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to predict outcomes in acute 
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Background: Recent trials of large core thrombectomy have shown that our 
traditional understanding of infarct characteristics and reperfusion benefit may 
be incomplete for patients with acute ischemic stroke (AIS). The Alberta Stroke 
Program Early CT Score (ASPECTS) has wide inter-rater variability, and modern 
studies have also shown that reperfusion therapies can benefit some patients 
regardless of the ASPECTS. Reproducible imaging metrics that account for the 
degree of hypo-attenuation on non-contrast computed tomography (NCCT) 
may be better suited to guide treatments. Here, we evaluate Net Water Uptake 
(NWU), a novel NCCT metric that can be calculated in a rapid and automated 
fashion, to determine its predictive performance for identifying clinical outcomes 
in patients with AIS compared to ASPECTS.
Methods: From our prospectively collected registry encompassing 11 certified 
stroke centers, we identified patients with AIS. CT images were pre-processed 
and segmented, then NWU was calculated by automated comparison of density 
on ipsilateral and contralateral brain regions. Primary outcome was the area 
under the receiver operating characteristic curve (AUROC) for competing 
multivariable regression models with Average NWU versus ASPECTS to predict 
90-day outcome measured by modified Rankin Scale (mRS). Regression models 
were adjusted for age, National Institutes of Health Stroke Scale (NIHSS), 
tPA administration, and endovascular therapy. Secondary analyses included 
subgroup comparisons of patients with large infarct core and late time window.
Results: Among 402 subjects with anterior circulation AIS, median age was 69 
[IQR 57–80], 49.3% were female, median NIHSS was 11 [IQR 5–19], median 
ASPECTS was 9 [IQR 7–10], and median 90-day mRS was 3 [IQR 1–5]. The 
ASPECTS-based model performance was not significantly different from 
the NWU-based model to classify 90-day mRS outcome, with AUROC 0.732 
and 0.749, respectively, (p = 0.513 with Delong test). Among the subgroups, 
performance was again similar, including patients with large infarct core 
(AUROC 0.795 vs. 0.863, p = 0.312) and late time window (AUROC 0.638 vs. 
0.677, p = 0.267).
Conclusion: NWU is a quantitative metric that can be rapidly and automatically 
obtained from non-contrast CT with comparable performance to ASPECTS 
when predicting 90-day functional outcome across a wide range of AIS 
presentations.
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Introduction

Stroke is a leading cause of morbidity and mortality in the 
United  States, and despite the development of thrombolysis and 
endovascular therapy (EVT) for patients with acute ischemic stroke 
(AIS), up to half of patients still experience poor clinical outcomes 
(1–6). Recent randomized trials have shown us that our traditional 
paradigm to predict who will return to functional independence after 
AIS is incomplete, and our understanding will now need to go beyond 
“time is brain” and existing estimates of infarct size on pre-treatment 
imaging (5–12).

Most stroke centers utilize non-contrast computed 
tomography (NCCT) to triage patients with ischemic stroke, and 
a common marker to estimate early infarct severity is the Alberta 
Stroke Program Early CT Score (ASPECTS) (13, 14). Modern 
trials have shown us that reperfusion therapies can benefit some 
patients regardless of how low the ASPECTS is, and there are also 
a large proportion of patients who do poorly despite having a 
good ASPECTS (8–10, 15–17). Furthermore, ASPECTS has wide 
inter-rater variability, and unfortunately in many settings there is 
limited access to neuroradiology expertise (18, 19). CT perfusion 
(CTP) imaging has also been used for treatment selection; 
however, CTP is resource intensive, only effective in a narrow set 
of circumstances, and can otherwise be  plagued with 
overestimation of the infarct core and inability to identify many 
infarcts (20–22).

