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Objective: To systematically review existing predictive models for futile 
recanalization after mechanical thrombectomy in patients with acute ischemic 
stroke, in order to provide a basis for treatment decision-making.
Methods: Relevant studies on predictive models of futile recanalization 
after mechanical thrombectomy for acute ischemic stroke were searched 
in PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang, 
and VIP databases from inception to May 5, 2024. Reference lists were also 
manually searched as supplements. Two researchers independently performed 
the literature search, screening, and data extraction, and conducted risk of bias 
and quality assessments. Because most included studies did not provide 95% 
confidence intervals or standard errors of AUC values, a formal quantitative 
meta-analysis of model performance was not feasible. Instead, we conducted a 
stratified descriptive synthesis of AUC values according to modeling approach 
(traditional regression vs. machine learning/deep learning).
Results: Thirteen studies were included, encompassing 23 predictive models 
for futile recanalization. Variables used in the models mainly involved baseline 
clinical and imaging features. The most frequently included predictors were age, 
NIHSS score, baseline mRS score, and baseline Alberta Stroke Program Early CT 
Score (ASPECTS). The AUC of the models ranged from 0.650 to 0.981, with 11 
models reporting AUC values ≥0.8, indicating high predictive performance.
Conclusion: Predictive models for futile recanalization after mechanical 
thrombectomy in acute ischemic stroke are still under development. While 
many models exhibit good discrimination, they commonly face a high risk of 
bias. Future research should emphasize external validation and optimization of 
existing models to improve their performance, reduce bias, and promote clinical 
implementation.
Systematic review registration: The systematic review was registered in 
PROSPERO under the ID CRD42022382797. https://www.crd.york.ac.uk/
prospero/display_record.php?ID=CRD42022382797.
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1 Introduction

Stroke is the leading cause of disability and the second leading 
cause of death globally, with ischemic stroke accounting for 
approximately 82% of all cases. Data indicate that deaths due to 
ischemic stroke have increased by 60.68% over the past 30 years. With 
the aging population trend intensifying, the burden of ischemic stroke 
is expected to rise further (1, 2). National and international guidelines 
recommend mechanical thrombectomy (MT) as an effective treatment 
for acute large vessel occlusion (LVO) ischemic stroke, suitable within 
24 h of onset for patients with anterior circulation occlusion and 
salvageable brain tissue (3). Despite the widespread adoption and 
continuous optimization of MT, futile recanalization remains a 
significant clinical issue, with postoperative rates ranging from 49 to 
67% (4). Futile recanalization refers to achieving mTICI grade 2b or 3 
recanalization after endovascular therapy without attaining functional 
independence at 90 days (5).

Numerous predictive models have been developed and validated 
to assess the risk of futile recanalization post-MT in patients with 
acute ischemic stroke, such as the HIAT and THRIVE scores (6, 7). 
These models, like those predicting symptomatic intracranial 
hemorrhage (sICH) after intravenous thrombolysis (e.g., MSS, HAT, 
SITS-sICH, GRASPS, SPAN-100, and SEDAN), are mainly based on 
traditional logistic regression (LR) methods. However, LR-based 
models are prone to issues such as multicollinearity and overfitting (5).

In recent years, with a deeper understanding of stroke 
pathophysiology, more factors such as patient history, laboratory 
parameters, and imaging characteristics have been found to 
be associated with futile recanalization after MT. Machine learning 
(ML) algorithms have shown strong utility in stroke diagnosis, 
treatment, and prognosis prediction, leading to the development of 
many new models. Nonetheless, current models vary significantly in 
quality, performance, and clinical applicability, and systematic reviews 
are lacking. Therefore, this study aims to synthesize and evaluate 
existing predictive models of futile recanalization through systematic 
review, quality assessment, and meta-analysis to provide scientific 
evidence for model optimization and clinical application.

2 Methods

This systematic review was registered in PROSPERO (ID: 
CRD42022382797) and was conducted in accordance with the 
PRISMA guidelines.

