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Introduction: Heart failure (HF) is frequently accompanied by cognitive
and affective impairments, yet the neural mechanisms underlying these
comorbidities remain insufficiently understood. This study aimed to investigate
alterations in static and dynamic functional connectivity (FC) within large-
scale brain networks in patients with reduced (HFrEF) and mid-range (HFmrEF)
ejection fraction.

Methods: Independent component analysis (ICA) was used to identify resting-
state networks (RSNs) and FC disparities between HF patients and healthy
controls (HCs) within the RSNs. The ICA, sliding window approach, and
k-means clustering analysis were used to compute dynamic functional network
connectivity (dFNC) matrices and estimate different dynamic connection states.
The temporal characteristics of the two groups were analyzed in each state. The
correlations among significantly diverse temporal aspects and clinical measures
were finally determined.

Results: Compared to HCs, HF patients showed reduced FC in the right inferior
parietal lobule (IPL) within the dorsal attention and frontoparietal networks,
alongside increased FC in the salience network. dFNC analysis revealed five
recurrent connectivity states. Notably, HF patients exhibited shorter dwell time
in a sensory—cognitive segregation state (State 5), and dwell time in this state
correlated positively with both left ventricular ejection fraction (LVEF) and Mini-
Mental State Examination (MMSE) scores.

Conclusion: The disrupted static and dynamic connectivity in HF patients—
marked by alterations in frontoparietal, attention, and salience networks and
reduced stability of a sensory—cognitive segregation state—may underlie
cognitive and affective vulnerability, providing potential imaging markers for
early risk monitoring and management in HF.
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1 Introduction

Improvements in medical treatment and increased life expectancy
have significantly enhanced survival in individuals with cardiovascular
diseases, leading to a rising prevalence of chronic heart failure (HF) and
its associated comorbidities (1). Neurological comorbidities, such as
depression, anxiety and cognitive impairment, tend to be common
among HF patients, with the prevalence rate of such conditions being
markedly higher compared with the general population (2-5).
Approximately 30% and up to 75% of HF patients experience depression
and cognitive impairment, respectively (4, 6-8). HF patients with
neurological comorbidities often display poor adherence to therapy and
a loss of functional independence while experiencing reduced quality of
life or early death (9, 10). However, the pathophysiological mechanisms
for neurological comorbidities in HF remain unclear. Further exploration
in HF patients is needed to provide new imaging evidence for the heart-
brain axis theory, better understand the clinical manifestations, and offer
appropriate treatment options for these patients.

A common data-driven technique for blind source separation is
Independent Component Analysis (ICA). This technique has
significantly helped better understand the intrinsic networks within
the brain and the functional connectivity (FC) at the network level
(11). To investigate dynamic changes in these networks, ICA can
be combined with a sliding window approach to estimate time-
resolved fluctuations in FC and to identify recurrent connectivity
states across windows. This combined framework, known as dynamic
functional network connectivity (dFNC), enables the characterization
of temporal variability that is not captured by static FC analyses (12).
Although the validity of sliding window analysis (SWA) has been
questioned (13), studies have shown that meaningful brain states can
be identified from short resting-state segments (14, 15). Thus, SWA
remains a useful approach, especially in pathological populations
where transient FC alterations are expected.

Neuroimaging evidence has linked HF to structural, functional,
and metabolic brain alterations (16-19), which have in turn been
associated with cognitive, emotional, and pain-related functions (20).
Recent studies in heart failure with preserved ejection fraction
(HFpEF) patients have also reported alterations in both static and
dynamic functional network connectivity, with changes involving
major large-scale networks and associations with cardiac function (21).
However, the temporal properties of intrinsic connectivity networks
(ICNs) remain poorly characterized in patients with reduced and
mid-range ejection fraction (HFrEF and HFmrEF), who often show
more pronounced cognitive vulnerability. Static functional connectivity
provides only a time-averaged view of brain interactions, which may
obscure transient fluctuations and dynamic reconfigurations that are
critical for adaptive cognitive and emotional processes (22). In contrast,
dynamic functional network connectivity (dFNC) captures short-term
variability and recurrent connectivity states, thereby offering unique
insights into network instability and impaired brain-heart interactions
in HE To our knowledge, this study is among the first to integrate ICA
with dENC in patients with reduced and mid-range ejection fraction,
thereby enabling a joint characterization of static network alterations
and time-varying connectivity dynamics. Building on this framework,
we further examined whether these network alterations were associated
with cardiac function, cognitive performance, and affective symptoms.
This study is designed to provide novel insights into how HF disrupts
intrinsic brain networks and their temporal dynamics, with potential
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implications for understanding HF-related brain dysfunction and
improving patient management. The overall analytic workflow is
summarized in Figure 1.

