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Objective: To investigate the associations between several laboratory parameters
and plasma neurofilament light chain (pNfL) in individuals with multiple sclerosis
(MS), as well as their additional contribution to the established relationships
between pNfL, demographics, and MS disability.

Methods: In this cross-sectional study, we included 638 people with MS (PwMS) and
evaluated pNfL (using fully automated chemiluminescent enzyme immunoassay),
along with demographic, clinical and laboratory variables. Laboratory variables were
preliminary selected using univariate linear regression models and multicollinearity
analysis. A multivariate linear regression model was then employed to determine
independent predictors of pNfL levels. Finally, we used linear regression models to
explore the clinical utility of adjusting pNfL level.

Results: On the multivariate linear regression model, higher pNfL was associated
with older age (Coeff = 0.15; 95%Cl = 0.04, 0.26; p = 0.007), presence of
cardiovascular comorbidity (Coeff = 3.67; 95%Cl = 0.82, 6.51; p = 0.012), higher
alkaline phosphatase (ALP) (Coeff = 0.05; 95%Cl = 0.01, 0.09; p = 0.19), higher
lymphocytes' fraction (Coeff = 0.20; 95%CI = 0.08,0.33; p = 0.001), lower blood
proteins (Coeff = —=4.02;95%Cl = -6.09, —1.96; p < 0.001), and lower hemoglobin
(HB) (Coeff = —=1.01; 95%Cl = -1.73, —0.27; p = 0.007). We confirmed known
association between higher pNfL and worse MS-related disability (Coeff = 2.23;
95%Cl = 1.58, 2.87; <0.001), which did not significantly change after including
selected laboratory variables (Coeff = 1.48; 95%Cl = 0.72, 2.24; p < 0.001).
Conclusion: Although laboratory markers of lymphocyte depletion and
metabolic/nutritional status are correlated with pNfL levels, they do not modify
its relationship with MS disability.

KEYWORDS

multiple sclerosis, neurofilament, laboratory, metabolic status, biomarker

01 frontiersin.org


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1620468&domain=pdf&date_stamp=2025-09-17
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620468/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620468/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620468/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1620468/full
https://orcid.org/0000-0003-2613-3090
mailto:marcello.moccia@unina.it
https://doi.org/10.3389/fneur.2025.1620468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1620468

Nicolella et al.

Introduction

Neurofilaments are neuron-specific cytoskeletal proteins that are
released after neuroaxonal damage in the cerebrospinal fluid (CSF)
and, to a lesser extent, in the peripheral compartment1. The availability
of newer immunoassays has allowed the measurement of
neurofilament light chain (NfL) in different biological matrices,
including blood (1). The possibility to measure plasma NfL (pNfL)
holds potential in many neurological and psychiatric conditions (2, 3).
NfL is elevated in central nervous system diseases and acute and
chronic neuropathies, holding prognostic value (2, 4). In addition, NfL
is associated with the severity of depression and with both subjective
and objective assessments of substance use and substance use disorder
severity, thus providing a biological framework for psychiatric diseases
as well (5, 6).

Multiple sclerosis (MS) currently affects an estimated 1.89 million
people worldwide, with a global prevalence of 23.9 cases per 100,000
population (7). In MS, pNfL has been gaining relevance to predict the
risk of disease worsening (relapses, disability progression, and
magnetic resonance imaging (MRI) lesions) and to monitor treatment
response, which is a cornerstone to prevent disability (8-10).

However, the clinical application of pNfL is limited by the lack of
specificity for MS-related mechanisms. For instance, pNfL significantly
increases with age, according to physiological brain volume loss (11).
More in general, any condition that affects brain health, such as
cardiovascular risk factors and diseases, can lead to raised pNfL levels,
independently from MS (12, 13). Also, pNfL levels can increase due
to lower clearance (e.g., kidney dysfunction) or, by contrast, can
decrease due to hemodilution (e.g., higher BMI) (14, 15).
Consequently, various conditions can influence pNfL levels, raising
questions about its reliability for clinical applications (16).

