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Abnormal neural network 
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Introduction: Heart failure (HF) is frequently accompanied by cognitive 
and affective impairments, yet the neural mechanisms underlying these 
comorbidities remain insufficiently understood. This study aimed to investigate 
alterations in static and dynamic functional connectivity (FC) within large-
scale brain networks in patients with reduced (HFrEF) and mid-range (HFmrEF) 
ejection fraction.
Methods: Independent component analysis (ICA) was used to identify resting-
state networks (RSNs) and FC disparities between HF patients and healthy 
controls (HCs) within the RSNs. The ICA, sliding window approach, and 
k-means clustering analysis were used to compute dynamic functional network 
connectivity (dFNC) matrices and estimate different dynamic connection states. 
The temporal characteristics of the two groups were analyzed in each state. The 
correlations among significantly diverse temporal aspects and clinical measures 
were finally determined.
Results: Compared to HCs, HF patients showed reduced FC in the right inferior 
parietal lobule (IPL) within the dorsal attention and frontoparietal networks, 
alongside increased FC in the salience network. dFNC analysis revealed five 
recurrent connectivity states. Notably, HF patients exhibited shorter dwell time 
in a sensory–cognitive segregation state (State 5), and dwell time in this state 
correlated positively with both left ventricular ejection fraction (LVEF) and Mini-
Mental State Examination (MMSE) scores.
Conclusion: The disrupted static and dynamic connectivity in HF patients—
marked by alterations in frontoparietal, attention, and salience networks and 
reduced stability of a sensory–cognitive segregation state—may underlie 
cognitive and affective vulnerability, providing potential imaging markers for 
early risk monitoring and management in HF.
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1 Introduction

Improvements in medical treatment and increased life expectancy 
have significantly enhanced survival in individuals with cardiovascular 
diseases, leading to a rising prevalence of chronic heart failure (HF) and 
its associated comorbidities (1). Neurological comorbidities, such as 
depression, anxiety and cognitive impairment, tend to be  common 
among HF patients, with the prevalence rate of such conditions being 
markedly higher compared with the general population (2–5). 
Approximately 30% and up to 75% of HF patients experience depression 
and cognitive impairment, respectively (4, 6–8). HF patients with 
neurological comorbidities often display poor adherence to therapy and 
a loss of functional independence while experiencing reduced quality of 
life or early death (9, 10). However, the pathophysiological mechanisms 
for neurological comorbidities in HF remain unclear. Further exploration 
in HF patients is needed to provide new imaging evidence for the heart-
brain axis theory, better understand the clinical manifestations, and offer 
appropriate treatment options for these patients.

A common data-driven technique for blind source separation is 
Independent Component Analysis (ICA). This technique has 
significantly helped better understand the intrinsic networks within 
the brain and the functional connectivity (FC) at the network level 
(11). To investigate dynamic changes in these networks, ICA can 
be  combined with a sliding window approach to estimate time-
resolved fluctuations in FC and to identify recurrent connectivity 
states across windows. This combined framework, known as dynamic 
functional network connectivity (dFNC), enables the characterization 
of temporal variability that is not captured by static FC analyses (12). 
Although the validity of sliding window analysis (SWA) has been 
questioned (13), studies have shown that meaningful brain states can 
be identified from short resting-state segments (14, 15). Thus, SWA 
remains a useful approach, especially in pathological populations 
where transient FC alterations are expected.

Neuroimaging evidence has linked HF to structural, functional, 
and metabolic brain alterations (16–19), which have in turn been 
associated with cognitive, emotional, and pain-related functions (20). 
Recent studies in heart failure with preserved ejection fraction 
(HFpEF) patients have also reported alterations in both static and 
dynamic functional network connectivity, with changes involving 
major large-scale networks and associations with cardiac function (21). 
However, the temporal properties of intrinsic connectivity networks 
(ICNs) remain poorly characterized in patients with reduced and 
mid-range ejection fraction (HFrEF and HFmrEF), who often show 
more pronounced cognitive vulnerability. Static functional connectivity 
provides only a time-averaged view of brain interactions, which may 
obscure transient fluctuations and dynamic reconfigurations that are 
critical for adaptive cognitive and emotional processes (22). In contrast, 
dynamic functional network connectivity (dFNC) captures short-term 
variability and recurrent connectivity states, thereby offering unique 
insights into network instability and impaired brain–heart interactions 
in HF. To our knowledge, this study is among the first to integrate ICA 
with dFNC in patients with reduced and mid-range ejection fraction, 
thereby enabling a joint characterization of static network alterations 
and time-varying connectivity dynamics. Building on this framework, 
we further examined whether these network alterations were associated 
with cardiac function, cognitive performance, and affective symptoms. 
This study is designed to provide novel insights into how HF disrupts 
intrinsic brain networks and their temporal dynamics, with potential 

