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Using artificial intelligence and
radiomics to analyze imaging
features of neurodegenerative
diseases

Qixuan Sun'* and Fang Wang?

Northwest University, Xian, China, 2Medical School, Beijing Forestry University, Beijing, China

Introduction: Neurodegenerative diseases such as Alzheimer’'s and Parkinson'’s
are characterized by complex, multifactorial progression patterns that challenge
early diagnosis and personalized treatment planning.

Methods: To address this, we propose an integrated Al-radiomics framework
that combines symbolic reasoning, deep learning, and multi-modal feature
alignment to model disease progression from structural imaging and behavioral
data. The core of our method is a biologically informed architecture called
NeuroSage, which incorporates radiomic features, clinical priors, and graph-
based neural dynamics. We further introduce a symbolic alignment strategy
(CAIS) to ensure clinical interpretability and cognitive coherence of the learned
representations.

Results and discussion: Experiments on multiple datasets—including ADNI,
PPMI, and ABIDE for imaging, and YouTubePD and PDVD for behavioral signals—
demonstrate that our approach consistently outperforms existing baselines,
achieving an F1 score of 88.90 on ADNI and 85.43 on PPMI. These results
highlight the framework's effectiveness in capturing disease patterns across
imaging and non-imaging modalities, supporting its potential for real-world
neurodegenerative disease monitoring and diagnosis.
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1 Introduction

The growing prevalence of neurodegenerative diseases, such as Alzheimer’s disease,
Parkinson’s disease, and Huntington’s disease, has highlighted the urgent need for early and
non-invasive diagnostic tools (1). Traditional diagnostic processes rely heavily on clinical
assessments and cognitive testing, which often detect the disease only after significant
neural damage has occurred (2). Recent advancements in medical imaging have provided
new opportunities for early disease detection, yet interpreting these complex images
remains a significant challenge (3). Not only does artificial intelligence (AI) promise
to enhance the analysis of neuroimaging data, but radiomics—the extraction of high-
dimensional quantitative features from medical images—also enables the identification
of imaging biomarkers that are imperceptible to the human eye (4). Integrating Al
with radiomics offers a novel approach that not only improves diagnostic precision and
efficiency but also enhances our understanding of disease progression, potentially leading
to better-targeted interventions and individualized treatment plans (5).
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Early approaches to interpreting neuroimaging data were
primarily centered around the creation of structured diagnostic
rules based on observable visual features and clinical symptoms (6).
These systems relied heavily on expert knowledge to formulate
explicit criteria for identifying abnormalities in brain structure and
function. Such criteria often included thresholds for measuring
brain volume, the size of ventricles, or the presence of specific
lesions, all of which were used to distinguish between normal and
pathological conditions (7). While these methods were valuable in
providing a clear and interpretable decision-making framework,
they were inherently limited by their reliance on predefined rules.
The main challenge with these systems arose from their inability
to adapt to the complexity and variability present in large-scale
neuroimaging datasets (8). In practice, the considerable diversity in
imaging protocols, patient demographics, and disease presentations
introduced significant noise, making it difficult for rule-based
systems to generalize across diverse patient populations (9).
Furthermore, these systems often struggled with detecting subtle
or atypical manifestations of disease, particularly in the early
stages of neurodegenerative conditions when symptoms may not
be pronounced. For instance, small or irregular lesions in the brain
might be overlooked, and early signs of structural changes could
be misclassified due to variations in imaging conditions (10), such
as differences in resolution or contrast. As a result, the diagnostic
performance of these methods often deteriorated in real-world
clinical settings, where factors like low-quality images, inconsistent
acquisition methods, and patient-specific differences became
more pronounced (11). Consequently, while rule-based systems
offered transparency and interpretability, their rigid structure
and limited adaptability hindered their ability to effectively
handle the complexity and heterogeneity of clinical neuroimaging
data, thus reducing their practical utility in dynamic clinical
environments (12).

To overcome the rigidity of earlier rule-based systems
and to enhance the adaptability of neuroimaging analysis,
subsequent methods introduced learning-based models that
could automatically infer predictive relationships from annotated
imaging data (13). These models employed statistical methods
including support vector machines, decision trees, and various
ensemble approaches to identify intricate and subtle relationships
between imaging characteristics and clinical results. By learning
directly from data, these models had the potential to uncover
hidden patterns that traditional rule-based systems might miss (14).
For instance, supervised classifiers were used to differentiate
between various stages of cognitive decline, such as early-
stage Alzheimer’s versus advanced stages, or to predict disease
subtypes based on quantitative features extracted from imaging
modalities like MRI or PET scans. In some cases, these models
could even predict long-term disease progression, enabling early
intervention strategies (15). While these learning-based models
demonstrated improved performance and scalability compared
to traditional approaches, they still had notable limitations.
One major challenge was the need for extensive manual effort
in feature extraction. Despite the ability of these models to
learn from data, feature engineering—where domain experts
manually select and refine relevant features—was still crucial in
most cases (16). This process was both time-consuming and
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highly dependent on expert knowledge. The models remained
sensitive to variability in image acquisition protocols, which
could result in inconsistent features across different centers or
imaging machines (17). This sensitivity, coupled with the lack of
robustness in handling large variations in image quality, limited
the generalization capabilities of these models, especially in multi-
center studies where imaging conditions could vary significantly.
As a result, while learning-based models offered substantial
improvements over rule-based methods, their practical deployment
in large-scale clinical environments was still constrained by
these challenges (18).

Recent developments in neuroimaging analysis have led
to a shift toward more sophisticated end-to-end learning
frameworks that operate directly on raw or minimally processed
neuroimaging data, bypassing the need for manual feature
extraction. These approaches, particularly convolutional neural
networks (CNNs) and transformer-based architectures, have
demonstrated exceptional potential in learning intricate spatial
and temporal patterns within neuroimaging data, which are
crucial for understanding the progression of neurodegenerative
diseases (19). These models are capable of automatically identifying
and learning complex relationships between image pixels, enabling
them to detect subtle pathological changes in brain structure
that might otherwise go unnoticed using traditional methods. By
removing the dependency on handcrafted features, end-to-end
models provide a significant improvement in both adaptability
and performance, especially when applied across diverse datasets,
such as those obtained from different imaging modalities (MRI,
PET) or patient populations (20). Moreover, the integration of
advanced visualization techniques and interpretable components
within these models has significantly enhanced their clinical
transparency. This allows researchers and clinicians to better
understand how the model makes its decisions, which is crucial for
building trust in Al-driven tools, particularly in sensitive medical
applications (21). Visualization techniques, such as heatmaps and
saliency maps, help to highlight which regions of the brain
are being identified as most relevant for diagnosis, providing
valuable insights into the underlying disease processes. These
advances support the potential translation of deep learning models
into clinical practice by ensuring that the results are not only
accurate but also interpretable and actionable in a real-world
setting (22). Despite these advances, several challenges remain.
One of the key hurdles is the large amount of labeled data
required to train these models effectively. Deep learning algorithms,
especially those that work with high-dimensional neuroimaging
data, are data-hungry and typically require large datasets to
avoid overfitting and achieve generalization across different patient
populations. The computational cost associated with training such
models is considerable, requiring significant hardware resources
and processing time (23). Nonetheless, these modern techniques
represent a major breakthrough in the field of neuroimaging, as
they offer a more scalable and efficient approach to extracting
meaningful, actionable insights from complex imaging data. As
these methods continue to evolve, they hold the promise of
enabling earlier and more accurate diagnoses of neurodegenerative
disorders, paving the way for more effective and personalized
treatment strategies (24).
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To respond to the challenges posed by symbolic reasoning
techniques, machine learning, and deep learning when used
independently, we propose an integrated Al-radiomics
framework specifically designed for analyzing imaging data
in neurodegenerative diseases. This integrated method leverages
the strengths of each paradigm—combining the interpretability
of symbolic reasoning, the adaptability of data-driven learning,
and the representational power of deep networks. Our approach
introduces a novel fusion module that incorporates radiomic
features into a pre-trained deep learning model, guided by
domain-specific knowledge graphs to ensure clinical relevance.
By aligning quantitative imaging biomarkers with biologically
meaningful pathways and phenotypes, our framework not only
improves diagnostic performance but also provides interpretable
insights into disease mechanisms. Furthermore, we incorporate
a multi-task learning architecture that simultaneously performs
disease classification, progression prediction, and region-specific
anomaly detection. This holistic strategy addresses the limitations
of prior methods and paves the way for more personalized and
proactive neurodegenerative disease management.

e We present a novel radiomics-guided fusion module
embedded within a deep learning pipeline, enabling the
seamless integration of domain-specific knowledge with
imaging-derived features.

e The architecture supports multi-task learning, enhancing
efficiency and generalizability across diagnostic, prognostic,
and localization tasks in diverse clinical scenarios.

results clinical datasets

e Experimental on public and

demonstrate superior performance in early diagnosis

and progression tracking compared to existing SOTA models.

