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Objective: To systematically review existing predictive models for futile
recanalization after mechanical thrombectomy in patients with acute ischemic
stroke, in order to provide a basis for treatment decision-making.

Methods: Relevant studies on predictive models of futile recanalization
after mechanical thrombectomy for acute ischemic stroke were searched
in PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang,
and VIP databases from inception to May 5, 2024. Reference lists were also
manually searched as supplements. Two researchers independently performed
the literature search, screening, and data extraction, and conducted risk of bias
and quality assessments. Because most included studies did not provide 95%
confidence intervals or standard errors of AUC values, a formal quantitative
meta-analysis of model performance was not feasible. Instead, we conducted a
stratified descriptive synthesis of AUC values according to modeling approach
(traditional regression vs. machine learning/deep learning).

Results: Thirteen studies were included, encompassing 23 predictive models
for futile recanalization. Variables used in the models mainly involved baseline
clinical and imaging features. The most frequently included predictors were age,
NIHSS score, baseline mRS score, and baseline Alberta Stroke Program Early CT
Score (ASPECTS). The AUC of the models ranged from 0.650 to 0.981, with 11
models reporting AUC values >0.8, indicating high predictive performance.
Conclusion: Predictive models for futile recanalization after mechanical
thrombectomy in acute ischemic stroke are still under development. While
many models exhibit good discrimination, they commonly face a high risk of
bias. Future research should emphasize external validation and optimization of
existing models to improve their performance, reduce bias, and promote clinical
implementation.

Systematic review registration: The systematic review was registered in
PROSPERO wunder the ID CRD42022382797. https://www.crd.york.ac.uk/
prospero/display_record.php?ID=CRD42022382797.
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1 Introduction

Stroke is the leading cause of disability and the second leading
cause of death globally, with ischemic stroke accounting for
approximately 82% of all cases. Data indicate that deaths due to
ischemic stroke have increased by 60.68% over the past 30 years. With
the aging population trend intensifying, the burden of ischemic stroke
is expected to rise further (1, 2). National and international guidelines
recommend mechanical thrombectomy (MT) as an effective treatment
for acute large vessel occlusion (LVO) ischemic stroke, suitable within
24 h of onset for patients with anterior circulation occlusion and
salvageable brain tissue (3). Despite the widespread adoption and
continuous optimization of MT, futile recanalization remains a
significant clinical issue, with postoperative rates ranging from 49 to
67% (4). Futile recanalization refers to achieving mTICI grade 2b or 3
recanalization after endovascular therapy without attaining functional
independence at 90 days (5).

Numerous predictive models have been developed and validated
to assess the risk of futile recanalization post-MT in patients with
acute ischemic stroke, such as the HIAT and THRIVE scores (6, 7).
These models, like those predicting symptomatic intracranial
hemorrhage (sICH) after intravenous thrombolysis (e.g., MSS, HAT,
SITS-sICH, GRASPS, SPAN-100, and SEDAN), are mainly based on
traditional logistic regression (LR) methods. However, LR-based
models are prone to issues such as multicollinearity and overfitting (5).

In recent years, with a deeper understanding of stroke
pathophysiology, more factors such as patient history, laboratory
parameters, and imaging characteristics have been found to
be associated with futile recanalization after MT. Machine learning
(ML) algorithms have shown strong utility in stroke diagnosis,
treatment, and prognosis prediction, leading to the development of
many new models. Nonetheless, current models vary significantly in
quality, performance, and clinical applicability, and systematic reviews
are lacking. Therefore, this study aims to synthesize and evaluate
existing predictive models of futile recanalization through systematic
review, quality assessment, and meta-analysis to provide scientific
evidence for model optimization and clinical application.

2 Methods

This systematic review was registered in PROSPERO (ID:
CRD42022382797) and was conducted in accordance with the
PRISMA guidelines.

