The objective of this
study was to investigate the extent to which features derived from single-lead
ECG are capable of differentiating apnea from non-apnea states in time-domain,
frequency-domain and nonlinear HRV features.

Methods: Analysis was done on 18 subjects from the PhysioNet Apnea-ECG
database. After preprocessing to extract R-R intervals, the ECG signals were
divided into 1-min epochs and classified as either apnea or non-apnea. Kubios
software was used to extract HRV features, and one-way ANOVA was used for
statistical comparison.

Results: The predictability of HRV features was analyzed using machine learning
classifiers Random Forest and XGBoost. Sympathetic markers (VLF and LF/
HF) increased, while parasympathetic-related features (HF, RMSSD, SampEn)
decreased during apnea (p < 0.05). Nonlinear features, including SampEn,
showed high discriminatory performance (Cohen’'s d =2.93). The AUC of
XGBoost model reached to 0.98, demonstrating the usefulness of the HRV
features in precise apnea detection.

Conclusion: HRV parameters can efficiently reflect autonomic disruption
induced by SAAs, especially nonlinear and frequency domain indices. Augmented
by machine learning, HRV analysis is a powerful and scalable technique toward
real-time, non-invasive screening of sleep disordered breathing that can
be implemented in to wearable health technology and digital sleep medicine.

KEYWORDS

sleep apnea, heart rate variability, machine learning, nonlinear dynamics, autonomic
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1 Introduction

Sleep apnea is a frequent and potentially deadly sleep disorder that is not sufficiently
recognized or treated across the world. It is defined by recurrent partial or complete
obstruction of the upper airway during sleep, with drops in oxygen, breathing disturbances,
and brief awakenings from sleep. Such events may impose severe stress on a number of
physiological systems due to acute changes in intrathoracic pressure (ITP), broken sleep
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structure, and cyclical episodes of hypoxemia-re-oxygenation (1, 2).
ARDS comes in two forms: central sleep Apnea (CSA) is caused by
damage to the brain or spinal cord, which prevents the respiratory
center from operating, and obstructive sleep apnea (OSA) is the
closure of the airway at the back of the throat during sleep. Most are
attributed to OSA, which is relatively common in middle-aged and
older adults (3, 4). Obesity, alcohol consumption, and craniofacial
anatomy are the commonly associated modifiable risk factors for
OSA. There are important clinical consequences of sleep apnea. A
chain of pathophysiological mechanisms, such as systemic
inflammation, oxidative stress, endothelial dysfunction, and
autonomic nervous system (ANS) imbalance, is initiated as a result of
cyclic episodes of nocturnal hypoxia and sleep fragmentation (5-7).
These changes are also associated with several of cardiometabolic
symptoms (systemic hypertension, coronary artery disease, heart
failure, insulin resistance, metabolic syndrome, and cerebrovascular
accident (CVA)) (8-10). Additionally, sleep apnea is often related to
mood disorders, such as depression, cognitive dysfunction, all-cause
mortality, and sudden cardiac death (11, 12). Recent studies have
explored the use of deep learning for HRV-based sleep apnea severity
estimation, highlighting the potential of advanced models in capturing
subtle physiological patterns for disease stratification. Integrating such
approaches with our HRV framework may further enhance predictive
performance and clinical relevance (13). Since the disease is
asymptomatic during waking hours and the standard diagnostic
method, namely, overnight polysomnography (PSG), is a time-
consuming examination, however, diagnosis remains arduous even
with these serious health-related issues. Although PSG is the reference
standard, it is expensive, time-consuming, and not universally
accessible, particularly in low-resource areas. For these reasons, an
urgent need to find less expensive and more accessible diagnostic
alternatives than the current PSG that accurately reflect the
pathological changes associated with sleep apnea was prompted. One
promising such surrogate is Heart Rate Variability (HRV), which is
widely used as a non-invasive index of ANS activity. HRV refers to the
cyclic variations in the time intervals between consecutive heartbeats
(14-16). HRV provides important information on the autonomic
disorder that sleep apnea syndrome is. One such potential surrogate
is heart rate variability (HRV), the variability of the intervals between
consecutive heartbeats, which has been utilized as a non-invasive
measure of the ANS activity (14-16). HRV offers useful information
about the autonomic deregulation inherent to sleep apnea. In the
apnea phase, hypoxia and arousal induce sympathetic activation and
vagal withdrawal, reflected in modified HRV profiles. A large number
of analytical domains are available for assessing these autonomic
shifts: frequency-domain parameters (e.g., VLE, LE HFE, and LF/HF)
characterize the way autonomic power is distributed over different
frequency bands, time-domain profile (e.g., SDNN, RMSSD, pNN50)
represents the complexity of overall variability, and nonlinear
parameters (e.g., ApEn, SampEn, SD1, SD2) characterize signal
complexity and irregularity that offer a deeper understanding of the
dynamic behavior of the cardiovascular system (17-22). The HRV
features and definition used in this study are displayed in Table 1.
HRYV changes in sleep apnea have been the subject of numerous
studies, and the results consistently show elevated sympathetic indices
(like LF and LF/HF ratio) and decreased parasympathetic markers
(like HF and RMSSD). However, the existing literature is
heterogeneous, with varying findings attributed to small sample sizes,
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TABLE 1 Summary of heart rate variability (HRV) features across time
domain, frequency domain, and nonlinear methods.