2 Methods
2.1 Participant selection

Following the ESC criteria, HF patients were defined in this
investigation. Patients with HFmrEF and HFrEF were among those
whose ejection fraction was less than 50% (23). HFrEF was
characterized by clinically diagnosed HF with an LVEF of < 40%, as
determined by echocardiography. HFmrEF referred patients with an
LVEF between 40 and 49%, representing a “grey area” of heart function.
Participants with contraindications to MRI, history of head trauma,
drug or alcohol abuse, or severe physical or neurological deficits were
not enrolled. Among those scanned, individuals were further excluded
if they showed substandard image quality, ischemic cerebral lesions, or
brain tumors. Using this procedure, our prospective HFrEF and
HFmrEF cohort initially recruited 44 patients between January 2022
and December 2023. We excluded 7 patients due to ischemic cerebral
lesions and 2 patients due to motion artifacts (mean framewise
displacement > 0.5 mm, >2.0 mm translation, or >2.0° rotation).
Finally, 35 patients were analyzed in the present study. In addition, 28
healthy controls (HCs) were randomly selected from individuals
undergoing brain MRI during the same period, after stratification to
match the HF group by age, sex, and years of education. Exclusion
criteria included a family history of mental illness or the presence of
cardiac or psychiatric disorders. and the same additional criteria as for
the patient group were applied. All participants were determined to
be right-handed based on the Edinburgh Habitual Handedness Scale
results. Within 24 h of the MRI scan, they were evaluated employing
the Mini-Mental State Examination (MMSE), the 24-item Hamilton
Depression Rating Scale (HAMD-24), and the Hamilton Anxiety
Rating Scale (HAMA). Table 1 provides information about the
participants’ clinical and demographic characteristics.

2.2 Data acquisition and preprocessing

Brain MRI scans were conducted using a GE Discovery 750w
3.0 T scanner. The following echo-planer imaging sequence was then
employed to gather fMRI data in the resting state: flip angle = 90°,
slice thickness =3.0 mm, number of slices=36, field of
view = 22.4 x 22.4, TE = 30 ms, TR = 2000 ms, matrix size = 64 x 64,
voxel size = 3.0 X 3.5 x 3.5 mm’.

Resting-state fMRI data were preprocessed using the DPABI (Data
Processing & Analysis of Brain Imaging) toolbox." Preprocessing
included slice timing correction, realignment, normalization to MNI
space, detrending, nuisance regression (white matter, CSE, and motion
parameters), global signal regression, temporal band-pass filtering
(0.01-0.08 Hz), and spatial smoothing with a 6-mm FWHM
Gaussian kernel.

1 http://rfmri.org/dpabi
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Resting-state fMRI data were preprocessed and submitted to group ICA to extract resting-state networks (RSNs). Static network connectivity was then
assessed to characterize internetwork functional alterations in HF patients. For dynamic FNC (dFNC), a sliding-window approach was applied; the
resulting time-resolved connectivity matrices were clustered using k-means to derive recurring connectivity states. For each state, temporal
characteristics such as mean dwell time and occurrence rate were computed and further correlated with clinical measures. (a) Resting-state fMRI data
were preprocessed and submitted to group ICA to extract resting-state networks (RSNs). (b) Static network connectivity was then assessed to
characterize internetwork functional alterations in HF patients. (c) For dynamic FNC (dFNC), a sliding-window approach was applied; (d) The resulting
time-resolved connectivity matrices were clustered using k-means to derive recurring connectivity states. For each state, () Temporal characteristics
such as mean dwell time and occurrence rate were computed and further correlated with clinical measures.