2.1 Search strategy

A comprehensive search was conducted in PubMed, Web of
Science, Embase, The Cochrane Library, CNKI, Wanfang, and VIP
databases for studies on predictive models of futile recanalization after
mechanical thrombectomy in patients with acute ischemic stroke. The
search period spanned from database inception to May 5, 2024.
Additional references were identified through manual screening of
bibliographies. Chinese search terms included: “ischemic stroke/
stroke/cerebrovascular accident/cerebral infarction/predictive model/
endovascular recanalization/mechanical thrombectomy”; English
search terms included: “ischemic stroke”/“brain ischemia”/“large
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vessel  occlusion”/“endovascular  thrombectomy”/“mechanical

thrombectomy”/“risk prediction model”

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria

(1) Study types: case-control and cohort studies; (2) Study
population: patients aged >8 years with a diagnosis of stroke based on
commonly accepted criteria and confirmed by CT or MRI; (3)
Content: development and/or validation of predictive models for
futile recanalization.

2.2.2 Exclusion criteria

(1) Models including non-LVO stroke patients (e.g., hemorrhagic
or lacunar strokes); (2) Duplicate publications from the same cohort;
(3) Studies with incomplete model construction information or
lacking performance assessment; (4) Conference abstracts, reviews,
letters, commentaries, editorials, and corrigenda were excluded.

2.3 Literature screening

After de-duplication in EndNote X9, two reviewers independently
screened the studies based on inclusion and exclusion criteria. Title
and abstract were screened initially, followed by full-text evaluation.
Disagreements were resolved through discussion or consultation with
a third reviewer.

2.4 Data extraction

Data were extracted by two researchers according to the CHARMS
checklist (Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modeling Studies) (8). A standardized form was
used to ensure consistency, capturing details such as first author,
publication year, title, country, study design, sample size, data source,
diagnostic methods, number of models, outcome indicators, candidate
predictors, modeling methods, variable selection techniques, model
performance, validation methods, model presentation, and number
and names of predictors.

2.5 Risk of bias and quality assessment

Risk of bias was assessed using the Prediction Model Risk of Bias
Assessment Tool (PROBAST) (9), which includes 20 items across four
domains: participants, predictors, outcomes, and analysis. Two
researchers independently evaluated the studies, and discrepancies
were resolved by a third reviewer. The Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) checklist was used to assess reporting quality.

2.6 Statistical analysis

Model performance was assessed using the area under the receiver
operating characteristic curve (AUC), with corresponding 95%
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confidence intervals (CI) extracted. Descriptive statistics were used to
summarize study characteristics, model development and validation,
and performance metrics.

3 Results
3.1 Literature search results

A total of 4,201 studies were initially identified. After removing
duplicates, 2,365 articles remained. Following title and abstract
screening and full-text review according to inclusion and exclusion
criteria, 13 studies were included in the final analysis. These studies
reported 23 predictive models for futile recanalization (10-22). The
study selection process is illustrated in Figure 1.

3.2 Basic characteristics of included studies

The 13 studies were published between 2014 and 2023, including
2 in Chinese (20, 22) and 11 in English (10-19, 21). Seven studies

Records identified through database
searching (n = 4201)

\ 4

Duplicate records removed (n 1836)

A 4

Records after duplicates removed (n 2365)

A 4

Records excluded after screening titles
and abstracts (n = 2331

A 4

Full-text articles assessed for eligibility
(n=34)

Full-text articles excluded, with reasons:
No nursing program constructed (n=15)
No specific indicators (

No intervention measures (n=2)
Model-based comparison only  (

A4

Studies included in final synthesis
(n=13)

FIGURE 1
PRISMA flow diagram of the literature screening and selection
process for included studies.
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were multicenter (11-15, 17, 20), and six were single-center studies
(10, 16, 18, 19, 21, 22). Four studies developed four models each (11,
14, 17, 19), while the remaining nine developed a single model.
Detailed characteristics of the included studies are presented in
Table 1.