Therefore, we aimed in this study to evaluate net water uptake 
(NWU) as a new NCCT biomarker that could be automated and 
highly reliable to predict post-stroke outcomes. NWU is a 
measurement of brain injury and edema based on the degree of 
hypoattenuation in the stroke area compared to contralateral 
normal tissue (23). The equation to calculate net water uptake is 
Net Water Uptake (%) = 1  - (Density_ipsilateral / Density_
contralateral) × 100. NWU is a tissue-level measurement and 
more granular than traditional imaging scores which are evaluated 
at the subject level. Early studies have shown NWU reliably 
predicts malignant cerebral edema and poor outcomes after AIS 
(24–28). Here, we used a prospectively collected registry cohort 
to evaluate our recently developed automated algorithm that 
calculates NWU in the primary regions of the anterior circulation 
territory on NCCT after image registration and segmentation (see 
Figure  1). We  hypothesized that automated NWU will have 
non-inferior performance compared to neuroradiologist-assessed 
ASPECTS when predicting post-stroke functional outcomes.

Methods

Study cohort

From our prospective registry including 11 certified stroke centers 
in Houston, TX, USA, we identified consecutive patients who were 
treated for acute ischemic stroke between 2018 and 2022. All included 
subjects underwent acute screening in the emergency department 
with non-contrast CT. The final stroke diagnosis was confirmed 
clinically and radiographically by a board-certified vascular 
neurologist, and subjects were excluded if the stroke occurred in the 
posterior circulation, if the imaging was not interpretable, or if 
follow-up outcomes were not recorded. The STROBE guidelines were 
used for the formulation of this study design and manuscript. This 
study was performed under the guidelines from the Helsinki 
Declaration and IRB HSC-MS-19-0630 approved by the University of 
Texas Health Science Center at Houston (UTHealth Houston) IRB 
and Memorial Hermann Hospital. Data and code will be  made 
available upon reasonable request.

Clinical measurements

Demographic data and baseline clinical characteristics were 
recorded, including the use of thrombolysis and endovascular therapy. 
Imaging characteristics were determined using the radiology reports 
of the NCCT and CT angiography. Specifically, ASPECTS was 
determined by expert neuroradiologists and interventional 
neurologists each with several years of clinical experience. For subjects 
who underwent EVT, the reperfusion grades were recorded 
prospectively at the time of the procedure using the thrombolysis in 
cerebral infarction (TICI) score. The discharge and 90-day clinical 
outcomes were adjudicated by independent investigators who were 
not involved in the treatments and were trained in evaluating the 
modified Rankin Scale and secondary outcomes.

Imaging analysis

All subjects underwent non-contrast CT at the time of 
presentation to the emergency department. The acquisition scanners 
vary between the certified stroke centers and include machines 
manufactured by GE (LightSpeed, Optima, Discovery, or Revolution), 
Philips (Ingenuity), Siemens (SOMATOM, Emotion, or Sensation), 
and Toshiba (Aquilion). All images had a slice thickness of 5 mm, and 
standardized field of view was applied prior to analysis. All imaging 
data were de-identified to ensure blinded evaluation. The imaging 
analysis algorithm developed for this study utilized recommendations 
from previously validated pre-processing pipelines for CT brain 
imaging and the steps followed a simple pathway including DICOM 
to NIfTI format conversion, field of view selection, voxel smoothing, 
skull stripping (brain extraction), and registration to a standard brain 
atlas (29–35). The MNI-152 atlas was utilized for this registration (36). 
The brain images were then segmented into the 10 stroke regions of 
the anterior circulation using custom image masking (caudate, 
lentiform nucleus, internal capsule, insula, M1, M2, M3, M4, M5, and 
M6). Segmentations were visually inspected for accuracy. Voxels were 
excluded from the density calculation if they were outside the range 

