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Objectives: In order to more accurately predict whether patients with intractable
epilepsy are about to develop seizures, this paper proposes an epilepsy
prediction model.
Methods: When the amount of targeted patient data is small, A Cox-Stuart
and Convolutional Neural Network and Bi-directional Long Short-Term Memory
(Cox-Stuart-CNN-BiLSTM) model based on multi-patient epilepsy prediction is
proposed, which aims to capture common features of epileptic seizures by
integrating EEG signal data from multiple patients to train the model. When
there is enough data for targeted patient, an Optuna and Convolutional Neural
Network and Bi-directional Long Short-Term Memory (Optuna-CNN-BiLSTM)
model based on independent patient epilepsy prediction is proposed, which
can train the model for EEG data of individual patients, aiming to better match
physiological characteristics and seizure patterns of targeted patient.
Results: The accuracy of the test set for multi-patient is 0.9992, the sensitivity
is 0.9996, and the specificity is 0.9988; the average accuracy of the test set
for independent patient is 0.9996, the sensitivity is 0.9995, and the specificity
is 1.0000.
Conclusions: It can be proved that the method proposed in this paper has good
experimental results.
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1 Introduction

Epilepsy is a chronic brain disorder, and its seizures are caused by sudden abnormal
discharges of neurons in the brain, with complex causes. The International League Against
Epilepsy guidelines summarize the following causes: genetic structural causes, infectious
causes, structural causes, immune causes, metabolic causes, and unknown causes (1).
Currently, there are approximately 50 million people with epilepsy worldwide, and it
affects individuals of all ages. Although various treatment methods for epilepsy have
been proposed, about 30% of patients still experience recurrence (2) The occurrence of
epilepsy is sudden and recurrent, causing significant physical and emotional distress to
both patients and their families. Although epileptic seizures can be predicted based on
an epilepsy diary, the accuracy is <50% (3) Therefore, effective methods for predicting
epilepsy are of great significance. Electroencephalography (EEG) is one of the most
important methods for studying epilepsy and capturing changes in brain electrical activity.
It is used to examine the brain electrical activity changes that cause epilepsy and to identify
potential epileptic seizures (4, 5) Currently, publicly available epilepsy datasets are collected
using EEG signals.
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Pan et al. (6) utilized raw EEG data, as well as EEG data
processed by Fast Fourier Transform (FFT), Short-Time Fourier
Transform (STFT) and Discrete Wavelet Transform (DWT) as
inputs for a Convolutional Neural Network (CNN). They employed
a feature fusion mechanism to integrate the learned features,
achieving an accuracy of over 99%. However, their experiment
did not include a test dataset, and the results were derived from
cross-validation, making it impossible to determine generalization
ability of the model. Takahashi et al. (7) applied high-pass, low-
pass, and notch filtering to the raw data. They then used an
Autoencoder (AE) to define data with a high AE error during
interictal periods (inter-ictal) of more than 10 s as non-epileptic
but abnormal data. This data was then used as input for a CNN,
reducing the false alarm rate to 0.034/h, which is one-fifth of
the false alarm rate of the original CNN. Preprocessing steps are
not always necessary, for example, Golmohammadi (8) directly
used Linear Frequency Cepstral Coefficients (LFCCs) and their
first and second derivatives for feature extraction, then input
them into a Long Short-Term Memory network (LSTM). Although
specificity was higher than 90%, sensitivity was <35%. Jana et al.
(9) used the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) to select data from the three optimal channels, reducing
computational complexity. They directly used a One-Dimensional
Convolutional Neural Network (1D-CNN) for feature extraction
and classification, achieving accuracy, sensitivity, and specificity
of over 96%. However, their experiment did not include a test
dataset, and due to high computational time complexity, only
data from five patients were selected for channel selection and
classification. Li et al. (10) demonstrated that a CNN with a
Waxman similarity graph achieved the highest accuracy. Over 98%
of the EEG 1-second epochs were correctly classified into ictal
periods(ictal), pre-ictal periods(pre-ictal), or inter-ictal. However,
their dataset was relatively small. Toraman et al. (5) compared
three pre-trained CNN models: VGG16, ResNet, and DenseNet.
They used spectrogram images to distinguish between pre-ictal

FIGURE 1

Illustration of epileptic state segmentation.

