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Biological rhythms play a critical role in regulating human physiology and
have been implicated in the onset, progression, and recovery of ischemic
stroke (IS). This review summarizes recent experimental and clinical studies
that associate circadian regulation with post-stroke blood—brain barrier (BBB)
repair, focusing on the role of molecular clock components. Core clock
components, including BMAL1 and CLOCK, influence BBB integrity by regulating
tight junction protein expression, angiogenesis, neuroimmune responses, and
neuroendocrine signaling. Finally, we discuss emerging chronotherapeutic
strategies that integrate circadian biology into stroke rehabilitation.
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1 Introduction

Ischemic stroke (IS), also referred to as cerebral infarction, arises from reduced or
interrupted cerebral blood flow, leading to ischemic-hypoxic necrosis of brain tissue and
subsequent neurological deficits. According to the Global Burden of Disease 2021 study,
IS ranks as the second leading cause of death worldwide and remains a major cause of
long-term disability (1). The pathophysiology of IS is initiated by cerebral hypoperfusion
and progresses through multiple interconnected processes, including excitotoxicity (2-4),
oxidative stress (5, 6), and neuroinflammation (7, 8). Acute cerebral ischemia/hypoxia
rapidly depletes ATP, which in turn provokes persistent neuronal hyperexcitation and
widespread apoptosis. At the same time, excessive generation of reactive oxygen species
(ROS) promotes apoptotic signaling and cellular dysfunction, while activation of innate
immunity maintains cytokine and chemokine release, thereby amplifying ischemic injury
(9). Current therapeutic strategies for IS aim to restore cerebral perfusion as quickly
as possible, mainly via intravenous thrombolysis with recombinant tissue plasminogen
activator (rt-PA) or by endovascular mechanical thrombectomy. When applied within
the therapeutic window, these interventions improve blood and oxygen delivery to the
ischemic penumbra, help preserve neuronal function, and reduce long-term disability
(10, 11). However, because of the narrow therapeutic window and the risk of hemorrhagic
complications, fewer than 10% of patients receive rt-PA, and less than half achieve
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successful reperfusion (12, 13). This underscores the urgent
requirement for safer and more effective treatment options.

Disruption of the blood-brain barrier (BBB) is a key
pathological feature of IS, primarily caused by degradation
of tight junction (TJ) proteins and increased transcytosis,
leading to vascular hyperpermeability (14). BBB breakdown
triggers the release of damage-associated molecular patterns
(DAMPs), such as vascular endothelial growth factor (VEGF),
matrix metalloproteinases (MMPs), and heat shock proteins
(HSPs), from ischemic tissue, and promotes immune cell
infiltration that accelerates neuronal necrosis (15). Necrotic
neurons further release DAMPs, enhancing chemokine secretion
by immune cells and perpetuating a cycle of vascular injury,
neuroinflammation, and neuronal death. This pathological cascade
aggravates ischemia-reperfusion injury and promotes secondary
complications, including vasogenic edema and hemorrhagic
transformation (16-18). Clinical studies have linked severe BBB
disruption to unfavorable IS outcomes, such as higher NIH Stroke
Scale (NIHSS) scores, poorer functional recovery on the modified
Rankin Scale (mRS), and increased mortality (19). Therefore,
therapies aimed at preserving BBB integrity may help reduce
neurological deficits and improve long-term outcomes in patients
with IS.