implications for understanding HF-related brain dysfunction and 
improving patient management. The overall analytic workflow is 
summarized in Figure 1.

2 Methods

2.1 Participant selection

Following the ESC criteria, HF patients were defined in this 
investigation. Patients with HFmrEF and HFrEF were among those 
whose ejection fraction was less than 50% (23). HFrEF was 
characterized by clinically diagnosed HF with an LVEF of < 40%, as 
determined by echocardiography. HFmrEF referred patients with an 
LVEF between 40 and 49%, representing a “grey area” of heart function. 
Participants with contraindications to MRI, history of head trauma, 
drug or alcohol abuse, or severe physical or neurological deficits were 
not enrolled. Among those scanned, individuals were further excluded 
if they showed substandard image quality, ischemic cerebral lesions, or 
brain tumors. Using this procedure, our prospective HFrEF and 
HFmrEF cohort initially recruited 44 patients between January 2022 
and December 2023. We excluded 7 patients due to ischemic cerebral 
lesions and 2 patients due to motion artifacts (mean framewise 
displacement > 0.5 mm, >2.0 mm translation, or >2.0° rotation). 
Finally, 35 patients were analyzed in the present study. In addition, 28 
healthy controls (HCs) were randomly selected from individuals 
undergoing brain MRI during the same period, after stratification to 
match the HF group by age, sex, and years of education. Exclusion 
criteria included a family history of mental illness or the presence of 
cardiac or psychiatric disorders. and the same additional criteria as for 
the patient group were applied. All participants were determined to 
be right-handed based on the Edinburgh Habitual Handedness Scale 
results. Within 24 h of the MRI scan, they were evaluated employing 
the Mini-Mental State Examination (MMSE), the 24-item Hamilton 
Depression Rating Scale (HAMD-24), and the Hamilton Anxiety 
Rating Scale (HAMA). Table  1 provides information about the 
participants’ clinical and demographic characteristics.

2.2 Data acquisition and preprocessing

Brain MRI scans were conducted using a GE Discovery 750w 
3.0 T scanner. The following echo-planer imaging sequence was then 
employed to gather fMRI data in the resting state: flip angle = 90°, 
slice thickness = 3.0 mm, number of slices = 36, field of 
view = 22.4 × 22.4, TE = 30 ms, TR = 2000 ms, matrix size = 64 × 64, 
voxel size = 3.0 × 3.5 × 3.5 mm3.

Resting-state fMRI data were preprocessed using the DPABI (Data 
Processing & Analysis of Brain Imaging) toolbox.1 Preprocessing 
included slice timing correction, realignment, normalization to MNI 
space, detrending, nuisance regression (white matter, CSF, and motion 
parameters), global signal regression, temporal band-pass filtering 
(0.01–0.08 Hz), and spatial smoothing with a 6-mm FWHM 
Gaussian kernel.

1  http://rfmri.org/dpabi
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2.3 ICA and determination of RSNs

Group ICA analysis was performed separately for the HF and HC 
groups using Version 4.0 of the GIFT toolbox (available at https://
trendscenter.org/software/gift/), which decomposed the data into 
independent components (ICs) that are estimated based on subject-
specific spatial maps and time courses across subjects. The data’s 
dimensionality was initially reduced using principal component 
analysis (PCA) before determining the number of ICs using the 
minimum description length (MDL) criteria. Through this approach, 
28 and 41 components were identified for the control group and the 
HF patients, respectively, and these were deemed sufficient for 
capturing the major large-scale resting-state networks. Independent 
components were then repeatedly estimated 20 times with the infomax 
algorithm in ICASSO, with the components subsequently clustered to 
assess the extent to which the decomposition process was reliable. The 

group ICA back-reconstruction method was employed to reconstruct 
each individual’s spatial maps and time courses. By examining the 
correlations between the spatial maps and established RSN templates, 
RSN components were automatically identified for each participant. 
These templates represented brain regions that are commonly 
associated with RSNs.