Feature Unit Description
Time domain features
Standard deviation of all N.N.
SDNN ms
(normal-to-normal) intervals
Root mean square of
rMSSD ms successive differences between
adjacent N.N. intervals
Percentage of successive N.N.
PNN50 % intervals differing by more
than 50 ms
Ratio of the total number of all
HRYV Triangular Index - N.N. intervals to the height of
the histogram
Frequency domain features
Very Low-Frequency power of
VLF ms? v ueneyp
HRYV (0.0033-0.04 Hz)
Low-Frequency power of HRV
LF ms?
(0.04-0.15 Hz)
High-Frequency power of
HE ms? g quency p
HRV (0.15-0.4 Hz)
Ratio of low-frequency power
LF/HF Ratio - q P
to high-frequency power
Nonlinear features
Poincaré plot standard
SD1 ms deviation perpendicular to the
line of identity
Poincaré plot standard
SD2 ms deviation along the line of
identity
Approximate entropy,
ApEn - quantifies regularity and
complexity
Sample entropy, measures
SampEn -

signal complexity

inconsistent methodologies, and insufficient control for confounding
variables (23-25).

Additionally, while frequency-domain analyses are more
commonly employed, nonlinear HRV techniques—which are
potentially more sensitive to subtle autonomic disturbances—remain
underutilized.  Furthermore, few studies have employed
comprehensive statistical analyses to determine the reliability and
discriminative power of HRV features across apnea and non-apnea
conditions (26, 27).

In response to these gaps, the present study undertakes a
comprehensive and statistically rigorous analysis of HRV metrics
derived from ECG recordings of individuals experiencing sleep apnea.
This investigation spans time-domain, frequency-domain, and
nonlinear domains to capture a multidimensional view of autonomic
modulation. Standardized techniques, including Fast Fourier
Transform (FFT) and entropy-based algorithms, are utilized to extract

HRV features, while robust statistical tests—such as one-way
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ANOVA—are applied to evaluate the significance of changes between
control and apnea states.

The ultimate objective of this study is to identify HRV features
that are consistently associated with autonomic disruption during
apnea episodes to improve the use of HRV as a diagnostic and
monitoring tool in sleep medicine. The combination of classical and
novel HRV indices offers new perspectives to study the
cardiovascular-autonomic interactions during SDB. Furthermore,
the results corroborate the increasing interest of HRV-based
metrics for digital health applications, e.g., wearable biosensors and
mobile health platforms, which provide scalable, non-invasive and
real-time measurement of the SA severity in an out of
clinic scenario.

2 Methods
2.1 Data source and subject selection

This study utilized the publicly available Apnea-ECG database
from PhysioNet, which includes annotated single-lead ECG
recordings from adults undergoing overnight monitoring for
suspected sleep apnea (26, 27). To determine whether apnea or
hypopnea episodes were present or absent, clinical professionals
labeled each ECG signal minute by minute after it was sampled at
100 Hz with 16-bit resolution.

This study chose a subset of 18 participants from the initial 35
based on the following standards to guarantee data dependability and
clinical relevance: An apnea-hypopnea index (AHI) of more than five
events per hour is considered clinically significant apnea, as is a
minimum signal duration of 8 h to capture adequate variability across
sleep cycles and adequate signal quality for precise R-peak detection.

With a mean age of 45 and a mean BMI of 28 kg/m’, the final
cohort was deemed overweight, a known risk factor for obstructive
sleep apnea (OSA) (20). This selection ensured the inclusion of
individuals likely to exhibit meaningful autonomic dysfunction during
apnea episodes.

2.2 Signal preprocessing

Strong signal preprocessing was required in order to minimize
noise and to optimize HRV analysis precision. A notch filter was
initially applied to suppress powerline interference at 50 Hz, then
subsequently high-pass filtered for removal of the baseline wander.
Moreover, the R-peak detection was performed based on the threshold
algorithm built on the Welch periodogram that approximates the
power spectral density, in order to improve detection precision,
particularly in long-duration, noisy and morphologically varied
recordings (10). Following R-peak detection, R-R intervals were
computed to construct the HRV time series. The signals were
segmented into 1-min, non-overlapping epochs—a resolution shown
to effectively capture autonomic changes while maintaining
computational efficiency (17). Each epoch was labeled as “apnea” or
“non-apnea” based on corresponding clinical annotations. Epochs
containing either apnea or hypopnea events were collectively labeled
as apnea-positive, in line with the apnea-hypopnea index (AHI)
used clinically.
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2.3 HRV feature extraction

To comprehensively capture autonomic nervous system (ANS)
activity, the study extracted HRV features across three primary
domains using Kubios HRV Premium v2.2, a validated platform
widely used in both research and clinical contexts (17).

These included SDNN (standard deviation of NN intervals),
RMSSD (root mean square of successive differences), pNN50
(percentage of successive intervals differing by >50 ms), and the HRV
Triangular Index. These features primarily reflect overall heart rate
variability and vagal (parasympathetic) modulation. Reduced time-
domain metrics during apnea indicate parasympathetic withdrawal—a
pattern confirmed in this study.

Power within VLF (0-0.04 Hz), LF (0.04-0.15 Hz) and HF (0.15-
0.4 Hz) was estimated using spectral decomposition analysis with Fast
Fourier Transform (FFT). The LE/HE as a measure of sympathovagal
balance, was also determined (28, 29). Apneic events were generally
marked by high sympathetic tone (as evidenced by increased LF/HF)
and low parasympathetic modulation (represented by low HF), which
was in agreement with our result.