The BBB is a specialized neurovascular interface that
regulates molecular and ionic exchange between the systemic
circulation and the central nervous system (CNS), thereby
maintaining cerebral homeostasis (20). The neurovascular unit
constituting the BBB primarily comprises brain microvascular
endothelial cells (BMECs), astrocytes, and pericytes interacting
with neurons and microglia. These cellular components interact
structurally and molecularly to establish and regulate barrier
function (21, 22). Selective permeability of the BBB depends
on tight junction complexes between endothelial cells, which
are composed of transmembrane proteins (claudins, occludin,
and junctional adhesion molecules [JAMs]) and cytoplasmic
scaffolding proteins of the zona occludens (ZO) family. Together,
these structures restrict paracellular diffusion. In addition, ATP-
dependent transporters such as P-glycoprotein, together with
vesicular mechanisms including adsorptive and receptor-mediated
transcytosis, control transcellular molecular transport (23-25).
Key mechanisms of BBB transport include receptor-mediated
transcytosis (e.g., via transferrin receptors), efflux mediated
by ATP-binding cassette (ABC) transporters such as BCRP
and increased paracellular permeability when tight junctions
are disrupted (26). Mesenchymal stem cell-derived extracellular
vesicles have been shown to help preserve BBB integrity and
reduce the risk of hemorrhagic transformation (27). This is
clinically important since symptomatic intracranial hemorrhage
(sICH), although reported in only 2-7% of thrombolysis cases,
is responsible for the majority of thrombolysis-related deaths
(28). Recent studies have shown that endothelial clock genes
(CLOCK/BMALL) regulate the expression of tight junction
proteins such as CLDN5 and OCLN, suggesting that circadian
rhythms contribute to endogenous protection of BBB function (29).

Circadian rhythms are endogenous 24-h cycles regulated by
the suprachiasmatic nucleus (SCN) in the hypothalamus, which
synchronizes peripheral oscillators across mammalian tissues
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(30). Cell-autonomous rhythms are generated by transcription—
translation feedback loops (TTFLs) involving core clock genes
such as Clock, Bmall, Per, and Cry (31). Clock genes are broadly
expressed, not only in the SCN but also in other brain regions
and peripheral organs (32, 33). At the molecular level, BMALI
and CLOCK form heterodimers (CLOCK:BMALLI) that regulate
transcription of downstream genes by binding to E-boxes, D-
boxes, and Rev-erb/ROR response elements (34). Disruption of
circadian rhythms contributes to pathological processes such
as impaired DNA damage repair (35), altered metabolic and
oxidative stress regulation (36), and dysregulated inflammatory
and immune responses (37). Moreover, Circadian genes also
regulate angiogenesis by influencing endothelial and pericyte
functions, through mechanisms such as modulation of angiogenic
factors (38), basement membrane degradation (39), extracellular
matrix remodeling (40), and regulation of endothelial migration,
proliferation, and pericyte recruitment (41).

Circadian rhythms influence the onset, progression, and
clinical outcomes of IS by regulating diurnal blood pressure
patterns, vascular tone, and platelet activity (42). Ambulatory blood
pressure monitoring (ABPM) has provided strong evidence linking
circadian disruption to stroke incidence. Abnormal circadian blood
pressure rhythms are recognized as an independent risk factor
for IS (43, 44). In rodent models, six weeks of environmental
circadian disruption (ECD) increased infarct size and enhanced
neuroinflammatory responses, thereby worsening stroke severity
(45). Circadian-regulated molecules such as TNF-a, leptin, B-
amyloid, delta sleep-inducing peptide (DSIP), and prostaglandin
D, (PGDy) are expressed in the central nervous system and may
influence stroke pathogenesis by altering BBB circadian dynamics
(46-50). However, the mechanisms by which circadian rhythms
regulate BBB repair after ischemia and influence neurological
recovery are still unclear. Further investigation in this area
could provide the basis for chronotherapeutic approaches in
stroke and identify novel strategies to protect the BBB through
circadian regulation.