A total of ten relevant RSNs were detected. The networks 
included are the visual network (VIN), somatomotor network 
(SMN), default mode network (DMN), salience network (SN), dorsal 
attention network (DAN), precuneus network (PN), auditory 
network (AUN), executive control network (ECN), language network 
(LN), and frontoparietal network (PFN). The WFU_PickAtlas 
toolbox2 in the SPM toolbox, was utilized to create the RSN templates 

2  https://www.nitrc.org/projects/wfu_pickatlas/

FIGURE 1

Resting-state fMRI data were preprocessed and submitted to group ICA to extract resting-state networks (RSNs). Static network connectivity was then 
assessed to characterize internetwork functional alterations in HF patients. For dynamic FNC (dFNC), a sliding-window approach was applied; the 
resulting time-resolved connectivity matrices were clustered using k-means to derive recurring connectivity states. For each state, temporal 
characteristics such as mean dwell time and occurrence rate were computed and further correlated with clinical measures. (a) Resting-state fMRI data 
were preprocessed and submitted to group ICA to extract resting-state networks (RSNs). (b) Static network connectivity was then assessed to 
characterize internetwork functional alterations in HF patients. (c) For dynamic FNC (dFNC), a sliding-window approach was applied; (d) The resulting 
time-resolved connectivity matrices were clustered using k-means to derive recurring connectivity states. For each state, (e) Temporal characteristics 
such as mean dwell time and occurrence rate were computed and further correlated with clinical measures.
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using radii and centroid coordinates. The component with the 
highest spatial correlation coefficient (r > 0.2) for each network was 
designated as the RSN of interest after identifying all ten components. 
The individual image maps for these components were subsequently 
used for second-level group analyses in SPM using two-sample 
t-tests. Statistical significance was determined at p < 0.05, family-
wise error (FWE) corrected at the cluster level, with a voxel-wise 
threshold of p < 0.001 uncorrected applied to define clusters.

2.4 dFNC analysis

For dFNC analysis, resting-state fMRI data from both HF patients 
and HCs were entered into a single group ICA using the GIFT toolbox. 
The number of independent components was estimated with the MDL 
criterion, which identified 31 components across the combined dataset. 
Following a similar approach to the previously described ICA 
procedure, components with the highest spatial correlation coefficients 
(r > 0.2), corresponding to the 10 previously identified RSNs, were 
selected. Ultimately, nine components were identified, with the SN 
(r = 0.167) excluded due to a lower correlation. The templates for the 
nine RSNs, including the corresponding ICs with which they showed 
the highest spatial correlations, are presented in Figure 2. The dFNC 
matrix was then computed using a sliding window method. Previous 
studies have suggested that window size ranging from 30–60 s can 
provide a robust estimation of the dynamic fluctuations in resting-state 
dFNC (24, 25). In this study, the window width was set to a TR of 30 
(60 s), and the window was slid along the time axis in steps of 1 TR. The 
Pearson correlation coefficients between all pairs of BOLD signals in 
each window were calculated to construct a series of dynamic covariance 
matrices. Given that significant noise can influence the covariance 
estimates for short time series, L1 regularization (with 10 repetitions) 
was applied to improve the sparsity of each window’s dFNC matrix.

The k-means clustering algorithm was utilized to cluster the 
participants’ dFNC matrices to evaluate the structure and frequency of 
recurrent dFNC patterns. The Manhattan distance was then used to 
calculate how similar certain time windows were. To minimize the 
likelihood that a local minimum is reached during the clustering process, 
the iterations were set to a maximum of 500, with the process repeated 
150 times. The elbow rule was used to find that k = 5 was the ideal 

number of clusters. All individuals’ dFNC matrices were categorized into 
five unique dFNC states, each indicating recurring instantaneous FC 
patterns across participants and windows. The dFNC matrix at each 
cluster’s center was identified in the present case as the cluster centroid.

