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Background: Pediatric Huntington's disease (PHD), a rare and severe form of
juvenile-onset Huntington's disease (JOHD), is associated with highly expanded
CAGrepeatsinthe HTT gene and a rapidly progressive neurodegenerative course.
Recent studies have suggested that glucose metabolism may be impaired in
PHD due to reduced expression of glucose transporters in the brain, resembling
aspects of GLUT1 Deficiency Syndrome (GLUT1DS).

Methods: We investigated glucose metabolism in two pediatric patients with
genetically confirmed PHD (CAG repeats: 76 and 79) referred to our tertiary care
center. Clinical, neuroimaging, and neuropsychological data were collected
alongside metabolic assessments, including cerebrospinal fluid (CSF) and
plasma glucose and lactate levels, CSF-to-serum glucose ratio, and red blood
cell GLUT1 expression using the METAglutl test. 18F-FDG PET imaging and brain
MRI were performed to assess cerebral metabolism and structural changes.

Results: Both patients exhibited progressive motor and cognitive decline
with dystonia-parkinsonian features, learning disabilities, and behavioral
disturbances. Brain MRI showed caudate and putaminal atrophy, while PET
imaging demonstrated severely reduced glucose uptake in the basal ganglia.
CSF/plasma glucose ratios were within or near the lower end of the normal
range (0.51 and 0.6), and GLUT1 expression in red blood cells was within normal
limits. No significant biochemical alterations consistent with GLUT1DS were
detected.

Conclusion: Our findings confirm localized cerebral hypometabolism in the
basal ganglia of PHD patients, consistent with previous neuropathological
reports. However, systemic biochemical indicators of glucose transport
deficiency, including erythrocyte GLUT1 function and CSF glucose, were not
significantly altered. While glucose dysregulation appears to be a feature of PHD
brain pathology, our results do not support the use of metabolic interventions
such as the ketogenic diet in the absence of confirmed GLUT1 dysfunction.
Further studies in larger cohorts are warranted to better characterize the
metabolic profile of PHD and guide therapeutic strategies.
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1 Introduction

disease (HD) is an autosomal dominant

neurodegenerative disorder caused by an unstable expansion of CAG

Huntington’s

repeats in the HT'T gene, leading to an elongated polyglutamine tract in the
Huntingtin protein. Larger CAG expansions correlate with earlier onset of
symptoms. Typically, adult-onset HD presents around the age of 40, and is
characterized by neurological, behavioral, and cognitive decline, along with
involuntary movements such as chorea (1).

When HD manifests before the age of 21 years, it is classified
as juvenile-onset HD (JOHD), with the subset of cases occurring
in younger children referred to as pediatric Huntington disease
(PHD). JOHD represents 5-10% of all HD cases, but the exact
prevalence of PHD remains uncertain (2). Severe forms of PHD,
particularly in children with over 70-80 CAG repeats, are
associated with rapid progression, reduced lifespan, motor and
developmental delays, severe dystonia (without chorea), learning
difficulties, seizures, and atypical brain abnormalities (2, 3).
Behavioral issues such as hyperactivity and aggression further
complicate the clinical spectrum of JOHD and PHD (4).

Recent research by Tramutola et al. (5) have identified a
dysfunctional hypometabolic state in PHD brains with highly
expanded CAG repeats. By analyzing the expression of Glucose
Transporter 1 (GLUT1) and Glucose Transporter 3 (GLUT3) proteins
in PHD, JOHD, and adult-onset HD patients compared to controls,
they observed a significant reduction in GLUT1 and GLUT3 levels in
the frontal cortex and fibroblasts of PHD patients with highly
expanded mutations. GLUT1 and GLUT3 are uniporter proteins
encoded by the SLC2AI and SLC2A3 (solute carrier family 2,
facilitated glucose transporter member 1 and 3) genes, respectively.
These transporters facilitate glucose transport across the plasma
membranes of mammalian cells. The findings align with evidence of
mitochondrial dysfunction in HD (6), supporting the hypothesis of
impaired energy metabolism in these patients.