2.3 ICA and determination of RSNs

Group ICA analysis was performed separately for the HF and HC
groups using Version 4.0 of the GIFT toolbox (available at https://
trendscenter.org/software/gift/), which decomposed the data into
independent components (ICs) that are estimated based on subject-
specific spatial maps and time courses across subjects. The data’s
dimensionality was initially reduced using principal component
analysis (PCA) before determining the number of ICs using the
minimum description length (MDL) criteria. Through this approach,
28 and 41 components were identified for the control group and the
HF patients, respectively, and these were deemed sufficient for
capturing the major large-scale resting-state networks. Independent
components were then repeatedly estimated 20 times with the infomax
algorithm in ICASSO, with the components subsequently clustered to
assess the extent to which the decomposition process was reliable. The
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group ICA back-reconstruction method was employed to reconstruct
each individual’s spatial maps and time courses. By examining the
correlations between the spatial maps and established RSN templates,
RSN components were automatically identified for each participant.
These templates represented brain regions that are commonly
associated with RSNs.

A total of ten relevant RSNs were detected. The networks
included are the visual network (VIN), somatomotor network
(SMN), default mode network (DMN), salience network (SN), dorsal
attention network (DAN), precuneus network (PN), auditory
network (AUN), executive control network (ECN), language network
(LN), and frontoparietal network (PFN). The WFU_PickAtlas
toolbox” in the SPM toolbox, was utilized to create the RSN templates

2 https://www.nitrc.org/projects/wfu_pickatlas/
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TABLE 1 Demographic, clinical data, and behavioral measures.

10.3389/fneur.2025.1626961

Variables Heart failure patients (n = 35) Healthy controls (n = 28)

Gender (M/F) 26/9 17/11 1.322 0.250
Age (years) 55.82 +10.82 5492 +7.75 —0.370 0.712
Education (years) 9.71 £ 4.56 8.96 +4.03 —0.862 0.498
Diabetes (absence/presence) 30/5 25/3 0.179 0.672
Hypertension (absence/presence) 18/17 21/7 3.665 0.056
LVEF (%) 39+83 65+ 6.4 13.33 <0.001
BNP (pg/ml) 1237.19 + 1423.25 NA NA NA
HAMA 7.88+£0.42 1.35+0.95 -9.133 <0.001
HAMD 10.00 £ 10.02 1.53 £1.07 —-8.817 <0.001
MMSE 25.03 +3.33 27.10 £2.96 2.58 0.011

Two-sample -tests for normalized data, Mann-Whitney U-tests for non-normalized data (HAMA and HAMD scores), and Pearson’s Chi-square test for gender, presence of diabetes and
hypertension; LVEF, Left Ventricular Ejection Fraction; BNP, B-type Natriuretic Peptide; HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton Depression Rating Scale, MMSE, Mini-

Mental State Examination.

using radii and centroid coordinates. The component with the
highest spatial correlation coeflicient (r > 0.2) for each network was
designated as the RSN of interest after identifying all ten components.
The individual image maps for these components were subsequently
used for second-level group analyses in SPM using two-sample
t-tests. Statistical significance was determined at p < 0.05, family-
wise error (FWE) corrected at the cluster level, with a voxel-wise
threshold of p < 0.001 uncorrected applied to define clusters.

2.4 dFNC analysis

For dFNC analysis, resting-state fMRI data from both HF patients
and HCs were entered into a single group ICA using the GIFT toolbox.
The number of independent components was estimated with the MDL
criterion, which identified 31 components across the combined dataset.
Following a similar approach to the previously described ICA
procedure, components with the highest spatial correlation coefficients
(r>0.2), corresponding to the 10 previously identified RSNs, were
selected. Ultimately, nine components were identified, with the SN
(r=10.167) excluded due to a lower correlation. The templates for the
nine RSN, including the corresponding ICs with which they showed
the highest spatial correlations, are presented in Figure 2. The dFNC
matrix was then computed using a sliding window method. Previous
studies have suggested that window size ranging from 30-60 s can
provide a robust estimation of the dynamic fluctuations in resting-state
dFNC (24, 25). In this study, the window width was set to a TR of 30
(60 s), and the window was slid along the time axis in steps of 1 TR. The
Pearson correlation coeflicients between all pairs of BOLD signals in
each window were calculated to construct a series of dynamic covariance
matrices. Given that significant noise can influence the covariance
estimates for short time series, L1 regularization (with 10 repetitions)
was applied to improve the sparsity of each window’s dENC matrix.