2.1 Search strategy

A comprehensive search was conducted in PubMed, Web of 
Science, Embase, The Cochrane Library, CNKI, Wanfang, and VIP 
databases for studies on predictive models of futile recanalization after 
mechanical thrombectomy in patients with acute ischemic stroke. The 
search period spanned from database inception to May 5, 2024. 
Additional references were identified through manual screening of 
bibliographies. Chinese search terms included: “ischemic stroke/
stroke/cerebrovascular accident/cerebral infarction/predictive model/
endovascular recanalization/mechanical thrombectomy”; English 
search terms included: “ischemic stroke”/“brain ischemia”/“large 

vessel occlusion”/“endovascular thrombectomy”/“mechanical 
thrombectomy”/“risk prediction model.”

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
(1) Study types: case-control and cohort studies; (2) Study 

population: patients aged ≥8 years with a diagnosis of stroke based on 
commonly accepted criteria and confirmed by CT or MRI; (3) 
Content: development and/or validation of predictive models for 
futile recanalization.

2.2.2 Exclusion criteria
(1) Models including non-LVO stroke patients (e.g., hemorrhagic 

or lacunar strokes); (2) Duplicate publications from the same cohort; 
(3) Studies with incomplete model construction information or 
lacking performance assessment; (4) Conference abstracts, reviews, 
letters, commentaries, editorials, and corrigenda were excluded.

2.3 Literature screening

After de-duplication in EndNote X9, two reviewers independently 
screened the studies based on inclusion and exclusion criteria. Title 
and abstract were screened initially, followed by full-text evaluation. 
Disagreements were resolved through discussion or consultation with 
a third reviewer.

2.4 Data extraction

Data were extracted by two researchers according to the CHARMS 
checklist (Critical Appraisal and Data Extraction for Systematic 
Reviews of Prediction Modeling Studies) (8). A standardized form was 
used to ensure consistency, capturing details such as first author, 
publication year, title, country, study design, sample size, data source, 
diagnostic methods, number of models, outcome indicators, candidate 
predictors, modeling methods, variable selection techniques, model 
performance, validation methods, model presentation, and number 
and names of predictors.

2.5 Risk of bias and quality assessment

Risk of bias was assessed using the Prediction Model Risk of Bias 
Assessment Tool (PROBAST) (9), which includes 20 items across four 
domains: participants, predictors, outcomes, and analysis. Two 
researchers independently evaluated the studies, and discrepancies 
were resolved by a third reviewer. The Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) checklist was used to assess reporting quality.

2.6 Statistical analysis

Model performance was assessed using the area under the receiver 
operating characteristic curve (AUC), with corresponding 95% 
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confidence intervals (CI) extracted. Descriptive statistics were used to 
summarize study characteristics, model development and validation, 
and performance metrics.

3 Results

3.1 Literature search results

A total of 4,201 studies were initially identified. After removing 
duplicates, 2,365 articles remained. Following title and abstract 
screening and full-text review according to inclusion and exclusion 
criteria, 13 studies were included in the final analysis. These studies 
reported 23 predictive models for futile recanalization (10–22). The 
study selection process is illustrated in Figure 1.

3.2 Basic characteristics of included studies

The 13 studies were published between 2014 and 2023, including 
2 in Chinese (20, 22) and 11 in English (10–19, 21). Seven studies 

were multicenter (11–15, 17, 20), and six were single-center studies 
(10, 16, 18, 19, 21, 22). Four studies developed four models each (11, 
14, 17, 19), while the remaining nine developed a single model. 
Detailed characteristics of the included studies are presented in 
Table 1.