The study included SD1 and SD2 (Poincaré plot descriptors) along
with Approximate Entropy (ApEn) and Sample Entropy (SampEn).
These metrics capture the complexity and irregularity of the R-R
interval series. Entropy-based measures are especially sensitive to
nonlinear and dynamic alterations in heart rate regulation (18, 30),
which become dampened under stress or pathophysiological states
like apnea. In our results, entropy features demonstrated high
discriminative power and statistical significance, affirming their value.

2.4 Statistical analysis

One-way ANOVA analysis was used to determine whether or not
the HRV features for the apnea epochs and the non-apnea epochs are
different. The zero exposure hypothesis was that the mean feature
value was the same across conditions. A p-value of 0.05 was used as
the threshold of statistical significance. This validates the anticipated
autonomic shifts during the apnea episodes, evidenced by large
decreases in parasympathetically-associated variables (HF, SampEn)
and increases in sympathetically- or stress-associated variables (VLE
LE/HF) (5). All analyses were implemented in MATLAB R2017a;
enabling reproducibility and compatibility with preprocessing routines.

2.5 Machine learning classification

To explore the predictive utility of HRV features, we implemented
a supervised machine learning framework. The labeled HRV dataset
was divided into training (80%) and testing (20%) subsets using
stratified random sampling to preserve class proportions.

Before training, feature standardization was applied (zero mean,
unit variance). Four popular classifiers were evaluated due to their
proven effectiveness in physiological data modeling Logistic
Regression, Support Vector Machine (SVM), Random Forest, and
XGBoost (34, 35).

Five-fold cross-validation performance on the training set was
used to select the model. The performance was also calculated for test
set’s metrics such as Fl-score, AUC-ROC, recall, accuracy, and
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precision. In addition, nonlinear and spectral features (e.g., SampEn,
VLE HF) were important to classification accuracy as measured by
feature importance scores in ensemble models, and aligned well with
statistical findings as well as the physiology.

2.6 Integration of statistical and predictive
insights

By combining traditional statistical methods with machine
learning, this study bridges the gap between group-level inference and
individual-level prediction. While ANOVA identified features with
significant mean differences between apnea and control states,
machine learning assessed their ability to discriminate apnea epochs
in real time. This two-pronged strategy makes HRV analysis more
comprehensible as well as more applicable.

Furthermore, the statistically significant statistically significant
(and of course biologically meaningful) features (such as the decreased
SampEn, increased VLF and LF/HF ratios) seem to have a high
predictive power also, indicating not only significance but also
practical usefulness of HRV metrics in screening and monitoring
applications. These results provide the basis for the design of wearable,
real-time diagnostic systems for sleep apnea, based on physiological
and data-driven validation.

2.7 Ethical considerations

This study used data from the publicly available Apnea-ECG
database hosted on PhysioNet (26, 27). The original data collection
was approved by the Institutional Review Board (IRB) of the
University of Quebec at Montreal (approval no. IRP-2001-10-02),
with protocols also reviewed and approved at participating
institutions including McGill University (Montreal, Canada) and
CHU de Bordeaux—Hopital du Haut-Lévéque (Pessac, France). All
participants provided written informed consent prior
to enrollment.

Prior to publication at PhysioNet, all data sets were anonymized
and scrambled to ensure privacy protection of the patients. The study
was conducted in accordance with the ethical principles of the
Declaration of Helsinki for research involving human subjects. The
original study, although not prospectively registered, was done in
accordance with contemporary ethical standards when the trial was
initiated. For more information on the Apnea-ECG database, visit

PhysioNet at: https://physionet.org/content/apnea-ecg/1.0.0/.

5 Results
Table 2 summarizes the demographic characteristics of study

participants. Data are presented as mean + standard deviation, except
for gender distribution.

3.1 Sleep apnea duration and indexes

The mean total duration of monitoring for the subjects is
presented in Table 3 (491 + 5.3 min). The average A.L. was 21.8 £ 4.0,
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Parameter Value

Male: 22 (63%)
Gender
Female: 13 (37%)
Age 45 + 1.8 years
Weight 86 +3.5kg
Height 175+ 0.9 cm
BMI 28 + 1.0 kg/m?

TABLE 3 Subjects’ apnea information.

Apnea information DEIE]

Length 491 + 5.3 min
Non-Apnea 305 + 26 min
Apnea 186 + 29 min
Hours with Apnea 50+0.6h
Apnea Index (A.L) 21.8+4.0
Hypopnea Index (H.I.) 6.1+1.6
Apnea-Hypopnea Index (A.H.I) 28+ 4.6

and the average H.I. was 6.1 + 1.6. Of that duration, 186 + 29 min
(approx. 38%) showed episodes of apnea.

3.2 HRV feature analysis

3.2.1 Linear and non-linear HRV features

Summary mean HRV parameters during apnea and control are
presented in Table 4. A prominent reduction in HF (11 1.0 vs. 8.4 1.0,
p 0.05) and LF (24 2.0 vs. 18 1.7, p 0.05) was noted, denoting
autonomic imbalance and parasympathetic withdrawal during apnea.
Similarly, VLF (62+2.4 vs.72+2.4, p<0.05) also increased
significantly, representing a sympathetic activation. Finally, non-linear
measures which demonstrate reduced data complexity with apnea are
ApEn and SampEn (0.93 + 0.04 and 0.8 + 0.05, respectively).