Abbreviations: AIS, Acute ischemic stroke; ASPECTS, Alberta Stroke Program Early 

CT Score; AUROC, Area under the receiver operating characteristic curve; CTA, 

Computed tomography angiography; EVT, Endovascular therapy; LOC, Level of 

consciousness; LVO, Large vessel occlusion; mRS, Modified Rankin Scale; NIHSS, 

National Institutes of Health Stroke Scale; SD, Standard deviation; STROBE, 

Strengthening the reporting of observational studies in epidemiology; TICI, 
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of 20–50 Hounsfield units, which allowed automatic exclusion of 
encephalomalacia, calcifications, and acute hemorrhage. Finally, the 
voxel densities in each region were averaged and the NWU was 
calculated. In doing so, the output for each NCCT is a list of 10 NWU 
values corresponding to the 10 standard stroke regions. To derive a 
single final measurement per subject, two methods of averaging were 
evaluated: in the primary analysis, a conventional average of all 10 
NWU values, and in secondary analysis, a weighted average where the 
weight is the volume of each region. The conventional average NWU 
across all 10 regions can reflect both the size of the infarct and the 
degree of hypoattenuation.

Study outcomes

The primary outcome was the performance of average NWU and 
clinical variables to predict 90-day functional outcome measured by 
the modified Rankin Scale (mRS). Good functional outcome was 
defined as mRS 0–2, and poor outcome mRS 3–6. The NWU model’s 
performance was directly compared against a parallel model based on 
ASPECTS. This 90-day outcome was assessed in secondary subgroups 
as well, including subjects in the very early time window (0–3 h from 
last known well), late time window (6–24 h), small presenting infarct 
core (ASPECTS 6–10), and large infarct core (ASPECTS 0–5). The 
additional outcomes included the presence of precise neurologic 
deficits at time of hospital discharge: language impairment, visual 
impairment, the need for walking assistance, decreased level of 
consciousness (LOC), arm and leg motor weakness, and severe 
dysphagia requiring gastrostomy placement. Language impairment 
was defined as any deficit with fluency or comprehension, and visual 
impairment was defined as persistent quadrantanopia or hemianopia. 
Walking assistance was defined as requiring a device for mobility such 

as a rolling walker or wheelchair. LOC deficit was defined as 
obtundation or comatose state, and motor weakness was defined as 0 
to 3 on the Medical Research Council scale for muscle strength.

Statistical analysis

Descriptive statistics were used to evaluate the patient 
demographics and stroke presentation data to understand the baseline 
characteristics of the entire cohort. The Fisher test for categorical 
variables and the Wilcoxon Rank Sum test for continuous variables 
were used to evaluate the differences between patients with favorable 
and unfavorable primary outcomes. Additionally, imaging 
characteristics and treatment data were compared for variables such 
as occlusion location, ASPECTS, tPA administration, and whether or 
not EVT was performed.

To evaluate the primary outcome, two multivariable logistic 
regression models were created, adjusting for confounding clinical 
variables. The first model used the automated average NWU 
calculation, and the second model used neuroradiologist-assessed 
ASPECTS. The included confounders were chosen a priori because of 
their known association with post-stroke clinical outcomes, including 
age, National Institutes of Health Stroke Scale (NIHSS), received tPA, 
and received EVT. The predictive performance was quantified by the 
area under the receiver operating characteristic curve (AUROC), and 
the two models were compared with the Delong test. The cohort was 
randomly divided 80:20 into training and testing sets to perform this 
AUROC analysis, and the data partitions maintained the 
representation of the two outcome classes. To evaluate the secondary 
outcomes, multivariable logistic regression models were developed 
and compared in a similar fashion. In addition, to further study the 
nuanced new biomarker, univariable logistic regression was conducted 

FIGURE 1

The algorithm for automated net water uptake calculation includes pre-processing, segmentation, and density calculations. On the right, the example 
results demonstrate how NWU quantifies the degree of injury in each stroke region. DICOM, Digital Imaging and Communications in Medicine; NIfTI, 
Neuroimaging Informatics Technology Initiative; MNI, Montreal Neurological Institute; ASPECTS, Alberta Stroke Program Early CT Score; NWU, net 
water uptake; and HU, Hounsfield Units.
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to determine the association between NWU from specific brain 
regions and the individual neurologic outcomes. Lastly, we evaluated 
subsets of the study cohort to explore where NWU and ASPECTS may 
perform better or worse, including the very early and late time 
windows as well as small and large infarct cores. For all statistical tests, 
a p-value < 0.05 was considered significant. Analyses were performed 
with the open-source statistical software R (37).