3.3 Model development

The sample sizes in the included studies ranged from 45 to 1,383 
participants. The primary modeling approaches included logistic 
regression and machine learning algorithms (see Table  2). Six 
studies employed univariate analysis for variable selection (12, 13, 
15–18, 21); three studies applied the least absolute shrinkage and 
selection operator (LASSO) (18, 19, 22); and five studies used 
machine learning-based selection methods (11, 14, 18, 19, 21). One 
study did not specify the method for variable selection (10). When 
stratified by modeling approach, regression-based models (n = 4) 
achieved consistent performance, with AUCs ranging from 0.78 to 
0.87 (mean 0.83, median 0.84). In contrast, machine learning/deep 
learning models (n  = 18) exhibited a wider distribution of 
performance (0.65–0.98), with a mean AUC of 0.81 and a median of 
0.78 (Table 3).

The AUC values of the 23 models ranged from 0.650 to 0.981, with 
11 models achieving AUC ≥ 0.8, indicating good predictive 
performance. One model was calibrated using the Brier score (13) and 
another using the Hosmer–Lemeshow test (15); the rest did not report 
calibration measures. Internal validation was conducted in 11 studies 
(10, 11, 13–21), while five models underwent both internal and 
external validation (17, 20). Among the internally validated models, 
two used bootstrapping (10, 15), while the others employed cross-
validation techniques. Three studies presented their models using 
nomograms (15, 16, 22), enabling intuitive and individualized risk 
prediction for clinical use. A comparative summary of external 
validation, calibration reporting, and nomogram availability across 
the included models is presented in Table 4. Notably, only five models 
underwent external validation, calibration was reported in only two 
studies, and three models were presented as nomograms.

3.4 Predictive factors included in the 
models

Across the 23 predictive models, a total of 39 distinct predictors 
were reported. The most frequently used variables were age, NIHSS 
score, baseline mRS score, and baseline ASPECTS. These factors were 
repeatedly identified as key indicators of poor functional outcomes 
despite successful recanalization. The presentation formats of the 
models included mathematical formulas and interactive nomograms.

3.5 Risk of bias assessment

3.5.1 Participants domain
All 13 studies exhibited a low risk of bias in the participants 

domain overall. However, two studies were rated as having an unclear 
risk concerning the appropriateness of inclusion and exclusion criteria 

FIGURE 1

PRISMA flow diagram of the literature screening and selection 
process for included studies.
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(11, 18), as their datasets were derived from multiple cohorts with 
potentially inconsistent enrollment standards.

3.5.2 Predictors domain
Most studies demonstrated a low risk of bias in the predictors 

domain. Nonetheless, in eight studies, the consistency of predictor 
definition and measurement across all participants was unclear (11–
15, 17, 20, 22). This was primarily due to the retrospective design of 
the datasets, where data were not originally collected for the purpose 

of model development or validation, raising concerns about blinded 
assessment of predictors.

3.5.3 Outcomes domain
Bias in the outcomes domain was generally low. Some studies, 

however, lacked detailed descriptions of how outcome variables were 
defined and whether outcome adjudication was independent of 
predictor information. This raised potential concerns regarding 
assessment bias.

TABLE 1  Basic characteristics of included studies.

Study Diagnostic method Variable 
selection 
method

Key features Sample size

All Ineffective 
recanalization

Brugnara et al. (10) NCCT and CTA –

Baseline mRS, baseline infarct volume, 

NIHSS, time from symptom onset to 

imaging, baseline ASPECTS

246 165

Feyen et al. (11) CT or MRA
Machine learning 

algorithm
NIHSS, age, baseline mRS 1,138 615

Grech et al. (12) CT Multivariate analysis
Age, admission NIHSS, leptomeningeal 

collaterals
55 26

Hu et al. (13) – Multivariate analysis

NIHSS, creatinine, puncture-to-

recanalization time, LDL, diastolic BP, 

platelets, fasting glucose, TOAST type

238 156

Jabal et al. (14) CT and CTA
Shapley explainability 

analysis

Age, baseline NIHSS, brain atrophy, 

occlusion side, ASPECTS, collateral defect 

volume

293 192

Li et al. (15) CT Multivariate analysis NIHSS, creatinine, age 238 157

Lin et al. (16) CT or MRI Multivariate analysis
Stroke history, admission NIHSS, 

ASPECTS
84 42

Nishi et al. (17) CT Multivariate analysis

LR: Care dependence, Occlusion site, Sex, 

Atrial fibrillation, mRS

RLR: Care dependence, Age, mRS score, 

ASPECTS score, NIHSS score

SVM: Age, ASPECTS score, NIHSS score, 

Intravenous thrombolysis with Tpa

RF: Age, NIHSS score, mRS score, 

ASPECTS score, care dependence

115 72

van Walderveen et al. 