3.2.2 Visualizations and statistical insights

Figure 1 expresses relevant features of the HRVs plotted in a
groupwise manner; statistically significant differences between
controls and in apnea are shown. During apnea, LF and HF power
decreased, and VLF power doubled—in line with previously described
mechanisms regulating HF power and LF power in response to IHO.

Figure 2 illustrates the relative change in each HRV metric from
control to apnea conditions. Metrics such as VLF and LF/HF ratio
increased (green bars), while HF and RMSSD decreased (red bars),
further confirming the autonomic shift.

Table 5 compares the calculated HRV measures during control
and apnea. The pNN50, RR Triangular Index, VLE LE, HE LF/HF
ratio, ApEn and SampEn differed significantly (p < 0.05) between the
two groups. More importantly, VLE, LE, HF and SampEn reached large
to very large effect sizes (Cohen’s d > 0.8), which provides evidence of
a marked autonomic modulation during apnea episodes. The increase
in VLF and decrease in HF and SampEn are consistent with
heightened sympathetic activation and reduced parasympathetic and
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TABLE 4 HRV attributes in control and apnea situations.

Feature ‘ Control ‘ Apnea ‘ Trend
SDNN 98+ 8.7 102+13 1
RMSSD 58 + 4.8 53492 !
PNN50 12+3.1 11433 !
RR Trin 25+ 2.4 22426 !
VLF 62+2.4 72 +2.4% 1
LF 24420 18+ 1.7% !
HF 11+1.0 8.4+ 1.0% !
LE/HF 23402 25402 1
SD1 41434 37464 !
SD2 132+ 12 140 + 17 1
ApEn 0.98 +0.03 0.95 + 0.04 !
SampEn 0.93 +0.04 0.8 +0.05 !

*Significant difference between control vs. apnea (p < 0.05).

complexity-related modulation. These findings underscore the
discriminative power of specific linear and nonlinear HRV parameters
in differentiating apnea from non-apnea states.

Figure 3 presents a PCA plot of HRV features, revealing distinct
clustering between apnea and control groups. This separation validates
the discriminative power of HRV metrics for apnea detection.

3.3 Machine learning interpretability and
performance

Figure 4 shows feature importance rankings from a Random
Forest model. VLE, HE, and SampEn emerged as the most predictive
features, aligning with physiological findings.

Figure 5 shows the ROC curves of XGBoost and RF classifiers. The
best performing model was XGBoost with an AUC of 0.98 compared
to 0.91 for Random Forest indicating good sensitivity and specificity
for discriminating apneas from awake HRV data. In addition to the
reported AUC of 0.98 with XGBoost in the classification task, the
model has a recall of 0.96, precision of 0.95 and F1-score of 0.955 on
the testing dataset, which exhibits balanced and high classification
performance in terms of standard evaluation metrics.

3.4 Temporal and epoch-based HRV trends

Figure 6 provides time series plots for selected HRV metrics
(RMSSD, LF/HE HF), with shaded areas indicating apnea episodes.
Expected shifts—reduction in HF and RMSSD and an increase in LF/
HF—occur during apnea, reinforcing the temporal consistency of
autonomic disturbances.

4 Discussion

The present study conducted a comprehensive evaluation of heart
rate variability (HRV) features derived from ECG signals to assess
autonomic dysfunction in individuals with sleep apnea. Using the
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PhysioNet Apnea-ECG database and applying a combined statistical
and machine learning (ML) approach, this study identified significant
alterations in HRV metrics across time, frequency, and nonlinear
domains between apnea and control states.

Characteristics of the cohort The cohort was composed of
demographically middle-aged participants (mean age, 45 years; BMI,
28 kg/m?), who were representative of a population at increased risk
for OSA (20), as described in Table 2. Based on Table 3, most
participants were categorized as moderate to severe apnea and an
average Apnea-Hypopnea Index (AHI) was 28 + 4.6. This provided a
clinically relevant setting for HRV to be studied in. In the time domain
HRYV parameters, i.e., pPNN50 and RMSSD, were reduced in the apnea
condition. pNN50 reached statistical significance (p =0.0225),
showing decreased vagal modulation during apneas. The HRV
Triangular Index was also significantly lower (p = 0.0001), indicating
a reduced total variability.

These comparisons are in agreement with reports in the literature
of parasympathetic withdrawal to IH and arousals (5, 8, 16). Significant
differences were obtained through frequency-domain analysis. High
frequency (HF) power, an important measure of parasympathetic tone,
was markedly lowered during apnea (p < 0.0001; Cohen’s d = 2.96; see
Table 5; Figures 1, 2). VLE: very-low-frequency; LF: low frequency; HF:
high frequency; SD: standard deviation. LF power decreased
significantly (p < 0.0001; d = 3.44). However, this decrease was less
marked in lighter subjects (body weight < 60 kg), who showed no
significant change (—9.57 + 27.73 nu), as compared to heavier subjects
(—38.9 + 10.4 nu) (p < 0.0001; d = 6.21; Fig. X). A Sympathovagal
imbalance was suggested by an elevated LF/HF ratio (p = 0.0109).
These findings are consistent with previous physiological responses to
apneic stimuli (7, 8, 16). Nonlinearity metrics were associated with
biased value. Both SampEn and ApEn decreased with apnea, the
difference between SampEn and ApEn was very significant (p < 0.0001;
d =2.93). These reductions reflect a diminishing of complexity and
flexibility of the cardiac control, a characteristic of stress-induced
autonomic dysfunction (18, 30).