Many studies have reported alterations in biochemical parameters
in people with MS (PwMS), prompting investigation into the potential
utility of routinely-collected laboratory measures as disease
biomarkers (17, 18). However, while routinely-collected laboratory
measures do not hold specificity for neuro-axonal pathology, they
could detect a wide range of pathological conditions affecting pNfL
concentrations (19-21). When these conditions are accurately
identified, they may provide valuable guidance for interpreting pNfL
values (22, 23). In this context, our aim is to examine the associations
between pNfL and these laboratory variables in PwMS and to assess
their additional contribution beyond the known relationships between
pNIfL, demographic factors, and clinical features.

Methods
Study design and population

This is a secondary analysis of a previous cross-sectional study,
conducted at the Federico II University Hospital (Naples, Italy),
evaluating pNfL and its clinical correlates in PwMS. Hereby, we are
including a large set of laboratory variables along with pNfL (21).
We included consecutive people with a diagnosis of MS, from Sep to
Nov 2023, regardless of age, disability status, or treatment status.
Patients were asked to participate to the study at their scheduled
neurological consultation and blood drawn. The full population is
fully described elsewhere, and this study has been conducted on a
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subgroup with full availability of both pNfL and laboratory
variables (24).

The study was approved by the Federico II Ethics Committee
(332/21). All patients signed informed consent authorizing the use of
anonymized data in line with data protection regulation (GDPR
EU2016/679). The present study was performed in accordance with
good clinical practice and Declaration of Helsinki.

Demographics and clinical variables

Demographic and clinical variables were age, sex, height and
weight [from which we calculated the body mass index (BMI)],
smoking (ever or never smoker), cardiovascular comorbidities (high
blood pressure, high cholesterol, diabetes, atrial fibrillation, stroke,
coronary disease and/or related medications).

MS clinical variable was the expanded disability status scale
(EDSS), a scale ranging from 0 (normal neurological disability) to 10
(death due to MS).

NfL measurement

Fasting blood samples were obtained on the same day of the other
clinical and laboratory assessments. Blood samples were centrifuged
within 3h after draw at 1100 rpm X 10 min, aliquoted into
polypropylene tubes and stored at —80°C. pNfL levels were evaluated
using fully automated chemiluminescent enzyme immunoassay
(LUMIPULSE®, Fujirebio, Tokyo, Japan) and were expressed in
picogram per milliliter (pg/mL).

Laboratory variables

Fasting blood samples were obtained on the same day of the other
clinical and laboratory assessments. Sera samples were obtained from
blood samples in tubes with separation gels by centrifugation at
3500 rpm for 15 min. Serum parameters were determined by a Cobas
prointegrated system (Cobas ISE, Cobas ¢503, Cobas €801, Roche
Diagnostics). Hematological parameters were determined on blood
sample in tubes with EDTA by ADVIA 2120i Hematology System
(Siemens Healthcare GmbH).

Statistical analysis

Study variables were described as mean and standard deviation or
proportion, as appropriate. We performed univariate linear regression
models to identify potential associations between pNfL and the full
set of laboratory variables. Variables that reached a p-value less than
0.05 were later included in multivariable models. We also investigated
the correlations between the selected variables for the presence of
possible multicollinearity. In particular, we used Pearson’s correlation
coefficients for normally distributed continuous variables and
Spearman’s rank correlations for non-normally distributed continuous
variables. If two variables were highly correlated (r > 0.7), only one
was retained in the final analysis, taking into consideration both
biological plausibility and statistical relevance. Finally, a multiple
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linear regression model was employed to determine independent
predictors of pNfL levels. To explore the clinical utility of adjusting
PNIL level, we used linear regression models including pNfL as the
dependent variable, EDSS as the independent variable, and, then,
adjusted age and other laboratory variables identified as significant
from the previous models as covariates.

We performed statistical analyses using Stata 18.0. Normal
distribution of variables and residuals was checked with statistical and
graphical methods. Results are reported as coefficients (Coeft), 95%
confidence intervals (95%CI), and p-values, as appropriate, and were
considered statistically significant for p < 0.05.

Results
Study population

We included 638 PwMS (age 49.73 + 12.41 years; 65.55% females;
PpNfL 14.48 + 14.81 pg./mL). Demographic, clinical, cognitive and
laboratory variables are presented in Table 1.