3.3 Model development

The sample sizes in the included studies ranged from 45 to 1,383
participants. The primary modeling approaches included logistic
regression and machine learning algorithms (see Table 2). Six
studies employed univariate analysis for variable selection (12, 13,
15-18, 21); three studies applied the least absolute shrinkage and
selection operator (LASSO) (18, 19, 22); and five studies used
machine learning-based selection methods (11, 14, 18, 19, 21). One
study did not specify the method for variable selection (10). When
stratified by modeling approach, regression-based models (n = 4)
achieved consistent performance, with AUCs ranging from 0.78 to
0.87 (mean 0.83, median 0.84). In contrast, machine learning/deep
learning models (n =18) exhibited a wider distribution of
performance (0.65-0.98), with a mean AUC of 0.81 and a median of
0.78 (Table 3).

The AUC values of the 23 models ranged from 0.650 to 0.981, with
11 models achieving AUC > 0.8, indicating good predictive
performance. One model was calibrated using the Brier score (13) and
another using the Hosmer-Lemeshow test (15); the rest did not report
calibration measures. Internal validation was conducted in 11 studies
(10, 11, 13-21), while five models underwent both internal and
external validation (17, 20). Among the internally validated models,
two used bootstrapping (10, 15), while the others employed cross-
validation techniques. Three studies presented their models using
nomograms (15, 16, 22), enabling intuitive and individualized risk
prediction for clinical use. A comparative summary of external
validation, calibration reporting, and nomogram availability across
the included models is presented in Table 4. Notably, only five models
underwent external validation, calibration was reported in only two
studies, and three models were presented as nomograms.

3.4 Predictive factors included in the
models

Across the 23 predictive models, a total of 39 distinct predictors
were reported. The most frequently used variables were age, NTHSS
score, baseline mRS score, and baseline ASPECTS. These factors were
repeatedly identified as key indicators of poor functional outcomes
despite successful recanalization. The presentation formats of the
models included mathematical formulas and interactive nomograms.

3.5 Risk of bias assessment

3.5.1 Participants domain

All 13 studies exhibited a low risk of bias in the participants
domain overall. However, two studies were rated as having an unclear
risk concerning the appropriateness of inclusion and exclusion criteria
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TABLE 1 Basic characteristics of included studies.

10.3389/fneur.2025.1625236

Diagnostic method Variable Key features Sample size
selection Ineffecti
method NEHIECVe

recanalization
Baseline mRS, baseline infarct volume,
Brugnara et al. (10) NCCT and CTA - NIHSS, time from symptom onset to 246 165
imaging, baseline ASPECTS
Machine learning
Feyen etal. (11) CT or MRA NIHSS, age, baseline mRS 1,138 615
algorithm
Age, admission NTHSS, leptomeningeal
Grechetal. (12) CT Multivariate analysis 55 26
collaterals
NIHSS, creatinine, puncture-to-
Huetal. (13) - Multivariate analysis recanalization time, LDL, diastolic BP, 238 156
platelets, fasting glucose, TOAST type
Age, baseline NTHSS, brain atrophy,
Shapley explainability
Jabal et al. (14) CT and CTA Isi occlusion side, ASPECTS, collateral defect 293 192
analysis
4 volume
Lietal. (15) CT Multivariate analysis NIHSS, creatinine, age 238 157
Stroke history, admission NIHSS,
Lin etal. (16) CT or MRI Multivariate analysis 84 42
ASPECTS
LR: Care dependence, Occlusion site, Sex,
Atrial fibrillation, mRS
RLR: Care dependence, Age, mRS score,
ASPECTS score, NIHSS score
Nishi et al. (17) CT Multivariate analysis 115 72
SVM: Age, ASPECTS score, NIHSS score,
Intravenous thrombolysis with Tpa
RF: Age, NIHSS score, mRS score,
ASPECTS score, care dependence
Admission blood pressure, time from
stroke onset to groin puncture, platelets,
age, creatinine, C-reactive protein,
van Walderveen et al. Logistic, LASSO, Elastic
CT baseline NIHSS score, Thrombus Burden 1,383 858
(18) Net, RF
Score, Glasgow Coma Score, baseline
ASPECTS score, blood glucose, site,
history of atrial fibrillation
Shapley explainability Vascular territory, baseline NIHSS, max
Zengetal. (19) NCCT and CT 110 61
analysis hyperdense area
Chen et al. (20) MRI LASSO Imaging features 45 22
Hilbert et al. (21) CTA SDAE Imaging features 1,301 463
Wei etal. (21, 22) MRI LASSO Age, admission NTHSS, infarct volume 147 147