This implies that non-linear characteristics are the most
responsive to autonomic alterations related to sleep-disordered
breathing. This discriminative utility of HRV features was also
confirmed by PCA shown in Figure 3, demonstrating that control and
apnea epochs are separated in a space defined by these features with a
relatively high accuracy. Interpretability analysis of machine learning
(Figure 4) showed nonlinearity (SampEn), VLF and HF as the
strongest predictors for Random Forest models. Receiver operating
characteristic (ROC) curves presented in Figure 5 indicated good
classification performance, in which XGBoost provided an AUC value
of 0.98 and was superior to Random Forest (0.91). These findings
emphasize the application value of HRV characteristics for the
automatic apnea recognition (11, 12).

Temporal analyses further reinforced these trends. Figure 7
illustrated consistent shifts in HRV metrics across epochs, with apnea
periods showing elevated VLF and LF/HF and reduced HF and
complexity-related metrics. Figure 6 showed time series plots of
RMSSD, LF/HE and HE with shaded apnea regions reflecting
expected HRV shifts during apneic episodes. These consistent patterns
validate the robustness of HRV alterations over time.

The study identified statistically significant reductions in
parasympathetic and complexity-related HRV metrics and elevations
in sympathetic activity markers during apnea. These findings support
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HRV’s role as a sensitive biomarker for autonomic dysregulation in
sleep apnea and underscore its potential in wearable, real-time
diagnostic tools. Although this study has demonstrated the clinical
value of HRV parameters for detecting autonomic dysfunction related
to sleep apnea, several limitations should be acknowledged. The
current study utilized a binary classification approach (apnea vs.
non-apnea) for model development.

Future work will incorporate apnea severity stratification to
enhance clinical utility and align predictions with the full spectrum of
disease severity. Additionally, the lack of external validation on
independent datasets is a limitation, and future studies will aim to
evaluate the model on external and multicenter cohorts to confirm
robustness and generalizability. The study employed one-way ANOVA
and standard 5-fold cross-validation, which do not explicitly capture

Frontiers in Neurology

temporal dependencies or intra-subject variability inherent in
physiological time-series data. Future work will explore advanced
modeling techniques, such as mixed-effects models and sequence-
based deep learning, to address these dependencies. While the study
suggests real-time applicability of HRV-based apnea detection, no
evaluation of model inference time, computational efficiency, or
hardware deployment feasibility was conducted. These facets will
be investigated in future work for real-world deployment validation,
such as wearable or low-resource devices.

First, only one database (PhysioNet Apnea-ECG as an open-
source without multicenter validation) was used in the study, the
results lack the generalization ability. Second, a small number of cases
(n = 18) were used in the study, which restricted the generalizability
of the findings to other clinical populations. Third, the sample was
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TABLE 5 Comparison of heart rate variability (HRV) features between
control and apnea groups.

Feature =~ Control Apnea  p-value Cohen's
mean + mean + SD
SD

SDNN 97814650  101.01£13.66 03505 -0.30
RMSSD 56.29 +4.55 5438 +8.54 0.3825 0.28
PNNS50 10.08 +3.20 12,35+ 2.82 0.0225 -0.75
RR Trin 25.14+1.99 21.82+2.83 0.0001 136

VLE 61.79 +2.05 7225259 | <0.0001 -4.47
LF 24.97 +£2.49 18.11+1.33 <0.0001 3.44
HF 11.30 £0.79 8.66 % 0.98 <0.0001 2.96
LE/HF 2294022 244+0.14 0.0109 -0.85
sD1 40.41 £ 2.80 38.67 +6.14 0.2581 0.36
SD2 132.43 £9.84 138.61 + 14.14 0.1169 —0.51
ApEn 0.98 +0.03 0.94 +0.06 0.0021 1.04
SampEn 0.94 +0.05 0.80 +0.05 <0.0001 2.93

homogeneous demographically in terms of age, race, and
comorbidities. To de-emphasize these limitations, in future, large
multicenter demographically balanced cohorts can be used to confirm
the robustness and clinical utility of HRV based sleep apnea detection.
First, demographics of the study are homogeneous for its diversity
reflection, as the age, BMI, and without the broader racial diversity
and comorbidities of the participant population. Further studies are
needed to overcome these limitations with larger, multicenter, and
more diverse cohorts to confirm the robustness and practicality of
HRV-based sleep apnea detection.

The defining feature of sleep apnea is recurrent partial or complete
obstruction of the upper airway, which leads to intermittent hypoxia,
hypercapnia, and sleep fragmentation. Similarly, specific HRV
patterns have been related to acute and chronic changes in ANS
function as a consequence of these physiologic stresses (1, 5, 6).
Parasympathetic withdrawal, mainly through vagal inhibition, is
indicated by the notable decrease in high-frequency (HF) power
during apnea episodes (Table 5). Suppression of HF is a sign of
decreased parasympathetic input during apneic stress because it is a
reflection of respiratory sinus arrhythmia and is intimately associated
with vagal tone (6, 7). An additional indication of this autonomic
imbalance is the rise in the low-frequency to high-frequency ratio
(LF/HEF), a proxy for sympathovagal balance. A higher LF/HF ratio
during apnea denotes heightened sympathetic dominance, consistent
with findings from both physiological and clinical studies (7, 16).