Univariate models for laboratory variables

On univariate linear regression models, higher pNfL was
associated with older age (Coeft = 0.29; 95%CI = 0.20, 0.37; p < 0.01),
presence of cardiovascular comorbidity (Coeff = 6.58; 95%CI = 4.16,
8.99; p < 0.01), higher urea (Coeff = 0.13; 95%CI = 0.02, 0.258.99;
p =0.020), higher alkaline phosphatase (ALP) levels (Coeff = 0.08;
95%CI = 0.04, 0.12; p < 0.01), higher lactate dehydrogenase (LDH)
(Coeff=0.03; 95%CI=0.01, 0.06; p=0.019), higher, mean
corpuscular hemoglobin (MCH) (Coeft = 0.44; 95%CI = 0.11, 0.77;
p =0.010), higher red cell distribution width (RDW) (Coeff = 1.04;
95%CI=0.22, 1.86; p=0.013), higher plateletocrite (PCT)
(Coeff = 16.06; 95%CI = 0.37,31.75; p = 0.045), higher white blood cell
(WBC) (Coeff=0.01; 95%CI=0.01, 0.01; p<0.01), higher
lymphocytes’ fraction (Coeff = 0.15; 95%CI = 0.03, 0.27; p = 0.015),
higher total lymphocytes (Coeff = 3.35;95%CI = 1.58, 5.13; p < 0.01),
and higher total eosinophils (Coeff = 10.24; 95%CI = 0.50, 19.98;
p =0.039). Lower pNfL was associated with higher iron (Coeff = —0.05;
95%CI=-0.08, —0.01; p= 0.010), higher blood proteins
(Coeft = —4.85; 95%CI = —6.88, —2.82; p <0.01), higher alanine
aminotransferase (ALT) levels (Coeff = —0.09; 95%CI = —0.17, —0.01;
p= 0.027), higher cholinesterase (CHE) (Coeff=-0.00;
95%CI = —0.00, —0.04; p= 0.019), higher hemoglobin (HB)
(Coeff = —1.01; 95%CI = —1.71, —0.30; p = 0.006), higher hematocrit
(HCT) (Coeft = —0.31; 95%CI = —0.57, —0.05; p = 0.021), and higher
fraction (Coeff =—0.13; 95%CI=-0.24, —0.01;
p =0.030). Results of the univariate analyses are reported in Table 1.

neutrophils

Multicollinearity analysis for laboratory
variables

Out of the variables selected from the univariate linear regression
models (p-value less than 0.05), we found positive correlations
between HB and HCT (r = 0.95) and between lymphocytes’ fraction
and total lymphocytes (r = 0.80). Also, we found negative correlation
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between neutrophils’ fraction and lymphocytes’ fraction (r = —0.95)
(Figure 1).

Based on the collinearity, on the results of univariate linear
regression models (size of coeflicients) and on the biological
plausibility of associations, we preferred to retain HB over iron, HCT,
MCH and RDW; lymphocytes’ fraction over WBC, neutrophils’
fraction, total lymphocytes and total eosinophils; blood proteins, ALP
and LDH, over urea, ALT and CHE. Also, we excluded PCT due to
wide confidence intervals.

Multivariate model for laboratory variables

On the multivariate linear regression model including the full set
of variables as covariates (age, presence of cardiovascular comorbidity,
blood proteins, ALP, LDH, HB and lymphocytes fraction, as selected
by univariate models and subsequent multicollinearity analysis for
laboratory variables), older age (Coeff = 0.15; 95%CI = 0.04, 0.26;
p<0.01), presence of cardiovascular comorbidity (Coeff = 3.67;
95%CI=0.82, 6.51; p=0.012), higher ALP (Coeff=0.05;
95%CI =0.01, 0.09; p=0.19), and higher lymphocytes’ fraction
(Coeft = 0.20; 95%CI = 0.08, 0.33; p = 0.001) were associated with
higher pNfL. Also, lower pNfL was associated with higher blood
proteins (Coeff = —4.02; 95%CI = —6.09, —1.96; p < 0.01), and higher
HB (Coeff = —1.01; 95%CI = —1.73, —0.27; p < 0.01) were associated
with higher pNfL (Figure 2). Table 2 shows the association between
pNfl and its independent predictors selected from previous analyses.