(18)
CT

Logistic, LASSO, Elastic 

Net, RF

Admission blood pressure, time from 

stroke onset to groin puncture, platelets, 

age, creatinine, C-reactive protein, 

baseline NIHSS score, Thrombus Burden 

Score, Glasgow Coma Score, baseline 

ASPECTS score, blood glucose, site, 

history of atrial fibrillation

1,383 858

Zeng et al. (19) NCCT and CT
Shapley explainability 

analysis

Vascular territory, baseline NIHSS, max 

hyperdense area
110 61

Chen et al. (20) MRI LASSO Imaging features 45 22

Hilbert et al. (21) CTA SDAE Imaging features 1,301 463

Wei et al. (21, 22) MRI LASSO Age, admission NIHSS, infarct volume 147 147

NCCT, non-contrast CT; CTA, computed tomography angiography; mRS, modified Rankin scale; NIHSS, National Institute of Health stroke scale; ASPECTS, Alberta stroke program early CT 
score; stacked denoising convolutional self-encoding. NIHSS, National Institute of Health stroke scale; ASPECTS, Alberta stroke program early CT score, stacked denoising convolutional 
autoencoder (stacked), and stacked stroke program early CT score (ASPECTS). Denoising convolutional auto-encoders (SDAE); Tpa, tissue plasminogen activator.
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TABLE 2  Model performance and validation.

Study Model AUC Other metrics Internal validation External 
validation

Presentation

Train Test

Brugnara et al. (10) AdaBoost 0.740 – ACC: 0.711 Bootstrapping – –

Feyen et al. (11)

RF 0.76 0.74 SEN: 0.52, SPE: 0.85, ACC: 0.72 10-fold cross validation – –

SVW 0.75 0.48
SEN: 0.45, SPE: 0.87,

ACC: 0.71

KNN 0.73 0.72
SEN: 0.51, SPE: 0.78,

ACC: 0.68

NNET 0.76 0.77 SEN: 0.5, SPE: 0.83, ACC: 0.71

GLM 0.76 0.75
SEN: 0.50, PE: 0.85

ACC: 0.71

Grech et al. (12) LR ACC: 0.76 Formula

Hu et al. (13) XGBoost 0.835 ACC: 0.75 10-fold cross validation

Jabal et al. (14)

XGBoost 0.83 ACC: 0.74 10-fold cross validation

RF 0.76 ACC: 0.76

KNN 0.79 ACC: 0.79

GB 0.68 ACC: 0.62

Li et al. (15) LR 0.816
SEN: 0.48, SPE: 0.92

NPV: 0.48, PPV: 0.91
Bootstrapping Nomogram

Lin et al. (16) LR 0.866 Dynamic nomogram

Nishi et al. (17)

LR 0.78 ± 0.08 0.56 ± 0.07 10-fold cross validation Yes

RLR 0.86 ± 0.05 0.90 ± 0.02 10-fold cross validation Yes

SVM 0.86 ± 0.06 0.89 ± 0.01 10-fold cross validation Yes

RF 0.85 ± 0.07 0.87 ± 0.01 10-fold cross validation Yes

van Walderveen et al. 