The k-means clustering algorithm was utilized to cluster the
participants’ dFNC matrices to evaluate the structure and frequency of
recurrent dFNC patterns. The Manhattan distance was then used to
calculate how similar certain time windows were. To minimize the
likelihood that a local minimum is reached during the clustering process,
the iterations were set to a maximum of 500, with the process repeated
150 times. The elbow rule was used to find that k =5 was the ideal
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number of clusters. All individuals’ dFNC matrices were categorized into
five unique dFNC states, each indicating recurring instantaneous FC
patterns across participants and windows. The dFNC matrix at each
cluster’s center was identified in the present case as the cluster centroid.

The following information was also used for calculating several
temporal features: (i) the reoccurrence fraction in each state (the
percentage of total time the subject spent in each state); (ii) the mean
dwell time which referred to the average duration a subject remained
in a particular state, and (iii) the number of transitions which
indicated how many times a subject switched between different states
during the scan period.

2.5 Sample size determination

Sample size was estimated using G*Power 3.1 for two-sample ¢-tests.
We assumed a medium-to-large effect size (d = 0.65), a = 0.05, and
power = 0.80. This analysis indicated a required total of approximately
60 participants. Our final sample (HF = 35, HC = 28) therefore provided
adequate statistical power for detecting effects of this magnitude.

2.6 Statistical analyses

Using the Stats module of the GIFT software, the dFNCs of the
HF and HC groups were compared using two-sample t-tests with
modifications for the false discovery rate (FDR). The threshold for
statistical significance in this instance was set at p < 0.05. SPSS
software 25.0 was used to evaluate the remaining data statistically.
Normality was tested for continuous variables with the Kolmogorov-
Smirnov test. Continuous variables were expressed as means + SD and
compared with two-sample ¢-tests for normally distributed data or the
Mann-Whitney U-test for non-normally distributed data. Categorical
group data presented as percentages were compared using the
chi-squared test. Lastly, using age, sex, years of education, presence of
diabetes and hypertension as control variables, Spearman’s partial
correlation analysis investigated possible relationships between
clinical variables (HAMA, HAMD, MMSE scores and LVEF) and
dFNC temporal features. The Bonferroni correction was utilized with
statistically significant differences at p x n < 0.05.
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Spatial maps of the 12 selected resting-state networks, assigned to 9 functional domains

3.1 Demographics and clinical
characteristics

The HF and HC groups were comparable in age, sex, educational
level, and prevalence of diabetes and hypertension (all p > 0.05). As
expected, HF patients had markedly lower LVEF (¢ = 13.33, p < 0.001)
and MMSE scores (t =2.58, p =0.011), and significantly higher
HAMA (z = —9.133, p < 0.001) and HAMD (z = —8.817, p < 0.001)
scores ( ).

Frontiers in

3.2 Analysis of functional connectivity

The DAN, FPN and SN exhibited significantly different
internal network FCs (p < 0.05, FEW corrected). Additionally, the
FC in the right inferior parietal lobule (IPL) of the DAN was
significantly reduced for HF patients (x =39, y = —42, z = 45,
cluster size = 29 voxels, x = 33, y = —54, z = 51, cluster size = 18
voxels), the right IPL, angular gyrus (AG), supramarginal gyrus
(SMG) (x =50,y = =51, z = 39, cluster size = 125 voxels), middle
frontal gyrus (MFG) (x =39, y =36, z =36, cluster size =10
voxels) of FPN. Meanwhile, the HF patients exhibited a significant
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increase in the right SMG (x = 57,y = =39, z = 36, cluster size = 35
voxels) of SN (Table 2; Figure 3).