The following information was also used for calculating several 
temporal features: (i) the reoccurrence fraction in each state (the 
percentage of total time the subject spent in each state); (ii) the mean 
dwell time which referred to the average duration a subject remained 
in a particular state, and (iii) the number of transitions which 
indicated how many times a subject switched between different states 
during the scan period.

2.5 Sample size determination

Sample size was estimated using G*Power 3.1 for two-sample t-tests. 
We assumed a medium-to-large effect size (d = 0.65), α = 0.05, and 
power = 0.80. This analysis indicated a required total of approximately 
60 participants. Our final sample (HF = 35, HC = 28) therefore provided 
adequate statistical power for detecting effects of this magnitude.

2.6 Statistical analyses

Using the Stats module of the GIFT software, the dFNCs of the 
HF and HC groups were compared using two-sample t-tests with 
modifications for the false discovery rate (FDR). The threshold for 
statistical significance in this instance was set at p < 0.05. SPSS 
software 25.0 was used to evaluate the remaining data statistically. 
Normality was tested for continuous variables with the Kolmogorov–
Smirnov test. Continuous variables were expressed as means ± SD and 
compared with two-sample t-tests for normally distributed data or the 
Mann–Whitney U-test for non-normally distributed data. Categorical 
group data presented as percentages were compared using the 
chi-squared test. Lastly, using age, sex, years of education, presence of 
diabetes and hypertension as control variables, Spearman’s partial 
correlation analysis investigated possible relationships between 
clinical variables (HAMA, HAMD, MMSE scores and LVEF) and 
dFNC temporal features. The Bonferroni correction was utilized with 
statistically significant differences at p × n < 0.05.

TABLE 1  Demographic, clinical data, and behavioral measures.

Variables Heart failure patients (n = 35) Healthy controls (n = 28) χ2/t/z p-value

Gender (M/F) 26/9 17/11 1.322 0.250

Age (years) 55.82 ± 10.82 54.92 ± 7.75 −0.370 0.712

Education (years) 9.71 ± 4.56 8.96 ± 4.03 −0.862 0.498

Diabetes (absence/presence) 30/5 25/3 0.179 0.672

Hypertension (absence/presence) 18/17 21/7 3.665 0.056

LVEF (%) 39 ± 8.3 65 ± 6.4 13.33 <0.001

BNP (pg/ml) 1237.19 ± 1423.25 NA NA NA

HAMA 7.88 ± 0.42 1.35 ± 0.95 −9.133 <0.001

HAMD 10.00 ± 10.02 1.53 ± 1.07 −8.817 <0.001

MMSE 25.03 ± 3.33 27.10 ± 2.96 2.58 0.011

Two-sample t-tests for normalized data, Mann–Whitney U-tests for non-normalized data (HAMA and HAMD scores), and Pearson’s Chi-square test for gender, presence of diabetes and 
hypertension; LVEF, Left Ventricular Ejection Fraction; BNP, B-type Natriuretic Peptide; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale, MMSE, Mini-
Mental State Examination.
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3 Results

3.1 Demographics and clinical 
characteristics

The HF and HC groups were comparable in age, sex, educational 
level, and prevalence of diabetes and hypertension (all p > 0.05). As 
expected, HF patients had markedly lower LVEF (t = 13.33, p < 0.001) 
and MMSE scores (t  = 2.58, p  = 0.011), and significantly higher 
HAMA (z = −9.133, p < 0.001) and HAMD (z = −8.817, p < 0.001) 
scores (Table 1).

3.2 Analysis of functional connectivity

The DAN, FPN and SN exhibited significantly different 
internal network FCs (p < 0.05, FEW corrected). Additionally, the 
FC in the right inferior parietal lobule (IPL) of the DAN was 
significantly reduced for HF patients (x = 39, y = −42, z = 45, 
cluster size = 29 voxels, x = 33, y = −54, z = 51, cluster size = 18 
voxels), the right IPL, angular gyrus (AG), supramarginal gyrus 
(SMG) (x = 50, y = −51, z = 39, cluster size = 125 voxels), middle 
frontal gyrus (MFG) (x = 39, y = 36, z = 36, cluster size = 10 
voxels) of FPN. Meanwhile, the HF patients exhibited a significant 

FIGURE 2

Spatial maps of the 12 selected resting-state networks, assigned to 9 functional domains.
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FIGURE 3

Results of ICA group comparison. Brain regions in HF patients exhibit decreased internal network FCs in the DAN and FPN, while showing significantly 
increased FC in the SN. The color bars indicate the t values of FCs. ICA, independent component analysis; HF, heart failure; FC, functional connectivity; 
DAN, dorsal attention network; FPN, frontoparietal network; SN, salience network.

increase in the right SMG (x = 57, y = −39, z = 36, cluster size = 35 
voxels) of SN (Table 2; Figure 3).