(18)
SL 0.90 10-fold cross validation

Zeng et al. (19)
LR-

stacking model
0.949

SEN: 0.882

SPE: 0.875

ACC: 0.879

10-fold cross validation

(Continued)
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3.5.4 Analysis domain
According to best practices, development studies should include 

at least 20 events per predictor variable (EPV), and validation 
studies should enroll at least 100 participants. Five studies did not 
meet these criteria (12, 14–16, 21). Most studies also did not report 
how continuous variables were handled, and categorization may 
have led to information loss. Missing data were managed in six 
studies through deletion, single imputation, or multiple imputation; 
the remainder did not report any missing data handling strategies 
(10, 11, 13, 16, 18, 19). Six studies used univariate analysis for 
predictor selection (12, 13, 15–18, 21), potentially omitting relevant 
covariates and increasing bias risk. Detailed risk of bias assessments 
are shown in Figure 2.

3.6 Quality assessment of included studies

According to TRIPOD criteria, all included studies achieved a 
“good” rating (reporting >70% of required items). However, most 
studies lacked detailed reporting on sample size calculations, handling 
of missing data, procedures for model updating, full parameter 
estimates, application instructions, and updated model results.

4 Discussion

4.1 General characteristics of predictive 
models for futile recanalization

This systematic review comprehensively examined predictive 
models for futile recanalization following mechanical thrombectomy 
in patients with acute ischemic stroke. Overall, this research area is 
still in its developmental phase, with a wide temporal span among the 
included studies. Nevertheless, the models generally demonstrated 
good predictive performance. Among the 23 models constructed 
across 13 studies, AUC values ranged from 0.650 to 0.981. As shown 
in Figure 3, 20 models had AUC values ≥0.70, and 11 models achieved 
AUC values ≥0.80, reflecting strong discriminatory ability for 
identifying patients at risk of futile recanalization.

Internal validation was performed in 20 models, which is critical 
to reduce overfitting and improve generalizability (23). Several studies 
utilized nomograms for model visualization, enabling intuitive, 
individualized risk assessment. Nomograms have become increasingly 
popular in clinical prediction due to their user-friendly, graphical 
interface, enhancing clinical applicability. For stroke clinicians and 
nurses, such tools may support personalized decision-making and 
optimize perioperative care strategies for patients undergoing 
mechanical thrombectomy (24).

4.2 Limitations of existing models

While the number of predictive models for futile recanalization 
has increased in recent years, significant methodological limitations 
persist, particularly in the analysis domain. Common issues included 
insufficient event-per-variable ratios, inadequate handling of missing 
data, reliance on univariate analysis for variable selection, and limited 
reporting of model calibration and performance metrics.T
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Sample size estimation is crucial in prediction modeling, and 
underpowered studies can result in unreliable models. Several 
included studies failed to meet the recommended sample size 
threshold, which is typically 20 times the number of candidate 
predictors (25). Furthermore, only a few studies—such as those by Hu, 
Lin, and Van (13, 16, 18)—appropriately addressed missing data using 
imputation techniques. Most others either excluded incomplete cases 
or did not report missing data handling at all, potentially introducing 
selection bias and reducing model robustness.

Univariate analysis though statistically convenient, is often 
inadequate for reliable variable selection as it may omit clinically 
relevant variables that are not statistically significant in isolation (12, 
13, 15–18, 26). It also increases the risk of multicollinearity and 
overfitting (27). Therefore, integrating multiple variable selection 
strategies, as demonstrated in Van’s study (18), which used univariate 
regression, LASSO, elastic net, and random forest-based importance 
ranking, is highly encouraged.

Moreover, many studies did not report AUC values or calibration 
metrics. Only two models reported calibration statistics. While the 
AUC reflects a model’s discriminative ability (28), calibration indicates 
the agreement between predicted probabilities and observed 
outcomes, which is equally critical for clinical applicability (29). 
According to the PROBAST assessment, all models were rated as high 
risk in the analysis domain. This reflects several methodological 
shortcomings: many studies did not achieve adequate sample sizes or 
events-per-variable ratios, increasing the likelihood of overfitting; 
variable selection was often based on univariate analysis alone, which 
may overlook relevant predictors; missing data were inadequately 
addressed; continuous variables were sometimes arbitrarily 
categorized; and calibration measures were rarely reported. Together, 
these issues explain the consistently high PROBAST risk ratings and 
highlight the need for stricter adherence to methodological guidelines 

in future studies. Future model development should adhere to 
PROBAST guidelines to minimize bias (9), and to TRIPOD reporting 
standards to ensure transparency and reproducibility (30).