NCCT, non-contrast CT; CTA, computed tomography angiography; mRS, modified Rankin scale; NIHSS, National Institute of Health stroke scale; ASPECTS, Alberta stroke program early CT
score; stacked denoising convolutional self-encoding. NTHSS, National Institute of Health stroke scale; ASPECTS, Alberta stroke program early CT score, stacked denoising convolutional
autoencoder (stacked), and stacked stroke program early CT score (ASPECTS). Denoising convolutional auto-encoders (SDAE); Tpa, tissue plasminogen activator.

(11, 18), as their datasets were derived from multiple cohorts with
potentially inconsistent enrollment standards.

3.5.2 Predictors domain

Most studies demonstrated a low risk of bias in the predictors
domain. Nonetheless, in eight studies, the consistency of predictor
definition and measurement across all participants was unclear (11-
15, 17, 20, 22). This was primarily due to the retrospective design of
the datasets, where data were not originally collected for the purpose
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of model development or validation, raising concerns about blinded
assessment of predictors.

3.5.3 Outcomes domain

Bias in the outcomes domain was generally low. Some studies,
however, lacked detailed descriptions of how outcome variables were
defined and whether outcome adjudication was independent of
predictor information. This raised potential concerns regarding
assessment bias.
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TABLE 2 Model performance and validation.

Other metrics Internal validation External Presentation
validation
Brugnara et al. (10) AdaBoost 0.740 - ACC: 0.711 Bootstrapping - -
RF 0.76 0.74 SEN: 0.52, SPE: 0.85, ACC: 0.72 10-fold cross validation - -
SEN: 0.45, SPE: 0.87,
SVW 0.75 0.48
ACC: 0.71
SEN: 0.51, SPE: 0.78,
Feyen et al. (11) KNN 0.73 0.72
ACC: 0.68
NNET 0.76 0.77 SEN: 0.5, SPE: 0.83, ACC: 0.71
SEN: 0.50, PE: 0.85
GLM 0.76 0.75
ACC: 0.71
Grech etal. (12) LR ACC: 0.76 Formula
Huetal. (13) XGBoost 0.835 ACC: 0.75 10-fold cross validation
XGBoost 0.83 ACC: 0.74 10-fold cross validation
RF 0.76 ACC: 0.76
Jabal et al. (14)
KNN 0.79 ACC: 0.79
GB 0.68 ACC: 0.62
SEN: 0.48, SPE: 0.92
Lietal. (15) LR 0.816 Bootstrapping Nomogram
NPV: 0.48, PPV: 0.91
Lin et al. (16) LR 0.866 Dynamic nomogram
LR 0.78 £ 0.08 0.56 £ 0.07 10-fold cross validation Yes
RLR 0.86 + 0.05 0.90 + 0.02 10-fold cross validation Yes
Nishi et al. (17)
SVM 0.86 + 0.06 0.89 + 0.01 10-fold cross validation Yes
RF 0.85 £ 0.07 0.87 £ 0.01 10-fold cross validation Yes
van Walderveen et al.
SL 0.90 10-fold cross validation
(18)
SEN: 0.882
LR-
Zeng et al. (19) 0.949 SPE: 0.875 10-fold cross validation
stacking model
ACC: 0.879

(Continued)
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TABLE 2 (Continued)
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AdaBoost, adaptive boosting; RE, random forest; SVM, support vector machine; KNN, K-nearest neighbors; NNET, neural network; GLM, generalized linear model; LR, logistic regression; EGR, extreme gradient boosting; NNET, neural network; XGBoost, extreme

gradient boosting; GB, gradient boosting; RLR, regularized logistic regression; DL, deep learning; ACC, accuracy; SEN, sensitivity/recall; SPE, specificity; NPV, negative predictive value; PPV, positive predictive value.