Results

Among 402 patients with AIS, median age was 69 [IQR 
57–80], 49.3% were female, median NIHSS was 11 [IQR 5–19], 

and median pre-morbid mRS was 0 [IQR 0–1] (see Table 1). In 
addition, 67.2% had a large vessel occlusion, median ASPECTS 
was 9 [IQR 7–10], 44.3% received tPA, 39.1% received 
endovascular therapy, and median 90-day mRS was 3 [IQR 1–5]. 
All 402 subjects had successful automated NCCT image 
processing, and the median time to perform NWU calculations 
was 87 s [IQR 77–95].

In multivariable logistic regression, lower ASPECTS and higher 
average NWU was associated with greater likelihood of poor 
functional outcome measured by 90-day mRS (OR 0.84 [CI 0.74, 0.95] 
and OR 1.14 [CI 1.02, 1.26], respectively). See Table 2 for full results. 
In ROC analysis, the ASPECTS-based model performed the same as 
the NWU-based model when classifying 90-day mRS outcome, with 

TABLE 1  Baseline and imaging characteristics of patient cohort.

Variable Total cohort 
(n = 402)

90-day mRS 0–2 
(n = 180)

90-day mRS 3–6 
(n = 222)

p-value

Age (years), median [IQR] 69 [57, 80] 67 [54, 77] 71 [59, 82] 0.009

Female Sex, n (%) 198 (49.3%) 89 (49.4%) 109 (49.1%) 0.51

Race:

White, n (%) 245 (60.9%) 121 (67.2%) 124 (55.9%) --

Black or African American, n (%) 102 (25.4%) 34 (18.9%) 68 (30.6%) 0.007

Asian, n (%) 17 (4.2%) 8 (4.4%) 9 (4.1%) 1

Other, n (%) 38 (9.5%) 17 (9.4%) 21 (9.5%) 0.61

Ethnicity: Hispanic, n (%) 86 (21.4%) 42 (23.3%) 44 (19.8%) 0.39

Diabetes history, n (%) 108 (26.9%) 46 (25.6%) 62 (27.9%) 0.50

Hypertension history, n (%) 276 (68.7%) 125 (69.4%) 151 (68.0%) 0.91

Hyperlipidemia history, n (%) 152 (37.8%) 74 (41.1%) 78 (35.1%) 0.35

Atrial fibrillation history, n (%) 65 (16.2%) 27 (15.0%) 38 (17.1%) 0.50

Tobacco use, n (%) 78 (19.4%) 46 (25.6%) 32 (14.4%) 0.011

LKW to Arrival (minutes), median [IQR] 280 [103, 670] 202 [98, 510] 407 [106, 738] 0.047

NIHSS on Arrival, median [IQR] 11 [5, 19] 6 [3, 12] 16 [7, 21] <0.001

Baseline mRS, median [IQR] 0 [0, 1] 0 [0, 1] 0 [0, 2] <0.001

Occlusion location:

Intracranial ICA, n (%) 59 (14.7%) 20 (11.1%) 39 (17.6%) --

MCA M1, n (%) 132 (32.8%) 44 (24.4%) 88 (39.6%) 1

MCA distal, n (%) 61 (15.2%) 29 (16.1%) 32 (14.4%) 0.12

ACA, n (%) 4 (1.0%) 0 (0.0%) 4 (1.8%) 1

No LVO, n (%) 132 (32.8%) 84 (46.7%) 48 (21.6%) <0.001

ASPECTS, median [IQR] 9 [7, 10] 10 [8, 10] 8 [5, 10] <0.001

CTP infarct core estimation (mL), mean +/− SD 27.1 +/− 45.4 4.8 +/− 15.4 18.3 +/− 41.8 0.007