In particular, deficits in electron transport chain activity,
reduced oxidative phosphorylation capacity, and impaired
tricarboxylic acid (TCA) cycle function have been observed (7,
8). These findings align with functional neuroimaging studies in
HD patients
hypometabolism, even in pre-symptomatic stages, accompanied

showing early and progressive cerebral
by increased lactate levels and ATP depletion in both brain and
peripheral tissues (9). Mechanistically, mutant huntingtin impairs
mitochondrial function through downregulation of PGC-1a, a
transcriptional coactivator critical for controlling mitochondrial
biogenesis, respiration, and other metabolic pathways (10).
Interestingly, the metabolic abnormalities observed in PHD
mirror those seen in GLUT1 Deficiency Syndrome (GLUT1DS),
a rare neurological disorder caused by mutations in the SLC2A1
gene. GLUT1DS is characterized by seizures, developmental
delays, motor impairments, and movement disorders. Its
treatment relies on the ketogenic diet (KD), a high-fat,
low-carbohydrate diet that induces ketosis, providing an

alternative energy source to glucose (5, 11).
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2 Methods

We present two patients referring to the Department of
Pediatric Neuroscience of the Istituto Neurologico Carlo Besta,
Milan with highly expanded CAG repeats in the HTT gene and a
diagnosis of PHD. Molecular analysis was performed on DNA
sample extracted from peripheral blood by using the Amplidex
PCR/CE HTT kit (Asuragen®). The number of triplets was
determined by electrophoresis on an ABI-PRISM 3500 XL DX
capillary sequencer.

Clinical data were gathered through detailed medical and family
examinations, and
neuropsychological testing. The clinical assessments included the

histories, comprehensive neurological
Unified Huntington’s Disease Rating Scale Total Motor Scale
(UHDRS-TMS). The Instrumental assessment comprised brain MRI
and a positron emission tomography (PET) using 18\uOOBOF-
fluorodeoxyglucose (18 FDG).

The metabolic investigations included cerebrospinal fluid (CSF)
glucose and lactate and plasma glucose and lactate. We conducted a
simultaneous lumbar puncture and venous blood sampling,
performed according to standard clinical protocols. In addition, the
serum to CSF glucose ratio was calculated. Erythrocyte glucose uptake
was assessed by GLUT1 Quantification on Red Blood Cells assay (The
METAglutl test METAFORA Biosystems®) (12).

Informed consent was obtained from the patients’ guardians for
the processing of personal data and publication.

3 Results
3.1 Clinical features

Patient 1: a 13-year-old girl diagnosed with pediatric Huntington’s
disease (CAG 79 repeats) at age 12, with family history positive for the
disease (father, grandfather, and great-aunt affected). Pregnancy and
delivery were uneventful, psychomotor and language development were
normal though she has had right foot internal rotation since age 6,
treated with physiotherapy. Learning difficulties were noted from age 6,
along with a progressive decline in motor and cognitive functions.
Neurological findings include dystonia-parkinsonian syndrome and
dysarthria. Although she follows a regular diet, she experiences
swallowing difficulties, particularly with liquids. Cognitive assessment
reveals borderline intellectual functioning with deficits in visual-motor
integration, attention, verbal fluency, working memory, and processing
speed. She also experiences social anxiety and struggles with peer
relationships. At age 12, she began treatment with L-Dopa (300 mg/day)
with minor improvement in motor fluidity and started trihexyphenidyl
(6 mg/day) at age 13. She attends weekly speech therapy. Currently she
is in her third year of middle school. A home educator and psychological
support are planned.

Patient 2: A 16-year-old boy diagnosed with pediatric Huntington’s
disease (CAG 76 repeats) at age 15. He is an only child, with an affected
biological father and a healthy mother. His pregnancy was complicated
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by placental detachment, toxoplasmosis, and emergency C-section,
although there was no perinatal distress. Psychomotor and language
development were normal. From the age of 8, he began to experience
academic difficulties, and at the age of 10 was diagnosed with mixed
learning and motor disabilities (dysgraphia). His motor skills gradually
deteriorated, with worsening coordination, frequent falls, executive
dysfunction, and abnormal eye movements. Neurologically,
he presented with ophthalmoplegia, dysarthric speech, bradykinesia,
and dystonia. Moreover, he developed progressive swallowing
difficulties, particularly with liquids and solids, leading to reduced

caloric intake and respiratory issues. He is on a semi-solids and

TABLE 1 Clinical and demographic data.

10.3389/fneur.2025.1626275

semi-liquids diet. Cognitive evaluation at age 15 showed a mild
intellectual disability, with marked difficulties in working memory and
processing speed but relatively preserved verbal comprehension and
visuospatial reasoning. He Also exhibited attention and visuomotor
integration difficulties, aggressivity (especially toward his mother), and
poor frustration tolerance. He started L-Dopa (200 mg/day) at age 14,
with initial improvement, and trihexyphenidyl (12 mg/day) was added
atage 15. Currently he is in his second year of high school and practicing
speech and physiotherapy.

For further clinical details and investigation, see Table 1 and
Figures 1, 2.

