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Objective: To analyze the characteristic changes in the gut microbiome in
children with obstructive sleep apnea-hypopnea syndrome (OSAHS) and to
investigate the relationship between the gut microbiome and polysomnography
(PSG) results.

Methods: Children diagnosed with primary snoring and OSAHS by PSG were
enrolled in the study group. Nonsnoring children undergoing elective surgery
were selected as the control group. Stool, sleep monitoring data, and medical
history data were collected. The clinical history data were analyzed by SPSS
25.0 software. 16S rRNA high-throughput sequencing technology was used to
analyze the gut microbiome, and relevant biostatistical methods were used to
analyze and describe the characteristics of the gut microbiome.

Results: A total of 62 OSAHS patients (42 mild OSAHS and 20 moderate to
severe OSAHS), 16 primary snoring patients and 46 controls were enrolled
in this study. There were significant differences in the partial alpha diversity
index (observed otus index, Chaol index) and beta diversity under the Jaccard
and unweighted UniFrac distance methods between the mild OSAHS group
and the moderate to severe OSAHS group. There were differences in some
gut microbiome at different levels of phylum, class, order, family, genus and
species between the control group and OSAHS group. There was a significant
difference in the abundance ratio between Firmicutes and Bacteroidetes (F/B),
and the ratio gradually increased among the three groups. The predictive model
for OSAHS diagnosis established by the receiver operating characteristic (ROC)
curve showed that the area under the curve (AUC) of Firmicutes and the F/B
were more than 50%. At the genus level, Akkermansia was positively correlated
with sleep efficiency (SE), Dialister was positively correlated with mean oxygen
saturation (SaO;mean) and lowest oxygen saturation (LSaO,), Escherichia-Shigella
was negatively correlated with total sleep time (TST), and Faecalibacterium was
negatively correlated with the obstructive apnea index (OAI).

Conclusion: The gut microbiome of children with OSAHS is slightly different at
the phylum, class, order, family, genus and species levels. The F/B and Firmicutes
abundance detection have limited predictive capability for the diagnosis of
OSAHS. At the genus level, some gut microbiota were correlated with PSG
indicators.
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1 Introduction

Obstructive sleep apnea-hypopnea syndrome is a disease in
which the upper airway repeatedly collapses during sleep,
affecting sleep structure and normal ventilation and leading to
pathophysiological changes.

OSAHS in children is a multifactorial disorder influenced by
anatomical, neuromuscular, and systemic factors. Among these,
obesity has been shown to play a pivotal role not only by mechanically
narrowing the upper airway but also through its effects on ventilatory
control and systemic inflammation. These mechanisms have been
extensively discussed in the context of obesity hypoventilation
syndrome, which shares overlapping features with pediatric OSAHS
in terms of pathophysiology and ventilatory impairment (1). Given
the emerging role of the gut-lung axis, it is plausible that obesity-
driven alterations in immune and metabolic homeostasis may also
influence the gut microbiota, thereby contributing to the progression
or phenotype of OSAHS in children.

It can cause a series of complications, such as neurocognitive
disorders, maxillofacial dysplasia, hypertension, cardiovascular
disease, and type 2 diabetes (2-4). Therefore, timely diagnosis
and treatment are of great significance for improving
the prognosis.

The normal and stable gut microbiome plays an important role
in promoting digestion and absorption and substance metabolism
and regulating the body’s immunity. Some studies have found that
the gut microbiome is related to endocrine, cardiovascular,
neurological, respiratory, and digestive system diseases (5, 6).
Recently, the relationship between OSAHS and gut microbiome
has become a hot topic. Some changes in gut microbiota have been
found in animal experiments simulating sleep fragmentation and
chronic intermittent hypoxia (7, 8). One study on the gut
microbiota of adults with OSAHS
microecological imbalance in patients with OSAHS, mainly due to

showed an intestinal
the reduction in the relative abundance of probiotics producing
short-chain fatty acids and the increase in pathogenic bacteria (9).
Collado et al. (10) found that the diversity and abundance of gut
microbiome in children who snore were significantly lower than
those in nonsnorers, but the subjects of this study did not
undergo PSG.

Based on the above studies, we speculate that OSAHS can
probably lead to changes in the abundance and composition of gut
microbiota. Therefore, on the basis of clinical diagnosis by PSG
monitoring, we analyzed the abundance, diversity and structure of gut
microbiota in children with OSAHS and explored the relationship
between gut microbiome and PSG monitoring indicators.