Received IV tPA, n (%) 178 (44.3%) 90 (50.0%) 88 (39.6%) 0.043

Received Endovascular Therapy, n (%) 157 (39.1%) 57 (31.7%) 100 (45.0%) 0.007

Endovascular outcome TICI 2b-3, n (% of those who 

received EVT)
139 (88.5%) 55 (96.5%) 84 (84.0%) 0.052

Length of Stay (days), median [IQR] 4 [2, 7] 3 [2, 5] 5 [3, 9] <0.001

90-day mRS, median [IQR] 3 [1, 5] 1 [0, 1] 4 [4, 6] <0.001

IQR, interquartile range; LKW, last known well; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ICA, internal carotid artery; MCA, middle cerebral artery; 
ACA, anterior cerebral artery; LVO, large vessel occlusion; ASPECTS, Alberta Stroke Program Early CT Score; CTP, CT Perfusion, mL, milliliters; tPA, tissue plasminogen activator; 
TICI = thrombolysis in cerebral infarction; EVT, endovascular therapy. Continuous variables were compared using Wilcoxon rank sum test, and categorical variables were compared using 
Fisher’s exact test. All analyses were performed in the R statistical software.
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AUROC 0.732 and 0.749, respectively, (p = 0.513 with Delong test, see 
Figure 2).

In the secondary analysis, the ASPECTS and NWU models 
showed varying levels of performance to predict 90-day mRS 
outcome among different clinically relevant subgroups (see 
Table 3). The NWU-based model had excellent performance when 
classifying 90-day mRS outcome for patients with large infarct 
core at presentation defined as ASPECTS 0–5 (AUROC 0.863). In 
addition, the models seemed to perform better for the subgroup 
presenting in the very early time window (less than 3 h from last 
known well) compared to the late time window. Overall, the 
differences in performance between subgroups that were seen by 
the ASPECTS-based model were mirrored by the 
NWU-based model.

Among the secondary outcomes, average NWU showed a 
significant association in multivariable logistic regression with 
several individual neurologic deficits including language 
impairment, visual impairment, severe dysphagia, arm and leg 
motor weakness, and LOC deficit at hospital discharge (see 
Supplemental Table 1). The NWU and ASPECTS-based models 
performed similarly, and this performance was consistently 
excellent or very good based on AUROC (see Figure  2 and 
Supplementary Figure 1). For example, when predicting language 
impairment at discharge, the NWU-based model showed an 
AUROC of 0.787 versus the ASPECTS-based model AUROC of 
0.776 (p = 0.639 with Delong test).

When examining the association between individual brain 
regions and specific neurologic deficits, logistic regression showed 
that most of the brain regions showed consistently significant 
predictive power for the precise deficits except for the caudate and 
M4 region (see Figure 3 and Supplemental Figure 2). Particular 
deficits were not isolated to certain brain regions, but rather NWU 
in almost any region showed significant association to each 
precise outcome. Lastly, four case examples are shown in Figure 4 
to demonstrate some common clinical scenarios and the resulting 
ASPECTS and NWU findings.

Discussion

In this cohort study of over 400 patients with anterior circulation 
acute ischemic stroke, we demonstrate the utility of a novel imaging 
biomarker, net water uptake, that quantifies hypoattenuation in brain 
regions on NCCT in a fully automated manner. We found that the 
performance of this marker, which can be calculated within 2 min, is 
equivalent to expert neuroradiologist-defined ASPECT scoring, across 
the entire cohort as well as select crucial subgroups.