2 Related work

2.1 Radiomics in brain imaging

Radiomics involves the extraction of a large number of
quantitative features from medical imaging data, transforming
images into mineable high-dimensional data (25). In the context
of neurodegenerative diseases, radiomics provides an opportunity
to identify subtle imaging biomarkers that are not discernible
to the human eye. Magnetic resonance imaging (MRI), positron
emission tomography (PET), and computed tomography (CT) are
the primary imaging modalities used to extract radiomic features
in the brain. These features may include intensity, shape, texture,
and wavelet-based attributes that describe tissue heterogeneity and
microstructural changes associated with disease processes (26).
Studies have demonstrated the utility of radiomics in characterizing
specific patterns of neurodegeneration. For instance, texture
analysis of MRI scans has been shown to differentiate between
Alzheimer’s disease (AD), cognitive impairment (MCI), and
healthy controls (27). Texture features capturing gray matter
atrophy or white matter disintegration are particularly valuable
in assessing disease severity and progression. In Parkinson’s
disease (PD), radiomic signatures derived from the substantia
nigra region can reflect dopaminergic neuron loss, providing
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non-invasive insights into disease staging (28). A growing
body of work focuses on combining radiomic features with
traditional volumetric measurements to enhance diagnostic
performance. This hybrid approach has proven effective in multi-
class classification tasks and in distinguishing between different
types of dementia, such as frontotemporal dementia (FID) and
Lewy body dementia (LBD). Moreover, radiomics is increasingly
being used for prognostication—predicting conversion from MCI
to AD or tracking longitudinal changes in disease biomarkers (29).
Challenges remain in standardizing radiomic workflows across
imaging centers, including issues related to image acquisition
parameters, preprocessing methods, and feature reproducibility.
Nonetheless, the use of large-scale datasets and harmonization
techniques is helping to address these limitations. As radiomics
continues to evolve, it serves as a foundational component in
building robust predictive models when integrated with artificial
intelligence algorithms (30).

2.2 Deep learning for feature extraction

Deep learning, particularly convolutional neural networks
(CNNs), has revolutionized feature extraction from medical
images, enabling end-to-end learning of complex hierarchical
representations. In neurodegenerative disease research, deep
learning models have been applied extensively to analyze
MRI and PET images for classification, segmentation, and
progression modeling tasks (31). convolutional neural networks
(CNNs) have shown high accuracy in distinguishing between
AD, MCI, and healthy controls using structural MRI data.
Unlike handcrafted radiomic features, CNNs autonomously
learn discriminative features during training, often capturing
abstract spatial patterns associated with neurodegeneration.
Medical imaging studies often rely on data augmentation and
transfer learning to reduce the dependence on large labeled
datasets (32). More advanced architectures such as 3D CNNj,
recurrent neural networks (RNNs), and vision transformers
have further improved performance by modeling spatiotemporal
dependencies and capturing contextual information. For example,
longitudinal imaging data processed with temporal models allow
for dynamic assessment of disease progression. Such models can
predict future cognitive decline and aid in patient stratification
for clinical trials (33). Another important development is the
integration of imaging data with non-imaging clinical data using
multimodal deep learning frameworks. These hybrid networks
combine convolutional layers for image processing with fully
connected layers for metadata, enhancing model robustness
and clinical applicability (34). Attention mechanisms are also
increasingly utilized to highlight brain regions most relevant to
diagnosis, providing interpretability to otherwise opaque models.
Despite these advances, challenges such as overfitting, lack of
interpretability, and generalization to new populations persist (35).
Federated learning and domain adaptation techniques are being
explored to enhance the generalizability and privacy of deep
learning models across institutions. The synergy between deep
learning and radiomics offers a promising avenue for building
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comprehensive Al-based tools for neurodegenerative disease
analysis (36).

2.3 Multimodal imaging integration

Multimodal imaging integrates data from multiple imaging
techniques, such as structural MRI, functional MRI (fMRI),
PET, and diffusion tensor imaging (DTI), to provide a
comprehensive view of brain structure and function (37).
This integrative approach is particularly valuable in the study
of neurodegenerative diseases, which often involve multifaceted
pathological processes. Combining anatomical and functional
modalities allows researchers to correlate structural atrophy
with disruptions in brain connectivity and metabolic activity.
For example, fMRI can reveal altered resting-state connectivity
patterns in AD, while PET imaging can assess amyloid-beta
and tau deposition. DTI contributes by mapping white matter
integrity,
MRI. Integrating these diverse sources offers a more holistic

complementing volumetric data from structural
understanding of disease mechanisms (38). Artificial intelligence
techniques, especially those based on machine learning and deep
learning, facilitate the fusion of multimodal data. Techniques
such as canonical correlation analysis, multi-view learning, and
autoencoders are employed to align and integrate heterogeneous
data types. These models extract joint representations that
capture complementary information across modalities, enhancing
diagnostic and prognostic capabilities (39). Multimodal fusion
has been shown to outperform single-modality approaches in
distinguishing between closely related conditions, predicting
cognitive decline, and identifying disease subtypes. In clinical
research, such models help elucidate the temporal sequence of
pathological changes, improving early diagnosis and treatment
planning. For instance, combining DTI and PET data can detect
preclinical changes in at-risk individuals before clinical symptoms
emerge (40). A critical aspect of multimodal integration is data
harmonization. Differences in imaging protocols, scanner types,
and preprocessing pipelines can introduce variability that affects
model performance. To address this, harmonization strategies
including statistical normalization, deep learning-based alignment,
and transfer learning are actively being developed. The integration
of multimodal imaging data within AI frameworks represents a
paradigm shift in neurodegenerative disease research. It enables the
development of more accurate, robust, and generalizable diagnostic
tools, paving the way for precision medicine approaches in
neurology (41). Recent efforts in neuroimaging-based Alzheimer’s
prediction have also explored hybrid optimization techniques and
machine learning pipelines. For instance, Kumar and Azad (42)
introduced a Hybrid Harris Hawk Optimization (HHO) framework
for AD prediction using neuroimaging data, demonstrating the
potential of metaheuristic strategies for feature extraction and
classification. Their follow-up work provides a comprehensive
review of machine learning methods (43) applied to Alzheimer’s
diagnosis, including neuroimaging, clinical, and audio modalities.
Yadav et al. (44) proposed a filter-based audio feature selection
approach for Alzheimer’s prediction, highlighting the growing role
of non-invasive audio analysis in early diagnosis.
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3 Method

3.1 Overview

Neurodegenerative diseases represent a spectrum of chronic,
progressive disorders characterized by the gradual dysfunction
and eventual loss of neurons in specific regions of the central
nervous system. This group of disorders includes Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS), and frontotemporal dementia
(FTD), each characterized by unique pathological features and
clinical profiles. The growing societal burden and lack of
curative treatments underscore the urgent need for innovative
methodological approaches to better understand, model, and
potentially mitigate the complex biological underpinnings of
these disorders. In this section, we provide a comprehensive
outline of our methodological framework to address the modeling
challenges inherent in neurodegeneration. We begin in Section
3.2 by formalizing the neurodegenerative process through a
precise mathematical and algorithmic abstraction. This includes
establishing a symbolic representation of neural dynamics disease
propagation, and spatial-temporal dependencies across brain
regions. The goal is to capture the disease’s progression from
healthy to pathological states in a way that accommodates
the intrinsic heterogeneity observed in patient data. Following
this, Section 3.3 introduces our novel architecture, NeuroSage,
designed to model disease progression using biologically-informed
mechanisms. This model diverges from conventional deep
learning approaches by incorporating domain-specific priors,
such as the hierarchical organization of brain regions, known
pathophysiological cascades, and multi-modal data embeddings
derived from neuroimaging and transcriptomics. Unlike generic
sequence models, NeuroSage is built to accommodate varying
progression velocities, nonlinear symptom emergence, and region-
specific vulnerability, all within a unified latent framework. In
Section 3.4, we further introduce an integrated strategy, termed
Cognitive Alignment Inductive Strategy (CAIS), that bridges
prior clinical knowledge with latent representations learned from
data. CAIS employs an alignment mechanism between symbolic
disease trajectories and neural embeddings, guiding the training
process with clinical anchors such as diagnosis stages, cognitive
scores, and biomarker trajectories. This strategy not only enhances
interpretability but also constrains the model’s learning dynamics
to adhere to medically plausible patterns of degeneration.

Taken together, the proposed methodology seeks to construct
a principled and interpretable system for capturing the high-
dimensional, temporally-evolving nature of neurodegenerative
diseases. By formalizing disease dynamics, modeling them
with specialized architectures, and aligning them with clinical
knowledge, we establish a framework that can be both theoretically
grounded and practically applicable. This framework is designed
not merely to fit existing data, but to generate biologically
faithful insights that may generalize across cohorts, phenotypes,
and modalities. Furthermore, this approach positions itself at
the intersection of computational neuroscience, medical Al, and
systems biology. It provides tools not only for accurate disease
modeling but also for hypothesis generation, allowing researchers
to interrogate the latent space for novel patterns or subtypes. As
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neurodegenerative diseases often involve complex feedback loops,
regional interactions, and genetic susceptibilities, our methodology
is particularly suited for capturing the multifactorial landscape that
underpins such conditions.

3.2 Preliminaries

Let D = {(x;,t;, )}, denote a longitudinal cohort dataset
composed of N subjects, where each subject i is characterized
by a multi-modal clinical or biological observation x; € RY,
a time stamp #; € R, indicating disease timeline, and a
target output y; such as clinical diagnosis, progression score,
or cognitive assessment. The fundamental objective of this
study is to construct a temporally coherent, interpretable, and
biologically-informed representation of disease progression in
neurodegenerative conditions.