Univariate and multivariate models for
EDSS

On univariate linear regression model, higher pNfL was associated
with higher EDSS (Coeff = 2.23; 95%CI = 1.58, 2.87; <0.01). On
multivariate linear regression model including age as covariate,
we confirmed the association between higher pNfL levels and higher
EDSS (Coeff = 1.56; 95%CI = 0.83, 2.89; <0.01). On multivariate linear
regression model including the full set of variables as covariates (age,
presence of cardiovascular comorbidity, blood proteins, ALP, LDH,
HB and lymphocytes fraction, as selected by univariate models and
subsequent multicollinearity analysis for laboratory variables), higher
pNIL levels remained associated with higher EDSS, in the absence of
significant changes in the correlation coefficient (Coeff=1.48;
95%CI = 0.72, 2.24; p < 0.01). Also, we confirmed the associations
between higher pNfL and presence of cardiovascular comorbidity
(Coeft =3.77; 95%CI = 0.96, 6.58; p = 0.009), higher lymphocytes’
fraction (Coeff = 0.21; 95% = 0.09, 0.34, p = 0.001) and between lower
pNfL and higher blood proteins (Coeff = —3.76; 95%CI = —5.81,
—1.72; p<0.01) and higher HB (Coeff = —1.02; 95%CI = —1.74,
—0.30; p < 0.01).

Discussion

Our study showed that several laboratory parameters were
significantly and independently associated with pNfL levels in MS,
likely reflecting both overall metabolic and nutritional status (e.g.,
blood proteins, ALP, LDH, and hemoglobin) and the MS-specific

frontiersin.org


https://doi.org/10.3389/fneur.2025.1620468
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Nicolella et al.

TABLE 1 Demographic, clinical, laboratory variables and associations with pNfL.

10.3389/fneur.2025.1620468

Variable Univariate models
95% CI
Upper
pNIfL (pg/ml) 14.49 + 14.81
Age, years 49.73 £ 12.41 0.29 0.20 0.37 <0.01
Sex, females (%) 449 (65.55%) 2.09 0.24 443 0.079
Cardiovascular 199 (29.35%) 6.58 4.16 8.99 <0.01
comorbidities (%)
Ever Smoking (%) 125 (18.25%) —1.00 -3.99 1.87 0.494
BMI (n = 454) 25.01 £4.58 —0.10 —0.41 0.20 0.501
EDSS, median (range) 3.0 (1.0-8.0) 2.23 1.58 2.87 <0.01
Sodium (mmol/L) 140.71 £ 2.12 0.17 —0.38 0.73 0.542
Potassium (mmol/L) 4.19 +£0.62 1.09 —0.83 3.00 0.266
Chlorum (mmol/L) 104.90 + 4.91 0.07 —0.17 0.31 0.571
Calcium (mg/dl) 9.16 £ 0.53 0.63 —1.58 2.84 0.576
Phosphorus (mg/dl) 3.23+£0.51 0.60 1.68 2.89 0.603
Iron (pg/dL) 85.40 £ 33.28 —0.05 —0.08 —0.01 0.010
Ferritin (ng/ml) 105.60 + 103.18 —0.00 —-0.02 0.01 0.533
Glucose (mg/dl) 76.84 +16.78 0.05 —0.02 0.12 0.157
Urea (mg/dl) 36.18 +10.28 0.13 0.02 0.25 0.020
Creatinine (mg/dl) 0.98 +4.20 0.26 —0.20 0.54 0.064
Blood proteins (g/dl) 6.94 + 0.56 —4.85 —6.88 —2.82 <0.01
Albumin (g/dl) 4.64 £0.48 -1.63 —4.12 0.87 0.201
Uric Acid (mg/dL) 4.65+1.33 —0.21 -1.19 0.77 0.674
Total Bilirubin (mg/dL) 0.64 +0.47 2.42 —0.31 5.15 0.082
Direct Bilirubin (mg/dL) 0.26 £0.11 —0.02 —10.81 10.76 0.996
total cholesterol (mg/dL) 197.21 +40.73 —0.01 —0.04 0.02 0.366
LDL cholesterol (mg/dL) 120.71 + 34.07 0.02 —0.02 0.06 0.287
HDL cholesterol (mg/dL) 55.33 + 14.49 —0.02 0.10 0.06 0.641
Triglycerides (mg/dL) 108.45 + 62.84 —0.01 —0.03 0.02 0.626
AST (U/L) 22.46 £9.47 0.09 —0.04 0.21 0.170
ALT (U/L) 24.28 £17.18 —0.09 —0.17 —0.01 0.027
GGT (U/L) 39.18 + 48.48 —0.00 —0.03 0.02 0.725
ALP (U/L) 79.79 + 28.87 0.08 0.04 0.12 <0.01
LDH (U/L) 209.74 £ 40.78 0.03 0.01 0.06 0.019
CK (U/L) 94.58 + 63.70 —0.01 0.03 0.01 0.402
AMS (U/L) 66.12 +24.10 —0.02 0.07 0.03 0.409
CHE (U/L) 9137.25 + 3860.06 —0.00 —0.00 —0.00 0.019
RBC (x10°/uL) 4.59 +0.60 1.13 -1.09 3.35 0.319
HB (g/dl) 17.53 £ 1.57 —1.01 —-1.71 —-0.30 <0.01
HCT (%) 40.92 £4.22 —0.31 —0.57 —-0.05 0.021
MCV (fL) 87.71 £6.52 —0.15 —0.32 0.02 0.081
MCH (pg/cell) 29.53 £3.34 0.44 0.11 0.77 0.010
MCHC (g/dl) 3348 +1.25 —-0.87 -1.76 0.02 0.054
RDW (%) 13.84 £ 1.36 1.04 0.22 1.86 0.013
(Continued)
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TABLE 1 (Continued)

