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Background: Real-world evidence on the potential of tyrosine kinase inhibitors 
(TKIs) for dementia and Parkinson’s Disease (PD) is crucial. This observational 
study aimed to evaluate TKIs, particularly nilotinib and imatinib, as potential 
therapeutic agents for these conditions.

Methods: In this retrospective cohort study, 5,579 cancer patients who were 
prescribed TKIs (users; ≥ 40 years) within 5 years were used, while propensity 
score-matched patients without any record of TKIs (never users) served as the 
reference. An association of TKIs with dementia and PD was assessed by the 
Fine-Gray Model with adjusted-competitive hazard ratios (aCHRs) and 95% 
confidence intervals (CIs): [aCHRs (95% CIs; p-value)].

Results: The risk of dementia decreased when all types of TKIs [0.65 (0.48–0.88; 
<0.01)], imatinib [0.66 (0.48–0.89; <0.01)], and nilotinib [0.46 (0.23–0.93; <0.05)] 
was used in cancer patients. Additionally, the reduced risk of PD was identified 
in users of all [0.56 (0.33–0.97; <0.05)] and imatinib [0.55 (0.32–0.96; <0.05)]. 
When the risk was evaluated according to the number of times for total usage, 
the aCHRs for PD in the low, middle, and high-frequency groups were 0.46 
(0.20–1.02), 0.78 (0.40–1.54), and 0.40 (0.15–1.05), respectively. The risk of 
dementia was 0.68 (0.46–0.99), 0.57 (0.36–0.90), and 0.71 (0.44–1.17) in order 
of frequency (from low to high).

Conclusion: As an observational study indicated a decreased risk of dementia 
and PD with long-term TKI use, imatinib and nilotinib may serve as potential 
therapeutic agents for these conditions, with more evidence from rigorous 
clinical trials to validate.
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Introduction

The exploration of existing drugs for potential applications to new 
diseases beyond their original purpose is an interesting issue in drug 
development, which is commonly known as drug repurposing or 
repositioning (1, 2). Drug repurposing offers a cost-effective and 
potentially faster alternative compared to the stages for entirely new 
drugs, whose success depends on the results of trials: safety profiles, 
understanding of mechanisms, and sufficient evidence (3).

In this context, nilotinib has emerged as an unexpected candidate 
for repurposing. Since nilotinib (second generation) was developed as 
a potent successor to imatinib (first generation), tyrosine kinase 
inhibitors (TKIs), including imatinib, nilotinib, radotinib, dasatinib, 
ponatinib, and bosutinib, are now classified within the broader category 
of targeted cancer therapies. These TKIs are primarily used in the 
management of chronic myeloid leukemia (CML) caused by the 
Philadelphia chromosome, which carries the Bcr-Abl (Breakpoint 
cluster region-Abelson leukemia) oncogene (4, 5). Recent research has 
explored the potential application of nilotinib to dementia and 
Parkinson’s disease (PD) (6, 7). Dementia is characterized by a decline 
in cognitive function, enough to interfere with daily life (8, 9). Similarly, 
PD is a neurodegenerative disorder that primarily affects movement 
and impacts a patient’s daily activities and quality of life because PD is 
usually accompanied by tremors, stiffness, and difficulty with balance 
and coordination (10, 11). As there is no definite cure for dementia and 
PD at present, the search for effective treatments for dementia and PD 
has become urgent (12, 13). Since both dementia and PD share 
common pathological mechanisms, there is potential for TKIs to 
mitigate the risk of both neurodegenerative diseases through shared 
pathways. As TKIs, not only nilotinib but also radotinib and dasatinib, 
have been expected as a prospect for the treatment of dementia and PD, 
several clinical trials have been conducted to explore their therapeutic 
potential. When the phase 2 trial with 63 participants was conducted 
in a single center, it suggested the safety of the long-term use of 
nilotinib in patients with PD (14). Moreover, the randomized 
controlled phase 2 trial with 300 participants demonstrated that 
nilotinib is reasonably safe and tolerated in PD patients and has the 
potential as a new treatment for PD (15). On the other hand, a clinical 
trial involving 76 participants with moderately advanced PD reported 
a lack of evidence supporting the efficacy of nilotinib in PD treatment 
(16). To provide a balanced perspective on the effectiveness or lack of 
association, real-world evidence from large populations regarding the 
efficacy of TKIs in dementia and PD remains insufficient. Real-world 
data, such as insurance claim data, can offer strong generalizability by 
capturing clinical practices across diverse populations. Their long-term 
follow-up also enables the assessment of delayed or rare effects that are 
often missed in clinical trials. Insights may be gained through the 
observation of pre-existing medical data, rather than relying solely on 
cost-and time-consuming trial studies.