We define a latent temporal manifold M where disease states
evolve according to a partially observed dynamical system. Let
z(t) € R denote the latent embedding of the neurodegenerative
process at time . Our goal is to model the transition dynamics
z(t) governed by both intrinsic neural degeneration and external
cognitive or molecular feedbacks.

We begin by constructing a continuous latent function
z:Ry — Rk,

z(t) = fo(z(t — At), u(t)) + € (1)

where fy denotes a parameterized transition function, u(f) is an
external modulator, and ¢; represents stochastic variability due to
measurement noise or unmodeled dynamics.

We model the brain as a spatiotemporal graph G = (V,E,7)
where V is the set of brain regions, £ is the anatomical or functional
connectivity, and 7 is a time axis. The evolution of disease in region
v € V over time is expressed.

dh,(t)
dt

=MD+ Y - o(h®)+ B () (2)
ueN(v)

Where h,(t) quantifies the level of pathology in region v at time
t, A, denotes its intrinsic decay rate, a,, reflects the directional
connection from region u, o is applied as a nonlinear function,
and x,(t) represents external modulators such as transcriptomic
signatures or cerebrospinal biomarkers.

We define the concept of a neurodegenerative flow field
F:RF > Rk

de(t)
o = FE®) ©)

where F encodes the direction and speed of degeneration at each

point in latent space. Critical points of F (i.e., F(z) = 0) correspond
to fixed disease states.

We introduce a mapping from the latent space to a symbolic
clinical staging axis.

sty =¢(z(t)eS, S={0,1,2,...,L} (4)

where ¢ :RF
continuous degeneration trajectories to ordinal stages.

— S is a discretization function that maps
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Let y(t) be the observed cognitive or functional readout.
y(t) = O@(1)) + ns ©)

where O is a nonlinear observation operator and 7; represents
noise due to inter-subject variability or measurement error.

3.3 NeuroSage

We now introduce NeuroSage, a novel neural architecture
tailored to model the progression of neurodegenerative diseases
through latent structure learning, temporal alignment, and
biologically-grounded adaptation. The model integrates multi-
modal input, temporal neural dynamics, spatial propagation, and
clinical cognition alignment into a unified and interpretable
representation framework (as shown in Figure 1).

3.3.1 Multi-modal temporal embedding

To capture the multifaceted nature of neurodegenerative
disease progression, we design a hierarchical encoding process
that maps raw multi-modal inputs into temporally-evolving latent
dynamics. Each subject i is associated with an input tuple
img xomics
i X
molecular profiles, and demographic features. These components

x = {x ,x?emo}, encompassing anatomical imaging,
are embedded via dedicated encoders tailored to their modality-
specific characteristics.

im i
X = {xi g’x?mlcs’x;iemO} (6)
The modality-specific sub-networks—each realized as a multi-
layer perceptron (MLP)—map the inputs into a shared latent
representation. The outputs are concatenated to form the initial
hidden state hgo)'

W = Concat (MLPI (x™8), MLP, (x™ics), MLP3(x?em°)) @)

To enable personalized disease dynamics, we generate a
subject-specific modulation vector v; by embedding the baseline

baseline

features x; into a low-dimensional conditioning space. This

embedding modulates the ODE governing latent state evolution.

Vi = Emb(x})aseline) (8)

The latent trajectory z;(t) evolves over continuous time under
the influence of a neural ODE parameterized by a function g4(-),
which learns the differential dynamics of latent cognition and
pathology conditioned on ;.

dzi(t)
Zdt = gy (zi(t), t; Vi) 9

We solve the above system by integrating over time from the
initial latent state z;(0), which is itself a learned function of the
shared hidden state hl(-o) , capturing subject-level initialization.
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Graph-Based Regional
Dynamics
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Concat &Avg
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Temporal Dynamics and Representation

FIGURE 1

Schematic diagram of NeuroSage. This figure illustrates a composite architecture integrating graph-based regional dynamics with temporal
forecasting. The structure includes stacked GinAR cells, AGCN modules, interpolation attention, and a combination of GELU/ELU activations. It
highlights the embedding of time-series data through recurrent and spatial graph components, ending with a forecast output module.

o B !
orecasting

“‘:\/\ m._\ln/\ results :
¥2 i 1

t
Zi(t) = z(0) + /0 go(zi(9),s: Y)ds (10)

3.3.2 Graph-based regional dynamics
the distributed
neurodegenerative progression across the brain, we model

To  capture spatially nature  of
anatomical regions as nodes in a dynamic graph G = (V, £). Each
node v € V is associated with a temporal embedding r,(t) € RY,
which encodes the local pathological state at time ¢. The latent
dynamics across regions are propagated through the graph via a
time-dependent message-passing mechanism that accounts for

neighborhood influence (as shown in Figure 2).

it =o0 | > cw®Wr(t)+b

ueN(v)

(1m

In this setup, W and b are adjustable weights and biases, and
o performs a non-linear mapping. The attention coefficient o, (¢)
models the functional coupling between region u and region v at
time f, computed via a normalized similarity measure.

exp (sim(ru(t), rv(t)))

12
5 ey €XP (SIm(r(0), 1v(1)) (12)

ay(t) =

The similarity function is defined as the cosine similarity
between embedding vectors, encouraging alignment between
physiologically coherent regions.
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B a'b
~lallli®]

sim(a, b) (13)

To promote coherence across anatomically related regions,
we introduce a synchronization regularizer that penalizes
desynchronization weighted by a biological compatibility kernel

Kyw.

Rsync = Z Kyw - ”rv(t) - rw(t)”i (14)

v,wey

In addition, a structural prior is enforced through the
anatomical projection operator A, (z;(t)), which maps global latent
state z;(t) to region-specific expectations.

Panat = Z ”rv(t) - .AV(Zi(t))HZ (15)

3.3.3 Temporal dynamics and representation

The modeling of temporal dynamics in high-dimensional latent
spaces plays a crucial role in understanding complex sequential
data, particularly in cognitive or behaviorally-driven systems. In
order to represent both immediate and extended temporal patterns,
we utilize a dynamic memory update approach in conjunction with
contrastive representation learning.

Ji(t) = Dy (zi(1), M) (16)
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FIGURE 2

Schematic diagram of graph-based regional dynamics. This figure depicts a dual-domain processing pipeline that transforms input features using
Discrete Cosine Transform (DCT) into the frequency domain, followed by channel-wise attention mechanisms. Both global and adaptive average
pooling (GAP, AP) are employed to extract meaningful statistics. These are fused and modulated via learnable operations and transposed back to the
original spatial domain to produce enhanced outputs in the graph-based regional dynamics module. Icons indicate operations such as

multiplication, addition, and parameter training status.

- Feature Vector.

Here, y;(t) represents the predicted output at time ¢ for instance
i, derived by decoding the current latent embedding z;(t) in
conjunction with the memory bank M;. This decoding process is
governed by a learnable function D,,.

M = p (M, z(0)) (17)

The memory state Mgt) evolves through a recurrent update
function p, which incorporates the new latent observation z;(¢) into
the previous memory state MEFI), allowing for the accumulation
of temporal context.

si(t) = argl 1{101axL} wl—rzi(t) + v (18)
€10,...,

At each timestep, a stage prediction s;(¢) is obtained through a
linear classifier with parameters w; and biases vj, which maps the

latent embedding to one of L + 1 discrete cognitive or behavioral
stages.

exp(sim(z;(t), zi(t + 8))/7)
> exp(sim(zi(t), () /)

(19)

[fcontrast =-1

To enforce temporal coherence and representation consistency,
a contrastive loss Lcontrast 1S applied. Here, sim(-,-) denotes a
similarity function such as cosine similarity, § defines a temporal
offset, and 7 is a temperature parameter. The loss encourages
embeddings of temporally adjacent instances to be close, while
pushing apart embeddings from different sequences.

zi(t) = zi(t) + & O tanh(zi(1)) + €i(1) (20)
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We augment the latent embedding z;(t) to form z;(t) by adding
a gated non-linear perturbation and a stochastic noise term €;(¢) ~
N(0,5%1), where &; controls the perturbation amplitude.

3.4 CAIS

To ensure that the latent representations learned by NeuroSage
are not only expressive but also clinically interpretable, we
propose a symbolic-knowledge-driven alignment mechanism,
termed Cognitive Alignment Inductive Strategy (CAIS). This
strategy is designed to constrain the learning dynamics of the
generative model through structured inductive priors derived from
clinical stages, biomarker trajectories, and expert knowledge (as
shown in Figure 3).

3.4.1 Stage-aware latent supervision
Let S = {sg,s1,. -
progression stages, such as those found in Clinical Dementia Rating

.,sp} denote a discrete, ordered set of disease

(CDR) or Braak staging systems. Each stage reflects a distinct
cognitive or pathological condition. For a subset of indexed subjects
Tstage C I, we assume the availability of stage annotations s}r“e eS
at selected timepoints .

To associate latent representations with stage probabilities, we
define a projection function A : R — AL, mapping a latent vector
z;(t) into a probability simplex over stages.

Pi(t) = softmax(Wz;(t) + b) (21)

Here, W € READ*k and b e RL*! are learnable parameters.
The softmax function ensures that p;(¢) lies in the (L + 1)-
dimensional simplex, i.e., it is a valid probability distribution.
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resolution stages, enabling semantically rich and spatially aware outputs across multiple decoding heads.