The observed increase in very-low-frequency (VLF) power during
apnea (mean 72.25 vs. 61.79, p <0.0001; Cohen’s d =—4.47) is
particularly notable (Table 5). VLF is believed to reflect long-term
regulatory mechanisms including thermoregulation, hormonal
influences, and particularly sympathetic activation via renin-
angiotensin and inflammatory pathways. During apneic episodes,
hypoxemia triggers chemoreceptor-mediated sympathetic surges,
leading to vasoconstriction, elevated blood pressure, and increased
VLF activity (5, 10). This suggests that VLF may serve as a biomarker
for sympathetic overdrive during sleep-disordered breathing.

The reductions in nonlinear HRV features—Sample Entropy
(SampEn) and Approximate Entropy (ApEn)—further reflect
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autonomic rigidity and reduced complexity of cardiovascular control
during apnea. In physiological terms, lower entropy values indicate a
loss of adaptability and reduced responsiveness of the cardiac system
to environmental and internal stimuli. Pathological conditions like
diabetes, heart failure, and severe autonomic dysfunction frequently
exhibit these alterations (17, 18, 30). Their inclusion in this group
emphasizes how profoundly sleep apnea affects autonomic control.
During apnea, time-domain metrics that are primarily
impacted by parasympathetic input, like pNN50 and RMSSD, also
decreased. These results support a well-established phenomenon
in the pathophysiology of sleep apnea: the transition from vagal
to sympathetic dominance (6, 21). The overall decrease in
variability during apneic episodes is further demonstrated by the
decreased HRV Triangular Index, which suggests a blunted
cardiovascular adaptability under autonomic stress. In addition to
serving as indicators of the severity of the condition, the
cumulative effects of these autonomic changes are also linked to
like
hypertension, arrhythmias, heart failure, and sudden cardiac

the etiology of cardiovascular problems systemic
death that are frequently linked to sleep apnea (5, 7, 8). Vascular
pathology is accelerated by the combination of endothelial
dysfunction, sympathetic overactivation, and repetitive hypoxia,
which results in a chronic pro-inflammatory and pro-oxidative
state (6, 16).

Further, the episodic arousals and mechanical stresses imposed
by apneas produce instantaneous shifts in intrathoracic pressures
that compound the cardiovascular challenge of the respiratory load.
This dynamic autonomic stress is evidenced by the short-term
variability contained in HRV features (i.e., fHRV), stressing the
physiological dimension of HRV as a not only diagnostic means, but
also as a mirror of systemic cardiovascular burden. The HRV
alterations in the present study-version, such as the decreased HF,
RMSSD, and entropy parameters, and increased VLF and LF/HF,
are in accordance to the pathophysiological framework of
sympathetic overactivity and parasympathetic disbalance
throughout sleep apnea phenomena. These results suggest that HRV
could be a useful non-invasive biomarker for evaluating autonomic
impairment and help guide treatment monitoring and risk
stratification in patients with OSA. Previous studies of HRV in sleep
apnea have reported consistent findings of disturbed cardiac
autonomic control, including decreased parasympathetic activity
and increased sympathetic control. Yet, these studies are frequently
marred by methodological shortcomings like small sample sizes,
inefficient feature extraction, heterogeneous preprocessing
protocols or inadequate statistical verification (23-25). Instead, the
current study presents a complete and improved methodology to
evaluate HRV slopes in sleep apnea based on signal processing
techniques, detailed feature extraction and machine learning
methods (31-33).

One of the key distinctions lies in the breadth of HRV features
analyzed. Earlier studies have primarily relied on time-domain and
frequency-domain metrics—for instance, reduced RMSSD and HF,
and elevated LF/HF were frequently observed during apneic
episodes (6, 16, 24). The proposed study not only confirmed these
classical patterns (e.g., significant decrease in HF and increase in LF/
HF) but also incorporated nonlinear dynamics (e.g., SampEn and
ApEn), which were shown to have stronger discriminative power

(Cohen’s d = 2.93 for SampEn) (Table 6). Nonlinear analysis remains

frontiersin.org


https://doi.org/10.3389/fneur.2025.1636983
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Attar 10.3389/fneur.2025.1636983
PCA of HRV Features
X Group
2 X X X Control
2 X % X Apnea
X X
DS X
1 >$(x X x
X X 5 X
x X X Kx X
N
g o X X x . .
XX X 5t X X X
X X XS
X
X
X x X
- X
X X
X * x
X
-2 X
-4 =3 -2 -1 1 2 3 4
PC1
FIGURE 3
PCA of HRV features.
Feature Importance from Random Forest
SDNN I

russo [
rein [

VLF

HF

|
=

HRV Feature

SD2
APEN
SampEn

0.00 0.05 0.10

FIGURE 4
Feature importance (Random Forest).

- |

Importance Score

0.15 0.20 0.25

underutilized in much of the literature, despite its sensitivity to
autonomic and complexity changes under pathophysiological
conditions (18, 30).

From a data perspective, earlier works often lacked high-
resolution annotations or used synthetic datasets. In contrast, this
study utilized the PhysioNet Apnea-ECG database, which contains
clinically annotated minute-by-minute apnea events based on full
overnight monitoring (26, 27). This allowed the authors to segment
ECG data into precise 1-min epochs, improving temporal resolution
and statistical power—an approach rarely adopted with such rigor in
earlier research.