and inter-ictal states and found that the ResNet model performed
the best, with an accuracy of 90.32%, sensitivity of 91.05%, and
specificity of 89.76%. This method addresses the issue of limited
experimental data. Considering the sequential feature of EEG
signals, Aslam et al. (11) used a Convolutional Neural Network
and Long Short-Term Memory network (CNN-LSTM) hybrid
model to classify EEG signals and predict seizures, achieving an
accuracy of 94%, sensitivity of 93.8%, and specificity of 91.2%.
To enhance the handling of long-term temporal dependencies,
Ma et al. (12) introduced a Cross-Channel Feature Fusion-based
CNN-BiLSTM model. This model integrates attention mechanisms
and channel fusion to effectively manage long-term temporal
signals while reducing computational complexity. On the CHB-
MIT dataset, it achieved an accuracy of 94.83% and sensitivity
of 94.94%, but on the Bonn dataset, the accuracy and sensitivity
were below 80%. Indurani et al. (13) used a Time-Attention CNN
with LSTM, achieving accuracy and sensitivity of over 94% on
both the CHB-MIT and Bonn datasets. Most existing literature
does not mention the choice of data partitioning methods for
epilepsy datasets, although different partitioning methods can yield
different experimental results. In addition to the above literature, it
is worthwhile to learn from the ideas of other research directions.
He et al. (14) proposed a Fitness count-based red deer algorithm
that can determine the optimal weights of the features as well
as the optimal parameters of the model and effectively detect
epilepsy by Optimal Attention-Based Transformer-LSTM model,
which significantly improves the interpretability and performance
of the model. Yang et al. (15) used the Eurasian Oystercatcher
Wild Geese Migration Optimization algorithm (EOWGMO) to
optimize the feature weights to improve the fusion efficiency,
and the Multiscale Dilated Adaptive DenseNet with Attention
(MDADenseNet-AM) to obtain the converted text information,
thus improving the performance of thought-to-text conversion.
Ku et al. (16) applied LSTM to stock market forecasting, further
demonstrating that LSTM can be applied to the forecasting
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FIGURE 2

Illustration of dataset partitioning based on muiti-patient.

FIGURE 3

Illustration of dataset partitioning based on independent patient.

function of time series. Okmi et al. (17) presents structured
classification of data challenges and modeling strategies across
high-dimensional temporal datasets, demonstrating the application
of optimization strategies and deep learning to criminology. This
paper proposes a Cox-Stuart-CNN-BiLSTM model for multi-
patient data. The model is able to extract common characteristics
of epileptic patients, and reduces time complexity, achieving an
average test set accuracy of 0.9992, sensitivity of 0.9996, and
specificity of 0.9988. For independent-patient data partitioning,
propose an Optuna-CNN-BiLSTM model. This model effectively
addresses the variability between different patient. The average test
set accuracy, sensitivity, and specificity of the model are 0.9996,
0.9995, and 1.0000, respectively. The results indicate that the
proposed models exhibit good predicted performance.

2 Materials and methods

2.1 CHB-MIT dataset

This study utilizes the CHB-MIT scalp EEG dataset of
refractory epilepsy, collected by Boston Children’s Hospital (18).
The dataset comprises 23 subjects, with cases 1 and 21 belonging to
the same patient, resulting in 24 folders. Data were collected using
the International 10–20 system with a sampling rate of 256 Hz.
The .edf format, specifically designed for recording EEG signals,
was used. Each subject has between 9 and 42 continuous .edf files,
documenting brain waveforms during both seizure and non-seizure
periods, with seizure onset and offset times annotated by experts.

2.2 Preprocessing methods

2.2.1 Seizure state segmentation
Since the CHB-MIT Epilepsy EEG dataset only labeled seizure

start and end times, and not inter-ictal, pre-ictal, and post-ictal

periods(post-ictal), it was decided in this chapter to define these
periods manually. Seizure Prediction Horizon (SPH) is the period
between the predicted occurrence of alarm and the start of seizure.
In this chapter, the SPH was set to 5 min. The pre-ictal was defined
as the period from 15 min before the seizure to the start of the SPH,
which totalled 10 min. The post-ictal was defined as the period up
to 30 min after the end of the seizure. The inter-ictal was defined
as the period from 2 h after the end of the current seizure to
2 h before the start of the subsequent seizure. Figure 1 shows a
schematic diagram of the division of status epilepticus. As can
be seen from Figure 1, the waveform amplitude in the post-ictal
showed the least change, and the waveform amplitude in the inter-
ictal showed slight fluctuations. The waveform amplitude fluctuates
more in the pre-ictal and the waveform amplitude fluctuates the
most in the ictal.

2.2.2 Dataset partitioning
Two data division strategies are used in this paper. The

first strategy is a multi-patient data partitioning model, which
is mainly applied to the case where the number of target
patients is limited by integrating the data of other patients
as the model training and validation sets. The second strategy
is an independent patient data partitioning model, which is
applicable to the case where the target patient have accumulated
sufficiently data. This mode directly uses the data of target
patient as the training set, validation set and test set of
the model.

Multi-patient data partitioning mode: The data of all patients
are fully integrated, and then this dataset is partitioned into
training, validation, and testing sets, which is suitable for the case
of scarce data of target patient. In this paper, the multi-patient
data division strategy is applied to Cox-Stuart-CNN-BiLSTM
epilepsy EEG signal prediction model. The division is shown in
Figure 2.
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FIGURE 4

Power spectral density of chb01_01 after high-pass filtering.

Independent patient data partitioning mode: The data of
the target patient is partitioned into training, validation and
testing sets, and then the corresponding data sets are put into
the model for training, validation and testing, which is used
in the case where the amount of data of the target patient is
sufficient. In this paper, the data division method of independent
patient is applied to the Optuna-CNN-BiLSTM epilepsy EEG
signal prediction model. The division schematic is shown
in Figure 3.

In this experiment, 20% of the data was randomly selected as
the test set, while the remaining 80% was used for the training and
validation sets. From this 80%, 20% was randomly chosen as the
validation data. Thus, the proportions of the training, validation,
and test sets are 6:2:2.