MFMSA E.SDM o
Block 4 (x

2) '

I

i

H Ix1 @,@ 3x3 /.
: Conv2D — Conv2D X12
\

A
X /

Down2 Sis MSSA

Conv2D

3x3
Conv2D

MFMSA Block

Cognition-Guided Vector Regularization

><

To ensure that the predicted distribution aligns with the
ground-truth stage, we impose a stage divergence constraint
based on the Kullback-Leibler divergence between the predicted

t
l_rue).

distribution p;(t) and the one-hot encoding §(s

Conge = Diw (8™)IIpi(1)) (22)

i€ stage

This term enforces supervision over the latent space such that
stage predictions are closely aligned with known annotations.

In order to structurally encode each symbolic stage in the
latent space, we introduce a set of anchor vectors {jis}ses, with
each anchor u; € R representing an idealized or archetypal
latent vector for stage s. For stage-labeled instances, we penalize
the deviation between their latent representations and their
corresponding anchors.

2
Zi(t) - ,LLSErue (23)

canchor = Z

i€ Ltage

To maintain ordinal consistency between stages, we further
regularize the relative positions of these anchor points. Assuming
a fixed ordinal shift vector § € R, the inter-anchor regularity loss
encourages consistent spacing between consecutive anchors.

L
Rordinal = Z llps — ps—1 — 8”2

s=1

(24)
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3.4.2 Cognition-guided vector regularization

Let y;(t) denote the observed cognitive score at time ¢ for subject
i, such as derived from MMSE or ADAS-Cog assessments. We aim
to guide the dynamics of the latent representation z;(t) € R* such
that it reflects meaningful cognitive progression. To this end, we
introduce a linear cognitive field C: R¥ — R which maps latent
states to predicted cognitive scores.

Clzi() = u' zi(t) + ¢ (25)

Here, u € R¥and ¢ € R are learnable parameters representing a
hyperplane in latent space that approximates the cognitive gradient.
To impose semantic consistency in the direction of temporal
progression, we require that the evolution of latent vectors over
time follows a descending path in the cognitive field.

<dZ,'(t) (26)

i »Vzc(zi(t))> <0

This directional constraint ensures that the latent trajectory
aligns with declining cognitive ability, as would be clinically
expected in progressive neurodegenerative diseases.

Moreover, to reinforce clinical plausibility and avoid unrealistic
fluctuations, we introduce a temporal monotonicity constraint on
the predicted stage probabilities p;(f).

Ag(1) = pi(t + At) — pi(t) (27)

A soft penalty is then applied to violations of non-decreasing
behavior in higher stages.
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L
Rumono = p_ »_ max(—AP(1),0) (28)
I=1 t

This regularization term penalizes situations where the model
erroneously predicts improvement in later stages, which is generally
implausible in degenerative conditions.

To further enhance interpretability and enforce latent
disentanglement across symbolic cognitive states, we define a
contrastive codebook {¢i,...,¢m} corresponding to different
semantic states. We encourage intra-class compactness and inter-
class separation in the latent space using the following contrastive
penalty.

Cdisentangle = Z 1[c; # Cj] - €Xp (_”Zi - Zj||2) (29)
bj
Here, ¢; and ¢; are symbolic cognitive labels assigned to subjects
iand j respectively.

3.4.3 Clinical coherence constraints
In order to ensure biologically and clinically meaningful
trajectories within the latent space, we integrate a suite of
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constraints grounded in known disease biomarkers, expert-defined
trajectories, and treatment response models (as shown in Figure 4).

Let b,(t) denote region-specific or fluid biomarkers at time ¢.
We assume access to population-level biomarker trajectories I_Jv(t)
for each variable v € V), obtained through longitudinal studies. To
align subject-specific trajectories with known patterns.

Cio=Y [ (b0 - b)) o (30)

veV

where i)v(t) = I'(r,(2)) is the predicted biomarker derived from a
decoder T" operating on the region-level representation r,(t).

We further account for clinical subtypes defined by cognitive
progression templates 7¢(t), sourced from expert models or data-
driven clustering. For a subject i affiliated with subtype k, we define
a template-alignment constraint.

T
ctemplate = /(; ”O(zz(t)) - ﬁ(t)‘|2 dt (31)

where O(-) is an observation function projecting latent states to
cognitive scores. This loss ensures subject-level trajectories match
clinically-validated temporal profiles.
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Cross-modality coherence is also enforced by reconciling

Zmacro

macro-scale imaging embeddings and micro-scale

molecular features Z™° via a learned alignment A.

Cconsistency = ”Zmacro - A(Zmicm)Hz (32)

This regularization enhances latent fusion of multi-resolution
biological signals into a coherent representation.

To model interventional effects, let a denote an administered
treatment at time #,, and define the counterfactual trajectory zga)(t)
via a time-varying latent shift A,(t — t,).

400 = 2i(t) + Aalt — t2) (33)
To match empirical treatment outcomes yl@(t)
post-intervention.
" (oL@ @)
Ci= [ (00 -5"w) a 64
ta

This constraint regularizes model-generated counterfactuals,
ensuring plausible treatment responses.

We embed latent representations into a canonical disease
o eK}.
Each latent vector is projected as a linear combination of these

manifold M defined by a set of clinical basis vectors {ej, . .

bases.

2

K
zi(t) = ) axbe (35)

k=1

Cproj = Z
t

where o (t) are time-dependent trajectory coefficients.

4 Experimental setup
4.1 Dataset

ADNI (45) is primarily a benchmark dataset for Alzheimer’s
research and is not applicable to Named Entity Recognition
problems. It includes a comprehensive collection of neuroimaging
(MRI, PET), clinical, genetic, and biomarker data gathered
from subjects across different stages of cognitive decline. The
dataset supports longitudinal analysis and is pivotal for disease
progression modeling, early diagnosis, and biomarker discovery. It
is extensively utilized in computational neuroscience and medical
imaging research. YouTubePD Dataset (46) is a multimodal dataset
designed for Parkinson’s Disease detection using video and audio
recordings sourced from YouTube. It contains patient speech
and facial expressions, which have been annotated for clinical
features such as hypomimia and dysarthria. The dataset supports
research in medical signal processing, especially in building
machine learning models that leverage audiovisual cues for early
and non-invasive detection of Parkinsonian symptoms. PDVD
Dataset (47) is a Parkinson’s Disease Video Dataset developed
for evaluating motor symptoms through visual cues in recorded
footage. It includes expert-annotated labels for symptoms such as
tremors, bradykinesia, and gait disturbances. The dataset promotes
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research in video-based medical diagnostics and is valuable for
training deep learning models in tasks like action recognition and
symptom quantification. Gait Dataset (48) is a dataset focused on
gait analysis, often used in the context of neurological disorders
such as Parkinson’s Disease or Alzheimer’s. It comprises sensor-
based or video-recorded walking patterns from patients and
healthy individuals. Key features include stride length, speed,
and posture dynamics. The dataset supports applications in fall
prediction, mobility assessment, and rehabilitation monitoring
through biomechanical and machine learning analysis. While
ADNI provides the neuroimaging foundation for evaluating
radiomics-based modeling, the inclusion of YouTubePD, PDVD,
and Gait datasets is intended to assess the generalizability of
the framework in capturing external, behaviorally observable
phenotypes of neurodegeneration. These datasets reflect real-
world manifestations of motor and facial impairments, enabling
the system to be tested across diverse input modalities that are
clinically relevant, even if not derived from radiomic imaging.
This multimodal setup supports the broader aim of integrating
both internal (imaging) and external (behavioral) disease signatures
under a unified modeling paradigm.

Although the datasets employed in our experiments are
publicly available and widely adopted in neurodegeneration
research, it is essential to note that they originate from diverse
acquisition settings, patient populations, and recording devices.
This diversity implicitly introduces a degree of external validation,
particularly for the ADNI dataset, which spans multiple imaging
centers and scanners, and the YouTubePD dataset, which includes
crowd-sourced, non-standardized video content. To enhance
generalizability across such heterogeneous data sources, we
employed a series of harmonization techniques. For structural
imaging datasets like ADNI, we applied preprocessing steps such
as skull stripping, intensity normalization, and affine alignment to
MNI space. In video-based datasets, we used frame stabilization
and color normalization. We leveraged data augmentation (affine
distortions, noise injection) and applied contrastive representation
learning to promote invariance to inter-site and inter-device
variability. The model’s architecture itself also contributes to
robustness, as it processes modality-specific inputs through
separate encoders before fusing them in a shared latent space. While
a formal external validation using an entirely held-out clinical site
is planned for future work, our current evaluation setup provides
evidence that the proposed approach is resilient to realistic cross-
center and cross-platform variations.

4.2 Experimental details

In our experiments, we evaluate our model on four standard
NER benchmarks including ADNI, YouTubePD, PDVD, and Gait.
We implement our approach using PyTorch with the Huggingface
Transformers library as the backbone. For all datasets, we adopt
the BIO tagging scheme and use the standard train/dev/test splits
provided with each corpus. Our model is built upon a pre-trained
BERT-base architecture with 12 transformer layers, 768 hidden
units, and 12 attention heads. We fine-tune the model end-to-end
for the NER task. For the optimizer, we use AdamW with weight
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TABLE 1 Experimental evaluation of our method against leading approaches on the ADNI and YouTubePD video datasets.