10.3389/fneur.2025.1620468

Variable Univariate models
95% ClI
Upper

PLT (x10°/uL) 234.06 £ 66.19 0.01 —-0.01 0.03 0.269
PCT (%) 0.24+£0.72 16.06 0.37 31.75 0.045
MPV (fL) 10.18 + 1.39 0.67 —0.14 1.48 0.104
PDW (%) 29.10 +£18.12 —0.04 0.10 0.02 0.216
WBC (x10°/uL) 20.31 +382.38 0.01 0.01 0.01 <0.01
Neutrophils’ fraction 68.95 + 9.66 —0.13 —0.24 —0.01 0.030
Total neutrophils (x10*/uL) 19.46 +9.16 0.49 -0.25 1.24 0.193
Lymphocytes’ fraction 1.09 +0.62 0.15 0.03 0.27 0.015
Total lymphocytes (x10°/uL) 7.60 +2.35 3.35 1.58 5.13 <0.01
Monocytes’ fraction 0.41£0.14 —-0.22 —-0.70 0.25 0.357
Total monocytes (x10°/uL) 2.66 £ 1.91 591 —1.90 13.72 0.138
Eosinophils’ fraction 0.15+0.11 0.26 0.32 0.84 0.386
Total eosinophils (x10°/uL) 0.54 +0.30 10.24 0.50 19.98 0.039
Basophils’ fraction 0.03 £0.03 1.53 —2.20 5.27 0.420
Total basophils (x10°/uL) 3.90 £ 1.50 14.27 19.19 47.73 0.403

Table shows coefficients (Coeff), 95% confidence intervals (95% CI), and p-values from univariate linear regression models, including pNfL levels, as dependent variable, and each
demographic, clinical and laboratory variable, in turn, as independent variable. Significant results (p < 0.05) are reported in bold. BMI, body mass index; EDSS, expanded disability status scale;
LDL, low density lipoproteins, HDL, high density lipoproteins, AST, aspartate aminotransferase, ALT, alanine aminotransferase; GGT, Gamma-glutamyl transpeptidase; ALP, alkaline
phosphatase; LDH, lactate dehydrogenase; CK, creatine kinase; AMS, amylase; CHE, cholinesterase; RBC, red blood cells, HB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume;
MCH, mean corpuscular hemoglobin, MCHC, mean corpuscular hemoglobin concentration; RDW, Red cell distribution width; PLT, platelets; PCT, plateletocrite; MPV, mean platelet volume;

PDW, platelet distribution width; WBC, white blood cell.

response to immunosuppressive therapies (e.g., lymphocyte counts).
While these associations might prove helpful in identifying
pathological states affecting pNfL levels, its clinical utility
remained unaffected.