3.3 Dynamic functional network 
connectivity states

The following five recurring dFNC states were identified using 
the k-means clustering algorithm: state 1 (14% of all time windows), 
where higher cognitive control domains (DMN, FPN) and primary 
perceptional domains (AUN, VIN and SMN) showed a high level of 
positive inter-FNCs, with a high level of positively internal 

connectivity also noted within FPN. State 2 (14% of all time 
windows) where sparse FNCs were noted within and between all 
RSNs, except in the case of VIN, AUN, DAN and SMN, for which 
positive FNCs were found. State 3 (11% of all time windows) 
exhibited robust connectivity, particularly demonstrating significant 
positive connectivity among half-scale functional networks and 
negative connectivity in LN concerning the other networks. State 4 
(35% of all time windows) showed sparse connectivity, with the 
functional network connectivity of the whole brain showing a 
general weakening. Lastly, State 5 (27% of all time windows), 
termed the sensory–cognitive segregation state, was characterized 
by negative coupling between sensory (VIN, AUN) and 

TABLE 2  Brain regions with significantly different FC values in the HF patients compared with the HCs.

HC > HF Voxels Peak MNI coordinates Peak t value pFWE Brain region 
(voxels)

DAN 29 39 −42 45 6.13 0.000* right IPL

18 33 −54 51 6.24 0.000*

FPN 125 50 −51 39 6.86 0.000* right IPL (72)

right AG (39)

right SMG (14)

10 39 36 36 5.39 0.002* right MFG

HC < HF

SN 35 57 −39 36 6.84 0.000* right SMG

* FWE corrected, p < 0.05. HC, healthy control; HF, heart failure; DAN, dorsal attention network; PFN, frontoparietal network; SN, salience network; MNI, Montreal Neurological Institute; 
IPL, inferior parietal lobule; AG, angular gyrus; SMG, supramarginal gyrus; MFG, middle frontal gyrus.
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higher-order networks (DMN, PN), with preserved positive 
connectivity within higher-order systems (DMN–PN) and between 
attentional and auditory networks (DAN–AUN). The outcomes of 
the dFNC matrix index for each subject across all windows are 
displayed in Figure 4.

3.4 Temporal characteristics of states with 
functional connection

The data proved that the mean dwell time was the longest for 
state 4, while state 3 had the shortest one. The former also appeared 
more frequently than state 2, which appeared least frequently. As 
shown in Figures  5A–C, the mean dwell time in state 5 was 
significantly lower for HF patients compared with HCs (Mann–
Whitney U-tests, z = −2.63, p = 0.009 × 5 < 0.05 after Bonferroni 
correction), although in state 2, the HF patients showed an increasing 
trend in mean dwell time (Mann–Whitney U-tests, z = −2.056, 
p = 0.04 × 5 > 0.05 after Bonferroni correction). However, there was 
no discernible difference between the two groups for the fraction of 
time and number of transitions in any condition.

3.5 dFNC comparison between groups

Two-sample t-tests were used to compare the dFNC matrix of 
each state for the two groups. The HC and HF patients were not 
significantly different across states (FDR corrected, p < 0.05).

3.6 Correlation analyses

As shown in Figures 5D–G LVEF (r = 0.358, p = 0.004 × 5 < 0.05 
after Bonferrioni correction) and MMSE (r = 0.360, p = 0.004 × 5 < 0.05 
after Bonferrioni correction) were positive related to the mean dwell 
time of HF patients in state 5. The mean dwell time in state 2 showed 
a significantly positive connection with HAMD (r = 0.326, 
p = 0.009 × 5 < 0.05) and HAMA (r = 0.467, p < 0.001 × 5 < 0.05), even 
though the two groups did not differ significantly at state 2. Finally, 
clinical scales and cardiac function indicators were not significantly 
correlated with the remaining dFNC temporal metrics.