Patient 1 Patient 2

Gender Female Male
Age last evaluation (y) 13 16
CAG repeats 79 76
Inheritance Paternal Paternal
Age of onset (y) 6 8
Age at diagnosis (y) 12 15

Symptoms at onset

Learning disabilities and right foot dystonia

Learning disabilities

Current clinical symptoms

Dystonia-parkinsonism, dysarthria and speech disorders, cognitive decline

Dystonia-parkinsonism, dysarthria and speech

disorders, cognitive decline, oculomotor apraxia,

Ref. range: 800-2,100

dysphagia
HD phase Moderate Moderate
UHDRS-TMS 42/124 47/124
Brain MRI Atrophy in caudate nuclei and putamen with signal abnormalities Hyperintensities and reduced volume in the putamen
and caudate nuclei, with dorsolateral profile changes
EEG Bilateral posterior theta slowing alongside anterior low-voltage beta activity, = Globally low-voltage and disorganized background activity,
accompanied by ocular artifacts. Following hyperventilation, a single brief characterized by diffuse theta—beta frequencies with
generalized high-amplitude slow spike-and-wave discharge, predominantly limited reactivity. Eye closure induces irregular posterior
anterior, is observed without any clinical correlate. low-alpha rhythms intermixed with faster frequencies
Sleep EEG Well-organized sleep pattern with symmetrical physiological waveforms. Irregular NREM sleep pattern, marked by bilateral and
Brief episodes of diffuse sharp-wave bursts predominantly localized to symmetric hypnic graphoelements with a monomorphic
anterior regions are present, appearing without associated clinical correlates and simplified morphology.
Medical therapy L-dopa (300 mg/die) L-dopa (200 mg / die)
Trihexyphenidyl (6 mg/die) Trihexyphenidyl (12 mg /die)
Blood glucose (mg/dL) 115 97
Ref. range: 50-110
CSF glucose (mg/dL) 59 62
Ref. range:40-80
Blood/CSF glucose ratio 0.51 0.60
Ref. range in GLUT1DS < 0.4
with a range of 0.19-0.59
CSF Lactate (umoli/l) 1,127 1,528

METAglul test
Variation of GLUT1 expression
at the patient’s red blood cell

membrane relative to population

mean

+7% (+ 5 sd)

—13% (~1.3 sd)

v, years; HD, Huntington’s disease; UHDRS-TMS, unified Huntington’s disease rating scale total motor score, MRI, magnetic resonance imaging; CSE, cerebrospinal fluid; sd, standard

deviation.
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FIGURE 1

GLUT1 expression at the patient’s red blood cell membrane (relative to population mean) in patient one (top) and two (bottom). Variation of GLUT1
expression at the patients’ red blood cell membrane (relative to population mean) position of the patient in the general population. Both patients show
that there is no significant difference of the expression of GLUT1 on red blood cells according to our test compared to the general population. Patients
confirmed GlutlDS have a deficit of Glutl expression on the surface of their red blood cells, most often between —60% and —21% the cut-off of
positivity is —24%. For further detail of the METAglutl test see reference (12).

-3 2 -1 0 1 2
STD

3.2 Metabolic assessment

To verify the hypothesis of a dysregulation of glucose metabolism,
we assessed CSF and plasma glucose level with the CSF/plasma ratios
resulting within or near the lower normal range, erythrocyte GLUT1
expression within population reference intervals, and normal lactate
CSF levels.

A positron emission tomography (PET) scan with 18F-FDG
on qualitative analysis documents normal distribution of the
radiopharmaceutical in all cortical areas, the cerebellum, and the
thalami, with almost absent uptake in caudates and putamina
bilaterally. MRI shows a symmetric flattening of the lateral profile
of the frontal horn due to atrophy of the caudate head and T2
hyperintense and atrophic putamina. See Table 1 and Figure 3 for
further details.

Frontiers in Neurology

4 Discussion

In this exploratory study, we investigated the hypothesis of a
potential dysfunction of the glucose transporter GLUT1 in pediatric
Huntington’s disease (PHD), following recent findings from Tramutola
et al. (5), who reported markedly reduced GLUT1 expression in the
striatum and frontal cortex of PHD patients. These alterations were
proposed to underlie clinical parallels between PHD and GLUT1
Deficiency Syndrome (GLUTIDS), including seizures and
movement disorders.