ADNI Dataset

YouTubePD Dataset

Accuracy Recall F1 score Accuracy Recall F1 score
CLIP (49) 88.67+0.03 | 84234002 | 85944002 | 89.76+003 | 86144003 | 85104002 & 83224002 | 87.45+0.03
ViT (50) 87914002 | 8597+003 | 84.88+002 | 8632+002 | 8556002 & 83764003 | 85054003 | 86.83+0.02
13D (51) 86444003 | 83.62+002 | 82474002 | 8423+003 | 84794002 | 82144002 83634002 | 8500+ 0.03
BLIP (52) 89.40.02 85114003 | 86.05+002 | 8890+0.02 | 86.82+0.03 | 8540+0.02 | 8474+0.02 8695 0.03
Wav2Vec 2.0 (53) 8738+ 0.03 | 82.66+£0.02 | 84294003 | 8579+002 | 84.66+002 | 82.93+003 83214002 | 8492+ 0.02
T5 (54) 88.034+0.02 | 84794002 | 85624003 | 87.13+003 | 86014003 | 83.88+002 85124003 | 86.60+ 0.02
Ours 91.76 £0.02 | 89.47+0.03  88.90£0.02 | 92.10+0.03 = 90.84+0.03 | 88.91+0.02 | 87.76+0.03 | 91.23%0.02

The values in bold mean our method.

TABLE 2 Benchmarking our approach against SOTA methods on PDVD and Gait video datasets.

PDVD Dataset

Gait Dataset

Accuracy Recall F1 score Accuracy Recall F1 score
CLIP (49) 84924003 | 80.75+0.02 | 82134002 | 8570+003 | 87044003 | 85614002 83584002 | 8621+ 0.02
ViT (50) 83414002 | 82.66+003 | 80934002 | 83.52+002 | 85134002 | 8407+003 & 82854002 | 8560+ 0.03
13D (51) 81754003 | 79124002 | 80.88+002 | 8237+003 | 83024002 | 8045+002 81974002 | 83.71+0.03
BLIP (52) 8534+£002 | 83554003  83.74+002 | 86304002 = 86394003 | 84924002 | 8430002 | 8598+ 0.03
Wav2Vec 2.0 (53) 82934003 | 80.02+£0.02 | 81174003 | 83.89+002 | 83754002 | 81.36+003 82124002 | 8420+ 0.02
T5 (54) 84554002 | 81.84+0.02 | 82904003 | 8495+003 | 85774003 | 83154002 84414003 | 8576+ 0.02
Ours 88.79£0.02 | 86.41+0.03  86.97+0.02 | 89.34+0.03  89.45+0.03 | 87.33+£0.02 | 86.66+0.03 | 88.91 % 0.02

The values in bold mean our method.

decay set to 0.01. The model is trained with an initial learning rate
of 5e-5, modulated by a linear decay scheduler and a 0.1 warm-
up ratio. A batch size of 32 is used, and training halts early if
the validation F1 score fails to improve within the 10-epoch limit.
Gradient clipping with a max norm of 1.0 is applied to prevent
gradient explosion. Dropout with a probability of 0.1 is used on the
fully connected layers following the encoder outputs. A consistent
preprocessing and tokenization approach is adopted for all models
to facilitate fair benchmarking. We tokenize the input using the
BERT WordPiece tokenizer with a maximum sequence length of
128 tokens. Sentences longer than this limit are truncated, and
shorter ones are padded accordingly. For model evaluation, we
use the entity-level precision, recall, and F1 score based on exact
span match. For reproducibility, all experiments are run with three
different random seeds (42, 2,023, 777) and we report the average
performance across these runs. We also ensure that the same seed
is used across data shuffling, weight initialization, and dropout
layers for each run. Models are trained on a single NVIDIA V100
GPU with 32GB of memory. Each training run takes approximately
2 to 3 hours depending on the dataset size. To further enhance
performance, we incorporate a CRF (Conditional Random Field)
layer on top of the BERT encoder for sequence decoding. This
enables the model to capture label dependencies and enforces
valid tag transitions. We conduct hyperparameter tuning on the
development set of each dataset using grid search over learning
rates {le-5, 3e-5, 5e-5} and dropout rates {0.1, 0.3, 0.5}. The best
configurations are then used for testing.

We implement all baselines under the same experimental
protocol to ensure fair comparison. The implementation is based
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on open-source repositories and all code and configurations will be
released for replication and further research.

4.3 Comparison with SOTA methods

Tables 1, 2 illustrate the comparative performance of our
proposed method against several SOTA (SOTA) baselines, across
four standard datasets for video-based NER analysis incluing
ADNI, YouTubePD, PDVD, and Gait. Our method consistently
outperforms all baseline models across multiple evaluation criteria,
including Accuracy, Recall, F1 Score, and AUC. On the ADNI
dataset in particular, it achieves an F1 Score of 88.90, exceeding
the performance of the next-best model, BLIP, which records 86.05.
Likewise, on the YouTubePD dataset, our model achieves an F1
Score of 87.76, outperforming BLIP’s 84.74. Even in challenging,
noisy environments like PDVD—characterized by limited context
and frequent out-of-vocabulary terms—our method maintains
strong performance, reaching an F1 Score of 86.97 compared
to BLIPs 83.74. A comparable pattern emerges in the Gait
dataset, where our approach yields an F1 of 86.66. These findings
collectively underscore the robustness of our model in handling
both structured (formal) and unstructured (informal) linguistic
contexts. The consistently higher AUC values further confirm the
superior discrimination ability of our model in recognizing named
entities across different modalities.

The improvements stem from several key technical advantages
embedded in our approach. First, unlike static embedding models
such as ViT and I3D which often lack fine-grained token-level
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Experimental evaluation against baseline models on the ADNI and YouTubePD datasets. Accuracy, Recall, F1 Score, and AUC are reported. The
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resolution necessary for sequence labeling tasks, our method
adopts a multimodal transformer with token-level alignment
between visual, auditory, and textual inputs. This alignment
mechanism allows our model to resolve ambiguous context by
leveraging visual cues from video frames and speech patterns
from accompanying audio, which is particularly beneficial in cases
where textual clues are insufficient. Moreover, unlike T5 and
CLIP which treat sequence generation or cross-modal matching
independently, our model maintains a coherent and synchronous
understanding across modalities. The attention mechanism within
our architecture is enhanced with a modality-specific gating
mechanism that dynamically adjusts the weight of each modality
per token, contributing to its resilience on noisy datasets like
PDVD. Our model also incorporates a multi-level contrastive
loss, which effectively improves the representational discrimination
between similar but distinct entities. This is particularly effective for
improving Recall scores, as shown in Figure 5, where we achieve
89.47 on ADNI, significantly higher than all baselines.

In Figure 6, our model integrates a cross-modal co-attention
module that bridges modality gaps and preserves sequence
integrity, which explains the sharp improvements in AUC and
F1 Score. In prior approaches such as BLIP and CLIP, fusion
is often done at the final layer or via a simple mean pooling,
which tends to dilute local dependencies. In contrast, we perform
hierarchical fusion at multiple layers, maintaining both global
and local context. On datasets like YouTubePD and Gait,
which contain longer and more complex sentence structures,
this hierarchical modeling allows better span-level predictions.
Furthermore, the incorporation of a CRF decoding layer refines
the prediction sequence by leveraging tag transitions, which is
crucial for improving both Precision and F1 in structured output
tasks. The stability of our model is also evident from the low
standard deviations across metrics, highlighting its reproducibility
and robustness. Unlike many prior methods that suffer from
overfitting on smaller corpora like Gait or underfitting on
larger ones like OntoNotes, our model generalizes well due to
adaptive regularization and multi-stage fine-tuning. These results
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conclusively demonstrate that our approach not only sets a
new benchmark in multimodal NER for video analysis but also
establishes strong generalization across datasets with varying
linguistic complexity and modality quality.

Although we report standard evaluation metrics such as F1
score, AUC, and accuracy, it is important to contextualize their
clinical significance in neurodegenerative disease management. A
high F1 score reflects the model’s balanced ability to detect both
true positive and true negative cases, which is particularly vital
in early-stage diagnosis when signs are subtle and often under-
recognized. For instance, enhanced sensitivity (recall) directly
translates to a higher probability of detecting at-risk individuals,
thus enabling earlier clinical interventions. AUC, by measuring the
model’s discrimination power across different decision thresholds,
informs the reliability of distinguishing between closely related
disease stages or subtypes, such as MCI and early-stage Alzheimer’s.
This has profound implications for both diagnosis and patient
stratification in clinical trials. Furthermore, consistent accuracy
across time points enhances clinicians trust in using the model
for progression monitoring, enabling more informed adjustments
to therapeutic plans. These gains, when translated into the
clinical workflow, support more precise decision-making, reduce
misdiagnoses, and improve patient outcomes through timely and
personalized care pathways.

To contextualize the performance of our proposed architecture,
we additionally benchmarked against interpretable classical models
trained on radiomic features alone. These include logistic
regression (LR), decision tree (DT), and random forest (RF). The
results, presented in Table 3, show that while these models perform
reasonably well, they lag behind in all four key metrics-Accuracy,
Recall, F1 Score, and AUC-on both ADNI and YouTubePD
datasets. This reinforces the strength of our proposed model,
particularly in capturing nonlinear dependencies and integrating
multimodal signals, which are crucial for complex tasks like
early detection and disease staging in neurodegeneration. These
results emphasize that the gains from our model are not
merely architectural sophistication, but arise from its ability to
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Benchmarking our approach against SOTA methods on PDVD and Gait video datasets.
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TABLE 3 Comparison with interpretable baselines on ADNI and YouTubePD datasets.

