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Background: Patients with acute ischaemic stroke (AlS) undergoing endovascular
treatment may have a poor prognosis, even with successful recanalization. This
study aims to evaluate a machine learning model based on CT-thrombosis
radiomics to assess clinically ineffective reperfusion (CIR) after endovascular
treatment (EVT) in patients with AlS.

Methods: A total of 144 patients from two centres were included in this
study, spanning from December 2021 to October 2024. The participants were
randomly divided into a training set (70%) and a test set (30%). Patient outcomes
were defined as clinically ineffective reperfusion (thrombolysis in cerebral
infarction, TICI >2b, three-month post-surgery modified Rankin Scale, mRS
>3) and effective reperfusion (TICI >2b, three-month post-surgery mRS <3). A
total of 1,702 features were extracted from the intrathrombus and perithrombus
regions. The minimum redundancy maximum relevance (MRMR) and least
absolute shrinkage and selection operator (LASSO) algorithm were used for
feature selection to construct the machine learning model, with the AUC of the
receiver operating characteristic (ROC) curve used for model evaluation.
Results: In the test set, the random forest (RF) model demonstrated the highest
diagnostic performance among all the models (RF_INTRA AUC = 0.78, RF_PERI
AUC = 0.76, RF_F AUC = 0.83).

Conclusion: The machine learning model based on intrathrombus and
perithrombus radiomics features can accurately predict clinically ineffective
reperfusion in patients after EVT. However, further study is needed to validate
these findings in larger, independent cohorts and explore the broader clinical
applicability of the model.
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Introduction

Acute ischaemic stroke (AIS) is a cerebrovascular disease
associated with a high burden of disability and mortality (1, 2).
Endovascular therapy (EVT) is an established intervention for
managing acute large vessel occlusion (3, 4). However, EVT is
associated with complications, such as post-thrombectomy bleeding
and cerebral oedema caused by ischaemia-reperfusion (5, 6).
Therefore, not all patients with AIS benefit from EVT. Consequently,
it is crucial to find effective methods of identifying patients suitable
for EVT and accurately predicting successful reperfusion.

Traditional prognostic imaging markers, such as hyper-dense
middle cerebral artery signs (7), large core infarcts (8), and CT
perfusion mismatch (9), are considered indicators of patient
prognosis. However, these existing imaging biomarkers rely on
subjective interpretation, resulting in varying conclusions among
clinicians, limiting their reliability in predicting successful reperfusion.
Therefore, an objective and accurate approach to predicting successful
reperfusion is urgently needed.

Radiomics (10), is a quantitative imaging analysis technique
designed to facilitate the extraction of numerous quantitative
features from medical images. These features aid in disease
diagnosis, treatment outcome prediction, and assessment of
therapeutic efficacy.

Machine learning complements radiomics by efficiently
processing large datasets, automatically optimising the model
performance, and identifying complex patterns. Advanced models
such as support vector machine (SVM) and K-nearest neighbors
(KNN) often outperform traditional statistical models in terms of
predictive efficacy (11). Current research on thrombus radiomics has
primarily focused on thrombus composition (12), identification of
cardiovascular stroke (13), and prediction of the first-pass effect (14)
and has yielded notable promising results. However, a gap persists in
leveraging this approach for predicting effective recanalization.

In this study, we developed a machine learning model based on
the radiomics features derived from the thrombus and surrounding
tissue to accurately predict whether CIR occurs after EVT in patients
with AIS. Our goal was to facilitate the identification of patients with
AIS who are unsuitable for EVT and to provide informed guidance for
future clinical practice.

Materials and methods
Patients

We conducted a retrospective analysis of all patients with AIS
admitted to the two participating hospital stroke centres between
December 2021 and October 2024 (Centre A, n = 109; Centre B,
n = 35). The inclusion criteria were as follows: (1) acute ischaemic
stroke caused by large-vessel occlusion; (2) visible thrombosis on CT;
(3) undergoing EVT; and (4) availability of complete clinical and
imaging data. Exclusion criteria included: (1) incomplete imaging data
or low-quality images unsuitable for radiomic feature extraction; and
(2) loss to follow-up at 3 months post-surgery. CIR was defined as
achieving a TICI score of >2b post-thrombectomy and a modified
Rankin Scale (mRS) score >3 at three-month follow-up. This study
followed the Helsinki guidelines and received approval from the
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institutional ethics review board. Informed consent was obtained from
all patients.