2 Circadian rhythms directly regulate
BBB damage and repair following IS

2.1 Circadian rhythms directly regulate
endothelial cell function

Endothelial cells (ECs) of the BBB display circadian rhythmicity
and contain an intrinsic circadian regulatory system (51). At
the molecular level, circadian regulation in ECs is governed
by a transcription-translation feedback loop involving core
clock genes such as CLOCK and BMALI. Pan et al. reported
that leptin transport across the BBB varies with time of
day, being significantly higher at night than during the day
(46). This variation correlates with circadian changes in the
expression of endothelial transporters. Similarly, expression of
the glucose transporter GLUT1 peaks during the circadian active
phase (52). Members of the ABC efflux transporter family,
which are highly expressed in BBB ECs, are regulated by
both endothelial circadian clocks and neuronal activity patterns
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(53). Recent approaches integrating chemogenetic modulation
(e.g., clozapine-N-oxide induction) with fluorescence-activated
cell sorting and transcriptomic profiling have enabled detailed
mapping of activity-dependent gene networks in endothelial cells,
key BBB transporters such as P-glycoprotein show rhythmic
expression coordinated with core clock genes, generating time
windows that favor CNS drug penetration (54, 55). Transporter
activity peaks during the circadian active phase (daytime in
humans) and decreases during rest phases, inversely related to
neuronal activity. Clinical studies have reported better safety
outcomes for intravenous thrombolysis administered between
noon and midnight compared with treatments given in the
early morning (06:00-18:00) (56). These findings suggest that
circadian timing should be considered in optimizing stroke
treatment strategies.

ECs
proliferation, tube formation, and restoration of barrier function,

repair after ischemic stroke involves migration,
each subject to time-dependent regulation that influences the
course of BBB recovery (57). Astone et al. showed that the core
clock gene BMALIL regulates EC proliferation by modulating
cell-cycle regulators, particularly cyclin D1 (58). In BMALI-
knockout mice, EC repair is impaired, leading to delayed BBB
restoration after stroke (59). These findings indicate that clock
genes are essential for endothelial regeneration. Pulido et al.
observed that cerebrovascular EC proliferation depends on
circadian phase and aligns with oscillations in core clock gene
expression (55). When BMALLI levels are high, ECs demonstrate
increased migration and tube formation, which accelerates
BBB repair. Recent studies suggest that cryptochrome (CRY)
proteins regulate EC repair by coordinating the timing of
proliferation, migration, and tube formation, thereby supporting
neovascularization and vascular maturation (60). This regulation
helps limit BBB hyperpermeability, providing a mechanism by
which circadian disruption impairs endothelial repair and disturbs
BBB homeostasis. Coordinated circadian control of EC repair
is required to maintain barrier integrity, whereas its disruption
results in persistent vascular leakage and impaired neurovascular

recovery after stroke.

2.2 Circadian rhythms directly regulate
tight junction proteins

Circadian rhythms influence the expression of genes and
proteins associated with tight junctions at both the transcriptional
and translational levels. Among these, Claudin-5, Occludin, and
zonula occludens-1 (ZO-1) are central to maintaining the structural
integrity and function of tight junctions (23, 61).Claudin-5, a
principal protein in inter-endothelial tight junctions, determines
BBB selective permeabilitys (62). Occludin has been proposed as a
marker of tight junction integrity, with reduced levels correlating
with BBB disruption and cerebral edema (63). ZO-1 links
transmembrane tight junction proteins to the actin cytoskeleton,
and its expression and phosphorylation status are important for
junction assembly and maintenance (64-66).Recent studies show
that the expression of these tight junction proteins follows circadian
oscillations (67).
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Spadoni et al. reported that expression of claudin-5 and
occludin depends on the core clock gene BMALIL. In wild-
type mice, occludin mRNA shows clear circadian oscillation,
which is lost in rhythm-disrupted mice and accompanied by
impaired barrier integrity (68). Kyoko et al. found that claudin-
5 expression in the intestinal vasculature is higher at night
(active phase) than during the day (rest phase) (29). These
findings support circadian regulation of claudin-5 (69) and suggest
that the CLOCK/BMALL heterodimer regulates its transcription
through E-box elements. Jensen et al. showed that loss of BMALIL
reduces claudin-5 expression and increases BBB permeability (70).
Expression of the clock repressor Period2 (Per2) is inversely
correlated with claudin-5 levels, supporting circadian regulation
of tight junction dynamics (71). After ischemic stroke, tight
junction repair is time-dependent, with efficiency differing across
circadian phases (69). In rhythm-synchronized mice, occludin and
claudin-5 show periodic changes in expression during the first
72h after injury, whereas such oscillations are absent in rhythm-
disrupted mice (72, 73). Together, these findings suggest that
circadian regulation of tight junction proteins is an important
mechanism for maintaining BBB integrity, and that targeting
core clock components may help promote BBB recovery after
ischemic stroke.