In this observational cohort study, we  investigated evidence 
suggesting that TKIs, primarily imatinib and nilotinib, may hold promise 
as potential therapeutic agents for dementia and PD using national 
insurance data. By assessing the reduced incidence of dementia and PD 
(prevention) in relation to TKI use and cumulative exposure, we aimed 
to identify the association between TKIs and outcomes and discuss 
common pathological mechanisms underlying both prevention and 
treatment. Ultimately, our study seeks to provide insights into the 
potential role of TKIs as therapeutic agents for dementia and PD.

Methods

Data source

Analyzing real-world information embedded within insurance claim 
data provides a cost-effective opportunity to conduct research that can 
reveal evidence to help decision-making and ultimately improve health 
outcomes. The National Health Insurance Service (NHIS) supports 
almost all medical practices in Korea (17, 18). The data from the NHIS 
records offer a comprehensive view of interactions between factors and 
help to understand hidden patterns. After the review of research ethics 
and approval, this cohort study used the NHIS data to collect TKI users 
and analyze the risk of dementia and PD. The Institutional Review Board 
(IRB) of Seoul National University Hospital (Seoul National University 
College of Medicine/Hospital Ethics Committee of Medical Research and 
Center for Human Research Protection) approved this study (E-2403-
045-1519). The requirement for informed consent was waived by the IRB 
as the NHIS database is anonymized according to strict confidentiality 
guidelines prior to distribution. This retrospective cohort and observation 
study was conducted by following the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines 
and checklist.

Study population

Based on the history of drug prescription and diagnosed diseases, 
the study population whose age was more than 40 years old was 
recruited in this study. First, 8,679 users who were prescribed Bcr-Abl 
TKIs within the period (5 years: from January 1, 2013 to December 
31, 2017) were recruited. A total of 609 events of death, dementia, or 
PD were excluded before the index date (January 1, 2018). To ensure 
the homogeneity of the study population and minimize potential bias, 
we included only 5,579 cancer patients in the analysis. Prescriptions 
with other treatment purposes (e.g., for autoimmune diseases) were 
excluded (N = 2,491) due to heterogeneity in baseline characteristics, 
mortality rates, and the incidence of dementia and PD, which differ 
substantially between cancer patients and those treated for other 
diseases. On the other hand, through the same exclusion criteria, the 
candidates for the match were recruited among the never-users who 
had not received Bcr-Abl TKIs by the end of the follow-up (31 
December 2022). After the 1:5 propensity score (PS) match was 
performed (PS for age, sex, income level, Charlson comorbidity index, 
and year of cancer diagnosis; caliper = 0.1), 5,579 users and 27,895 
never-users were observed for the incidence of dementia or PD 
(Supplementary Figure S1). For the additional analysis with added 
covariates, 3,922 and 21,441 were used as the users and never-users, 
respectively, who got national health checkups (2 years: from 1 
January 2016 to 31 December 2017).

Exposure: Bcr-Abl tyrosine kinase inhibitors

Bcr-Abl TKIs included imatinib, nilotinib, radotinib, and 
dasatinib (19). The starting point of insurance claims for each drug 
is January 2002 (imatinib), January 2012 (nilotinib), September 
2012 (radotinib), May 2008 (dasatinib), and June 2018 (ponatinib; 
not considered in the study). The accumulated frequency [times] 
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of Bcr-Abl TKIs, which were prescribed between 1 January 2013 
and 31 December 2017, was calculated, after the users were 
classified according to the drug (single and multi-use). 
Additionally, the risk in single users without multi-class users 
was evaluated.