2.2.3 Normalization
EEG signals in different seizure states may exhibit significant

variations in amplitude, and the signal amplitudes across different
EEG channels can also differ. To better distinguish between the
inter-ictal and pre-ictal phases, it is crucial to normalize the raw
data. In this study, the MinMaxScaler method from the Scikit-
learn library was employed for standardization. MinMaxScaler
linearly transforms the data to a specified range, as shown
in Equation 1.

xscaled = (x − xmin)/(xmax − xmin) × (max−min) + min (1)

Here, x represents the raw data, xmin and xmax are the minimum
and maximum values of the sequence, respectively, max and min
denote the lower and upper bounds of the target scaling range.
In this study, the default range is set to [0, 1], and xscaled is the
normalized data.

FIGURE 5

Flowchart of the Cox-Stuart test.

2.2.4 Upsampling
Since the distribution of pre-ictal and inter-ictal EEG data

in epilepsy patients is not balanced, for each patient, the
seizure state data with less amount of data is slid in 10-s
windows at an overlap rate of 50% to achieve the purpose
of increasing the amount of data and balancing the sample
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FIGURE 6

Flowchart of the experiment.

size of seizure states. The number of windows n that the
entire data series can be divided into is calculated by the
following formula:

n = floor[(N − windows × fs)/overlop × windows] + 1 (2)

Where, the floor function indicates rounding down the data, N
is the sequence length, which is set to 2,560, fs is 256, and overlop is
the overlap ratio, which is 50%.

2.2.5 Filtering
Electromagnetic interference from the environment and

thermal noise from the equipment can significantly disrupt the
already weak EEG signals. To address power line interference noise,
a notch filter at 50 or 60 Hz is typically used (19) In this study,

the data from each .edf file was processed using the notch filter
and high-pass filter functions from the mne library to eliminate
60 Hz power line noise and noise below 1 Hz, respectively (20).
Figure 4 shows the original power spectral density, the power
spectral density after notch filtering, and the power spectral density
after high-pass filtering for the chb01_01 file.

2.3 Cox-Stuart early stopping mechanism

The Cox-Stuart test utilizes positive and negative signs to
determine whether a sequence exhibits a certain trend. This method
is applicable to various types of data and does not rely on data
distribution, only on sign tests to identify upward or downward
trends (21). The principle of the test can be understood as the data
in the sequence is divided into two parts before and after, with the
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FIGURE 7

Model structure of the CNN-BiLSTM.

latter part of the sequence of values subtracted from the first half
of the sequence of values to obtain several positive and negative
differences in the sequence. The number of positive differences
num+ is the number of differences >0. The number of negative
differences num− is the number of differences <0. According to
the hypothesis test, the original hypothesis H0 is considered to have
no trend of change, and the alternative hypothesis H1 has a trend
of change. When num+<num_, and at this time the probability
of occurrence of positive difference pCox−Stuart ≤ 0.1, indicating
that the sequence has a downward trend, rejecting H0; Similarly,
when num+>num_ and at this time the probability of occurrence
of negative difference pCox−Stuart ≤ 0.1, indicating that the sequence
has an upward trend, rejecting the H0. If num+=num_, indicating
that the sequence has no trend, accepting the H0. The specific
calculation method is as follows. Figure 5 illustrates the flowchart
of the Cox-Stuart test.

(1) Hypothesis: H0: The sequence has no trend; H1: The
sequence exhibits a trend.
(2) Input the sequence {x1, x2, . . . , xn} and compute c, with the
array length being n.

c =
{

n/2, n is even
(n + 1)/2 − 1, n is odd

(3)

(3) Calculate the paired values for set c: {d1 = xc – x0, d2 = xc+1
– x1,. . . , dc = xn – xc−1}, count the number num+ and num_ in
c, and set k=min (num+, num_).
(4) Utilize the cumulative probability function pCox−Stuart of
the binomial distribution to compute the probability, where p

represents the probability of observing either a single positive
or negative sign.
(5) If num+ >num and pCox−Stuart≤0.1, the function is
considered to have an uptrend. Conversely, if num+<num_ and
pCox−Stuart≤0.1, it is deemed to have a downtrend. Otherwise,
no trend is observed.

2.4 Optuna optimization framework

The Optuna optimization framework was proposed in 2019
(22) which provides algorithms such as grid search method,
stochastic search method, Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), and Tree-structured Parzen
Estimator algorithm (TPE), which are able to adaptively find the
optimal hyper-parameters of the model to optimize the objective
function of the model and improve the performance.

The idea of the TPE algorithm is to use two different probability
density functions l(x) and g(x) construct the conditional probability
distribution of the model parameters: by constantly adjusting l(x)
and g(x), the TPE algorithm is able to search the parameter space
in a targeted way, from finding the global optimal solution. This is
done as follows:

(1) Generates a random set of initial parameter configurations
and evaluates their parameter performance.

(2) Updated conditional probability distribution.

p(x|y) =
{

l(x) y < y∗

g(x) y > y∗
(4)
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TABLE 1 Model structure parameters.