3.3 Dynamic functional network
connectivity states

The following five recurring dFNC states were identified using
the k-means clustering algorithm: state 1 (14% of all time windows),
where higher cognitive control domains (DMN, FPN) and primary
perceptional domains (AUN, VIN and SMN) showed a high level of
positive inter-FNCs, with a high level of positively internal

10.3389/fneur.2025.1626961

connectivity also noted within FPN. State 2 (14% of all time
windows) where sparse FNCs were noted within and between all
RSNs, except in the case of VIN, AUN, DAN and SMN, for which
positive FNCs were found. State 3 (11% of all time windows)
exhibited robust connectivity, particularly demonstrating significant
positive connectivity among half-scale functional networks and
negative connectivity in LN concerning the other networks. State 4
(35% of all time windows) showed sparse connectivity, with the
functional network connectivity of the whole brain showing a
general weakening. Lastly, State 5 (27% of all time windows),
termed the sensory-cognitive segregation state, was characterized
by negative coupling between sensory (VIN, AUN) and

TABLE 2 Brain regions with significantly different FC values in the HF patients compared with the HCs.

Voxels Peak MNI coordinates
DAN 29 39 —42
18 33 —54
FPN 125 50 —51
10 39 36
HC < HF
SN 35 57 -39

45

51

39

36

36

Peak t value Brain region
(voxels)

6.13 0.000% right IPL

624 0.000%

6.86 0.000% right IPL (72)
right AG (39)

right SMG (14)
539 0.002% right MFG
6.84 0.000% right SMG

* FWE corrected, p < 0.05. HC, healthy control; HE, heart failure; DAN, dorsal attention network; PFN, frontoparietal network; SN, salience network; MNI, Montreal Neurological Institute;

IPL, inferior parietal lobule; AG, angular gyrus; SMG, supramarginal gyrus; MFG, middle frontal gyrus.

FIGURE 3

Results of ICA group comparison. Brain regions in HF patients exhibit decreased internal network FCs in the DAN and FPN, while showing significantly
increased FC in the SN. The color bars indicate the t values of FCs. ICA, independent component analysis; HF, heart failure; FC, functional connectivity;
DAN, dorsal attention network; FPN, frontoparietal network; SN, salience network.
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higher-order networks (DMN, PN), with preserved positive
connectivity within higher-order systems (DMN-PN) and between
attentional and auditory networks (DAN-AUN). The outcomes of
the dFNC matrix index for each subject across all windows are
displayed in

3.4 Temporal characteristics of states with
functional connection

The data proved that the mean dwell time was the longest for
state 4, while state 3 had the shortest one. The former also appeared
more frequently than state 2, which appeared least frequently. As
shown in —C, the mean dwell time in state 5 was
significantly lower for HF patients compared with HCs (Mann-
Whitney U-tests, z = —2.63, p = 0.009 x 5 < 0.05 after Bonferroni
correction), although in state 2, the HF patients showed an increasing
trend in mean dwell time (Mann-Whitney U-tests, z = —2.056,
p=0.04 x5 > 0.05 after Bonferroni correction). However, there was
no discernible difference between the two groups for the fraction of
time and number of transitions in any condition.

3.5 dFNC comparison between groups

Two-sample t-tests were used to compare the dFNC matrix of
each state for the two groups. The HC and HF patients were not
significantly different across states (FDR corrected, p < 0.05).

3.6 Correlation analyses

As shown in -G LVEF (r=0.358, p = 0.004 x 5 < 0.05
after Bonferrioni correction) and MMSE (r = 0.360, p = 0.004 x 5 < 0.05
after Bonferrioni correction) were positive related to the mean dwell
time of HF patients in state 5. The mean dwell time in state 2 showed
a significantly positive connection with HAMD (r=0.326,
P =0.009 x 5 < 0.05) and HAMA (r = 0.467, p < 0.001 x 5 < 0.05), even
though the two groups did not differ significantly at state 2. Finally,
clinical scales and cardiac function indicators were not significantly
correlated with the remaining dFNC temporal metrics.