Outcome: dementia and Parkinson’s 
disease

Based on the verified operational definitions of previous studies, 
dementia and PD were operatively defined by the International 
Classification of Diseases Version 10th (ICD-10) code and the history 
of prescription and medical service. While Parkinson’s disease (PD) 
was defined as ≥3 outpatient visits with the ICD-10 code “G20” (20, 
21), dementia, including Alzheimer’s disease (“F00” and “G30”), 
vascular dementia (“F01”), and other types, was defined as a new 
diagnosis with ICD-10 codes (“F00,” “F01,” “F02,” “F03,” and “G30”) 
in conjunction with prescriptions for anti-dementia medications, 
including donepezil, rivastigmine, galantamine, or memantine (22). 
The first day of claiming insurance, which satisfies the above 
operational definition, was represented as the date of initial diagnosis. 
All participants were followed up until the end of the study, the date 
of death, or the date of the new event.

Statistical analysis

The Cox proportional hazards model was used to evaluate the risk of 
death by calculating adjusted hazard ratios (aHRs) and 95% confidence 
intervals (CIs). Since Bcr-Abl TKIs were used for severe diseases such as 
CML, significantly different mortality in users and never-users was 
shown. Thus, to evaluate the risk of dementia and PD, adjusted 
competitive hazard ratios (aCHRs) and 95% CIs from the competitive risk 
analysis (Fine-Gray Model) were used (23, 24). The covariates for the 
adjustment included age (continuous; years), sex (categorical), income 
level (categorical; quartile), Charlson comorbidity index (continuous), 
type of cancer (categorical), and year of cancer (continuous). Charlson’s 
comorbidity index was calculated and represented as morbidity. Based on 
ICD-10 codes, gastrointestinal cancer (GI cancer; “C16-C20”), CML 
(“C92.1” and “C92.2”), and other cancers of the head–neck, liver, lung, 
pancreas, breast, prostate, thyroid, and lymphocyte were isolated (25, 26). 
The year of cancer diagnosis is used as an indicator of the duration of 
prevalence. Since the incidence of dementia and PD differs across age 
groups, particularly the elderly as a high-risk population, as well as sex 
and obesity, stratified analyses were also performed based on age (cutoff: 
60 years), sex (men or women), and BMI (cutoff: 25 kg/m2 for men and 
23 kg/m2 for women).

The statistical results are expressed as a number of participants 
(%) and a mean value ± standard deviation. To compare the differences 
in the distribution of covariates, statistical significance was defined as 
an unadjusted p-value of <0.05 (two-tailed) when the chi-squared test 
for categorical variables and analysis of variance (ANOVA) for 
continuous variables were used. To minimize errors from multiple 
comparisons, adjusted p-values were also calculated using the 
Benjamini–Hochberg procedure. All data collection and statistical 
analyses were conducted using SAS 9.4 (SAS Institute Inc., Cary, 
NC, USA).