Layer Input channels Output channels Convolutional
kernel

Output dimension Stride

Input 22 – – (128,22,10,256) –

2D convolution 22 22 1 × 1 (128,22,10,256) 1

2D convolution 22 44 3 × 3 (128, 44, 8, 254) 1

batch normalization 44 44 – (128, 44, 8, 254)

Maxpool 44 44 2 × 4 (128, 44, 4, 63) 1

Activation function – – – (128, 44, 4, 63)

2D convolution 44 5 3 × 3 (128, 5, 2, 61) 1

batch normalization 5 5 – (128, 5, 2, 61)

Maxpool 5 5 2 × 4 (128, 5, 1, 15) 1

Activation function – – – (128, 5, 1, 15) -

Bi-LSTM 2,560 1,280 – (128, 22, 1,280) 1

Bi-LSTM 1,280 640 – (128, 22, 640) 1

Bi-LSTM 640 160 – (128, 22, 160) 1

Bi-LSTM 160 40 – (128, 22, 40) 1

Bi-LSTM 40 2 – (128, 22, 2) 1

Activation function – – – (128, 22, 2) -

Fully connected – 119 – (128, 119) -

Output 119 2 – (128, 2) -

In the above equation, x is the input, y is the loss
function, and y∗ is the quartile of y. The specific quartile level
is determined by the hyperparameter γ (which commonly
takes the value of 0.15 or 0.25). Here, y∗ is used as
the target value threshold, and p(x|y) is split into the
below-threshold conditional distribution l(x) and the above-
threshold conditional distribution g(x), with l(x) denoting
the loss function value lower than the target threshold, and
g(x) indicating the probability density function when the loss
function value is above the target threshold.
(3) Optimization parameter, EIy∗ (x) is the
expected improvement function.

EIy∗ (x) =
∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

(5)

dy = l(x)
γ l(x) + (1 − γ )g(x)

∫ y∗

−∞
(y∗ − y)p(y)dy

(4) Assessment parameter.

EIy∗ (x) ∝
(

γ + g(x)
l(x)

(1 − γ )
)−1

(6)

It is easier to find the global optimal solution when the g(x) is
minimum on x and the l(x) is maximum on x. The TPE algorithm
has fewer iterations and quicker convergence, it is selected as the
algorithm for the model.

TABLE 2 Hyperparameters of Cox-Stuart-CNN-BiLSTM model.

Parameters Parameter values

Activation function LeakyReLU

Loss function CrossEntropyLoss

Optimizer Adam

Learning rate 0.0001

Batch size 128

Epoch Unsure

Weight_decay 0.9

Seed 42

This article also utilizes the Hyperband algorithm from the
Optuna framework to promptly terminate experiments with poor
training performance and reduce the training time.

smax = logη(
R

rmin
) (7)

The above equation indicates that at most smax evaluations
can be performed. Where η denotes the proportion of parameters
to be removed each time, rmin is the minimum resource, and R
is the total resource. For a fixed η, smax has different values. A
larger smax means smaller resources and a higher probability of
early stopping, but there is a situation where the optimal solution
cannot be found, on the contrary, smaller s means more enormous
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TABLE 3 Pseudo code of Cox-Stuart-CNN-BiLSTM.

Algorithm Cox-Stuart-CNN-BiLSTM model based on
multi-patients

Input:

D_train = {(xi , yi)}_{i=0, 1}, D_test = {(xj , yj)}_{j=0,1}

Model M(C,H,W), hyperparameters θ∗ , learning rateη, batch size B, epoch
E, weight_decay λ, W_p

Output:

Cross-Validation metrics, test metrics, confusion matrices, spectrogram
plots

01: set_seed(42)

02: init StratifiedKFold(n_splits=K, shuffle=True, seed=42)

03: best_states ← []; Cross-Validation metrics ← []

04: for fold = 1 to K do

05: split D_train → train_k, val_k

06: build DataLoader(train_k, B, shuffle=True) and DataLoader(val_k, B,
shuffle=False)

07: M_k ← M().to(device)

08: optim ← Adam(M_k.params, η, weight_decay= λ)

09: sched ← ReduceLROnPlateau(optim, mode=’min’)

10: best_val_loss ←∞; c_inc = c_flat = 0; history ← empty lists

11: for e = 1 to E_max do

12: // Training loop

13: compute train_loss, train_acc, sens, spec over train_k

14: // Validation loop

15: compute val_loss, val_acc, sens, spec over val_k

16: sched.step(val_loss)

17: if val_loss < best_val_loss then

18: save_state(M_k); best_val_loss ← val_loss; reset(c_inc, c_flat)

19: end if

20: if epoch > W_p then

21: trend ← Cox_Stuart(last W_p val_losses)

22: if trend ε {“increasing”, “no_trend”} for W_p epochs then break

23: end if

24: end for

25: best_states.append(saved state)

26: record fold metrics; plot/save loss/acc/sens/spec curves

27: end for

28: // Select best across folds

29: θ∗ ← state in best_states with minimal val_loss

30: // Test evaluation

31: compute cm_test on D_test; derive specificity, sensitivity, precision, accuracy

32: plot extended 3×3 confusion matrix; save figure

33: // Spectrograms

34: plot_test_samples(θ∗ , D_test, device, 5 preictal + 5 ictal)

35: return θ∗ , all recorded metrics, saved plots

TABLE 4 Hyperparameters of Optuna-CNN-BiLSTM model.