The signal preprocessing pipeline used in the proposed study also
represents an improvement. By applying high-pass filtering, notch
filtering, and Welch periodogram-based R-peak detection, the authors
addressed common ECG artifacts and enhanced R-R interval
accuracy. In contrast, prior studies often applied basic peak detection
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methods that are prone to error, particularly in noisy overnight
recordings (4, 10).

Importantly, while earlier work such as Baharav et al. and Zhang
et al.(24, 25) focused primarily on descriptive or threshold-based
methods for apnea detection, the current study integrated statistical
testing (ANOVA) with machine learning models (Random Forest,
XGBoost) to validate feature relevance. As shown in Figure 5,
XGBoost achieved an AUC of 0.98, exceeding typical classification
performance reported in previous literature (usually ranging between
0.80-0.90) (34, 35).

Another significant advancement is the interpretability of the ML
models. Feature importance rankings (Figure 4) validated
physiological expectations—highlighting VLE HE and SampEn as top
predictors—bridging the gap between clinical insight and algorithmic
decision-making. Few prior studies have provided such integration
between physiological validity and predictive modeling (19, 35).
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The proposed work demonstrated the temporal consistency of
HRV changes across sleep epochs (Figures 6, 7), offering stronger
evidence of autonomic disruption during apnea. This is in contrast to
prior studies that primarily averaged HRV over entire nights,
potentially missing transient but clinically relevant events (25). These
improvements establish HRV as a feasible and non-invasive diagnostic
tool for sleep apnea that could be incorporated in wearable devices for
health monitoring and real time control systems. In contrast, sleep
apnea, especially obstructive sleep apnea (OSA), represents a common
but underdiagnosed sleep disorder with significant public health
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FIGURE 5
Receiver operating characteristic (ROC) curve analysis for XGBoost
and Random Forest.
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relevance. It is estimated that this syndrome affects 9-38% of the adult
population worldwide and it has a strong correlation with chronic
diseases such as hypertension, obesity, CVD, stroke, diabetes,
cognitive deterioration, and depression (5-8).

However, despite these severe consequences, a large number of
OSA are undiagnosed because the standard tools diagnose the OSE
are polysomnography (PSG), also which is costly, laborious, and not
universally available, includes under resourced countries (2, 14, 15).
This work overcomes these diagnostic shortcomings by validating
HRV as a non-invasive, inexpensive and scalable marker for
autonomic disruption due to OSA. Through observing substantial
variations in both conventional (e.g., HF, LF/HF) and new (e.g.,
SampEn, ApEn) HRV parameters during apneic episodes, the work
substantiates the premise for wearable or remote monitoring devices
for real-time detection of sleep-disordered breathing (15, 20). Such
systems can change the landscape of SDB diagnostics, from in lab to
at-home procedures, making it more available and compliance-
friendly. The added value to digital health is the use of machine
learning (ML) algorithms in our study. The high (XGBoost AUC: 0.98)
classification accuracy and interpretability of the generated ML
models demonstrate that automated HRV-based screeners are able to
accurately distinguish apnea and non-apnea states, providing clinical
decision support to sleep physicians and general practitioners alike
(34, 35). The model’s high AUC of 0.98 was supported by a recall of
0.96, precision of 0.95, and an F1-score of 0.955, underscoring its
strong and balanced performance.

These tools are especially useful to control high risk population,
like obesity, resistive hypertension of heart failure, where its precocious
identification may substantially avoid morbidity and mortality (6, 8,
20). Furthermore, continuous HRV monitoring allows for longitudinal
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measurement of disease progression and treatment response, making
it a key component in the assessment of the efficacy of interventions
like CPAP therapy. Historic follow-up is often missing such
physiological feedback; through HRV analyses, such a gap could
be addressed toward personalized and dynamic care pathways. From
the standpoint of public health, the early and easy detection of sleep
apnea could help reduce the burden on healthcare systems by avoiding
downstream comorbidities and hospitalization, and creating a positive
impact on QoL for millions of undiagnosed patients (8, 23).
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Furthermore, as HRV can be monitored by commercially
available ECG or photoplethysmography (PPG) sensors, it is
economically viable for broad usage. This work constitutes a
meaningful step forward in the sleep medicine literature by
providing HRV with a high level of validity as a stand-alone,
interpretable, and deployable biosignal in the context of sleep
apnea. Its applications range from clinical to technological to public
health, all of which support more inclusive, efficient, and patient-
centric care models.
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TABLE 6 Comparison of previous studies and the proposed study.

10.3389/fneur.2025.1636983

Aspect Previous Studies Proposed Study References
Small cohorts or synthetic datasets; 18 subjects from PhysioNet Apnea-
Data source (1,2,25)
limited annotation granularity ECG, annotated minute-by-minute
Includes time-domain, frequency-
Mostly time- and frequency-domain
Feature domains domain, and nonlinear features (e.g., (6, 8-10)
HRV features
SampEn, ApEn)
Advanced filtering and Welch
Basic R-peak detection; minimal
Signal preprocessing ol periodogram-based R-peak detection (4,10,17)
terin;
6 for accuracy
Limited or no rigorous statistical One-way ANOVA and Cohen’s d for
Statistical analysis (10, 16, 21)
validation effect size on all features
Key part of analysis, showed highest
Nonlinear metrics Rarely included discriminative power (e.g., SampEn, (8,9, 18)
d=293)
Machine learning models: XGBoost
Threshold-based or basic classifiers
Classification methods (AUC = 0.98), Random Forest (11,12)
(e.g., logistic regression)
(AUC =0.91)
Feature importance analysis matches
Model interpretability Not emphasized physiological expectations (VLE, HE, Figure 4
SampEn)
Epoch-by-epoch (1-min) analysis
Temporal resolution HRYV averaged over long periods Figures 6, 7
improves granularity
Rarely conducted or single-layer Combined statistical and predictive
Validation Full Results and Discussion sections
validation validation for robust conclusions
Advocates for real-time wearable
Lacks integration with wearable
Practical application diagnostics, supported by scalable, (15, 20, 21)
technology
validated HRV features