Results

In both 5,579 users and 27,895 never-users (1:5 PS match), the 
average age was approximately 60.5 years, and the sex ratio (men to 
women) was similarly identified as 1.4 (Table  1). Although the 
prevalence of GI cancer was similar (the early 30%), there was a 
difference in the prevalence of CML: 0.02% in the never-users and 
45.9% in the users. The sub-cohort with various records from the 
national health examination consisted of 21,441 non-users and 3,922 
users. Body mass index was similar at approximately 24.1  in both. 
Table 2 shows that the mean of total usage within 5 years in the users 
who were prescribed Bcr-Abl TKIs was 859 ± 614 times (days). When 
the risk of death was evaluated [aHR (95% CIs, unadjusted p)], the 
users had significantly higher mortality compared to non-users [1.41 
(1.30–1.54, <0.001)]. Similarly, higher mortality in the users of imatinib 
[1.44 (1.33–1.57, <0.001)], radotinib [1.63 (1.16–2.30, <0.05)], and 
dasatinib [1.87 (1.54–2.28, <0.001)] was observed. When the risk of 
dementia was evaluated, aCHRs (95% CIs, unadjusted and adjusted p) 
for all-typed dementia were 0.65 (0.48–0.88, <0.01 and <0.05), 0.66 
(0.48–0.89, <0.01 and <0.05), and 0.46 (0.23–0.93, <0.05 and 0.055) in 
the users of all-type, imatinib, and nilotinib, respectively. Similarly, 
aCHRs (95% CIs, unadjusted and adjusted p) for Alzheimer’s disease 
were 0.60 (0.43–0.83, <0.01 and <0.01), 0.60 (0.43–0.84, <0.01 and 
<0.01), and 0.38 (0.18–0.83, <0.05 and <0.05) in the users of all-type, 
imatinib, and nilotinib, respectively. Furthermore, lower aCHRs for PD 
were identified: 0.56 (0.33–0.97, <0.05 and <0.05) and 0.55 (0.32–0.96, 
<0.05 and <0.05) in the users of all and imatinib, respectively. 
Supplementary Table S1 showed that the risk of dementia and PD was 
reduced in users of imatinib and nilotinib when a single user was 
identified. In the users of nilotinib, the risk of dementia [0.51 (0.19–
1.38)] and PD [0.38 (0.04–3.32)] was lower than that in the users of 
imatinib. When the covariates from the health check-up were more 
adjusted, aCHRs (95% CIs, unadjusted p) in the users decreased 
compared to that of the never-users: 0.65 (0.44–0.95, <0.05) for 
all-typed dementia and 0.50 (0.26–0.99, <0.05) for PD 
(Supplementary Table S2). The risk of dementia and PD was reduced 
among the older (age≥60 years): aCHRs (95% CIs, p) was 0.63 (0.46–
0.86, <0.01) for all-typed dementia and 0.37 (0.18–0.75, <0.01) for PD 
(Supplementary Table S3). The risk of both also decreased among men 
and women. When all users were divided into three equal groups 
according to the total usage of Bcr-Abl TKIs, the means of total usage 
(times ± SD) for 5 years were 201 ± 127, 778 ± 200, and 1,598 ± 297 
times in the first (low; N = 1,859), second (middle; N = 1,860), third 
(high; N = 1,860) of trisection, respectively, (Table 3). The aCHRs for 
all-typed dementia were 0.68 (0.46–0.99, <0.05), 0.57 (0.36–0.90, 
<0.05), and 0.71 (0.44–1.17) PD in the low, middle, and high groups, 
compared to that in the never-users, which p for trend in the above 
four groups was 0.005. Similarly, the aCHRs for PD in the low, middle, 
and high groups were 0.46 (0.20–1.02), 0.78 (0.40–1.54), and 0.40 
(0.15–1.05), respectively. However, there was no statistical difference 
between the low and high groups’ risk of dementia (p = 0.327) and PD 
(p = 0.621).

Discussion

In this nationwide retrospective cohort study, 5-year Bcr-Abl 
TKI users (N of users = 5,579), mainly imatinib and nilotinib, 
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TABLE 1  Characteristics of the study population.

Never-usera (Matched) User of Bcr-Abl TKIs

Study population, N 27,895 5,579

Total usageb [times], mean ± SD (range) 859 ± 614 (1–3,542)

Type of Bcr-Abl TKI [Used], N (%)

 � Imatinib 0 3,980 (71.3)

 � Nilotinib 0 1,010 (18.1)

 � Radotinib 0 300 (5.4)

 � Dasatinib 0 1,228 (22.0)

Age [years], mean ± SD 60.5 ± 11.1 60.5 ± 11.5

Age [years], N (%)

 � 40–59 13,689 (49.1) 2,760 (49.5)

 � 60–79 12,836 (46.0) 2,519 (45.2)

 �  ≥ 80 1,370 (4.9) 300 (5.4)

Sex, N (%)

 � Men 16,237 (58.2) 3,240 (58.1)

 � Women 11,658 (41.8) 2,339 (41.9)

Income level, N (%)

 � Q1 11,027 (39.5) 2,144 (38.4)

 � Q2 6,519 (23.4) 1,290 (23.1)

 � Q3 4,675 (16.8) 966 (17.3)

 � Q4 5,674 (20.3) 1,179 (21.1)

Charlson comorbidity index, N (%)

 � 0–2 9,083 (32.6) 1,692 (30.3)

 � 3–5 12,894 (46.2) 2,655 (47.6)

 �  ≥ 6 5,918 (21.2) 1,232 (22.1)

Prevalence of cancer [Yes], N (%)

 � Gastrointestinal cancer 8,597 (30.8) 1,926 (34.5)

 � Chronic myelogenous leukemia 6 (0.02) 2,563 (45.9)

Year of the diagnosed date of cancer, N (%)