3 Circadian rhythms promote post-IS
BBB repair through angiogenesis
regulation

3.1 Circadian rhythms modulate pericyte
phenotypic reprogramming to restore BBB
integrity after IS

Angiogenesis after stroke is an important stage of BBB
restoration, involving endothelial cell proliferation, migration, and
pericyte recruitment. Circadian regulation of angiogenesis has been
linked to core clock genes such as CLOCK and BMALL1 (70, 74).
Post-stroke angiogenesis shows spatiotemporal heterogeneity
(75).
which aggravates BBB dysfunction, vasogenic edema, and

Immature neovessels often remain hyperpermeable,
neuroinflammation. Pericytes contribute to CNS homeostasis
by regulating microcirculatory flow, controlling leukocyte entry,
clearing neurotoxic metabolites, modulating circadian endothelial
gene expression, and maintaining astrocytic end-foot polarization
(76). As specialized capillary mural cells, they stabilize newly
formed vessels during both developmental angiogenesis and post-
injury repair. Functional vascular maturation requires adequate
pericyte recruitment and continuous vessel wall coverage. Loss
of pericytes alters endothelial gene expression and promotes
pathological angiogenesis with persistent hyperpermeability (77).
Jidigam et al. showed that BMALI regulates pericyte recruitment
(78). In BMALI-knockout mice, pericytes progressively detach,
extracellular matrix deposition is reduced, and tight junctions
disassemble, leading to unstable neovasculature and loss of BBB
integrity (79). BMALI also regulates vascular maturation and
stabilization by controlling the transcription of adhesion molecules
and cytoskeletal regulators (80).
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3.2 Circadian rhythms regulate
VEGF—-Mediated BBB repair following IS

VEGF shows circadian-regulated expression mediated by the
molecular clock (81). It influences endothelial cell behavior
and pericyte recruitment, and is a major determinant of
angiogenic responses after stroke. Excessive VEGF expression
enhances neuroinflammation and promotes the formation of
immature, hyperpermeable vessels, resulting in tissue injury and
worsening BBB dysfunction (82).BMALI binds E-box elements
in the VEGFA promoter to activate its transcription, which
stimulates endothelial proliferation, migration, and differentiation
(83). Through VEGF signaling, BMAL1 helps regulate the
balance between tip and stalk cells, which is required for stable
vascular network formation. Conversely, the clock repressors
PER2 and CRY1 suppress hypoxia-induced VEGFA transcription,
contributing to circadian oscillations in VEGF expression (84).
In hindlimb ischemia models, both genetic and environmental
circadian disruption impair reparative neovascularization (74).
Clinical studies report that shift workers show delayed vascular
recovery after stroke, associated with disrupted VEGF rhythmicity
and clock gene dysregulation (85).These findings suggest that
the molecular clock regulates endothelial function and vascular
repair by modulating VEGF signaling over time. Koyanagi et al.
showed that BMALI coordinates diurnal VEGFA expression
via hypoxia-inducible factor la (HIF-la) in tumor models,
and this mechanism also contributes to vascular repair after
stroke (83). Fibroblast growth factors (FGFs), such as FGF21,
show circadian expression and support vascular repair by
enhancing VEGF signaling and promoting the activity of
endothelial progenitor cells (EPCs) (86, 87).Together, these
data suggest that therapeutic strategies targeting both clock
components (CLOCK/BMAL1 or PER/CRY) and angiogenic
factors (VEGFA/FGF) could enhance BBB recovery and improve
outcomes after stroke. Such chronotherapeutic approaches may
help preserve physiological angiogenic rhythms while limiting
pathological vascular permeability in ischemic stroke.