Prospective studies studying 24-h HRV profile variations may
help gaining better understanding of chronic autonomic load
attributable to sleep apnea. Moreover, although the study had
employed one-way ANOVA and machine learning models in feature
selection and classification, a more advanced statistical approach (e.g.,
mixed-effects models or deep learning) can better handle robustness,
especially in considering intra-subject variability and the temporal
dynamics of the data (34, 35). The effect of clinical interventions on
HRV metrics such as continuous positive airway pressure (CPAP)
therapy was also never evaluated. In future, it would be interesting to
study HRV changes before and after treatment as HRV is another
non-invasive tool for evaluating adherence to treatment. Finally, while
machine learning models such as XGBoost achieved high classification
accuracy (AUC = 0.98), external validation on independent clinical
datasets are warranted for deployment in clinical practice. The
performance of the model has to be assessed in real time in wearable
applications, as noise and signal quality can drastically affect reliability.

While this study demonstrates the potential of HRV features
extracted from ECG signals for detecting autonomic dysfunction
during sleep apnea, several limitations warrant discussion. First, the
analysis was conducted on a relatively small, demographically
homogeneous cohort (n = 18) from a single open-source database
(PhysioNet Apnea-ECG). This may limit the generalizability of the
findings to broader clinical populations with diverse age, race, and
comorbidity profiles. Future studies should incorporate larger,
multicenter datasets to validate the robustness and applicability of
HRV-based apnea detection across diverse clinical environments.
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Second, the analysis relied solely on single-lead ECG-derived HRV
features, which, while practical for wearable implementation, may not
capture the full complexity of cardiorespiratory interactions. Future
research should consider integrating multimodal physiological signals,
such as respiratory effort, oxygen saturation, and photoplethysmography
(PPG), to enhance detection sensitivity and specificity. Incorporating
these modalities may provide a more comprehensive assessment of
sleep-disordered breathing and improve clinical utility (15, 25).

Third, while machine learning models (e.g., XGBoost)
demonstrated high classification performance (AUC = 0.98), the
models have not yet been validated on independent external
datasets or under real-world wearable conditions where signal
quality and noise may impact performance. Future work should
include prospective validation on independent cohorts and real-
time deployment tests on wearable platforms to evaluate
computational efficiency, inference latency, and robustness under
various conditions.

Additionally, the current binary classification approach (apnea vs.
non-apnea) does not capture the severity spectrum of sleep apnea.
Future studies should explore severity stratification using HRV and
multimodal signals to provide clinically actionable insights aligned
with apnea-hypopnea index (AHI) categories. Longitudinal HRV
monitoring should also be investigated to evaluate treatment response
and disease progression, particularly in patients undergoing CPAP
therapy or other interventions.

Lastly, while traditional statistical methods and machine
learning models were employed in this study, advanced analytical
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approaches such as sequence-based deep learning and mixed-
effects models could better capture intra-subject variability and
temporal dependencies inherent in physiological signals. Future
research should incorporate explainable AI (XAI) frameworks to
enhance transparency and clinical interpretability of automated
decisions, fostering trust in HRV-based screening tools for
sleep medicine.

By addressing these limitations, future work can advance the
development of real-time, multimodal, and wearable systems for sleep
apnea detection and monitoring, supporting the integration of
HRV-based diagnostics into personalized and scalable digital sleep
health solutions.

5 Conclusion

The study have shown that HRV features extracted from ECG
recordings constitute a non-invasive tool for sensing autonomic
activity for SA. We found significant differences for HE, RMSSD and
SampEn (decrease) and VLF and LF/HF (increase) between the
apnea and non-apnea states based on an extensive pool of time- and
frequency-domain and nonlinear HRV features. These alterations
were consistent with the central pathophysiological change, i.e., a
movement toward sympathetic dominance and diminished
cardiovascular complexity in apnea. Further, the high classification
performance of ML algorithms (AUC = 0.98 for XGBoost) when
combined with a strong statistical analysis, not only, endorse the
relative importance of HRV features (both SampEn and VLE in
particular) in separating s/pIUGR from c¢/pIUGR s, but also,
highlights their clinical relevance. The research also demonstrated
that nonlinear parameters are more sensitive to subtle autonomic
disturbances not detected by standard HRV parameters. Using public
ECG databases and common analysis methods, the results advocate
for HRV-based diagnostics as a feasible and affordable alternative to
conventional polysomnography. This is especially beneficial for
resource-constrained environments and provides a basis for future
real-time sleep apnea detection and monitoring in wearable health
devices. While limited in the generalizability of outcomes to clinical
populations, this study contributes to the development of a digital
sleep medicine framework by demonstrating the measurement
validity of HRV as a physiological marker and practical tool for apnea
detection, lending support for emerging data-driven and patient-
centered solutions for sleep health management.
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