Parameters Parameter values

Activation function LeakyReLU

Loss function CrossEntropyLoss

Optimizer Adam

Learning rate [1e−5, 1e−2]

Batch size [64, 128]

Epoch [50, 200]

Weight_decay [0.5, 1]

Trials 5

Seed 42

resources and a higher probability of finding the optimal solution,
but it is unfavorable for early stopping. Based on this situation, the
Hyperband algorithm tries all possible s, starting with the largest s
until s = 0.

Compared to other optimization algorithms, Optuna offers the
following advantages (23):

(1) Require minimal dependencies and can be used
immediately after a simple installation, making it a
lightweight, versatile, and cross-platform framework.
(2) Distributed optimization is straightforward.
(3) Allow for automatic early termination of hopeless
experiments during the training phase, which reduces the time
complexity of the model.

The steps for Optuna optimization are as follows:

(1) Define the search space: Determine the range of
hyperparameters for Optuna to search within.
(2) Define the objective function: Optuna optimizes
hyperparameters based on the objective function.
(3) Create an Optuna optimizer: Specify the objective function
and search algorithm for the Optuna optimizer.
(4) Run the Optuna optimizer: Obtain the optimal
hyperparameters by running the optimizer, train the
model according to these hyperparameters, and return the
objective function value. If a trial proves unpromising, it is
automatically terminated, and the next trial continues.

2.5 Proposed model

This article proposes a multi-patient and independent-patient
epilepsy prediction model based on CNN-BiLSTM. The flowcharts
of the two models are shown in Figure 6.

When the amount of target patient data is scarce, a model under
a multi-patient data partitioning approach is proposed: a CNN-
BiLSTM model based on the Cox-Stuart early stopping mechanism.
The large amount of multi-patient data makes the CNN-BiLSTM
model long in training time and high in computational complexity.
To solve this problem, a Cox-Stuart early stopping mechanism is
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TABLE 5 Pseudo code of Optuna-CNN-BiLSTM.

Algorithm Optuna-CNN-BiLSTM model based on
independent patients

Input:

• PATIENTS list, data_path, seed=42

• Model M(C,H,W)

• Search space:

– learning rate η ε [1e−5, 1e−2]

– batch size B ε {64,128}

– epochs E ε [50,200]

– weight decay λ ε [0.5,1.0]

• Metrics: accuracy, specificity, sensitivity

Output:

• Best model per patient, trial metrics, test confusion matrices, spectrograms,
hyperparameter analysis plots

1: set_seed(42)

2: for each patient in PATIENTS do

3: load preictal/interictal .npy paths

4: split label → (x_train,y_train), (x_val,y_val), (x_test,y_test)

6: init train_ds, val_ds, train_loader, val_loader with default B

7: define objective(trial):

8: η←trial.suggest_float(‘lr’,1e-5,1e-2)

9: B←trial.suggest_categorical(‘batch_size’,[64,128])

10: E←trial.suggest_int(‘epoch’,50,200)

11: λ←trial.suggest_loguniform(‘weight_decay’,0.5,1.0)

12: model←M().to(device); optim←Adam(model.params,lr= η,wd= λ);
loss_fn←CrossEntropyLoss

13: rebuild DataLoaders with B

14: best_val_loss←∞; best_state←None

15: for e=1 to E do

16: // Training

17: compute train_loss, acc, sen, spe over train_loader

18: // Validation

19: compute val_loss, acc, sen, spe over val_loader

20: if val_loss<best_val_loss then

21: best_val_loss←val_loss; best_state←model.state_dict()

22: end if

23: end for

24: save best_state to checkpoint_dir; record best metrics

25: return best_val_loss

26: end objective

27: study←Optuna.create_study(direction=‘minimize’)

28: study.optimize(objective, n_trials=5)

29: best_trial←study.best_trial; print its params & value; compute avg±std
across trials

(Continued)

TABLE 5 (Continued)

Algorithm Optuna-CNN-BiLSTM model based on
independent patients

30: load best_state; model←M().to(device); model.load_state_dict(best_state)

31: // Test evaluation

32: compute cm_test on x_test; derive specificity, sensitivity, precision,
accuracy

33: plot extended 3 × 3 confusion matrix; save figure

34: // Spectrogram visualization

35: plot_test_samples(model, AudioDataset(x_test,y_test,. . . ), device, 5
preictal, 5 ictal)

36: // Hyperparameter analysis

37: scatter lr, B, E, λ vs. best_val_loss; save plot

38: end for

proposed to judge whether it is necessary to stop early according
to the loss function of the validation set. The CNN-BiLSTM model
structure is shown in Figure 7, and the model structure parameters
are shown in Table 1. The model hyperparameters are shown in
Table 2. The pseudo code is shown in Table 3.

The Optuna-CNN-BiLSTM model under the independent
patient data division approach was used when the amount
of collected target subject data was sufficient. Considering the
significant differences in the amount of epileptic EEG data
and the physiologic characteristics of patients, which may lead
to large fluctuations in the experimental results of the CNN-
BiLSTM model, the Optuna framework is introduced to model the
hyperparameters for adaptive optimization. The hyperparameter
settings of the model in this experiment are shown in Table 4. The
pseudo code is shown in Table 5.