4 Discussion

Heart failure (HF) is increasingly viewed as a systemic condition 
in which impaired cardiac function disrupts brain integrity and 
network dynamics. The resulting cognitive decline and mood 
disturbances are not merely comorbidities but key determinants of 
prognosis, treatment adherence, and quality of life in affected 
patients. Accordingly, the European Society of Cardiology (ESC) 
and the American College of Cardiology/American Heart 
Association (ACC/AHA) currently emphasize the importance of 
screening HF patients for depression and cognitive impairment (23, 
26). Although previous studies have highlighted structural and 
functional brain alterations in HF, less is known about the temporal 
dynamics of large-scale networks that may underlie these clinical 

manifestations. To address this gap, we  applied group ICA and 
dynamic functional network connectivity (dFNC) analyses to 
compare HF patients with healthy controls. Our study yielded 
several key findings. At the static level, reduced intranetwork 
connectivity was observed in the DAN and FPN, particularly 
involving the right IPL, whereas in increased connectivity was 
detected within the SN, especially the right SMG. At the dynamic 
level, five recurring functional connectivity states were identified. 
Among these, the sensory–cognitive segregation state (State 5) 
exhibited significantly reduced dwell time in HF patients and was 
positively associated with both LVEF and MMSE scores. In contrast, 

FIGURE 4

The dFNC matrices for state 1–5 and the dFNC diagrams for each 
state. The horizontal and vertical axes are the selected RSNs, and 
their functional networks are depicted. The color bars indicate the 
z values of the dFNC. dFNC, dynamic functional network 
connectivity; RSNs, Resting-state networks. The dFNC matrices for 
state 1–5 and the dFNC diagrams for each state (A—E).
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FIGURE 5

Temporal features of dFNC states for the HF and HC groups, and correlations between the temporal features and the clinical scales. (A) Reoccurrence 
fraction of time, (B) dwell time and (C) numbers of transitions were plotted using violin plots. Horizontal lines indicate group medians and interquartile 
ranges. The width of the violin plot bars indicates the distribution density of subjects in each group at the corresponding ordinate level. The horizontal 
lines above some violins indicate pairwise comparisons that demonstrated statistical significance: * p < 0.05. Cardiac function indicators. (D,E) A 
significantly positive relationship was observed between the mean dwell time in State 5 and the MMSE score (r = 0.360, p = 0.0037, Bonferrioni 
correction) and LVEF (r = 0.358, p = 0.004, Bonferrioni correction). (F,G) A significantly positive relationship was observed between the mean dwell 
time in State 2 and the HAMD score (r = 0.3264, p = 0.009, Bonferrioni correction) and HAMA (r = 0.467, p = 0.0001, Bonferrioni correction). dFNC, 
dynamic functional network connectivity; HF, heart failure; HC, healthy control; MMSE, Mini-Mental State Examination; LVEF, left ventricle ejection 
fraction; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale.

the sparse connectivity state (State 2) showed prolonged dwell time 
in HF and was positively correlated with anxiety and 
depression scores.

We specifically focused on patients with LVEF < 50% (HFrEF 
and HFmrEF), as these subgroups share common 
pathophysiological features and are more likely to exhibit cognitive 
and network alterations related to reduced cardiac output. The 

static network findings highlight the IPL and MFG as critical 
regions affected in HF. The IPL, as a hub of both DAN and FPN, 
integrates sensory information (27, 28) and supports attention and 
episodic memory (29–33), and has also shown functional 
alterations in early-stage Alzheimer’s disease (AD) (34). Although 
we did not test a direct association between IPL connectivity and 
MMSE, the co-occurrence of reduced IPL connectivity and lower 
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MMSE scores suggests that attentional and memory networks may 
be vulnerable in HF. The MFG, part of the dorsolateral prefrontal 
cortex, is central to executive control (35), and its dysfunction has 
been consistently linked to executive decline in mild cognitive 
impairment (MCI) (36). In contrast, the SN, particularly the SMG, 
functions as a dynamic hub for detecting salient stimuli (37) and 
coordinating inter-network switching (38). Increased SMG 
connectivity in HF may therefore represent a compensatory 
adaptation that helps sustain attention despite impaired DAN/FPN 
integrity. Altogether, reduced IPL and MFG connectivity, alongside 
compensatory SMG upregulation, point to early network-level 
alterations underlying cognitive vulnerability in HF, partly 
overlapping with mechanisms reported in MCI and AD, and may 
serve as potential imaging markers for cognitive monitoring and 
intervention in this population.