Looking at laboratory markers of metabolic function, we found
that higher pNfL levels were associated with higher ALP levels and
lower blood proteins. Both ALP and blood proteins reflect liver
function and, more in general, the nutritional status of individuals
(25-27). Ladang et al. (28) and Pratt et al. (29) found that higher blood
NfL levels were associated with more severe stages of muscular loss
and frailty. In keep with this, higher pNfL levels could reflect more
disabling disease, and, in turn, worse nutritional status (30), with
reduced blood proteins and loss of muscle structure, with subsequently
increased ALP (31, 32). Similar consideration could apply to HB,
reflecting the overall iron metabolism and related functional status (as
also shown by associations in univariate models with iron, HCT, MCH
and RDW) (33-37).

Several studies investigated the relationship between nutritional
status and pNfL (19-21). Nilsson et al. (19) reported that in patients
with anorexia nervosa (a condition characterized by severe nutritional
alterations), pNfL levels were significantly increased. This suggests
that a compromised nutritional status may be associated with neuronal
damage detectable through this biomarker. Thota et al. (20)
highlighted that metabolic alterations related to nutritional status,
such as impaired glycaemic control and insulin resistance, were
associated with variations in pNfL levels in middle-aged adults,
suggesting a link between metabolism and neurodegeneration. Wang
etal. (21) found that an higher intake of polyunsaturated fatty acids
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(PUFAS) is associated with lower sNfL levels, which may reflect a
reduced extent of neuroaxonal injury. Altogether, these studies
demonstrated how various aspects of nutritional status can influence
plasma NfL levels, highlighting the need for an integrated evaluation
also of the laboratory parameters in the context of potential
clinical applications.

Inflammation is a major driver of the MS pathophysiology and,
thus, most MS treatments are immunosuppressants and reduce
lymphocyte levels (37). In our previous study on the same population,
we showed lower levels of pNfL in PwMS treated with DMTs when
compared with no treatment, and in PwMS treated with high-efficacy
DMTs when compared with low-moderate efficacy DMTs (24). This
is in line with the current body of literature, showing that the
reduction of pNfL mirrors the level of treatment efficacy (8, 37).
Hereby, we found that higher levels of pNfL were associated with
higher lymphocytes’ fraction, possibly reflecting the use of
medications not affecting lymphocyte levels (i.e., low-efficacy DMTs)
(38, 39).

Additionally, we confirmed that higher pNfL levels are associated
with both older age and the presence of cardiovascular comorbidities
(12, 13). Interestingly, in our previous analysis of the same cohort, the
associations between pNfL and older age as well as between pNfL and
cardiovascular comorbidities appeared interdependent, resulting into
mutually exclusive effects when modeled together. In the current
analysis, however, after accounting for laboratory variables, both age
and cardiovascular comorbidity remained independently associated
with pNfL, suggesting that the interplay between age and comorbidities
is more complex than previously understood (40, 41).
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FIGURE 1

EOStot, total eosinophils; cardiovasc, cardiovascular comorbidity.
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Heatmap of correlations between laboratory variables. Heatmap shows correlations between laboratory variables selected in univariate linear
regression models. The color gradients provide the strength and direction of these associations. ALT, alanine aminotransferase; ALP, alkaline
phosphatase; CHE, cholinesterase; LDH, lactate dehydrogenase; WBC, white blood cell; HB, hemoglobin; HCT, hematocrit; MCH, mean corpuscular
hemoglobin; RDW, red cell distribution Width; PCT, plateletocrite; NEUT, neutrophils fraction; LINF, lymphocytes fraction; LINFtot, total neutrophils;

TABLE 2 pNfL and selected laboratory variables.