10.3389/fneur.2025.1625236

3.5.4 Analysis domain

According to best practices, development studies should include
at least 20 events per predictor variable (EPV), and validation
studies should enroll at least 100 participants. Five studies did not
meet these criteria (12, 14-16, 21). Most studies also did not report
how continuous variables were handled, and categorization may
have led to information loss. Missing data were managed in six
studies through deletion, single imputation, or multiple imputation;
the remainder did not report any missing data handling strategies
(10, 11, 13, 16, 18, 19). Six studies used univariate analysis for
predictor selection (12, 13, 15-18, 21), potentially omitting relevant
covariates and increasing bias risk. Detailed risk of bias assessments
are shown in Figure 2.

3.6 Quality assessment of included studies

According to TRIPOD criteria, all included studies achieved a
“good” rating (reporting >70% of required items). However, most
studies lacked detailed reporting on sample size calculations, handling
of missing data, procedures for model updating, full parameter
estimates, application instructions, and updated model results.

4 Discussion

4.1 General characteristics of predictive
models for futile recanalization

This systematic review comprehensively examined predictive
models for futile recanalization following mechanical thrombectomy
in patients with acute ischemic stroke. Overall, this research area is
still in its developmental phase, with a wide temporal span among the
included studies. Nevertheless, the models generally demonstrated
good predictive performance. Among the 23 models constructed
across 13 studies, AUC values ranged from 0.650 to 0.981. As shown
in Figure 3, 20 models had AUC values >0.70, and 11 models achieved
AUC values >0.80, reflecting strong discriminatory ability for
identifying patients at risk of futile recanalization.

Internal validation was performed in 20 models, which is critical
to reduce overfitting and improve generalizability (23). Several studies
utilized nomograms for model visualization, enabling intuitive,
individualized risk assessment. Nomograms have become increasingly
popular in clinical prediction due to their user-friendly, graphical
interface, enhancing clinical applicability. For stroke clinicians and
nurses, such tools may support personalized decision-making and
optimize perioperative care strategies for patients undergoing
mechanical thrombectomy (24).

4.2 Limitations of existing models

While the number of predictive models for futile recanalization
has increased in recent years, significant methodological limitations
persist, particularly in the analysis domain. Common issues included
insufficient event-per-variable ratios, inadequate handling of missing
data, reliance on univariate analysis for variable selection, and limited
reporting of model calibration and performance metrics.
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TABLE 3 Summary of model performance stratified by modeling approach.

10.3389/fneur.2025.1625236

Modeling approach Number of models (n) Mean AUC Median AUC Range of AUC
Traditional statistical models 4 0.83 0.84 0.78-0.87
Machine learning/deep learning

18 0.81 0.78 0.65-0.98
models

TABLE 4 Comparative summary of external validation, calibration reporting, and nomogram availability among included predictive models.

Study/model External validation Nomogram available
Brugnara (AdaBoost) No No No

Feyen (RF/SVM/KNN/NNET/GLM) No No No

Hu (XGBoost) No No No

Jabal (XGBoost/RF/KNN/GB) No No No

Li (LR) No Hosmer-Lemeshow Yes

Lin (LR) No No Yes (dynamic)
Nishi (LR/RLR/SVM/RF) Yes (partly) Brier score No

van Os (SL) No No No

Zeng (stacking LR-ML) No No No

Chen (SVM) Yes No No

Hilbert (DL) No No No

Wei (SVM) No No Yes

Sample size estimation is crucial in prediction modeling, and
underpowered studies can result in unreliable models. Several
included studies failed to meet the recommended sample size
threshold, which is typically 20 times the number of candidate
predictors (25). Furthermore, only a few studies—such as those by Hu,
Lin, and Van (13, 16, 18)—appropriately addressed missing data using
imputation techniques. Most others either excluded incomplete cases
or did not report missing data handling at all, potentially introducing
selection bias and reducing model robustness.