Heart failure (HF) is increasingly viewed as a systemic condition
in which impaired cardiac function disrupts brain integrity and
network dynamics. The resulting cognitive decline and mood
disturbances are not merely comorbidities but key determinants of
prognosis, treatment adherence, and quality of life in affected
patients. Accordingly, the European Society of Cardiology (ESC)
and the American College of Cardiology/American Heart
Association (ACC/AHA) currently emphasize the importance of
screening HF patients for depression and cognitive impairment (23,

). Although previous studies have highlighted structural and
functional brain alterations in HEF, less is known about the temporal
dynamics of large-scale networks that may underlie these clinical
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FIGURE 4

The dFNC matrices for state 1-5 and the dFNC diagrams for each
state. The horizontal and vertical axes are the selected RSNs, and
their functional networks are depicted. The color bars indicate the
z values of the dFNC. dFNC, dynamic functional network
connectivity; RSNs, Resting-state networks. The dFNC matrices for
state 1-5 and the dFNC diagrams for each state (A—E)

manifestations. To address this gap, we applied group ICA and
dynamic functional network connectivity (dFNC) analyses to
compare HF patients with healthy controls. Our study yielded
several key findings. At the static level, reduced intranetwork
connectivity was observed in the DAN and FPN, particularly
involving the right IPL, whereas in increased connectivity was
detected within the SN, especially the right SMG. At the dynamic
level, five recurring functional connectivity states were identified.
Among these, the sensory-cognitive segregation state (State 5)
exhibited significantly reduced dwell time in HF patients and was
positively associated with both LVEF and MMSE scores. In contrast,


https://doi.org/10.3389/fneur.2025.1626961
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Gao etal.

10.3389/fneur.2025.1626961

A -HCB

1.5 = HF 200+

150

ime

100

Dwell ti

Reoccurrence fraction of time

state 1

r=0.3603
p=0.0037

A A AA

40

30

MMSE
)
o

1 1 1 1
0 50 100 150 200 250
state 5

50 r=0.3264
p=0.0090 A

HAMD

state 2

FIGURE 5

Temporal features of dFNC states for the HF and HC groups, and correlations between the temporal features and the clinical scales. (A) Reoccurrence
fraction of time, (B) dwell time and (C) numbers of transitions were plotted using violin plots. Horizontal lines indicate group medians and interquartile
ranges. The width of the violin plot bars indicates the distribution density of subjects in each group at the corresponding ordinate level. The horizontal
lines above some violins indicate pairwise comparisons that demonstrated statistical significance: * p < 0.05. Cardiac function indicators. (D,E) A
significantly positive relationship was observed between the mean dwell time in State 5 and the MMSE score (r = 0.360, p = 0.0037, Bonferrioni
correction) and LVEF (r = 0.358, p = 0.004, Bonferrioni correction). (F,G) A significantly positive relationship was observed between the mean dwell
time in State 2 and the HAMD score (r = 0.3264, p = 0.009, Bonferrioni correction) and HAMA (r = 0467, p = 0.0001, Bonferrioni correction). dFNC,
dynamic functional network connectivity; HF, heart failure; HC, healthy control; MMSE, Mini-Mental State Examination; LVEF, left ventricle ejection
fraction; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale.

Number of transitions

state 2 state 3 state 4 state 5 HC HF

104 r=0.3581
p=0.0040

LVEF

0 50 100
state 5

40 r=0.4674
p=0.0001

HAMA

state 2

the sparse connectivity state (State 2) showed prolonged dwell time
in HF and was positively correlated with anxiety and
depression scores.

We specifically focused on patients with LVEF < 50% (HFrEF
and HFmrEF), as these
pathophysiological features and are more likely to exhibit cognitive

subgroups share common

and network alterations related to reduced cardiac output. The
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static network findings highlight the IPL and MFG as critical
regions affected in HE. The IPL, as a hub of both DAN and FPN,
integrates sensory information (27, 28) and supports attention and
episodic memory (29-33), and has also shown functional
alterations in early-stage Alzheimer’s disease (AD) (34). Although
we did not test a direct association between IPL connectivity and
MMSE, the co-occurrence of reduced IPL connectivity and lower
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MMSE scores suggests that attentional and memory networks may
be vulnerable in HE. The MFG, part of the dorsolateral prefrontal
cortex, is central to executive control (35), and its dysfunction has
been consistently linked to executive decline in mild cognitive
impairment (MCI) (36). In contrast, the SN, particularly the SMG,
functions as a dynamic hub for detecting salient stimuli (37) and
coordinating inter-network switching (38). Increased SMG
connectivity in HF may therefore represent a compensatory
adaptation that helps sustain attention despite impaired DAN/FPN
integrity. Altogether, reduced IPL and MFG connectivity, alongside
compensatory SMG upregulation, point to early network-level
alterations underlying cognitive vulnerability in HE partly
overlapping with mechanisms reported in MCI and AD, and may
serve as potential imaging markers for cognitive monitoring and
intervention in this population.