4 Circadian rhythms regulate post-IS
BBB repair via immune system
modulation

4.1 Circadian rhythms orchestrate immune
cell-mediated BBB repair following IS

After stroke, BBB dysfunction involves several inflammatory
mechanisms, including increased matrix metalloproteinases
(MMP-2/9), excessive ROS production, polarization of microglia
toward pro-inflammatory states, and infiltration of peripheral
leukocytes (18, 88-91).
influences BBB recovery, and this process is under circadian

Thus, neuroinflammation strongly

regulation. The molecular clock regulates immune function by
controlling leukocyte proliferation and migration, modulating
phagocytic and cytotoxic activity, and influencing immune cell
activation states. As a result, circadian regulation affects key
immune processes such as pathogen defense, tissue surveillance,
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and homeostasis (92). Disruption of circadian rhythms disturbs
the balance between pro- and anti-inflammatory cytokines, partly
through altered immune cell trafficking and dysregulated clock
proteins such as REV-ERBa/NR1D1 (93).Innate immune cells such
as macrophages and NK cells contain functional circadian clocks,
with the CLOCK:BMALI1 heterodimer regulating phagocytosis,
cytokine production (e.g., IL-1f, TNF-a), and antimicrobial
activity (94). Endothelial-specific BMALI deletion disrupts the
rhythmic trafficking of immune cells to lymph nodes, highlighting
the importance of circadian rhythms in regulating immune cell
positioning (95).

The circadian system contributes to BBB repair after
ischemic stroke by regulating neuroimmune interactions in a
time-dependent manner across different pathological phases.
During the acute phase (<72h post-stroke), microglia show
circadian-dependent activation patterns, influencing the release
of pro-inflammatory mediators (IL-6, ROS), modulating MMP-9
secretion, and thereby affecting the extent of BBB disruption
(96, 97). Yenari et al. showed that suppression of microglial
activation with minocycline reduced TNF-a and IL-1f secretion,
promoted endothelial repair, decreased infarct volume and BBB
leakage, and improved neurological outcomes (98). BMALIL
regulates the temporal pattern of MMP-9 expression by controlling
neutrophil infiltration rhythms (99). Circadian-driven migration
of Treg cells helps suppress excessive inflammation while
maintaining MMP-9 activity, which supports BBB integrity
(100, 101). Neurovascular unit crosstalk is also influenced by
circadian regulation. Monocytes and macrophages promote
endothelial proliferation and tight junction reassembly during
specific circadian phases (102), while astrocyte-derived rhythmic
inflammatory factors, such as basic fibroblast growth factor, can
worsen BBB dysfunction through peripheral-central signaling
(103). Novel immunotherapies that penetrate the BBB, such as
neutrophil-hitchhiked bacterial outer membrane vesicles, are
being investigated to enhance brain delivery of neuroprotective
agents in stroke (104). Unresolved issues include how clock
genes influence immune cell activation thresholds (e.g., Treg
suppression) and what circadian windows (e.g., ZT4-8) are
optimal for immunomodulation. Clarifying these mechanisms may
guide the development of chronotherapy strategies for BBB repair.