2.6 Evaluation metrics

The evaluation metrics used are accuracy, sensitivity, and
specificity. The accuracy refers to the probability of correct
prediction among all predicted labels with the following equation.

accuracy = TP + TN
TP + TN + FP + FN

(8)

Sensitivity refers to the probability that the model prediction
will also be pre-ictal among all true pre-ictal labels, i.e., the accuracy
of a positive result, with the following formula.

sensitivity = TP
TP + FN

(9)

Specificity refers to the probability that the model prediction
will also be inter-ictal in all true inter-ictal labeling, i.e., the accuracy
of a negative result, with the following formula.

specificity = TN
TN + FP

(10)
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FIGURE 8

Training set and validation set of Cox-Stuart-CNN-BiLSTM.
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TABLE 6 Comparison of the results of the four models.

Evaluation metrics CNN CNN-BiLSTM Threshold early
stop-CNN-BiLSTM

Cox-Stuart-CNN-
BiLSTM

Mean Val_Acc±Std 0.9892 ± 0.003 0.9972 ± 0.0019 0.9968 ± 0.0020 0.9983 ± 0.0005

Mean Val_Sen±Std 0.99 ± 0.0032 0.9972 ± 0.0024 0.9967 ± 0.0025 0.9987 ± 0.0007

Mean Val_Spe±Std 0.9884 ± 0.0029 0.9972 ± 0.0017 0.9969 ± 0.0016 0.9979 ± 0.0010

Test_Acc 0.9939 0.9988 0.9986 0.9992

Test_Sen 0.9921 0.9992 0.9984 0.9996

Test_Spe 0.9957 0.9984 0.9988 0.9988

Train Time(s) 9,246 9,316 1,867 2,990

TABLE 7 Significant difference results with Cox-Stuart-CNN-BiLSTM.

Evaluation metrics CNN vs.
Cox-Stuart-CNN-BiLSTM

CNN-BiLSTM vs.
Cox-Stuart-CNN-BiLSTM

Early stop-CNN-BiLSTM vs.
Cox-Stuart-CNN-BiLSTM

p | Cohen’s d | p | Cohen’s d | p | Cohen’s d |

Mean Val_Acc 0.0021 4.2314 0.2711 0.7918 0.1711 1.029

Mean Val_Sen 0.0030 3.7561 0.2412 0.8485 0.1503 1.0895

Mean Val_Spe 0.0010 4.3797 0.4555 0.5019 0.2762 0.7495

TABLE 8 Comparison of experimental results with other models.

Literatures Data set Preprocessing Model Test_Acc Test_Sen Test_Spe

(27) CHB-MIT EMD CNN 0.9978 – –

(28) CHB-MIT Notch, Bandpass CDAN 0.7090 – –

(29) CHB-MIT WT 1D-CNN 0.8650 0.8440 –

(29) Non-public 3D image 3D-CNN 0.9237 0.8890 0.9378

(30) CHB-MIT Highpass, Lowpass, Notch CNN 0.8217 0.8580 0.7402

This paper CHB-MIT Notch Filter, High Pass Filter Cox-Stuart-
CNN-BiLSTM

0.9992 0.9996 0.9988

3 Results and discussion

3.1 Epilepsy prediction results based on
multi-patient

3.1.1 Epilepsy prediction model based on
Cox-Stuart-CNN-BiLSTM

The epoch is set to 250. The results of the training, validation
and testing are shown in Figure 8 and Supplementary Figure 1. The
loss values, accuracy, sensitivity and specificity of the five cross-
validations are satisfactory. Supplementary Figure 2 shows the
visualized time-frequency plots obtained by feeding the randomly
selected test set data into the trained model, where True is the true
label, True = 0 means pre-ictal, True = 1 means inter-ictal, and
Pred is the prediction, Pred <0.5 means the predicted label is 0,
and Pred >0.5 means the predicted label is 1. It can be seen that
the predicted results were all correct, and the inter-ictal phase has
higher energy in the low frequency phase than the pre-ictal phase.

3.1.2 Comparison of experimental results
In order to prove that the proposed model has obvious

advantages, this paper compares CNN, CNN-BiLSTM, Threshold
early stop-CNN-BiLSTM and the proposed model in this paper,
and the results are shown in Table 6. Mean Val_Acc represents the
average accuracy of the validation set, Mean Val_Sen represents
the average sensitivity of the validation set, and Mean Val_Spe
represents the average specificity of the validation set.Test_Acc
denotes test set accuracy, Test_Sen denotes test set sensitivity, and
Test_Spe denotes test set specificity. It can be seen that the cross-
validation results and test set results of the four are not obvious in
comparison, but compared with CNN, the Standard deviation (Std)
is significantly lower after adding BiLSTM, which indicates that
the model performance is more stable and the difference between
the two in time is very small. The training time of the model
is significantly shorter after adding the early-stop mechanism.
Although the Cox-Stuart early stop has a long training time, its
results are better than the threshold early stop.
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In order to further validate the performance of the proposed
model, this paper uses t-test and Cohen’s d to statistically analyze
the proposed model and other models, when the p-value is <0.05,
it means that the two models are significantly different, otherwise, it
means that there is no significant difference in the results. However,
focusing only on the p-value has some limitations, therefore, this
paper also used Cohen’s d to verify the model differences (24),
When |Cohen’s d| <0.20 proves that the difference between the two
models is insignificant, 0.2 < |Cohen’s d| < 0.50 proves that there is
a small difference between the two models, 0.5 < |Cohen’s d| < 0.80
proves that there is a medium difference between the two models,
and when | Cohen’s d| > 0.80 proves that there is a significant
difference between the two models (25) The results are shown in
Table 7, and it can be seen that the results of Cox-Stuart-CNN-
BiLSTM outperform the CNN, outperform the results of Threshold
early stop-CNN-BiLSTM, and are not significantly different from
the results of CNN-BiLSTM.