 � 2010–2011 4,531 (16.2) 1,003 (18.0)

 � 2012–2013 6,147 (22.0) 1,261 (22.6)

 � 2014–2015 7,871 (28.2) 1,538 (27.6)

 � 2016–2017 9,346 (33.5) 1,777 (31.8)

Body mass indexc [kg/m2], mean ± SD 24.16 (3.26) 24.06 (3.14)

Smoking statusc, N (%)

 � Never 12,408 (57.9) 2,335 (59.5)

 � Former 5,899 (27.5) 1,119 (28.5)

 � Current 3,134 (14.6) 468 (11.9)

Alcohol consumptionc [times/week], N (%)

 � 0–1 (None and Light) 17,285 (80.6) 3,373 (86.0)

 � 2–4 (Moderate) 3,284 (15.3) 443 (11.3)

 � 5–7 (Heavy) 872 (4.1) 106 (2.7)

Physical activityc [times/week], N (%)

 � 0–1 (None and Light) 14,393 (67.1) 2,708 (69.0)

 � 2–4 (Moderate) 5,670 (26.4) 989 (25.2)

 � 5–7 (Heavy) 1,378 (6.4) 225 (5.7)
aNot use any type of Bcr-Abl inhibitors (imatinib, nilotinib, radotinib, dasatinib, and ponatinib) from 1 January 2002 to 31 December 2022.
bAccumulated times of prescribed Bcr-Abl TKIs, between 1 January 2013 and 31 December 2017.
cParticipants who take the national health check-up (N of never-user = 21,441; N of user = 3,922).
TKIs, tyrosine kinase inhibitors; N, number of participants; SD, standard deviation.
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TABLE 2  Association of Bcr-Abl TKI use with the incidence of dementia or Parkinson’s disease.

Never-user User of Bcr-Abl TKIs

All Imatinib Nilotinib Radotinib Dasatinib

Study population, N 27,895 5,579 3,980 1,010 300 1,228

Total usage [times], 

mean ± SD
859 ± 614 740 ± 613 854 ± 602 477 ± 419 687 ± 545

Death

 � Events, N (%) 4,309 (15.4) 935 (16.8) 804 (20.2) 98 (9.7) 37 (12.3) 166 (13.5)

 � Personal year 126,439 25,382 17,729 4,776 1,408 5,621

 � aHR (95% CIs) 1.00 (Reference) 1.04 (0.97, 1.12) 1.18 (1.09, 1.27)# 0.68 (0.56, 0.83)# 0.90 (0.65, 1.25) 1.00 (0.85, 1.16)

All dementia

 � Events, N (%) 689 (2.5) 142 (2.6) 118 (3.0) 18 (1.8) 6 (2.0) 23 (1.9)

 � Personal year 124,970 25,587 17,489 4,733 1,389 5,575

 � aCHR (95% CIs) 1.00 (Reference) 0.65 (0.48, 0.88)** 0.66 (0.48, 0.89)** 0.46 (0.23, 0.93)* 0.60 (0.23, 1.57) 0.69 (0.36, 1.34)

 � adjusted p-value Reference 0.017 0.024 0.055 0.460 0.426

Alzheimer’s disease

 � Events, N (%) 603 (2.2) 119 (2.1) 95 (2.4) 15 (1.5) 5 (1.7) 19 (1.5)

 � aCHR (95% CIs) 1.00 (Reference) 0.60 (0.43, 0.83)** 0.60 (0.43, 0.84)** 0.38 (0.18, 0.83)* 0.48a (0.16, 1.41) 0.58 (0.28, 1.18)

 � adjusted p-value Reference 0.008 0.004 0.032 0.338 0.242

Parkinson’s disease

 � Events, N (%) 253 (0.9) 41 (0.8) 34 (0.8) 1 (0.1) 5 (1.7) 6 (0.5)

 � Personal year 125,888 25,298 17,664 4772 1,396 5,607

 � aCHR (95% CIs) 1.00 (Reference) 0.56 (0.33, 0.97)* 0.55 (0.32, 0.96)* 0.20a (0.01, 1.18) 1.79a (0.53, 6.47) 0.52 (0.18, 1.45)

 � adjusted p-value Reference 0.038 0.031 0.115 0.528 0.388

Cox proportional hazards regression and competing risk (Fine-Gray Model; all-cause death as competitive event) analyses were used to calculate adjusted hazard ratios and 95% confidence 
intervals after adjustment of the following covariates: age, sex, income level, Charlson comorbidity index, type of cancer, and year of cancer.
aNot enough events (≤ 5).
TKIs, tyrosine kinase inhibitors; N, number of participants; aHR, adjusted hazard ratio; CIs, confidence intervals; aCHR, adjusted competitive hazard ratio.
Unadjusted p-value: *p-value<0.05; **p-value<0.01; #p-value<0.001 and adjusted p-value through Benjamini–Hochberg adjustments.