Abbreviations: OSAHS, obstructive sleep apnea hypopnea syndrome; PSG,
polysomnography; ROC, the receiver operating characteristic; AUC, the area
under the curve; SE, sleep efficiency; SaO2mean, mean oxygen saturation; LSaO2,
lowest oxygen saturation; TST, total sleep time; OAl, obstructive apnea index; F/B,
the abundance ratio between Firmicutes and Bacteroidetes; OAHI, obstructive
apnea hypopnea index; NREM, no rapid eye movement; REM, rapid eye movement;
ODI, oxygen desaturation index; AHI, apnea hypopnea index; BMI, body mass
index; CIH, chronic intermittent hypoxia; SF, sleep fragmentation; SCFAs, short-

chain fatty acids.
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2 Methods
2.1 Subjects

This study was an observational case-control study conducted
from November 2020 to September 2022 in the Children’s Hospital of
Soochow University. Children aged 2 to 16 years with a chief
complaint of snoring and/or mouth breathing during night sleep were
enrolled, and PSG monitoring was completed at night.

Children, in the same age group, who underwent elective surgery
during the same period and had no clinical manifestations of OSAHS
were enrolled as the control group.

Patients with the following conditions were excluded: children
with inflammatory bowel disease or recent gastrointestinal
dysfunction. Use of antibiotics in the past 60 days, probiotics in the
past 30 days, or anti-inflammatory drugs in the past 15 days.

The study was approved by the ethics committee of Children’s
Hospital of Soochow University (No: 2022CS090).

2.2 PSG monitoring

All patients underwent full-night polysomnography under the
supervision of professionals in a sleep laboratory (Compumedics
Grael). The PSG data collected included obstructive apnea hypopnea
index (OAHI), TST, SE, no rapid eye movement (NREM), rapid eye
movement (REM), oxygen desaturation index (ODI), LSaO,, SaO,eans
OAHI, OAI and apnea hypopnea index (AHI).

Diagnostic criteria of OSAHS in children (3) OAHI was defined
as the sum of obstructive apnea events, mixed apnea events, and
obstructive hypoventilation occurring, on average, every hour of sleep
per night, and OAHI >1 event/h is recommended as the standard
diagnosis of OSAHS in children. Mild OSAHS was defined as 1
event/h < OAHI <5 events/h; moderate OSAHS was defined as 5
events/h < OAHI <10 events/h; and severe OSAHS was defined as
OAHI >10 events/h.

2.3 Stool sample collection

Stool collection tubes were distributed to the parents, and stool
samples were collected cleanly, no less than 100 mg. Within 4 h, it was
transferred to an ultralow temperature refrigerator at —80 °C and was
frozen. Stool samples were collected at admission from children
undergoing elective surgery.

2.4 Microbiome assessment

All fecal samples were tested for 16S rDNA by Lianchuan
Biotechnology Co., Ltd. (Hangzhou, China). The main testing steps
were as follows: DNA from different samples was extracted using
CTAB according to the manufacturer’s instructions. DNA samples
were amplified by polymerase chain reaction (PCR) using bar-coded
primers flanking the V3-V4 [341F (5-CCTACGGGNGGCW
GCAG-3'), 805R (5-GACTACHVGGGTATCTAATCC-3')] region of
the 16S rRNA gene. The PCR products were confirmed with 2%
agarose gel electrophoresis.
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The PCR products were purified by AMPure XT beads (Beckman
Coulter Genomics, Danvers, MA, USA) and quantified by Qubit
(Invitrogen, USA). The amplicon pools were prepared for sequencing,
and the size and quantity of the amplicon library were assessed on an
Agilent 2100 Bioanalyzer (Agilent, USA) and with the Library
Quantification Kit for Illumina (Kapa Biosciences, Woburn, MA,
USA), respectively. The libraries were sequenced on the NovaSeq
PE250 platform.

2.5 Data analysis

Samples were sequenced on an Illumina NovaSeq platform
according to the manufacturer’s recommendations provided by
LC-Bio. Paired-end reads were assigned to samples based on their
unique barcode and truncated by cutting off the barcode and primer
sequence. Paired-end reads were merged using FLASH. Quality
filtering of the raw reads was performed under specific filtering
conditions to obtain high-quality clean tags according to fqtrim
(v0.94). Chimeric sequences were filtered using Vsearch software
(v2.3.4). After dereplication using DADA2, we obtained a feature table
and feature sequence.