4.3 Key predictors of futile recanalization

Meta-analysis identified age, NIHSS score, baseline mRS, and 
ASPECTS as the most consistent predictors across models. Baseline 
mRS has long been recognized as a powerful indicator of functional 
prognosis in ischemic stroke, and models incorporating this variable 
generally demonstrated better performance (31).

NIHSS, a standardized tool for quantifying neurological deficit, is 
widely used for initial stroke severity assessment. While higher NIHSS 
scores may suggest greater benefit from endovascular therapy, they are 
also associated with increased risk of futile recanalization. However, 
the optimal cutoff value remains undetermined (32).

Age was incorporated into 16 out of 22 models. Older patients 
tend to have greater comorbidity burden and poorer functional 
reserve, which may compromise recovery even after successful 
recanalization (33). Although current guidelines do not impose age 
limits on endovascular therapy, outcomes in patients ≥80 years 
remain debated, making age a critical factor in shared decision-making.

ASPECTS has also been validated as an independent predictor of 
futile recanalization (34). Originally proposed by Alberta researchers, 
ASPECTS is a semi-quantitative scoring system used to assess early 
ischemic changes on non-contrast CT, with higher scores indicating 
less infarct burden. Previous studies suggest that patients with 
ASPECTS ≥7 are more likely to benefit from thrombectomy.

Hilbert et al. (21) examined radiological features as predictors, but 
clinical utility may be  limited by inter-institutional variability in 
imaging protocols and interpretation. Future multicenter studies with 

TABLE 3  Summary of model performance stratified by modeling approach.

Modeling approach Number of models (n) Mean AUC Median AUC Range of AUC

Traditional statistical models 4 0.83 0.84 0.78–0.87

Machine learning/deep learning 

models
18 0.81 0.78 0.65–0.98

TABLE 4  Comparative summary of external validation, calibration reporting, and nomogram availability among included predictive models.

Study/model External validation Calibration reported Nomogram available

Brugnara (AdaBoost) No No No

Feyen (RF/SVM/KNN/NNET/GLM) No No No

Hu (XGBoost) No No No

Jabal (XGBoost/RF/KNN/GB) No No No

Li (LR) No Hosmer–Lemeshow Yes

Lin (LR) No No Yes (dynamic)

Nishi (LR/RLR/SVM/RF) Yes (partly) Brier score No

van Os (SL) No No No

Zeng (stacking LR–ML) No No No

Chen (SVM) Yes No No

Hilbert (DL) No No No

Wei (SVM) No No Yes
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standardized imaging assessment are warranted to clarify the role of 
radiomics in prediction modeling.

4.4 Comparison of machine learning and 
logistic regression

The comparative advantages of machine learning (ML) versus 
traditional logistic regression (LR) in clinical prediction remain 
under discussion. LR relies on predefined assumptions and is well-
suited for transparent (35), hypothesis-driven modeling. In 
contrast, ML emphasizes data-driven discovery, excels at handling 
high-dimensional and non-linear data, and can uncover hidden 
patterns to enhance prediction accuracy (36). Our stratified 
descriptive analysis showed that regression-based models achieved 
a relatively stable mean AUC of 0.83 (range 0.78–0.87), whereas 

machine learning/deep learning models achieved a similar mean 
AUC of 0.81 but with a wider range (0.65–0.98). This variability 
underscores the double-edged nature of ML approaches: while 
some models achieved excellent discrimination, others 
underperformed, likely due to small sample sizes and risk 
of overfitting.

In this review, models built with ML and deep learning techniques 
demonstrated generally superior or equivalent performance compared 
to LR models. For instance, Nishi and Van et al. (17, 18) showed that 
ML slightly outperformed LR in AUC, albeit with modest margins. 
These findings suggest ML may serve as a useful adjunct in clinical 
decision support, particularly when dealing with complex 
feature interactions.