TABLE 3  Risk of dementia and Parkinson’s disease, according to the prescription frequency.

Never-user User of Bcr-Abl TKIs (All), frequent p for trend

Low (1st trisection) Middle (2nd 
trisection)

High (3rd 
trisection)

Study population, N 27,895 1,859 1,860 1,860

Total usage [times], 

mean ± SD
201 ± 127 778 ± 200 1,598 ± 297

All dementia

 � Events 689 (2.5) 53 (2.8) 45 (2.4) 44 (2.4)

 � Personal year 124,970 8,057 8,409 8,621

 � aCHR (95% CIs) 1.00 (Reference) 0.68 (0.46, 0.99)* 0.57 (0.36, 0.90)* 0.71 (0.44, 1.17) 0.005

1.00 (Reference) 0.95 (0.55, 1.65) 1.53 (0.75, 3.10) 0.327

Parkinson’s disease

 � Events 253 (0.9) 8 (0.4) 18 (1.0) 16 (0.9)

 � Personal year 125,888 8,159 8,455 8,684

 � aCHR (95% CIs) 1.00 (Reference) 0.46 (0.20, 1.02) 0.78 (0.40, 1.54) 0.40 (0.15, 1.05) 0.040

1.00 (Reference) 1.92 (0.68, 5.43) 1.31 (0.24, 7.08) 0.621

Competing risk analysis, Fine-Gray Model, was used to calculate adjusted hazard ratios and 95% confidence intervals after adjustment of the following covariates: age, sex, income level, 
Charlson comorbidity index, type of cancer, and year of cancer.
TKIs, tyrosine kinase inhibitors; N, number of participants; aCHR, adjusted-competitive hazard ratio; CIs, confidence intervals.
Unadjusted p-value: *p-value<0.05, **p-value<0.01, and #p-value<0.001.
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showed a decreased risk of dementia and PD. When only a single 
user was considered among patients with CML and GI cancer, the 
risk of dementia was reduced in the users of imatinib and nilotinib, 
whereas the risk of PD significantly decreased in the users 
of imatinib.

Since users of TKIs exhibit different mortality rates compared 
to never-users, the risks of death and incidence of dementia-PD 
were competitively evaluated among cancer patients, unlike 
RCTs, which aimed at treating dementia or PD among dementia 
or PD patients. Nonetheless, our key findings indicate that 
cumulative prescriptions of nilotinib and imatinib were 
associated with a reduced incidence in patients with CML and GI 
cancer, which suggests that the drug may play a preventive role 
in disease onset and even influence a common biological 
mechanism underlying both disease development and treatment. 
Notably, although statistical stability and reliable 95% CIs were 
limited due to the small number of TKIs users and events, a 
potential dose–response relationship (from no user to high-
frequency users) was observed: p = 0.005 for dementia and 
p = 0.040 for PD. The three metabolisms of α-synuclein, amyloid 
β (Aβ), and hyperphosphorylated Tau protein (p-Tau) are 
suggested as major mechanisms by which TKIs are associated 
with the lower risk of dementia and PD. α-Synuclein is abundant 
in presynaptic terminals and plays a role in regulating synaptic 
function. When α-synuclein is misfolded and aggregates, 
insoluble aggregation of α-synuclein is associated with several 
neurodegenerative diseases: α-synucleinopathies (27). Since the 
aggregation of α-synuclein contributes to the loss of dopaminergic 
neurons, the prescription of TKIs is linked to the lower risk of 
neurodegenerative diseases by enhancing the autophagic 
clearance of α-synuclein (28). For instance, while 885 ng/mL 
human a-synuclein was measured in total brain lysates from the 
animal model (A53T mice), the level of a-synuclein (467 ng/mL, 
p < 0.05) significantly decreased in the daily injected group of 
10 mg/kg nilotinib for 3 weeks. Next, when amyloid precursor 
protein and Aβ are excessively produced and accumulated, an 
abnormal range of Aβ plaques in the brain interferes with 
communication between neurons and is associated with neuronal 
damage and death; accumulated Aβ plaques are involved in the 
development of dementia and PD through neurotoxic and 
inflammatory responses (29, 30). As TKIs effectively lead to 
amyloid clearance by ubiquitination of Parkin and activation of 
Parkin–beclin-1 interaction (31, 32), the prescription of TKIs 
may be  associated with a lower risk of dementia and 
PD. Moreover, as Tau protein, one of the microtubule-associated 
proteins, is related to the axonal structure’s stability and dynamics 
in the neuron (33), dysfunction or the distorted structure of Tau 
protein is linked to neurological disorders and neurodegeneration: 
tauopathies. As one of these abnormal changes, p-Tau, which 
causes Tau protein to detach from microtubules and to form 
insoluble tangles, leads to cytoskeletal destabilization in neurons 
and interferes with the transportation of essential molecules and 
organelles; Tau protein and p-Tau are strongly associated with 
cognitive decline and the development of dementia and PD (34). 
Remarkably, as nilotinib and its derivatives could effectively 
target Tau proteins such as hyperphosphorylation sites (35, 36), 
TKIs could reduce the risk of dementia and PD as inhibitors of 