4.2 Circadian rhythms regulate
inflammatory factor-mediated BBB repair
following IS

Ischemia and hypoxia trigger a neuroinflammatory cascade
in which the release of pro-inflammatory mediators disrupts the
BBB. The resulting increase in BBB permeability further amplifies
inflammation and aggravates neuronal injury. For example, TNF-
o downregulates tight junction proteins such as occludin, thereby
increasing endothelial permeability (105). IL-1p induces MMP-2/9-
mediated degradation of basement membrane collagen (106). IL-6
upregulates VEGF expression and promotes vascular leakage (107),
while IL-8 enhances neutrophil infiltration and aggravates BBB
dysfunction (108). The secretion of pro-inflammatory cytokines
follows circadian rhythms (109). Pharmacological and genetic
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studies in macrophages show that REV-ERBa links the circadian
clock to inflammatory signaling by modulating the expression
of innate immune genes such as IL-6 (110, 111). Candelario-
Jalil et al. reported that anti-TNF-a therapy was more effective
when administered during the nocturnal phase, suggesting that
circadian regulation influences TNF-a-mediated inflammation
(112). Ding et al. showed that BMALI regulates transcriptional
activity by binding to cis-regulatory elements within inflammatory
gene promoters, thereby controlling their circadian expression
(113). Loss of BMALI disrupts circadian cytokine oscillations
and prolongs inflammatory responses. Although the molecular
mechanisms linking circadian rhythms to inflammatory mediators
are not fully understood, circadian disruption is known to disturb
cytokine regulation. These findings suggest that chrono-targeted
strategies, such as timed inhibition of inflammatory pathways
and preservation of endothelial tight junctions, may help reduce
secondary injury after ischemic stroke.

5 Circadian rhythms regulate post-IS
BBB repair via the neuroendocrine
system

5.1 The neuroendocrine-circadian axis

The neuroendocrine system acts as a key interface linking
circadian regulation to BBB homeostasis and contributes to barrier
repair after ischemic stroke. As the main integrator of neural
and hormonal signaling, it exhibits circadian oscillations in both
hormone secretion and regulatory activity. The hypothalamus
functions as the central regulatory hub, where specialized
neurosecretory cells translate synaptic inputs into timed hormonal
releases, particularly glucocorticoids under circadian control.
Under the control of the SCN, these hypothalamic cells synchronize
peripheral tissue clocks and help maintain systemic circadian
coherence (114, 115). Recent evidence suggests that this temporal
regulation involves not only the hypothalamic-pituitary-adrenal
axis but also mesolimbic reward pathways, where circadian
fluctuations in monoaminergic neurotransmission (particularly
dopamine and serotonin) influence endocrine responses to
environmental cues (116, 117). Experimental studies show
bidirectional interactions between circadian and neuroendocrine
systems, where neurotransmitter imbalances such as dopamine
dysregulation impair clock function, and disruption of clock
genes leads to neuroendocrine deficits (118, 119). Together,
molecular clocks, neural circuits, and hormonal signals form
an integrated neuroendocrine-circadian axis that coordinates
physiological homeostasis and modulates stress responses.

5.2 The hypothalamic—pituitary—adrenal

(HPA) axis

The neuroendocrine system regulates BBB integrity through
signaling pathways that show clear circadian control (120). The
HPA axis, functioning as the neuroendocrine system’s master
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regulator, exhibits intrinsic circadian oscillations in both its
basal tone and stress-responsive activity (121).Key HPA effector
molecules, particularly glucocorticoids and angiotensin II,
modulate BBB permeability in a phase-dependent manner by
regulating tight junction proteins (claudin-5, ZO-1) and vascular
permeability factors such as VEGF (122-125). Endogenous
glucocorticoid secretion follows a conserved circadian pattern
across species, with diurnal organisms (e.g., humans) showing
peak concentrations during active phases (morning) and
nocturnal species (e.g., rodents) displaying maximal levels during
their active period (evening) (126).In humans, peak circadian
cortisol secretion (approximately 06:00-10:00h) (127) temporally
coincides with maximal expression of tight junction proteins
(occludin, claudin-5), and optimal BBB integrity. Conversely, the
nadir phase (approximately 22:00-02:00h) is characterized by
decreased junctional protein expression and elevated paracellular
permeability (76, 128).This circadian variation represents an
adaptive mechanism aligning BBB function with metabolic
demands. The HPA axis also regulates circadian neuroimmune
interactions. Glucocorticoids perform dual chrono-regulatory
functions: entraining circadian oscillations in cytokine production
(129-132), and exerting phase-dependent immunosuppression
through inhibition of pro-inflammatory transcription factors
(including NF-kB) (133-136).Preserved

rhythmicity following stroke acts as an endogenous brake on

circadian ~ cortisol
neuroinflammation, thereby limiting persistent BBB dysfunction
(137).Clinical investigations demonstrate that blunted circadian
cortisol rhythmicity (non-dipping pattern) shows significant
positive correlation with both the extent and progression of post-
stroke BBB pathology (138).These findings suggest that targeting
clock genes to optimize the timing of neuroendocrine factor release
(e.g., aligning glucocorticoid peaks with ischemic injury cycles)
may provide a strategy for BBB stabilization.