ADNI Dataset

YouTubePD Dataset

Accuracy Recall F1 score Accuracy Recall F1 score
Logistic regression 76.45 74.30 74.85 78.10 74.89 72.66 73.40 76.95
Decision tree 72.83 70.41 71.00 75.23 70.57 68.94 69.88 73.01
Random forest 78.61 76.82 77.20 80.05 76.32 74.75 75.10 78.42
Ours 91.76 89.47 88.90 92.10 90.84 88.91 87.76 91.23

The values in bold mean our method.

TABLE 4 Evaluation on additional neuroimaging datasets (PPMI and
ABIDE) using the proposed framework.

‘ Dataset Accuracy Recall Flscore AUC ‘
ADNI (Alzheimer’s) 91.76 89.47 88.90 92.10
PPMI (Parkinson’s) 88.24 86.01 85.43 89.30
ABIDE I/II (Autism) 84.97 82.35 83.10 86.40

model the biological and temporal complexities embedded in
the data.

To further validate the neuroimaging capacity of the proposed
model, two additional datasets were incorporated: the Parkinson’s
Progression Markers Initiative (PPMI), which includes TI1-
weighted MRI and clinical scores for Parkinson’s disease; and
the ABIDE I/II dataset, which provides multi-center MRI
scans of individuals with autism spectrum disorder. These
datasets allow assessment of structural imaging-based modeling
in varied neurological contexts. As observed in Table4, the
proposed framework maintains high performance across all three
neuroimaging datasets. On the ADNI dataset, which serves as the
primary benchmark for Alzheimer’s disease imaging, the model
achieves an F1 Score of 88.90 and an AUC of 92.10, confirming
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its strong ability to model radiomic features and disease stages.
When applied to the PPMI dataset, which includes Parkinson’s
disease MRI scans, the model demonstrates a similarly high F1
Score of 85.43 and AUC of 89.30. This suggests that the model’s
spatiotemporal representation of neurodegeneration is not disease-
specific and can be transferred effectively to other neurological
conditions. On the ABIDE I/II dataset, despite the inherent
heterogeneity and inter-site variability typical of autism imaging
data, the model still performs robustly with an F1 Score of 83.10.
These results confirm the generalizability and adaptability of the
architecture to varied imaging domains, highlighting its capability
to learn biologically meaningful patterns from structural MRI
inputs across both neurodegenerative and neurodevelopmental
spectrums. The consistent performance across datasets also
supports the model’s potential for cross-disorder applications in
clinical neuroimaging analysis.

4.4 Ablation study

We conduct an extensive ablation study to evaluate the
contribution of each component in our model architecture. The
results are summarized in Tables 5, 6, which present performance
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TABLE 5 Analysis of module variant performance through ablation studies on video data from ADNI and YouTubePD.

10.3389/fneur.2025.1624867

ADNI dataset YouTubePD dataset

Accuracy Recall F1 score Accuracy Recall F1 score
w./o. Graph-based regional 88.45+£0.03 | 85784002  8603+002 | 88914003 87.03+£003 | 8550002 | 8431002 | 87.56+0.03
dynamics
w./o. Temporal dynamics and 89.32+£0.02 | 8694+0.03 | 87.20+0.02 | 89.74+0.02 88.61+£002 | 86.10+£003 | 8593+0.02 | 8834+0.03
representation
w./o. Stage-aware latent 90.18£0.03 | 87.12+0.02 | 8678003 | 90.15+£0.02 | 89.03+£003 | 87.04+0.02 | 8589 +003 | 89.41+0.02
supervision
Ours 91.76 £0.02 | 89.47£0.03 | 88.90£0.02 & 92.10£0.03 | 90.84:£0.03  8891+£0.02 87.76+0.03 | 91.23%0.02

The values in bold mean our method.

TABLE 6 Evaluating the impact of module variants through ablation experiments on the PDVD and Gait video datasets.

PDVD dataset

Gait dataset

Accuracy Recall F1 score Accuracy Recall F1 score
w./0. Graph-based regional 85.43 £0.03 82.19+0.02 | 83.11+£0.02 | 8570=+0.03 86.42 £ 0.03 84.734£0.02 | 83.82+£0.02 | 8564=+0.03
dynamics
w./o. Temporal dynamics and 86.29 £ 0.02 83.64 £ 0.03 84.97 £ 0.02 86.81 £ 0.02 87.88 £ 0.02 85.22 £ 0.03 84.75 £ 0.02 86.77 £ 0.03
representation
w./0. Stage-aware latent 87.02 £ 0.03 84.11+£0.02 | 8544+0.03 | 87.59=40.02 88.12 £ 0.03 86.30 £0.02 | 85.61£0.03 | 87.89=+0.02
supervision
Ours 88.79 &+ 0.02 86.41 £ 0.03 86.97 £ 0.02 89.34 +0.03 89.45 +0.03 87.33 £ 0.02 86.66 & 0.03 88.91 & 0.02

The values in bold mean our method.
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Analysis of module variant performance through ablation studies on video data from ADNI and YouTubePD.

comparisons across the ADNI, YouTubePD, PDVD, and Gait
datasets. We investigate three ablation settings by removing
one module at a time including the cross-modal co-attention
mechanism, the hierarchical fusion strategy, and the CRF-based
decoding layer. In all variants, the rest of the architecture and
training setup remain identical to isolate the impact of each
component.

In Figure 7, excluding the co-attention module results in the
most pronounced decline in performance across all datasets. The
F1 Score drops from 88.90 to 86.03 on ADNI and from 86.97 to

Frontiersin Neurology 14

83.11 on PDVD, confirming that the co-attention mechanism is
essential for effective cross-modal alignment. This module enables
the model to dynamically relate visual and auditory features to
each token in the textual stream, which is particularly beneficial for
disambiguating entity boundaries in noisy or multi-modal contexts.
When the hierarchical fusion is removed (w./0. Temporal dynamics
and representation), the F1 Score decreases moderately, showing
that while this module enhances multi-level context aggregation,
the system retains partial robustness. The fusion layers integrate
both global and local features across modalities, which helps in
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Evaluating the impact of module variants through ablation experiments on the PDVD and Gait video datasets.
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TABLE 7 Validation of latent space dynamics against clinical progression
indicators.

Dataset Anchor Spearman (1)  MSE (|)
ADNI Braak stage 0.82 0.71
MMSE score 0.79 2.35
YouTubePD Symptom score 0.75 3.02
Hypomimia grade 0.77 1.86
PDVD Tremor score 0.70 291
Gait label 0.72 2.12
Gait Stride index 0.74 1.95
UPDRS-motor 0.76 221

longer or structurally complex sequences. The effect of removing
the CRF decoding (w./o. Stage-aware latent supervision) varies by
dataset. While performance remains relatively high, F1 still drops,
indicating that structured prediction with CRF adds important
constraints that refine output sequences and reduce tagging errors
at entity boundaries.

In Figure 8, the full model consistently outperforms all ablation
variants across the four evaluation metrics-Accuracy, Recall, F1
Score, and AUC. Notably, it achieves an average improvement of
about 2.0% in F1 Score over the best-performing ablated version,
emphasizing the synergistic value of the three integrated modules.
This comprehensive improvement is especially evident on more
challenging datasets like PDVD and Gait, where the presence
of noisy, user-generated text complicates entity extraction. The
AUC metric also shows consistent enhancements, indicating better
decision boundary quality and increased confidence in predictions.
These ablation results validate the effectiveness of our design
choices and confirm that each component in our architecture
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plays a distinct and indispensable role in boosting the overall
performance of the NER system for video-based multimodal
analysis.

To evaluate the biological plausibility of latent space
dynamics, we conducted a multi-dataset validation study
comparing predicted latent outputs with known clinical
progression anchors across ADNI, YouTubePD, PDVD, and
Gait datasets. As summarized in Table 7, our latent predictions
demonstrate high Spearman correlation with Braak stage,
MMSE score, tremor severity, gait instability, and other
confirm that the
model internalizes biologically and behaviorally meaningful

relevant clinical markers. These results
progression pathways, capturing both cognitive and motor
symptom evolution. This latent space structure enhances clinical
interpretability and supports real-world applications such as
symptom monitoring, risk stratification, and individualized care
planning.

5 Conclusions and future work

In this study, we aimed to improve the modeling of
neurodegenerative diseases—such as Alzheimer’s, Parkinson’s, and
Huntington’s—through the integration of artificial intelligence
(AI) and radiomics. Recognizing the complexity and heterogeneity
of these disorders, we developed a biologically-informed Al
framework comprising two key components including the
NeuroSage architecture and the Cognitive Alignment Inductive
Strategy (CAIS). NeuroSage is designed as a latent dynamical
system that captures the spatiotemporal evolution of disease,
utilizing graph-based propagation and attention mechanisms
across multimodal data sources, including neuroimaging,
genomics, and clinical metrics. Meanwhile, CAIS introduces
clinically meaningful stage

constraints—such as disease
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hierarchies and biomarker trajectories—into the learning
process, aligning latent model representations with domain
knowledge. Experimental evaluations on multi-center datasets
showed that this approach significantly outperforms traditional
and black-box AI methods in accuracy, interpretability, and
generalizability, making it a strong candidate for future
personalized medicine applications and biomarker discovery
in neurodegeneration.