One of the first clinical studies of NWU investigated its use as a 
“tissue-clock” to predict ischemic stroke time window based on 
non-contrast CT (23). Studies have also demonstrated that NWU is 
useful for predicting midline shift and the presence of malignant 
cerebral edema to potentially inform the need for decompressive 
hemicraniectomy (24, 27, 28). Some of these early studies have relied 
on advanced imaging for segmentation of infarct core prior to 
calculating NWU in the predicted core or region-of-interest, so 
we sought to develop an agnostic approach that calculated NWU in 
10 standard regions using NCCT alone (23, 24, 27, 28, 38). In addition, 
some studies have relied on commercial software from biotechnology 
companies which limits widespread use compared to this open-access 
approach (26–28). Lastly, instead of predicting imaging outcomes, our 
study focused on the prediction of long-term clinical outcomes that 
can help guide treatment decision-making and patient expectations. 
This study demonstrated that automated NWU is highly reliable as an 
independent predictor of these clinical outcomes and performs 
equally to the ASPECT score which requires a subjective visual 
assessment by a trained neuroradiologist or neurologist. NWU 
provides a granular measurement of tissue injury and edema which 
adds new quantitative information beyond the 0 to 10 scale of the 
ASPECTS. We suspect this imaging marker is quantifying localized 
edema from irreversible ischemia and early immunological response 
(38–41). Not only could NWU be studied in future trials to improve 
treatment selection for thrombolysis and EVT, but it could also prove 
to be useful to stratify patients for new investigative treatments such 
as neuroprotectants and immunomodulatory agents.

TABLE 2  Multivariable regression analysis to predict poor 90-day clinical outcome (mRS 3–6) with ASPECTS-based model and NWU-based model.

Variable Odds ratio 95% Confidence interval p-value

ASPECTS-based Model

Age (years) 1.02 [1.00, 1.03] 0.017

NIHSS on arrival 1.10 [1.06, 1.14] <0.001

Received IV tPA 0.48 [0.31, 0.76] 0.002

Received Endovascular Therapy 0.71 [0.42, 1.21] 0.21

ASPECTS 0.84 [0.74, 0.95] 0.008

NWU-based Model

Age (years) 1.02 [1.00, 1.03] 0.046

NIHSS on arrival 1.11 [1.07, 1.15] <0.001

Received IV tPA 0.50 [0.31, 0.78] 0.003

Received Endovascular Therapy 0.79 [0.46, 1.33] 0.37

Average NWU 1.14 [1.02, 1.26] 0.019

ASPECTS, Alberta Stroke Program Early CT Score, NIHSS, National Institutes of Health Stroke Scale, tPA, tissue plasminogen activator, NWU, net water uptake. All analyses were performed 
in the R statistical software.
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In the secondary analysis, we  observed that NWU and 
ASPECTS generally have a stronger association with 90-day 
outcome for patients in the very early time window and also those 
who are presenting with a large infarct core. This study was not 
powered to identify differences in biomarker performance among 
these subpopulations, so future studies will be  focused on 
evaluating the utility of NWU to triage these difficult cases. For 
example, recent randomized controlled trials showed a benefit of 
endovascular therapy for patients with ASPECTS in the range of 
0 to 5, suggesting the scale can no longer be relied upon for EVT 
decision-making (8–10). Automated NWU could not only fill this 

gap, but it could be accomplished with freely available software 
and only non-contrast CT.

Clinical scales like the mRS and the NIHSS are not always 
reflective of how patients rate their own disability after stroke, are 
biased toward motor disability, and are not fully reliable to gage long-
term disability (42–47). We  anticipate that a more personalized 
approach is required in the future of stroke care, and in this study 
NWU has also shown strong association with individual neurologic 
outcomes that impact a patient’s quality of life and daily activities. The 
NWU from individual regions of the brain were shown to have a 
strong association with precise neurologic deficits such as language 

FIGURE 2

To evaluate the predictive performance of the ASPECTS and NWU models, the AUROC values were compared with the Delong test. When predicting 
90-day mRS 3–6, AUROC 0.732 for the ASPECTS-based model vs. AUROC 0.749 for the NWU-based model (p = 0.513). When predicting visual 
Impairment, AUROC 0.743 for the ASPECTS-based model vs. AUROC 0.752 for the NWU-based model (p = 0.773). When predicting dysphagia with 
gastrostomy, AUROC 0.832 for the ASPECTS-based model vs. AUROC 0.822 for the NWU-based model (p = 0.724). When predicting language 
Impairment, AUROC 0.776 for the ASPECTS-based model vs. AUROC 0.787 for the NWU-based model (p = 0.639).
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impairment, visual impairment, and severe dysphagia. Furthermore, 
these secondary outcomes were assessed at time of hospital discharge 
instead of long-term follow up, because 90-day outcomes are 
influenced by many factors that are not directly stroke related 
including insurance status, resource availability, and systemic 
disparities. For example, recent studies have demonstrated that lower 
rates of acute and post-acute treatments were observed in Black 
patients with stroke compared to their White counterparts (48–51). 
Our study demonstrated a similar finding in that there was a 
significant difference in rate of good 90-day mRS among Non-Hispanic 
Black patients compared to White patients (Table 1), but there was no 
significant difference in disability between races at the time of hospital 
discharge (26% vs. 20% respectively, p = 0.117). Although this study 
was not focused on this research question, the finding suggests that 