Variable Adjusted models
95% ClI
Lower Upper

pNfL

Age 0.15 0.04 0.26 <0.01
Cardiovascular comorbidity 3.67 0.82 6.51 0.012
Blood proteins —4.02 —6.09 —-1.96 <0.01
ALP 0.05 0.01 0.09 0.019
LDH 0.02 —0.00 0.05 0.101
HB —1.01 —-1.73 —-0.27 <0.01
Lymphocytes’ fraction 0.20 0.08 0.33 <0.01

Table shows coefficients (Coeff), 95% confidence intervals (95% CI), and p-values from multiple linear regression models, including pNfL levels, as dependent variable, and age, sex, presence
of cardiovascular comorbidity, blood proteins levels, ALP, LDH, HB and lymphocytes’ fraction as dependent variable. Significant results (p < 0.05) are reported in bold.

Regarding clinical features, we have already analyzed the
associations between pNfL and the clinical characteristics of MS in the
full study population (24). Here, we confirmed a significant relationship
between higher pNfL levels and greater disability (EDSS) (8-10).
Notably, when age was added as a covariate, the association coefficient
decreased from 2.23 to 1.56, suggesting that age-related disease
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progression may partly account for this relationship. Furthermore,
including all laboratory variables in the final multiple regression model
resulted in a minimal further change (coeflicient = 1.48), indicating
that these selected laboratory variables do not substantially influence
PNIL levels or their clinical associations in this neurological disease
population compared to age and cardiovascular comorbidities (42-44).

frontiersin.org


https://doi.org/10.3389/fneur.2025.1620468
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Nicolella et al.

10.3389/fneur.2025.1620468

A 259 . B so Coeff=3.67;
95%Cl1=0.82,6.51;
— 2004 40
- —
\é Coeff=0.15;95%Cl=0.04,0.26; p=0.007 =
2 150+ D 50
= s REF
© -
£ 100+ . P a— . © L0
8 g
a ©
50 a
104
o-
15 o
No CV comorbidity Any CV comorbidity
C 2501 . D 250 .
- =) 2001 Coeff= 0.05; 95%Cl=0.01, 0.09; p=0.019
e 2 150]
= s
g g 100+ . N 3°
w w
< © L
a a . . .
50 s ——
a
2 v .. - -
ol &
20 60 100 140 180 220 260 300 340
ALP(U/L)
E 250 . F 2501 .
—~ 2007 Coeff=-1.01; 95%Cl =-1.73,-0.27; p=0.007 s €00 ] Coeff = 0.20; 95%Cl=0.08, 0.33; p <0.001
£ E
8 1504 & 150+
= =3
- -
£ 100+ s * £ 100 c . = .
w o
© . oo g .o .
o . L3 . a . .ot
Lot
8 9 10 1 2 13 14 16 17 18 5 10 15 20 25 30 35 40 45 50 55
HB(g/dl) Lymphoctyes fraction(%)
FIGURE 2
pNfL and selected laboratory variables. Scatter plots show the associations between plasma neurofilament light chain (pNfL) and age (A), blood
proteins (C), alkaline phosphatase (ALP) (D), hemoglobin (HB) (E) and lymphocytes’ fraction (F) (gray shades represent confidence intervals). Box plot
shows the association between pNfL and cardiovascular comorbidity (B). Coefficients (Coeff), 95% confidence intervals (95% CI), and p values are
presented for significant associations.

A limitation of this study is the inclusion of a population of PWMS
only; therefore, our findings need to be replicated in control groups
and in other neurological and psychiatric diseases (2, 3). Also,
we evaluated clinical utility by using the EDSS, which was the
strongest clinical correlate of pNfL in our previous study. Of course,
the observed pNfL concentrations might have been affected by
unmeasured factors not accounted for in the present study (2, 3, 22).
Furthermore, we did not conduct analyses on the association between
clinical and laboratory variables, as these have already been extensively
explored in previous studies (18, 45). Additionally, since our final
models were derived solely using linear and correlation analyses,
we may have inadvertently excluded variables that exhibit non-linear
relationships with pNfL levels (12).

In conclusion, our study demonstrated that, in PwMS, pNfL levels
not only serve as biomarkers of disability, but are also independently
affected by various laboratory markers, including lymphocyte
depletion and metabolic and nutritional status. The interpretation of
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NfL should carefully take into account not only the clinical suspect,
but also the framework of general laboratory analyses.
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