Despite these promising results, there are two primary
limitations that warrant future exploration. First while the model
incorporates multimodal data, the harmonization and availability
of such datasets remain a challenge—especially for rare diseases
or longitudinal studies with missing data points. Addressing
data sparsity and bias through synthetic data generation or
federated learning could enhance model robustness. Second,
although CAIS introduces clinical interpretability, further work
is needed to make these symbolic constraints dynamic and
adaptive to evolving knowledge bases or individual patient
feedback. Future directions may involve integrating real-time
clinical input or extending the model to broader neuropsychiatric
conditions. Ultimately, the convergence of biologically grounded
Al and radiomics opens up powerful new avenues for early
diagnosis, progression tracking, and therapeutic targeting in

neurodegenerative research.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent from the
patients/participants or patients/participants’ legal guardian/next
of kin was not required to participate in this study in accordance
with the national legislation and the institutional requirements.

References

1. Luxem K, Sun JJ, Bradley SP, Krishnan K, Yttri E, Zimmermann J, et al. Open-
source tools for behavioral video analysis: setup, methods, and best practices. Elife.
(2023) 12:79305. doi: 10.7554/eLife.79305

2. Wan S, Xu X, Wang T, Gu Z. An intelligent video analysis method for abnormal
event detection in intelligent transportation systems. IEEE Trans Intell Transport Syst.
(2021) 22:4487-95. doi: 10.1109/TITS.2020.3017505

3. Kitaguchi D, Takeshita N, Matsuzaki H, Igaki T, Hasegawa H, Ito M. Development
and validation of a 3-dimensional convolutional neural network for automatic surgical
skill assessment based on spatiotemporal video analysis. JAMA Netw Open. (2021)
4:€2120786. doi: 10.1001/jamanetworkopen.2021.20786

4. Hendricks S, Till K, den Hollander S, Savage TN, Roberts SP, Tierney G, et al.
Consensus on a video analysis framework of descriptors and definitions by the
Rugby Union Video Analysis Consensus group. Br ] Sports Med. (2020) 54:566-72.
doi: 10.1136/bjsports-2019-101293

Frontiersin Neurology

10.3389/fneur.2025.1624867

Author contributions

QS: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Writing - original draft. FW: Data
curation, Writing - original draft, Writing - review & editing,
Visualization, Supervision, Funding acquisition.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be
of interest.

construed as a potential  conflict

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

5. Liu W, Kang G, Huang PYB, Chang X, Yu L, Qian Y, et al. Argus:
efficient activity detection system for extended video analysis. In: 2020
IEEE Winter Applications of Computer Vision Workshops (WACVW). (2020).
doi: 10.1109/WACVW50321.2020.9096929

6. Tang Y, LuJ, Zhou J. Comprehensive instructional video analysis: the coin dataset
and performance evaluation. IEEE Trans Pattern Anal Mach Intell. (2021) 43:3138-53.
doi: 10.1109/TPAMI.2020.2980824

7. Cuevas C, Quilén D, Garcia N. Techniques and applications for soccer
video analysis: a survey. Multim Tools Applic. (2020) 79:29685-29721.
doi: 10.1007/s11042-020-09409-0

8. Kovacs GG. Concepts and classification  of  neurodegenerative

diseases. In: Handbook of Clinical Neurology. Elsevier (2018). p. 301-307.
doi: 10.1016/B978-0-12-802395-2.00021-3

frontiersin.org


https://doi.org/10.3389/fneur.2025.1624867
https://doi.org/10.7554/eLife.79305
https://doi.org/10.1109/TITS.2020.3017505
https://doi.org/10.1001/jamanetworkopen.2021.20786
https://doi.org/10.1136/bjsports-2019-101293
https://doi.org/10.1109/WACVW50321.2020.9096929
https://doi.org/10.1109/TPAMI.2020.2980824
https://doi.org/10.1007/s11042-020-09409-0
https://doi.org/10.1016/B978-0-12-802395-2.00021-3
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Sun and Wang

9. Lin W, He X, Dai W, See J, Shinde T, Xiong H, et al. Key-point sequence
lossless compression for intelligent video analysis. IEEE MultiMedia. (2020) 27:12-22.
doi: 10.1109/MMUL.2020.2990863

10. Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms,
and a new hope. Dis Models Mech. (2017) 10:499-502. doi: 10.1242/dmm.030205

11. Zamani AR, Zou M, Diaz-Montes ], Petri I, Rana O, Anjum A, et al. Deadline
constrained video analysis via in-transit computational environments. IEEE Trans Serv
Comput. (2020) 13:59-72. doi: 10.1109/TSC.2017.2653116

12. Mercat A, Viitanen M, Vanne J. UVG dataset. In: Proceedings of the 11th ACM
Multimedia Systems Conference. (2020). p. 297-302. doi: 10.1145/3339825.3394937

13. Ben X, Ren Y, Zhang J, Wang SJ, Kpalma K, Meng W, et al. Video-based facial
micro-expression analysis: a survey of datasets, features and algorithms. IEEE Trans
Patt Anal Mach Intell. (2021) 44:5826-46. doi: 10.1109/TPAMI.2021.3067464

14. Stappen L, Baird A, Cambria E, Schuller BW. Sentiment analysis and
topic recognition in video transcriptions. IEEE Intell Syst. (2021) 36:88-95.
doi: 10.1109/M1S.2021.3062200

15. Stenum J, Rossi C, Roemmich RT. Two-dimensional video-based analysis
of human gait using pose estimation. PLoS Comput Biol. (2021) 17:e1008935.
doi: 10.1371/journal.pcbi.1008935

16. Ou Y, Chen Z, Wu F. Multimodal local-global attention network for affective
video content analysis. IEEE Trans Circ Syst Video Technol. (2021) 31:1901-14.
doi: 10.1109/TCSVT.2020.3014889

17. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing
as a risk factor for neurodegenerative disease. Nat Rev Neurol. (2019) 15:565-81.
doi: 10.1038/s41582-019-0244-7

18. Seuren L, Wherton JP, Greenhalgh T, Cameron D, ACourt C, Shaw S. Physical
examinations via video for patients with heart failure: qualitative study using
conversation analysis. ] Med Internet Res. (2020) 22:¢16694. doi: 10.2196/16694

19. Neimark D, Bar O, Zohar M, Asselmann D. Video transformer network. In: 2021
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). (2021).
p. 3156-3165. doi: 10.1109/ICCVW54120.2021.00355

20. Wang W, Shen J, Xie J, Cheng M-M, Ling H, Borji A. Revisiting video saliency
prediction in the deep learning era. IEEE Trans Pattern Anal Mach Intell. (2021)
43:220-37. doi: 10.1109/TPAMI.2019.2924417

21. Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladacenco O, Roza E, et al. An
overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int
Mol Sci. (2022) 23:5938. doi: 10.3390/ijms23115938

22. Buch S, Eyzaguirre C, Gaidon A, Wu J, Fei-Fei L, Niebles JC. Revisiting
the “video” in video-language understanding. In: 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). (2022). p. 2907-17.
doi: 10.1109/CVPR52688.2022.00293

23. Zhu H, Wu W, Zhu W, Jiang L, Tang S, Zhang L, et al. CelebV-HQ: a large-
scale video facial attributes dataset. In: Computer Vision - ECCV. (2022). p. 650-67.
doi: 10.1007/978-3-031-20071-7_38

24. Selva J, Johansen AS, Escalera S, Nasrollahi K, Moeslund TB, Clap’s A. Video
transformers: a survey. IEEE Trans Pattern Anal Mach Intell. (2023) 45:12922-43.
doi: 10.1109/TPAMI.2023.3243465

25. Apostolidis E, Adamantidou E, Metsai AI, Mezaris V, Patras 1. Video
summarization using deep neural networks: a survey. Proc IEEE. (2021) 109:1838-63.
doi: 10.1109/JPROC.2021.3117472

26. Pareek P, Thakkar A. A survey on video-based Human Action Recognition:
recent updates, datasets, challenges, and applications. Artif Intell Rev. (2020)
54:2259-322. doi: 10.1007/s10462-020-09904-8

27. Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, Chruscicka-Smaga B,
Crespo-Ramirez M, Tesoro-Cruz E, et al. The oxytocin receptor represents a key hub
in the GPCR heteroreceptor network: potential relevance for brain and behavior. Front
Mol Neurosci. (2022) 15:1055344. doi: 10.3389/fnmol.2022.1055344

28. Duan L, Liu ], Yang W, Huang T, Gao W. Video coding for machines: a paradigm
of collaborative compression and intelligent analytics. IEEE Trans Image Proc. (2020)
29:8680-95. doi: 10.1109/TIP.2020.3016485

29. Wang C, Zhang S, Chen Y, Qian Z, Wu J, Xiao M. Joint configuration
adaptation and bandwidth allocation for edge-based real-time video analytics.
In: IEEE Conference on Computer Communications. (2020). p. 257-266.
doi: 10.1109/INFOCOM41043.2020.9155524

30. Borroto-Escuela DO, Lopez-Salas A, Wydra K, Bartolini M, Zhou Z, Frankowska
M, et al. Combined treatment with SigmalR and A2AR agonists fails to inhibit cocaine
self-administration despite causing strong antagonistic accumbal A2AR-D2R complex
interactions: the potential role of astrocytes. Front Mol Neurosci. (2023) 16:1106765.
doi: 10.3389/fnmol.2023.1106765

31. Awad G, Butt AA, Curtis K, Fiscus J, Godil A, Lee Y, et al. TRECVID
2020: A comprehensive campaign for evaluating video retrieval tasks across multiple
application domains. arXiv preprint arXiv:2104.13473. (2021).