Then, according to the SILVA (release 138) classifier, feature
abundance was normalized using the relative abundance of each
sample. Alpha diversity and beta diversity were calculated by
QIIME2. Blast was used for sequence alignment, and the feature
sequences were annotated with the SILVA database for each
representative sequence. Taxonomic differences were analyzed using
LEfSe (linear discriminant analysis effect size) with an LDA score
>2 as the significance cutoff. The relationship between the overall
gut microbiota and PSG indices was analyzed by RDA. The
relationship between gut microbiome and PSG indices was analyzed
by Spearman correlations. The receiver operating characteristic
(ROC) curves of OSAHS diagnosis and prediction were drawn by
SPSS 25.0 software.

2.6 Statistical analyses

SPSS 25.0 software was used to analyze the clinical data. The
Mann-Whitney U test was used to compare the differences
between the two groups. The Kruskal-Wallis test was used for
comparisons between multiple groups. The chi-square test was
used for gender. For all results, p<0.05 was considered
statistically significant.

3 Results

3.1 Demographic data of enrolled
children

A total of 124 patients were included in the study, consisting of
62 patients with OSAHS (42 patients in the mild OSAHS group, 20
patients in the moderate to severe OSAHS group), 16 patients with
primary snoring, and 46 controls. There was no significant
difference in age, sex or BMI among the three groups (p > 0.05)
(Tables 1, 2).
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There were significant differences in the (ODI, LSaO,, SaOpeans
OAHI, OAI and AHI) among the primary snoring group, mild
OSAHS group and moderate to severe OSAHS group (p < 0.05), while
there were no significant differences in other indicators (TST, SE,
NREM, and REM) (Table 3).

3.2 Biological analysis

3.2.1 Analysis of diversity

Analysis of alpha diversity: The Good’s coverage index of the
control group, primary snoring group and OSAHS group was
significantly close to 1, and there was no significant difference among
the other indices. The observed otus and chao 1 index in the mild
OSAHS group were significantly higher than those in the moderate to
severe OSAHS group (p < 0.05).

Analysis of beta diversity: In PCoA, there was no significant
difference in distance among the control group, primary snoring
group and OSAHS group (p > 0.05) (Figure 1). In the mild OSAHS
group and the moderate to severe OSAHS group, the distance
differences under the Jaccard and unweighted UniFrac distance
methods were statistically significant (both p < 0.05). Therefore, the
composition of the gut microbiome structure was different between
the two groups (Figure 2).

TABLE 1 Demographic data of OSAHS group, primary snoring group and
control group.

Primary Control H/Z p
snoring group
group
Number 62 16 46 - -
Age (years) 4(6,9) 5(7,8) 4(5,9) 1455 | 0.483
Sex (male/
48/14 10/6 32/14 1.757° | 0415
female)
16.5 (14.6, 14.6 (15.4, 15.0 (16.2,
BMI (kg/m?) 1.714* | 0.425
20.8) 20.1) 17.9)

BMI, body mass index.
“Kruskal-Wallis H test.
"Chi-square test.

TABLE 2 General data of mild OSAHS group moderate to severe OSAHS
group moderate to severe OSAHS group.

Mild Moderate to

OSAHS severe

group OSAHS group
Number 42 20 - -
Age (years) 5.0 (6.5, 9.0) 3.3(5.0,8.3) —1.719° | 0.086
Sex (male/female) 32/10 16/14 0.00° 0.99

15.2 (16.6,
BMI (kg/m?) 208) 14.1 (15.8,22.4) —0.738" | 0.461

BMI, body mass index.
“Mann-Whitney U test.
"Chi-square test.
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TABLE 3 Sleep monitoring results of children with mild OSAHS, moderate to severe OSAHS and simple snoring.