Univarijate analysis though statistically convenient, is often
inadequate for reliable variable selection as it may omit clinically
relevant variables that are not statistically significant in isolation (12,
13, 15-18, 26). It also increases the risk of multicollinearity and
overfitting (27). Therefore, integrating multiple variable selection
strategies, as demonstrated in Van’s study (18), which used univariate
regression, LASSO, elastic net, and random forest-based importance
ranking, is highly encouraged.

Moreover, many studies did not report AUC values or calibration
metrics. Only two models reported calibration statistics. While the
AUC reflects a model’s discriminative ability (28), calibration indicates
the agreement between predicted probabilities and observed
outcomes, which is equally critical for clinical applicability (29).
According to the PROBAST assessment, all models were rated as high
risk in the analysis domain. This reflects several methodological
shortcomings: many studies did not achieve adequate sample sizes or
events-per-variable ratios, increasing the likelihood of overfitting;
variable selection was often based on univariate analysis alone, which
may overlook relevant predictors; missing data were inadequately
addressed; continuous variables were sometimes arbitrarily
categorized; and calibration measures were rarely reported. Together,
these issues explain the consistently high PROBAST risk ratings and
highlight the need for stricter adherence to methodological guidelines
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in future studies. Future model development should adhere to
PROBAST guidelines to minimize bias (9), and to TRIPOD reporting
standards to ensure transparency and reproducibility (30).

4.3 Key predictors of futile recanalization

Meta-analysis identified age, NIHSS score, baseline mRS, and
ASPECTS as the most consistent predictors across models. Baseline
mRS has long been recognized as a powerful indicator of functional
prognosis in ischemic stroke, and models incorporating this variable
generally demonstrated better performance (31).

NIHSS, a standardized tool for quantifying neurological deficit, is
widely used for initial stroke severity assessment. While higher NIHSS
scores may suggest greater benefit from endovascular therapy, they are
also associated with increased risk of futile recanalization. However,
the optimal cutoff value remains undetermined (32).

Age was incorporated into 16 out of 22 models. Older patients
tend to have greater comorbidity burden and poorer functional
reserve, which may compromise recovery even after successful
recanalization (33). Although current guidelines do not impose age
limits on endovascular therapy, outcomes in patients >80 years
remain debated, making age a critical factor in shared decision-making.

ASPECTS has also been validated as an independent predictor of
futile recanalization (34). Originally proposed by Alberta researchers,
ASPECTS is a semi-quantitative scoring system used to assess early
ischemic changes on non-contrast CT, with higher scores indicating
less infarct burden. Previous studies suggest that patients with
ASPECTS >7 are more likely to benefit from thrombectomy.

Hilbert et al. (21) examined radiological features as predictors, but
clinical utility may be limited by inter-institutional variability in
imaging protocols and interpretation. Future multicenter studies with
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FIGURE 2
Risk of bias and applicability assessment of included studies.

standardized imaging assessment are warranted to clarify the role of
radiomics in prediction modeling.

4.4 Comparison of machine learning and
logistic regression

The comparative advantages of machine learning (ML) versus
traditional logistic regression (LR) in clinical prediction remain
under discussion. LR relies on predefined assumptions and is well-
suited for transparent (35), hypothesis-driven modeling. In
contrast, ML emphasizes data-driven discovery, excels at handling
high-dimensional and non-linear data, and can uncover hidden
patterns to enhance prediction accuracy (36). Our stratified
descriptive analysis showed that regression-based models achieved
a relatively stable mean AUC of 0.83 (range 0.78-0.87), whereas
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machine learning/deep learning models achieved a similar mean
AUC of 0.81 but with a wider range (0.65-0.98). This variability
underscores the double-edged nature of ML approaches: while
some models achieved excellent discrimination, others
underperformed, likely due to small sample sizes and risk
of overfitting.