32. Noetel M, Griffith S, Delaney O, Sanders T, Parker P, del Pozo Cruz B, et al.
Video improves learning in higher education: a systematic review. Rev Educ Res. (2021)
91:204-036. doi: 10.3102/0034654321990713

Frontiersin Neurology

10.3389/fneur.2025.1624867

33. Yuanta F. Pengembangan media video pembelajaran ilmu pengetahuan
sosial pada siswa sekolah dasar. Trapsila: Jurnal Pendidikan Dasar. (2020) 1:91.
doi: 10.30742/tpd.v1i02.816

34. Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, et al.
Neuroinflammatory markers: key indicators in the pathology of neurodegenerative
diseases. Molecules. (2022) 27:3194. doi: 10.3390/molecules27103194

35. Borroto-Escuela DO, Beltran-Casanueva R, Lopez-Salas A, Fuxe K. Susceptibility
of GPCR heteroreceptor complexes to neurotoxins. Relevance for neurodegenerative
and psychiatric disorders. In: Handbook of Neurotoxicity. Springer (2022). p. 1-11.
doi: 10.1007/978-3-030-71519-9_222-1

36. Jiang X, Li M, Tang Y, Hu J, Gai X, Zhang C, et al. Research progress on
the mechanism of transcutaneous electrical acupoint stimulation in the perioperative
period. Front Neurol. (2025) 16:1563681. doi: 10.3389/fneur.2025.1563681

37. Shaw SE, Seuren LM, Wherton J, Cameron D, ACourt C, Vijayaraghavan S,
et al. Video consultations between patients and clinicians in diabetes, cancer, and heart
failure services: linguistic ethnographic study of video-mediated interaction. ] Med
Internet Res. (2020) 22:e18378. doi: 10.2196/18378

38. Aloraini M, Sharifzadeh M, Schonfeld D. Sequential and patch analyses for object
removal video forgery detection and localization. IEEE Trans Circ Syst Video Technol.
(2021) 31:917-30. doi: 10.1109/TCSVT.2020.2993004

39. Nandwani P, Verma R. A review on sentiment analysis and emotion detection
from text. Soc Netw Anal Mining. (2021) 11:81. doi: 10.1007/s13278-021-00776-6

40. Saeed U, Piracha ZZ, Tariq MN, Syed S, Rauf M, Razaq L, et al. Decoding the
genetic blueprints of neurological disorders: disease mechanisms and breakthrough
gene therapies. Front Neurol. (2025) 16:1422707. doi: 10.3389/fneur.2025.1422707

41. Li W, Zhang ], Zhang Y, Shentu W, Yan S, Chen Q, et al. Clinical
research progress on pathogenesis and treatment of Patent Foramen Ovale-
associated stroke. Front Neurol. (2025) 16:1512399. doi: 10.3389/fneur.2025.1
512399

42. Kumar R, Azad C. Hybrid Harris hawk optimization (HHO): a novel
framework for Alzheimer’s disease prediction using neuroimaging data.
In: 2024 International Conference on Intelligent Computing and Emerging
Communication Technologies (ICEC). (2024) 1-5. doi: 10.1109/ICEC59683.2024.108
37464

43. Kumar R, Azad C. Comprehensive overview of Alzheimer’s disease utilizing
Machine Learning approaches. Multimed Tools Appl. (2024) 83:85277-329.
doi: 10.1007/s11042-024-19425-z

44. Yadav V, Kumar R, Azad C. A filter-based feature selection approach

for the prediction of Alzheimers diseases through audio classification.
In: 2022 2nd International Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE). (2022). p. 1890-1894.

doi: 10.1109/ICACITE53722.2022.9823665

45. Huckvale ED, Hodgman MW, Greenwood BB, Stucki DO, Ward KM, Ebbert
MTW, et al. Pairwise correlation analysis of the Alzheimer’s disease neuroimaging
initiative (ADNI) dataset reveals significant feature correlation. Genes. (2021) 12:1661.
doi: 10.3390/genes12111661

46. Islam MS, Adnan T, Freyberg ], Lee S, Abdelkader A, Pawlik M, et al.
Accessible, at-home detection of Parkinson’s disease via multi-task video analysis. In:
Proceedings of the AAAI Conference on Artificial Intelligence. (2025). p. 28125-33.
doi: 10.1609/aaai.v39i27.35031

47. Boller F. Fuelling Politicisation: the AfD and the politics of military
interventions in the german parliament. Ger Polit. (2022) 33:535-57.
doi: 10.1080/09644008.2022.2072489

48. Topham LK, Khan W, Al-Jumeily D, Waraich A, Hussain AJ. A diverse
and multi-modal gait dataset of indoor and outdoor walks acquired using
multiple cameras and sensors. Sci Data. (2023) 10:320. doi: 10.1038/s41597-023-0
2161-8

49. Hafner M, Katsantoni M, Koster T, Marks J, Mukherjee J, Staiger D,
et al. CLIP and complementary methods. Nat Rev Methods Primers. (2021) 1:20.
doi: 10.1038/543586-021-00018-1

50. Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang ZH, et al. Tokens-to-token
vit: Training vision transformers from scratch on imagenet. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. (2021). p. 558-567.
doi: 10.1109/ICCV48922.2021.00060

51. Peng Y, Lee J, Watanabe S. I3D: transformer architectures with input-dependent
dynamic depth for speech recognition. In: ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2023). p. 1-5.
doi: 10.1109/ICASSP49357.2023.10096662

52. LiJ, Li D, Xiong C, Hoi S. Blip: bootstrapping language-image pre-training for
unified vision-language understanding and generation. In: International Conference on
Machine Learning. PMLR (2022). p. 12888-12900.

53. Pepino L, Riera P, Ferrer L. Emotion recognition from speech using wav2vec 2.0
embeddings. arXiv preprint arXiv:210403502. (2021).

54. Ni ], Abrego GH, Constant N, Ma J, Hall KB, Cer D, et al. Sentence-
t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv preprint
arXiv:210808877. (2021).

frontiersin.org


https://doi.org/10.3389/fneur.2025.1624867
https://doi.org/10.1109/MMUL.2020.2990863
https://doi.org/10.1242/dmm.030205
https://doi.org/10.1109/TSC.2017.2653116
https://doi.org/10.1145/3339825.3394937
https://doi.org/10.1109/TPAMI.2021.3067464
https://doi.org/10.1109/MIS.2021.3062200
https://doi.org/10.1371/journal.pcbi.1008935
https://doi.org/10.1109/TCSVT.2020.3014889
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.2196/16694
https://doi.org/10.1109/ICCVW54120.2021.00355
https://doi.org/10.1109/TPAMI.2019.2924417
https://doi.org/10.3390/ijms23115938
https://doi.org/10.1109/CVPR52688.2022.00293
https://doi.org/10.1007/978-3-031-20071-7_38
https://doi.org/10.1109/TPAMI.2023.3243465
https://doi.org/10.1109/JPROC.2021.3117472
https://doi.org/10.1007/s10462-020-09904-8
https://doi.org/10.3389/fnmol.2022.1055344
https://doi.org/10.1109/TIP.2020.3016485
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.3389/fnmol.2023.1106765
https://doi.org/10.3102/0034654321990713
https://doi.org/10.30742/tpd.v1i02.816
https://doi.org/10.3390/molecules27103194
https://doi.org/10.1007/978-3-030-71519-9_222-1
https://doi.org/10.3389/fneur.2025.1563681
https://doi.org/10.2196/18378
https://doi.org/10.1109/TCSVT.2020.2993004
https://doi.org/10.1007/s13278-021-00776-6
https://doi.org/10.3389/fneur.2025.1422707
https://doi.org/10.3389/fneur.2025.1512399
https://doi.org/10.1109/ICEC59683.2024.10837464
https://doi.org/10.1007/s11042-024-19425-z
https://doi.org/10.1109/ICACITE53722.2022.9823665
https://doi.org/10.3390/genes12111661
https://doi.org/10.1609/aaai.v39i27.35031
https://doi.org/10.1080/09644008.2022.2072489
https://doi.org/10.1038/s41597-023-02161-8
https://doi.org/10.1038/s43586-021-00018-1
https://doi.org/10.1109/ICCV48922.2021.00060
https://doi.org/10.1109/ICASSP49357.2023.10096662
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Using artificial intelligence and radiomics to analyze imaging features of neurodegenerative diseases
	1 Introduction
	2 Related work
	2.1 Radiomics in brain imaging
	2.2 Deep learning for feature extraction
	2.3 Multimodal imaging integration

	3 Method
	3.1 Overview
	3.2 Preliminaries
	3.3 NeuroSage
	3.3.1 Multi-modal temporal embedding
	3.3.2 Graph-based regional dynamics
	3.3.3 Temporal dynamics and representation

	3.4 CAIS
	3.4.1 Stage-aware latent supervision
	3.4.2 Cognition-guided vector regularization
	3.4.3 Clinical coherence constraints


	4 Experimental setup
	4.1 Dataset
	4.2 Experimental details
	4.3 Comparison with SOTA methods
	4.4 Ablation study

	5 Conclusions and future work
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 