tauopathies. For instance, discoidin domain receptors (DDRs) are 
one of the receptor tyrosine kinases that are overexpressed in the 
midbrain of patients with PD (37). Knockdown with short 
hairpin RNAs or administration of pharmacological DDR 
inhibitors, including nilotinib, increases dopamine levels and 
reduces neurotoxic proteins (p-Tau and α-synuclein). In a mouse 
model, partial inhibition or complete deletion of DDR-1 increases 
autophagy of neurotoxic proteins and reduces inflammation (38). 
Additionally, a previous study showed that a reduction of p-Tau 
in nilotinib-treated models enhanced astrocyte activity (39). 
When nilotinib penetrates the blood–brain barrier, it causes 
autophagy in neurons to eliminate Tau protein. In the phase 2 
trial, the admission of 150 and 300 mg nilotinib showed 
significantly reduced levels of p-Tau compared to the placebo 
group: −10.04 pg./mL (p < 0.01) in the 150 mg group and 
−12.05 pg./mL (p < 0.01) in the 300 mg group (15). Autophagy 
clearance of Tau protein, promoted by TKIs, brings the balance 
of neurotransmitters such as dopamine (40). In addition, during 
the development of dementia and PD, adverse changes in the 
immune environment are accomplished, and the activity of 
neurons is suppressed. TKIs could control the immune system in 
the central nervous system to ensure the normal activity of 
neurons (41, 42). In an animal model with TgAPP mice, the 
formation of Aβ plaques correlated with increased levels of 
several cytokines (IL-1α/3/6, TNF-α, and IFN-γ) and decreased 
levels of chemokine (CX3CL1). However, the admission of 
nilotinib significantly decreased levels of cytokines (IL-6, TNF-α, 
and IFN-γ) and increased the level of CX3CL1, which maintains 
neuron–microglia communication.