We employed dFNC to capture the temporal variability of large-
scale network interactions (39). Five stable and recurrent dFNC states
were identified across all subjects. Among them, State 4, characterized
by sparse inter-network coupling, was the most predominant and
exhibited the longest mean dwell time, likely reflecting baseline
neuronal activity in the resting brain. State 5 was of particular
interest, showing modular connectivity marked by negative coupling
between sensory (AUN, VIN) and higher-order (DMN, PN)
networks, alongside preserved positive coupling within higher-order
systems. Given this pattern, we refer to it as the sensory-cognitive
segregation state. In healthy individuals, prolonged engagement in
this state may support the functional specialization of sensory and
higher-order systems, enabling efficient information processing (40—
42). By contrast, HF patients showed reduced dwell time, suggesting
an impaired ability to maintain this modular configuration and a loss
of balance between segregation and integration across large-scale
networks. Such instability may reflect disruption of the heart-brain
axis, whereby reduced cardiac output compromises the neural
dynamics supporting sensory-cognitive interactions and cognitive
performance. Consistent with this interpretation, shorter dwell time
was associated with lower LVEF and MMSE scores, highlighting the
link between impaired cardiac function and reduced stability of brain
network dynamics (7, 43).

State 2, characterized by globally sparse connectivity with only
limited positive coupling between sensory (VIN, AUN) and
sensorimotor/attentional (SMN, DAN) networks, showed a trend
toward longer dwell time in HF patients. Although the group
difference was not significant, within HF patients dwell time in this
state correlated positively with HAMA and HAMD scores. Prolonged
engagement in a weakly connected, diffuse configuration may reflect
inefficient interregional communication and heightened self-
referential processing. Similar hypoconnected states have been
reported in major depressive disorder, including altered connectivity
between sensory and motor networks (44, 45). Such alterations may
help explain the heightened susceptibility of HF patients to depression
and anxiety.

4.1 Limitation

Firstly, this study was limited by a relatively small sample size,
which may affect the generalizability and robustness of ICA/dFNC
results. Nonetheless, significant group differences remained after
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stringent FWE/FDR corrections, suggesting robust effects. Future
multi-center studies with larger cohorts are needed to replicate and
extend these findings. Secondly, although detailed medication histories
were collected for HF patients, prescriptions were highly heterogeneous
and often irregularly used. With the relatively small sample size, it was
not feasible to include medications as covariates; therefore, their
potential confounding effects cannot be excluded. Future studies with
larger and more homogeneous samples are warranted to better control
for medication influences. Thirdly, this work did not exclude
comorbidities in heart failure patients, such as hypertension/diabetes,
and this can also lead to changes in brain FCs. However, the differences
in these two conditions between the HF and HC groups were not
statistically significant, thereby minimizing their potential influence.
Fourthly, ECG gating and HRV-corrected reanalysis were not available,
and although we applied rigorous preprocessing steps to mitigate
physiological noise, residual cardiac- and respiration-related influences
cannot be fully excluded; future multimodal studies incorporating
concurrent physiological monitoring are warranted. Finally, cognition
was assessed only with the MMSE, which may overlook subtle deficits;
future studies should incorporate more sensitive tools such as
the MoCA.

5 Conclusion

This study revealed altered static connectivity in IPL, MFG, and
SN, together with dynamic abnormalities marked by reduced stability
of a sensory-cognitive segregation state and prolonged engagement in
a hypoconnected diffuse state. These network alterations were
associated with cardiac function, cognition, and mood. We believe
these findings provide novel neuroimaging evidence suggesting
potential heart-brain interactions in HE, and may contribute to early
identification of patients at risk for cognitive and emotional impairment.
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