10.3389/fneur.2025.1615891

Mild OSAHS Moderate to severe OSAHS Simple snoring H p
TST (min) 440.25 (396.75, 479.63) 445.75 (420.75, 495.13) 454,50 (424.13, 504.63) 2.07 0.36
SE (%) 84.55 (73.40, 93.10) 83.25 (80.33, 90.08) 87.40 (75.20, 90.90) 0.24 0.89
NREM (%) 80.60 (76.08, 86.23) 78.20 (74.65, 83.98) 81.75 (78.28, 84.03) 212 035
REM (%) 19.40 (13.78, 23.60) 21.80 (16.00, 25.38) 18.25 (16.00, 21.80) 243 023
ODI (>4%) 0.50 (0.10, 1.23) 5.20 (1.43,9.25) 0.10 (0.00, 0.425) 33.75 <0.01
LSa0, (%) 91.00 (88.00, 93.00) 83.00 (73.25, 88.00) 93.00 (91.00, 94.00) 33.59 <0.01
820 a0 (%) 97.00 (96.00, 98.00) 96.00 (95.25, 97.00) 98.00 (97.00, 98.00) 8.94 0.01
OAHI (events/h) 2.35 (1.55, 3.33) 12.15 (6.40, 16.03) 0.60 (0.1, 0.70) 63.08 <0.01
OAI (events/h) 0.00 (0.00, 0.10) 1.95 (0.03, 5.40) 0.00 (0.00, 0.00) 27.01 <0.01
AHI (events/h) 1.75 (1.30, 2.93) 5.85 (1.68, 15.88) 0.60 (0.13, 0.70) 38.07 <0.01

TST, total night sleep time; SE, sleep efficiency; NREM, no rapid eye movement; REM, rapid eye movement; ODI, oxygen desaturation index; LSaO,, lowest oxygen saturation; SaOpean, the
mean oxygen saturation; OAHI, obstructive apnea hypopnea index; OAI, obstructive apnea index; AHI, apnea hypopnea index; Kruskal-Wallis H test.

Bray curtis(P=0.208) Jaccard(P=0.081)

025 02
;‘.';_ Groupg Group
= o000 lc @ [+l ¢
< @ g [H H
8 o] T 8 00 [e] T
[ [

=025

-02
-0.50 0.00 0.25 0.50 -050 025 0.00 0.25 0.50
PCoA1(10.86%) PCoA1(6.31%)

weighted Unifrac(P=0.426)

unweighted Unifrac(P=0.105)

0.3
© 04
0.2
02
> —_—
> =2
= Group b
q - ~N
[ |lejc =
2 H 2 0.0
8 0.0 le] T o
& -4
-01 -0.2
02 -04

00 00
PCoA1(19.68%) PCoA1(30.89%)

FIGURE 1
PCoA of control group, primary snoring group and OSAHS group. PCoA is analyzed through bray curtis (A), jaccard (B), unweighted unifrac (C), and

weighted unifrac (D) distance matrices. C, control group; T, OSAHS group; H, simple snoring group.

3.2.2 Species composition and diversity

At the phylum level, it was mainly composed of Firmicutes
(45.84%), Actinobacteriota (25.34%), Bacteroidota (15.47%),
Proteobacteria (10.33%) and Verrucomicrobia (1.57%). At the genus
level, it was mainly composed of Bifidobacterium (23.44%),
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Bacteroides (11.72%), Faecalibacterium (7.65%), Escherichia-Shigella
(5.31%) and Streptococcus (3.32%) (Figure 3).

LEfSe analysis showed that at the phylum level, the abundance of
Firmicutes in the OSAHS group was significantly higher than that in
the primary snoring group and control group. At the genus level, the
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PCoA of mild OSAHS group and moderate to severe OSAHS group. PCoA is analyzed through bray curtis (A), jaccard (B), unweighted unifrac (C), and
weighted unifrac (D) distance matrices. T1, mild OSAHS group; T2, moderate to severe OSAHS group.

abundance of Bacteroides was significantly higher in the control group
than in the other two groups (Figure 4).

Comparison of the top 10 abundant gut microbiome between the
control group and the OSAHS group: At the phylum and genus levels, the
abundance of Firmicutes, Verrucomicrobia, and Akkermansia in the
OSAHS group was significantly higher than that in the control group, and
the abundance of Bacteroides, Escherichia-Shigella, and Parabacteroides
in the control group was significantly higher than that in the OSAHS
group, all with statistical significance (LDA score >2) (Figure 4).

At the phylum level, the F/B were significantly higher in the
OSAHS group than in the control group (p < 0.05) (Figure 5).

3.2.3 Analysis of gut microbiome and PSG indices

The ROC of OSAHS diagnosis and prediction was established by
the top 10gut microbiome with significant differences and abundance
at the phylum and genus levels. Only Firmicutes had an ROC-AUC of
62.4%, a sensitivity of 82.3%, a specificity of 43.5%, and a cutoff value
of 41.5 (Figure 6).