However, most ML models were trained on relatively small 
datasets with limited external validation, raising concerns about 
overfitting and generalizability. Moreover, the interpretability of ML 

FIGURE 2

Risk of bias and applicability assessment of included studies.
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models remains a challenge in clinical settings. While LR provides 
explicit coefficients for each predictor, ML operates as a “black box,” 
often requiring advanced techniques such as SHAP or LIME to 
elucidate feature importance.

According to the “No Free Lunch” theorem proposed by Wolpert 
and Macready (37), no single algorithm universally outperforms others 
across all problems. Therefore, applying a range of modeling techniques 
and selecting the most appropriate approach based on data characteristics 
and clinical context is essential. Despite their potential, ML and DL 
models exhibit several important limitations. First, most were trained on 
relatively small datasets with limited external validation, raising concerns 
about overfitting and variable generalizability. Second, their 
interpretability remains limited: unlike regression-based models, which 
provide explicit coefficients for each predictor, ML models often function 
as “black boxes,” requiring advanced techniques such as SHAP or LIME 
to explain feature importance. Third, our stratified descriptive summary 
indicated that although the mean AUC of ML/DL models (0.81) was 
comparable to regression-based models (0.83), their performance was 
markedly more variable (0.65–0.98), suggesting unstable generalizability 
and the risk of overfitting in small or heterogeneous cohorts. A notable 
example is the Hilbert DL model, which achieved an AUC of only 0.65. 
This relatively poor performance may be explained by the small training 
sample size, as deep learning models typically require large amounts of 
data to extract robust feature representations. In addition, variability in 
imaging acquisition and preprocessing across centers may have further 
limited its generalizability. This case illustrates the vulnerability of ML/

DL approaches to overfitting and performance instability when applied 
in data-limited or heterogeneous clinical settings.

4.5 Clinical utility of predictive models

The clinical applicability of prediction models for futile 
recanalization remains limited. Notably, none of the included studies 
reported decision curve analysis, which precluded a formal assessment 
of net clinical benefit. Nevertheless, a narrative evaluation of the 
existing models suggests several potential implications for practice. 
Models incorporating readily available clinical variables such as age, 
NIHSS score, and ASPECTS may assist clinicians in identifying 
patients at high risk of futile recanalization, thereby informing patient 
selection for mechanical thrombectomy and guiding perioperative 
management strategies. Such information may also support shared 
decision-making and risk communication with patients and families.

In addition, nomogram-based models (e.g., Li, Lin, Wei) offer 
intuitive (15, 16, 22), graphical representations of individual risk and 
are particularly suitable for bedside application and integration into 
electronic health records. These tools may enhance usability in clinical 
practice, enabling both physicians and nurses to make more 
personalized treatment and care plans. Future studies should 
incorporate decision curve analysis and cost-effectiveness evaluation 
to further establish the net clinical benefit of prediction models and to 
facilitate their translation into routine clinical workflows.

FIGURE 3

Distribution of AUCs by different model construction methods.
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5 Conclusion

In this systematic review, we comprehensively evaluated 13 studies 
encompassing 23 predictive models aimed at identifying the risk of futile 
recanalization after mechanical thrombectomy in patients with acute 
ischemic stroke. While many models demonstrated satisfactory 
discriminatory performance, with 11 models reporting an AUC ≥ 0.8, 
several methodological limitations were observed. These included high 
risk of bias, insufficient sample size, inadequate handling of missing data, 
and a lack of external validation. Future research should focus on 
improving methodological rigor through adherence to PROBAST and 
TRIPOD guidelines, enhancing external validation across diverse 
populations and clinical settings, and exploring advanced modeling 
techniques such as interpretable machine learning. Optimized and 
validated models may ultimately support individualized decision-
making and improve post-thrombectomy outcomes in stroke care.
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