Table 8 and Supplementary Figure 3 show the experimental
results of the Cox-Stuart-CNN-BiLSTM model compared with
other models proposed in the literature. As shown in Table 8 and
Supplementary Figure 2, this study achieves the highest accuracy,
sensitivity, and specificity among the six, even with only data
filtering applied. Additionally, this study employs an early stopping
mechanism that adaptively adjusts the epoch size, reducing time
complexity.

3.2 Epilepsy prediction results based on
independent patient

3.2.1 Optuna-CNN-BiLSTM epilepsy prediction
model

The independent patient-based Optuna-CNN-BiLSTM model
is able to train personalized model parameters based on the patient’s
own conditions and further improve the interpretability of the
model parameters. Table 9 shows the best model hyperparameters
for 23 subjects, which have an average learning rate of 0.0061, an
average Batch size of 109, an average epoch of 134, and an average
weight_decay is 0.7007.

Supplementary Figures 4, 5 show the visualization of the best
hyperparameters for the 23 subjects. Given Trials = 5, each subplot
comprises five discrete points. The first subplot illustrates the
relationship between learning rate and optimal validation loss,
showing that loss decreases as learning rate increases but rises
again when rates become excessively high due to unstable, overly
large parameter updates. The second subplot depicts batch size
vs. optimal validation loss, demonstrating that optimal batch
size varies across subjects and that selecting it appropriately
balances gradient variance with computational efficiency. The third
subplot shows that validation loss decreases with the number of
training epochs, converging by approximately 160 epochs and
yielding negligible improvement when extended to 200 epochs.
Finally, the fourth subplot illustrates the effect of weight decay
on validation loss: increasing weight decay from 0.5 to 0.75
reduces loss to a minimum at 0.75, while a further increase to
1.0 induces underfitting via strong L2 regularization and causes
loss to rise.

TABLE 9 Best hyperparameters for the 23 subjects.

Subjects Best hyperparameters

Learning
rate

Batch
size

Epoch Weight_decay

chb01 0.0073 128 184 0.5467

chb02 0.0027 64 171 0.6191

chb03 0.0015 64 130 0.5986

chb04 0.0100 128 133 0.8397

chb05 0.0053 128 127 0.7894

chb06 0.0037 64 115 0.5150

chb07 0.0085 128 159 0.8994

chb08 0.007 128 168 0.7281

chb09 0.0091 64 104 0.5555

chb10 0.0011 128 126 0.5095

chb11 0.0074 128 137 0.6919

chb12 0.0055 128 187 0.6217

chb13 0.0033 128 105 0.7723

chb14 0.0057 64 61 0.8377

chb15 0.0002 128 111 0.9027

chb16 0.0097 128 165 0.7252

chb17 0.0097 128 110 0.8361

chb18 0.0036 128 104 0.6273

chb19 0.0092 64 144 0.5959

chb20 0.0088 128 136 0.9236

chb21 0.0079 64 153 0.6968

chb22 0.0060 128 119 0.6222

chb23 0.0077 128 122 0.6613

Mean 0.0061 109 134 0.7007

After Trials = 5 times of training, the results of the validation
set and test set are obtained as shown in Table 10, which shows
that the Accuracy of the Validation set(Val_Acc), Sensitivity of
the Validation set(Val_Spe), and Specificity of the Validation
set(Val_Spe) are above 0.98, the mean values are above 0.99,
and the Std are all around 0.01, indicating the model stability.
Supplementary Figures 6, 7 show the test set confusion matrix for
the 23 subjects.

Supplementary Figures 8–11 are visualization of the time-
frequency plots obtained by feeding data from a randomly selected
test set of 23 subjects into the trained model, and it can be seen that
the predictions are all correct and that the inter-ictal phase is more
energetic than the pre-ictal phase in the low-frequency phase.

3.2.2 Comparative experiments
Table 11 shows the average accuracy, average sensitivity,

and average specificity of the test set of CNN, CNN-
BiLSTM, and Optuna-CNN-BiLSTM models. It can be
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TABLE 10 Validation set and test set results for 23 subjects.