5.3 Circadian rhythms modulate
melatonin-mediated BBB repair after IS

Melatonin is an indoleamine hormone secreted by the
pineal gland in a circadian pattern (139, 140). Melatonin
has been shown to exert neuroprotective effects through anti-
inflammatory and antioxidant actions, reduction of cerebral
edema, preservation of cognitive function, and activation of
endogenous repair mechanisms (141-145). Wang et al. reported
that melatonin treatment reduced brain water content and
improved BBB integrity compared with untreated controls
(146). Experimental studies show that nighttime administration
of melatonin increases the expression of occludin, claudin-
5, and ZO-1, stabilizes the cytoskeleton, and reduces BBB
leakage after ischemia. The protective effect is strongest when
treatment is synchronized with endogenous secretion rhythms
(26). Melatonin also improves endothelial function and protects
against excitotoxicity-induced BBB disruption in neonatal rats
(147). At the molecular level, melatonin directly binds to MMP-9,
thereby inhibiting its activity and reducing ischemia/reperfusion-
induced BBB hyperpermeability (148, 149). Together, these findings

frontiersin.org


https://doi.org/10.3389/fneur.2025.1627172
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Liao et al. 10.3389/fneur.2025.1627172

suggest that melatonin may serve as a therapeutic agent to mitigate 5.4 Circadian regulation of autonomic
post-ischemic BBB injury. Clinically, melatonin has been reported  nervous system (ANS) activity to

to reduce the risk of hemorrhagic transformation after tissue attenuating BBB dysfunction of IS
plasminogen activator (t-PA) therapy in ischemic stroke (150,

151), suggesting a potential role in improving thrombolytic safety Sympathetic and parasympathetic activities exhibit circadian
through modulation of BBB permeability. rhythmicity and modulate cerebrovascular function through
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FIGURE 1

This schematic illustrates the interactions between circadian rhythms, blood—-brain barrier (BBB) integrity, and ischemic stroke. The core circadian
regulators BMAL1 and CLOCK play central roles in these processes. At the molecular level, circadian proteins maintain BBB integrity by regulating
tight junction components such as occludin, claudin-5, and ZO-1. These effects are observed in endothelial cells, pericytes, and astrocytes. After
ischemic injury, BMAL1 promotes angiogenesis by regulating vascular permeability, cytoskeletal remodeling, endothelial proliferation, and pericyte
recruitment. These processes support microvascular remodeling and BBB restoration. Circadian genes also regulate neuroendocrine function,
coordinating rhythmic melatonin and cortisol release. Clock genes modulate the hypothalamic—pituitary—adrenal (HPA) axis, mediated by CRH,
ACTH, and cortisol, thereby influencing neuroendocrine balance and BBB function. Circadian regulation also limits neuroinflammation by restraining
microglial activation and reducing the release of mediators such as TNF-a, IL-18, and MMP-9. These mechanisms provide a rationale for developing
chronotherapy and circadian-based pharmacological strategies to improve BBB outcomes after ischemic stroke.
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neurovascular coupling mechanisms (152, 153).Sympathetic
daytime,