Although our metabolic evaluation in two genetically confirmed
PHD patients did not reveal a biochemical profile consistent with
GLUT1DS one patient displayed a borderline CSF/plasma glucose ratio.
While still within or near the lower normal range, such borderline

values—especially in the context of rare diseases—warrant cautious
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FIGURE 2

Awake and sleep EEGs. (A) Patient 1 awake EEG: demonstrates bilateral posterior theta slowing (5-6 Hz, low to moderate amplitude) alongside anterior
low-voltage beta activity, accompanied by ocular artifacts. Following hyperventilation, a single brief generalized high-amplitude slow spike-and-wave
discharge, predominantly anterior, is observed without any clinical correlate. (B) Patient 1 sleep EEG: exhibits a well-organized sleep pattern with
symmetrical physiological waveforms. Brief episodes of diffuse sharp-wave bursts predominantly localized to anterior regions are present, appearing
without associated clinical correlates. (C) Patient 2 awake EEG: reveals a globally low-voltage and disorganized background activity, characterized by
diffuse theta—beta frequencies with limited reactivity. Eye closure induces irregular posterior low-alpha rhythms intermixed with faster frequencies.

(D) Patient 2 sleep EEG: displays a recognizable but irregular NREM sleep pattern, marked by bilateral and symmetric hypnic graphoelements with a
monomorphic and simplified morphology.

FIGURE 3

(A) PET images in patient two. Above [18F] FDG images and below their z-score maps show reduced uptake in caudates and putamina. At MRI,

(B) coronal FLAIR shows a symmetric flattening of the lateral profile of the frontal horn due to atrophy of the caudate head (arrow). (C) axial T2 shows
hyperintense and atrophic putamina (arrowhead)
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interpretation and ideally require confirmation through
repeated measurements.

While we found no evidence of systemic glucose transport
impairment, PET imaging revealed severe hypometabolism localized to
the basal ganglia, supporting previous neuropathological and
neuroimaging studies that point to region-specific energy dysregulation
in PHD (13, 14).

Both patients’ EEGs demonstrated diffuse background slowing,
accompanied by epileptiform activity that increase during sleep, with
no correlation observed between these findings and fasting status. These
results align with existing literature, reflecting the electroclinical
progression of pediatric Huntingtons disease (15). In contrast,
GLUTIDS typically presents with generalized EEG slowing that
becomes more pronounced during fasting (16). Additionally, in some
cases, fasting EEG reveals diffuse spike-wave discharges that markedly
improve following food intake (17), indicating a direct impact of
metabolic dysfunction on cerebral electrical activity.

Taken together these findings do not support a generalized systemic
GLUT!1 deficiency in PHD, but rather highlight a central, brain-region
specific glucose metabolism impairment.

At present this does not justify the use of metabolic interventions
such as the ketogenic diet in PHD subjects.

Dysregulated glucose metabolism within the basal ganglia—
particularly the caudate and putamen—appears to play a central role in
driving both neurodegeneration and clinical manifestations in
pediatric-onset Huntington’s disease (PHD). Functional imaging reveals
marked glucose hypometabolism in these nuclei, evident even before
overt atrophy and clinical symptoms emerge; the degree of
hypometabolism correlates with CAG repeat expansion and disease
severity, indicating a pathogenic link between early metabolic failure
and structural degeneration (9, 18, 19). Hybrid PET/MRI studies in
pediatric-onset HD have shown that regions with more severe striatal
volume loss also display disproportionately reduced glucose uptake,
aligning metabolic impairment with structural vulnerability and
hypokinetic motor phenotypes, in contrast to the choreic features
typical of adult-onset cases (20). Mechanistically, deficient glucose
uptake—driven by reduced GLUT3 expression in striatal neurons and
altered glycolytic enzyme activity, such as phosphofructokinase and
pyruvate dehydrogenase—leads to energy deficits that compromise
neuronal integrity and synaptic maintenance (5, 21). This metabolic
stress is further amplified by mitochondrial dysfunction, particularly
complex II deficits and impaired oxidative phosphorylation, which
increase oxidative damage and promote neuronal loss in the striatum
(7, 8). Structural declines in basal ganglia volume and corticostriatal
connectivity, as shown by diffusion-tensor imaging and volumetric
MRI, closely align with both motor and cognitive impairments,
reinforcing the view that metabolic deficits are upstream drivers of
neurodegeneration and clinical phenotype expression in PHD (22).
Thus, basal ganglia hypometabolism emerges as both a driver and a
biomarker of striatal atrophy and the hypokinetic-dystonic clinical
presentations observed in PHD.

Despite the very limited sample size, our study adds to the growing
body of literature implicating altered energy metabolism in PHD.

We recommend including CSF glucose analysis as part of the
diagnostic workup in severe or early-onset PHD phenotypes,
particularly to identify potential metabolic subgroups who may
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benefit from tailored interventions. However, larger studies with
age-matched controls and repeated metabolic assessments are
essential to validate these preliminary findings and to allow for
statistical comparisons.
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