In this review, models built with ML and deep learning techniques
demonstrated generally superior or equivalent performance compared
to LR models. For instance, Nishi and Van et al. (17, 18) showed that
ML slightly outperformed LR in AUGC, albeit with modest margins.
These findings suggest ML may serve as a useful adjunct in clinical
decision support, particularly when dealing with complex
feature interactions.

However, most ML models were trained on relatively small
datasets with limited external validation, raising concerns about
overfitting and generalizability. Moreover, the interpretability of ML
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FIGURE 3
Distribution of AUCs by different model construction methods.

models remains a challenge in clinical settings. While LR provides
explicit coefficients for each predictor, ML operates as a “black box,”
often requiring advanced techniques such as SHAP or LIME to
elucidate feature importance.

According to the “No Free Lunch” theorem proposed by Wolpert
and Macready (37), no single algorithm universally outperforms others
across all problems. Therefore, applying a range of modeling techniques
and selecting the most appropriate approach based on data characteristics
and clinical context is essential. Despite their potential, ML and DL
models exhibit several important limitations. First, most were trained on
relatively small datasets with limited external validation, raising concerns
about overfitting and variable generalizability. Second, their
interpretability remains limited: unlike regression-based models, which
provide explicit coefficients for each predictor, ML models often function
as “black boxes;” requiring advanced techniques such as SHAP or LIME
to explain feature importance. Third, our stratified descriptive summary
indicated that although the mean AUC of ML/DL models (0.81) was
comparable to regression-based models (0.83), their performance was
markedly more variable (0.65-0.98), suggesting unstable generalizability
and the risk of overfitting in small or heterogeneous cohorts. A notable
example is the Hilbert DL model, which achieved an AUC of only 0.65.
This relatively poor performance may be explained by the small training
sample size, as deep learning models typically require large amounts of
data to extract robust feature representations. In addition, variability in
imaging acquisition and preprocessing across centers may have further
limited its generalizability. This case illustrates the vulnerability of ML/

Frontiers in Neurology

DL approaches to overfitting and performance instability when applied
in data-limited or heterogeneous clinical settings.

4.5 Clinical utility of predictive models

The clinical applicability of prediction models for futile
recanalization remains limited. Notably, none of the included studies
reported decision curve analysis, which precluded a formal assessment
of net clinical benefit. Nevertheless, a narrative evaluation of the
existing models suggests several potential implications for practice.
Models incorporating readily available clinical variables such as age,
NIHSS score, and ASPECTS may assist clinicians in identifying
patients at high risk of futile recanalization, thereby informing patient
selection for mechanical thrombectomy and guiding perioperative
management strategies. Such information may also support shared
decision-making and risk communication with patients and families.

In addition, nomogram-based models (e.g., Li, Lin, Wei) offer
intuitive (15, 16, 22) graphical representations of individual risk and
are particularly suitable for bedside application and integration into
electronic health records. These tools may enhance usability in clinical
practice, enabling both physicians and nurses to make more
personalized treatment and care plans. Future studies should
incorporate decision curve analysis and cost-effectiveness evaluation
to further establish the net clinical benefit of prediction models and to
facilitate their translation into routine clinical workflows.
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5 Conclusion

In this systematic review, we comprehensively evaluated 13 studies
encompassing 23 predictive models aimed at identifying the risk of futile
recanalization after mechanical thrombectomy in patients with acute
ischemic stroke. While many models demonstrated satisfactory
discriminatory performance, with 11 models reporting an AUC > 0.8,
several methodological limitations were observed. These included high
risk of bias, insufficient sample size, inadequate handling of missing data,
and a lack of external validation. Future research should focus on
improving methodological rigor through adherence to PROBAST and
TRIPOD guidelines, enhancing external validation across diverse
populations and clinical settings, and exploring advanced modeling
techniques such as interpretable machine learning. Optimized and
validated models may ultimately support individualized decision-
making and improve post-thrombectomy outcomes in stroke care.
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