We employed dFNC to capture the temporal variability of large-
scale network interactions (39). Five stable and recurrent dFNC states 
were identified across all subjects. Among them, State 4, characterized 
by sparse inter-network coupling, was the most predominant and 
exhibited the longest mean dwell time, likely reflecting baseline 
neuronal activity in the resting brain. State 5 was of particular 
interest, showing modular connectivity marked by negative coupling 
between sensory (AUN, VIN) and higher-order (DMN, PN) 
networks, alongside preserved positive coupling within higher-order 
systems. Given this pattern, we refer to it as the sensory–cognitive 
segregation state. In healthy individuals, prolonged engagement in 
this state may support the functional specialization of sensory and 
higher-order systems, enabling efficient information processing (40–
42). By contrast, HF patients showed reduced dwell time, suggesting 
an impaired ability to maintain this modular configuration and a loss 
of balance between segregation and integration across large-scale 
networks. Such instability may reflect disruption of the heart–brain 
axis, whereby reduced cardiac output compromises the neural 
dynamics supporting sensory–cognitive interactions and cognitive 
performance. Consistent with this interpretation, shorter dwell time 
was associated with lower LVEF and MMSE scores, highlighting the 
link between impaired cardiac function and reduced stability of brain 
network dynamics (7, 43).

State 2, characterized by globally sparse connectivity with only 
limited positive coupling between sensory (VIN, AUN) and 
sensorimotor/attentional (SMN, DAN) networks, showed a trend 
toward longer dwell time in HF patients. Although the group 
difference was not significant, within HF patients dwell time in this 
state correlated positively with HAMA and HAMD scores. Prolonged 
engagement in a weakly connected, diffuse configuration may reflect 
inefficient interregional communication and heightened self-
referential processing. Similar hypoconnected states have been 
reported in major depressive disorder, including altered connectivity 
between sensory and motor networks (44, 45). Such alterations may 
help explain the heightened susceptibility of HF patients to depression 
and anxiety.

4.1 Limitation

Firstly, this study was limited by a relatively small sample size, 
which may affect the generalizability and robustness of ICA/dFNC 
results. Nonetheless, significant group differences remained after 

stringent FWE/FDR corrections, suggesting robust effects. Future 
multi-center studies with larger cohorts are needed to replicate and 
extend these findings. Secondly, although detailed medication histories 
were collected for HF patients, prescriptions were highly heterogeneous 
and often irregularly used. With the relatively small sample size, it was 
not feasible to include medications as covariates; therefore, their 
potential confounding effects cannot be excluded. Future studies with 
larger and more homogeneous samples are warranted to better control 
for medication influences. Thirdly, this work did not exclude 
comorbidities in heart failure patients, such as hypertension/diabetes, 
and this can also lead to changes in brain FCs. However, the differences 
in these two conditions between the HF and HC groups were not 
statistically significant, thereby minimizing their potential influence. 
Fourthly, ECG gating and HRV-corrected reanalysis were not available, 
and although we  applied rigorous preprocessing steps to mitigate 
physiological noise, residual cardiac- and respiration-related influences 
cannot be  fully excluded; future multimodal studies incorporating 
concurrent physiological monitoring are warranted. Finally, cognition 
was assessed only with the MMSE, which may overlook subtle deficits; 
future studies should incorporate more sensitive tools such as 
the MoCA.

5 Conclusion

This study revealed altered static connectivity in IPL, MFG, and 
SN, together with dynamic abnormalities marked by reduced stability 
of a sensory–cognitive segregation state and prolonged engagement in 
a hypoconnected diffuse state. These network alterations were 
associated with cardiac function, cognition, and mood. We believe 
these findings provide novel neuroimaging evidence suggesting 
potential heart–brain interactions in HF, and may contribute to early 
identification of patients at risk for cognitive and emotional impairment.
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