The ROC curve was drawn using the F/B, and the ROC-AUC was
64.8%, the sensitivity was 70.5%, the specificity was 60.9%, and the
F/B was 4.3 (Figure 7).

Based on the results of species analysis, the top 10 gut microbiota
with average abundance at the genus level in the primary snoring
group and OSAHS group were selected for RDA. The results showed
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that RDA1 was 6.359% and RDA2 was 4.922%. The Envfi test showed
that only ODI was positively correlated with the abundance of gut
microbiome (RDA1 = 0.68, p = 0.014). LSa0O,, SaO,pnean, OAHI, AHI
and BMI were negatively correlated with the abundance of gut
microbiome (RDA1l=-0.79, p<0.01; RDAl=-098, p<0.01;
RDA1 =-0.31, p = 0.011; RDA1 = —0.23, p = 0.032; RDA1 = —0.07,
p =0.045), and the other indicators were not statistically significant
with the abundance of gut microbiome (Figure 8).

Spearman analysis showed that at the genus level, Akkermansia
was positively correlated with SE (r = 0.24, p = 0.03). Dialister was
positively correlated with SaO,,., and LSaO, (r=0.25, p =0.03;
r=0.24, p=0.04) and negatively correlated with BMI and OAHI
(r=-0.31, p=0.01; r=—0.26, p = 0.02). Escherichia-Shigella was
negatively correlated with TST (r=—0.24, p =0.04). The genus
Faecalibacterium was positively correlated with age (r = 0.27, p = 0.02)
and negatively correlated with OAI (r = —0.33, p < 0.01). There was no
significant correlation between the remaining gut microbiota and
sleep monitoring data (Figure 9).

4 Discussion

In this study, we found that the abundance of gut microbiome in
children with OSAHS was changed compared with that in healthy
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children. Focusing on the correlation between gut microbiome and
PSG indicators, it was found that some types of gut microbiome
changed with the severity of OSAHS.

There was no significant difference in alpha diversity and beta
diversity among the three groups, indicating that the number, diversity
and evenness of the gut microbiome were basically the same. This is
similar to the results of previous studies in adults, and is in contrast to
the results in animal models (9-12). It was assumed that the animal
model was only induced by chronic intermittent hypoxia (CIH) or
sleep fragmentation (SF) mediated changes in gut microbiome under
the control of the environment, dietary habits and other factors.
OSAHS children leads to

However, in human adults and
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pathophysiological changes such as CIH and SF, and there is no single
factor mediating the changes in gut microbiome.

Further comparison between the mild OSAHS group and the
moderate to severe OSAHS group showed that the observed otus
index and Chao 1 index were statistically significant, indicating that
the number of species in the moderate to severe OSAHS group was
lower than that in the mild OSAHS group. Under the application of
Jaccard and unweighted UniFrac distance methods, the distance
difference between samples was statistically significant, indicating
that there was a significant difference in species composition between
the two groups when only considering the presence/abundance of
taxa. The results suggest that the number and abundance of gut
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Histogram of the LDA distribution. The relative abundance of the most discriminative fecal metabolites was compared between groups according to
LEfSe (A,B). C, control group; T, OSAHS group; H, simple snoring group
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Receiver operating characteristic (ROC) curve analysis of the top 10 abundant gut microbiome with significant differences at phylum and genus level.
“p" stands for phylum level; “g” stands for genus level; Firmicutes: AUC62.4%, Verrucomicrobia: AUC37.4%, Escherichia-Shigella: AUC37.9%,
Parabacteroides: AUC35%, Akkermansia: AUC37.2%, Bacteroides: AUC38.8%.

microbiome in children with OSAHS decrease with the severity
of disease.

The composition of gut microbiota varies among individuals and
is relatively unique at the genus and phylum levels (13). Therefore, this
study focuses on the analysis of the composition at the phylum and
genus levels. At the phylum level, the OSAHS group was similar to a
study by Valentini et al. (14) but the group differed at the genus level.

Frontiers in Neurology

This may be due to differences in grouping, study design, geographical
location, and other factors.