parasympathetic activity is enhanced at night (154). The vagus

activity =~ predominates  during  the whereas
nerve, as the main parasympathetic effector, shows marked
circadian fluctuations in activity (155). Clinical studies indicate
that circadian disruption, such as shift work, attenuates the
anti-inflammatory effects of vagal activity (156). Preclinical
evidence demonstrates that non-invasive vagus nerve stimulation
(nVNS) exerts neuroprotective effects, preserving BBB integrity
and reducing infarct volume after ischemic injury (157). When
applied during peak activity periods (nocturnal phase), VNS
suppresses pro-inflammatory gene expression (e.g., IL-6), reduces
inflammatory responses, and enhances BBB integrity through
upregulation of ZO-1 and occluding (152, 158). Clinical data
further reveal an inverse correlation between heart rate variability
(HRV, an indicator of vagal activity) and the severity of BBB
damage, suggesting that vagal activity contributes to BBB
regulation through cerebrovascular dilation and hemodynamic
control (159).

The molecular and cellular mechanisms by which circadian
rhythms regulate neuroendocrine signaling are not yet fully
understood, representing a priority for future investigation.
Advancing chronotherapeutic delivery systems for neuroendocrine
modulators may enable temporally optimized treatment strategies
for ischemic stroke.

6 Summary

The circadian clock acts as a key temporal regulator that
preserves the structural and functional homeostasis of the BBB
through integrated molecular networks. Here, we summarize
the molecular mechanisms through which circadian rhythms
regulate BBB repair after ischemic stroke (Figurel). Key
mechanisms involve transcriptional regulation of tight junction
proteins, circadian control of angiogenesis, modulation of
neuroimmune responses, and coordination of neuroendocrine
signaling. Both preclinical and clinical studies show that circadian
disruption aggravates BBB injury, characterized by reduced
expression of tight junction proteins (ZO-1, occludin, claudin-5),
IL-18), MMP-9/2-
mediated extracellular matrix degradation, and HPA axis

heightened neuroinflammation (TNF-a,

dysregulation. Emerging chronotherapeutic strategies—including
melatonin receptor agonists, time-restricted feeding, and targeted
temperature modulation—show translational potential for
enhancing BBB repair after stroke. Circadian regulation influences
all phases of drug disposition (ADME) and receptor availability,
thereby shaping therapeutic efficacy across time. Recent studies
highlight circadian-targeted approaches for BBB repair after
stroke, including mesenchymal stem cell-derived exosomes
(160) and herbal compounds (161, 162), which act in part by
modulating clock gene expression. Chronopharmacological
dosing that aligns with circadian fluctuations in BBB permeability
may improve treatment outcomes. For instance, scheduling
thrombolytic therapy to coincide with peak permeability could
reduce hemorrhagic complications (163, 164), while nanocarrier-
based systems show enhanced BBB penetration during specific

circadian windows (165, 166). Additional non-pharmacological

Frontiersin Neurology

10.3389/fneur.2025.1627172

interventions, including photobiomodulation (167-169) and
circadian-aligned feeding (170-172), can restore endogenous
rhythmicity and offer new avenues for neurorehabilitation.

Despite recent progress, the mechanistic links between
circadian rhythms and BBB dynamics remain incompletely
understood, and current animal models are limited by interspecies
physiological differences. Standardized methods for evaluating
BBB injury and repair after ischemia are also lacking, further
complicated by interindividual variability and uncontrolled
confounders. Bridging these gaps will require interdisciplinary
approaches that integrate three complementary axes: mechanistic
dissection of circadian-BBB interactions, clinical validation of
chronotherapeutic strategies, and the development of translational
technologies. Key translational needs include stroke models with
greater human relevance, practical tools for BBB monitoring,
and therapeutic protocols optimized for circadian timing.
Future work should emphasize high-resolution mapping of
BBB rhythmicity, precision chronotherapy tailored to individual
circadian signatures, and the evidence-based incorporation of
traditional Chinese medicine (TCM) into circadian biology
frameworks. In conclusion, advancing our understanding of
circadian regulation of BBB repair will not only deepen insight
into stroke pathogenesis but also enable the design of temporally
targeted treatments. Integrating modern chronobiology with
traditional chronomedicine offers a promising path toward more
precise and effective interventions, with the potential to improve
post-stroke recovery and long-term outcomes.
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