Subjects Val_Acc±Std Val_Sen±Std Val_Spe±Std Train time Data volume

chb01 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,509 1,328

chb02 0.9968 ± 0.0063 1 ± 0.0000 0.9937 ± 0.0126 1,319 476

chb03 0.9912 ± 0.0072 0.9824 ± 0.0144 1 ± 0.0000 1,498 1,194

chb04 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,365 714

chb05 0.9979 ± 0.0042 0.9966 ± 0.0068 0.9992 ± 0.0017 1,246 1,184

chb06 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,286 1,650

chb07 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,377 714

chb08 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,480 1,190

chb09 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,232 714

chb10 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,377 1,666

chb11 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,038 476

chb12 0.9932 ± 0.0084 0.9864 ± 0.0167 1 ± 0.0000 1,072 880

chb13 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,041 1,230

chb14 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,291 1,428

chb15 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,641 2,982

chb16 0.9994 ± 0.0012 1 ± 0.0000 0.9988 ± 0.0024 1,556 842

chb17 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,171 714

chb18 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,161 1,014

chb19 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,438 476

chb20 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,625 1,190

chb21 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,553 952

chb22 1 ± 0.0000 1 ± 0.0000 1 ± 0.0000 1,564 714

chb23 0.9977 ± 0.0045 0.9955 ± 0.0091 1 ± 0.0000 1,111 660

Mean 0.9989 ± 0.0014 0.9983 ± 0.0020 0.9996 ± 0.0007 1,346 1,060

TABLE 11 Comparison of the results of the three models.

Model Test_Acc Test_Sen Test_Spe Train time(s)

CNN 0.9984 0.9972 0.9993 435

CNN-BiLSTM 0.9996 0.9991 1 453

Optuna-CNN-BiLSTM 0.9996 0.9995 1 1346

seen that the addition of BiLSTM improves the model
results. Although the difference between the results of
CNN-BiLSTM and Optuna-CNN-BiLSTM is small and
the difference in training time is large, Optuna provides
interpretability for the model parameters and the model
performance is more stable, which is beneficial for subsequent
research.

Table 12 and Supplementary Figure 12 show the experimental
results of the Optuna-CNN-BiLSTM model compared with
other models proposed in the literature.Under the same
data set, the proposed model has the highest accuracy,
sensitivity and specificity compared with other models in the
literature. It significantly proves that the Optuna-CNN-BiLSTM

epilepsy EEG signal prediction model has excellent
performance.

4 Conclusion

This paper focuses on the preprocessing of epileptic EEG
signals, the construction of an epileptic EEG signal prediction
model based on deep learning and its performance analysis. A Cox-
Stuart-CNN-BiLSTM epilepsy EEG signal prediction model based
on multiple patients is proposed for the case of scarce data of
target patients, which achieves 0.9992 accuracy, 0.9996 sensitivity
and 0.9988 specificity. For the case of sufficient data of target
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TABLE 12 Comparison of experimental results with other models.

Literatures Data set Preprocessing Model Test_Acc Test_Sen Test_Spe

(31) CHB-MIT – Lightweight-2D-CNN 0.8998 0.9290 0.8704

(9) – NSGA-II+CNN 0.9651 0.9655 0.9647

(32) – CNN-SVM 0.8625 – –

(11) Filter, STFT CNN-LSTM 0.9400 0.938 0.912

(13) – CGAN- TACNN-LSTM 0.946 0.945 –

(12) – CNN-BiLSTM 0.9483 0.9494 –

This paper Filter Optuna-CNN-BiLSTM 0.9996 0.9995 1

patients, an independent patient-based Optuna-CNN- BiLSTM
epilepsy EEG signal prediction model is proposed, which achieved
0.9996 accuracy, 0.9995 sensitivity and 1.0000 specificity. The
epilepsy prediction model can provide a timely warning of epileptic
seizures and help patients take preventive measures in advance,
thus reducing the harm caused by epileptic seizures to the physical
and mental health of patients. Although this paper has made
great progress in epilepsy prediction, there are still the following
shortcomings: (1) The experimental data are too monotonous.
This paper uses data from patients with refractory epilepsy.
Although the experimental results are great, the effect on EEG
data of other epilepsy types is not yet known. Additional epilepsy
prediction data will be added in the future to further highlight
the generalization ability of the model. (2) The interpretability of
the model parameters needs to be improved, and in the future we
will refer to the method proposed by He et al. (14) to improve
the interpretability of the model parameters through the parameter
selection strategy. (3) Noise that exists in the real world is more
complex and will be added to analog noise in the future (26), in
order to be more in tune with reality. (4) Attention mechanism will
be added in the future to further support the model performance.
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Test set results of Cox-Stuart-CNN-BiLSTM.

SUPPLEMENTARY FIGURE 2

Time-frequency plot of test set visualization.
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SUPPLEMENTARY FIGURE 3

Experimental results of different models.

SUPPLEMENTARY FIGURE 4

Visualization of best hyperparameters for subjects 1–12.

SUPPLEMENTARY FIGURE 5

Visualization of best hyperparameters for subjects 13–23.

SUPPLEMENTARY FIGURE 6

Test set confusion matrix for subjects 1–12.

SUPPLEMENTARY FIGURE 7

Test set confusion matrix for subjects 13–23.

SUPPLEMENTARY FIGURE 8

Time-frequency plots of test set visualizations for subjects 1–6.

SUPPLEMENTARY FIGURE 9

Time-frequency plots of test set visualizations for subjects 7–12.

SUPPLEMENTARY FIGURE 10

Time-frequency plots of test set visualizations for subjects 12–18.

SUPPLEMENTARY FIGURE 11

Time-frequency plots of test set visualizations for subjects 19–23.

SUPPLEMENTARY FIGURE 12

Experimental results of different models.
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