It was found that the F/B gradually increased with the
appearance of OSAHS in our study, which is different from
Moreno-India’s study (12). An increase in the F/B is a marker of
structural changes in the gut microbiota in obese individuals (15).
Several studies have found that these changes may promote weight
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the genus level and sleep monitoring results in primary snoring group
and OSAHS group. Red arrows represent PSG indicators and blue
arrows represent gut microbiota; when the angle is acute, the two
factors are positively correlated; when the angle is obtuse, the
correlation is negative; the longer the ray is, the greater the effect of
the factor.
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gain and increase energy absorption (16, 17). Kahleova et al. (18)
found that the smaller the reduction in Bacteroides fragilis in the
Bacteroidetes phylum, the greater the reduction in body weight,
fat mass and visceral fat. Therefore, it remains to be seen whether
oral probiotics can be used in the future to adjust the F/B and
thereby reduce the potential risk of obesity in children
with OSAHS.

We found that as ODI increased, the overall abundance of gut
microbiota gradually increased according to RDA. This may be related
to the fluctuation of oxygen saturation caused by CIH. As fluctuation
increases, some gut microbiome increase to adapt to changes in the
internal environment. However, as OSAHS worsens, the overall
intestinal dominant flora gradually approaches anaerobes and
facultative anaerobes, eventually leading to a decrease in gut
microbiome abundance.

Using Spearman analysis, we found that some gut microbiota were
correlated with sleep monitoring indicators at the genus level, but the
degree of correlation was not high. These gut microbiome were
associated with metabolic diseases related to OSAHS (15, 19-22).
Therefore, it is suggested that the changes in the gut microbiome in
OSAHS play a mediating role in related metabolic diseases.

The gut microbiota produces short-chain fatty acids (SCFAs),
including butyrate, propionate, and acetate, through the fermentation of
dietary fiber. Both OSA and SCFAs are associated with the development
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Spearman correlations of the top 10 gut microbiota with average abundance at the genus level and sleep monitoring results in primary snoring group
and OSAHS group. The r values are represented by gradient colors r values are expressed in gradient colors, with darker colors showing higher
correlations. Red cells indicate positive correlations and blue cells indicate negative correlations. *p < 0.05, and **p < 0.01.

of hypertension (23, 24). Hypertensive patients demonstrate an increased
F/B, concomitant with reductions in butyrate-producing bacteria (25).
Butyrate can maintain intestinal barrier function by upregulating the
expression of mucin-associated genes (MUC1-4) in intestinal epithelial
goblet cells (21, 22). Kahleova et al. (18) found that the genus
Faecalibacterium was positively correlated with butyrate levels. Tang et al.
(26) found that the levels of Faecalibacterium were significantly decreased
in patients with type 2 diabetes mellitus complicated by OSAHS. In our
study, as the severity of OSAHS increased, the abundance of
Faecalibacterium gradually decreased. Unfortunately, the content of SCFA
was not detected in this study, so we speculate that OSAHS changes gut
microbiome and indirectly affects the metabolism of gut microbiome.
In this study, it was found that the ROC-AUC of Firmicutes and
the F/B was more than 50%. Although both of them have certain
predictive value, the accuracy and specificity are not high, indicating
that the detection of Firmicutes and the F/B still have limitations in
predicting OSAHS. It is speculated that on the basis of PSG diagnosis,
gut microbiome detection has a certain auxiliary diagnostic value.
The study has some limitations. First, this study has a limited sample
size and is a single-center investigation, thus warranting cautious
interpretation of findings. Second, we excluded the influences of
antibiotic, probiotic usage, obesity, and gender, but did not account for the
effects of dietary habits and circadian rhythm on gut microbiota. These
factors will be incorporated into statistical models as potential
confounders in future analyses. Third, without quantitative and qualitative
analysis of related serological indicators and metabolomics, the changes
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in related metabolomics caused by OSAHS by affecting the gut
microbiome cannot be shown in detail. Finally, we adopted a cross-
sectional study design and did not compare the gut microbiome of
children with OSAHS before and after treatment. In the future, we will
collect and follow up more data of children with OSAHS to further
explore the connection between OSAHS and the gut microbiome.

In conclusion, OSAHS caused varying degrees of changes in
the gut microbiome in children. At the genus level, some gut
microbiome were correlated with SE, SaO,,,c., LSaO,, TST, and
OAI The ROC curve showed that Firmicutes abundance and the
F/B had limited predictive capability for the diagnosis of OSAHS
on the basis of PSG diagnosis. Further research is needed to
elucidate the relevant mechanisms.
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