there may be disparities in post-hospital stroke care that affect long-
term recovery and should be further investigated in future studies.

This study has limitations. Because of the observational and 
retrospective nature of this cohort study, the lack of randomization 
can introduce confounding factors that are not fully accounted for 
in the baseline comparison in Table 1. The primary analysis did 
not include all possible co-variables, so there is potential for 
residual confounding. On the other hand, the population is 
representative of commonly seen cohorts with AIS in both real-
world practice and prospective randomized trials (1, 4, 7). Also, 
the study cohort only sampled from a single geographic region, a 
large metropolitan area in the southern United States (Houston, 
TX), so the findings will need to be replicated in a geographically 
diverse future study. Additionally, the study population contained 

TABLE 3  Exploring the performance of NWU and ASPECTS in clinically relevant subgroups to predict poor 90-day functional outcome.

Patient subset ASPECTS model 
performance 

(AUROC)

NWU model 
performance 

(AUROC)

p-value

Large vessel occlusion, n = 270 0.775 0.770 0.76

Very early time window (presenting less than 3 h from last known well), n = 86 0.734 0.743 0.34

Late time window (presenting 6 to 24 h from last known well), n = 100 0.638 0.677 0.27

Small estimated infarct core at presentation (ASPECTS 6–10), n = 336 0.713 0.715 0.76

Large estimated infarct core at presentation (ASPECTS 0–5), n = 66 0.795 0.863 0.31

Both models included the confounder variables age, NIHSS, received tPA, and received EVT. Multivariable logistic regression models were developed to predict poor 90-day mRS 3–6, and 
AUROC values were statistically compared using the Delong test. All analyses were performed in the R statistical software. ASPECTS, Alberta Stroke Program Early CT Score; NWU, net water 
uptake; AUROC, area under the receiver operating characteristic curve; NIHSS, National Institutes of Health Stroke Scale; tPA, tissue plasminogen activator; EVT, endovascular therapy; mRS, 
modified Rankin Scale.

FIGURE 3

The secondary analysis evaluated the association of NWU from individual regions and 90-day Functional Outcome. The 10 stroke regions are 
represented as well as Average NWU and Weighted Average NWU. On the right, the results of univariable logistic regression are displayed for the 
prediction of 90-day mRS outcome (represented with Odds Ratio and 95% confidence intervals).
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both patients with and without LVO, yet the novel imaging marker 
was still strongly associated with the outcomes in subgroups. As 
an automated and easy-to-use NCCT triage tool, NWU could 
be widely applicable among patients with AIS, however future 
trials can investigate its potential benefit for treatment decision-
making among sub-populations and for specific reperfusion or 
neuroprotectant therapies. When compared to ASPECTS, 
automated NWU is invulnerable to subjectivity and inter-rater 
variability, provides a new degree of nuance to NCCT evaluation, 
and could be used even in settings where vascular neurology and 
neuroradiology expertise are not available.

In summary, we found that a fully automated NWU assessment 
provided quantitative evaluation of ischemia equivalent to expert 
neuroradiologist-assessed ASPECT scoring when predicting 
clinical outcomes. Because of its ease of acquisition and quantified 
outputs that are not subject to inter-rater disagreements, NWU 
may serve as a useful tool for clinical practice and upcoming 
clinical trials.
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