As TKIs have been widely used in cancer treatment and may 
be associated with a lower risk of dementia and PD in our study, 
we  should also address the issue of safety. Cardiovascular 
toxicities and side effects such as hypertension, atrial fibrillation, 
heart failure, and myocardial infarction have been reported (43), 
with underlying mechanisms involving endothelial dysfunction, 
mitochondrial injury, and prothrombotic states. A data-driven 
cohort study for a drug can offer evidence to evaluate real-world 
safety profiles (44, 45). Claims databases also cover large and 
diverse populations over long periods, making it possible to 
detect rare or long-term adverse events, such as cardiovascular 
complications, which are often difficult to assess in RCTs due to 
high costs and limited sample sizes. With analysis for safety, the 
suggested methodology for drug repurposing with real-world 
claim data could analyze routine clinical practice with 
comorbidities, polypharmacy, and medication adherence, as 
demonstrated in our study, and thus enhance the generalizability 
of findings. Moreover, longitudinal follow-up allows for time-to-
event analyses across patient subgroups. However, unlike RCTs 
that are carefully designed prospectively prior to execution, 
retrospective cohort studies using pre-existing data are 
susceptible to selection bias and unmeasured confounding. For 
instance, our analysis was restricted to cancer patients who were 
prescribed or not prescribed TKIs, rather than the general 
population or elderly individuals. This inherent limitation should 
be acknowledged when interpreting the findings. Additionally, 
pre-existing medical data usually lack clinical granularity, such 
as laboratory values, imaging, or biomarker data, which hampers 
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mechanistic interpretation. Misclassification of diagnoses, drug 
exposures, or clinical outcomes may also compromise internal 
validity. Furthermore, evaluating treatment efficacy quantitatively 
is challenging because treatment responses and symptom 
improvements are seldom recorded or identifiable. Thus, while 
the proposed methodology is valuable for identifying 
safety  signals and evaluating real-world evidence for drug 
repurposing, it is best complemented with other data sources, 
such as electronic health records, results from in vitro/vivo tests, 
or clinical trial data, to enhance validity and clinical relevance.

For the interpretation of the study, several limitations must 
be  further considered. First, in the NHIS database, the actual 
prescribed dose (mg) for each patient could not be  identified, 
making it impossible to account for the average prescribed dose 
(mg) of TKIs. Future studies should aim to incorporate dosage 
considerations. Due to the insufficient number of their prescribers 
and events, it was difficult to investigate the association of TKIs, 
particularly radotinib and dasatinib, with neurodegenerative 
diseases, as well as to reliably compare outcomes across TKI users 
of different classes. The results did not reveal significant 
differences in efficacy between the members of the TKI class, 
which may rely on binding affinity to other receptors such as c-Kit 
and platelet-derived growth factor receptors (PDGFRs) (41, 46). 
Thus, comparing the effectiveness of each class (e.g., imatinib 
versus nilotinib) was challenging. Furthermore, a detailed analysis 
of all types of dementia, such as vascular dementia, was not 
feasible due to the low number of events (fewer than five events), 
highlighting the need for observation in a larger cohort. Unlike 
the previous randomized controlled trials of TKIs, which are the 
gold standard for assessing the potential utility of TKIs, 
participants (both users and never-users) in our retrospective 
observational study were not randomly selected and blinded. As 
TKIs are primarily prescribed for cancer treatment, the user group 
was composed of 45.9% CML and 34.5% GI cancer, which differs 
from the matched cancer patients (distribution: 0.02% for CML 
and 30.8% for GI cancer). Since the potential effects of TKIs have 
been predominantly evaluated in patients with CML and GI 
cancer, the observed outcomes may be influenced by predisposing 
factors, including severity, stage, or type of existing cancer, rather 
than the direct effects of TKIs. These factors likely stem from the 
heterogeneity of the study population, including variations in 
cancer severity and cancer-associated immune or epigenetic 
environmental influences. Thus, the effects of TKIs have not been 
extensively studied in the general population or in individuals at 
high risk of dementia and PD. Based on our selected study 
population, the factors related to cancer and early death might not 
be fully controlled, despite the competing risk models, PS match, 
and adjustment in our study. Especially, our study did not fully 
consider the patient’s conditions regarding why a certain class of 
TKI was prescribed across the type, stage, and progression of 
cancer (severity). Consequently, further studies should handle 
estimated mortality rates according to drug use and type of cancer 
and refine selection with additional confounding factors related 
to patient conditions, such as severity and progression 
of morbidities.

In conclusion, this national cohort study suggests that Bcr-Abl 
TKIs, particularly nilotinib and imatinib, may potentially treat 

dementia and Parkinson’s disease. This conclusion is based on 
analyses of insurance claim data that included all prescribers of 
TKIs and tracked them over a long period. Studies focusing on 
nilotinib and its derivatives for drug repositioning, from cancer 
treatment to potential breakthroughs in treating degenerative 
diseases, encourage us to reconsider traditional boundaries in drug 
development. Although the evidence level is currently low, the 
potential for new applications of these drugs can be  efficiently 
explored through large-scale cohort data. We hope that research 
into these unexpected drug applications will continue to advance in 
the future.
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