Image acquisition and thrombus
segmentation

CT and CTA images were obtained using 64-slice, 128-row CT
scans (Siemens, Germany) with a slice thickness of 0.5 mm.
Preoperative CTA images were matched to postoperative DSA images
using ANTS software to accurately identify the thrombus (Figure 1).
Thrombus segmentation was performed based on the matching
results of CTA and postoperative DSA; the location of the thrombus
was annotated using NCCT and CTA (Figure 1). Segmentation was
conducted by two experienced clinicians using 3D Slicer (version
4.9.0, National Institutes of Health) with verification by another
senior physician. Appropriate measures were taken to minimise
patient discomfort during the procedures. Following thrombus
segmentation, Python (version 2.7.13) was used to automatically
segment the perithrombus areas within a 1mm boundary.
Additionally, blinded to the
clinical information.

researchers were patients’

Radiomics parameters (RFs) extraction and
selection

Allimages were resampled to a voxel size of 1 mm x 1 mm X 1 mm,
and radiomics parameters were extracted using radiomics. Thrombus
segmentation and radiomics parameter extraction were conducted by
two experienced clinicians. Data consistency was evaluated using the
intraclass correlation coefficient (ICC), with parameters having an
ICC >0.8 included in subsequent analyses. Z-scores were used to
standardise the data across the entire dataset, and the minimum
redundancy maximum relevance (mnRMR) algorithm (Figure 2) was
used to select the top 10 variables for further study. The least absolute
shrinkage and selection operator (LASSO) was applied to refine the
selection of variables for subsequent model construction.

Model building and evaluation

Datasets were randomly divided into training and testing sets in
a 7:3 ratio. A 10-fold cross-validation was used applied to the training
set for model development. Diagnostic performance was evaluated on
the testing set using receiver operating characteristic (ROC) curves
(Figure 2). Machine learning models were constructed for the
intrathrombus and perithrombus areas, labelled RF_INTRA, DT _
INTRA, SVM_INTRA, and KNN_INTRA for intrathrombus, and
RF_PERI, DT_PERI, SVM_PERI, and KNN_PER for perithrombus.
Fusion models (RE_E, DT_F, SVM_EF, and KNN_F) were developed
by integrating features from both regions.

We selected the point on the ROC curve with the minimum
distance from the left-upper corner of the curve and used the
corresponding sensitivities and specificities to calculate likelihood
ratios. LR* represents the ratio of the probability of a positive test
result in patients with the condition to the probability in those without
the condition, while LR reflects the opposite. The formulas were as
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FIGURE 1

The workflow for thrombus radiomics feature extraction.
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FIGURE 2
The workflow of this study design. RFs, radiomics features; mRMR, maximal relevance and minimal redundancy; CV, cross validation; LASSO, least
absolute shrinkage selection operator; SHAP, SHapley Additive exPlanations
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follows: LR" = Sensitivity/(1 — Specificity), LR~ = (1 — Sensitivity)/
Specificity.

The clinical impact of LRs was interpreted using established
thresholds: LR* >10 or LR~ <0.1 indicate strong evidence to rule in or
rule out a diagnosis, respectively. LR* 5-10 or LR~ 0.1-0.2 suggest
moderate diagnostic value. LR* 2-5 or LR™ 0.2-0.5 provide limited but
potentially useful shifts in probability.

SHAP analysis

The SHAP algorithm was used to assess the contribution of each
parameter in the RF-F model. The variable importance plot ranked
the impact of each parameter on the model performance according to
the SHAP values (Figure 3).

Statistical analysis

Statistical analyses were conducted using R software (version
4.2.2), primarily using the glmnet, e1071, and caTools packages.
Quantitative data following normal distribution were reported as
mean + standard deviation (M + SD), and group differences were
compared using the ¢-test. Non-normally distributed quantitative
data were reported as the M, Q1, and Q3, and group comparisons
were conducted using the Mann-Whitney U test. Qualitative data
were presented as frequencies (N) and percentages (%), with
group differences assessed using the chi-square test or Fisher’s
exact test for sample sizes <5. Statistical significance was set at
p < 0.05. The Test value refers to the test statistic (e.g., *t*-value
for *t*-tests or chi-square value for chi-square tests) generated
during hypothesis testing. It quantifies the difference or
association between groups.

10.3389/fneur.2025.1606287

Results
Patients characteristics

A total of 144 patients were included in this study, of whom 45
(31.25%) experienced clinically ineffective reperfusion after
EVT. Table 1 presents the baseline characteristics of the effective and
ineffective reperfusion groups. No significant differences were
observed between the groups regarding age, sex, hypertension,
diabetes, or NIHSS scores (p > 0.05).

Feature extraction and selection

From the intrathrombus and perithrombus area, 1,702 features
were extracted, including 28 shape features, 36 first-order features, 150
texture features, and 1,488 wavelet features. All parameters had an
ICC greater than 0.8, ensuring their inclusion in subsequent analyses.
The final variables used to develop the model were selected using the
mRMR and LASSO algorithms, including:
waveletLHHglszmSizeZoneNonUniformityCTAINTRA,
waveletHLHfirstorderMeanCTAINTRA,
waveletHHLfirstorderMedianCTINTRA,
waveletHHLglszmSmallAreaLowGrayLevelEmphasisCTAINTRA,
waveletLLLfirstorder10PercentileCTAINTRA,
waveletHHLglemImc1CTINTRA,
waveletLHHglszmSizeZoneNonUniformityNormalized CTINTRA,
waveletHLHglszmSizeZoneNonUniformityCTAINTRA,
waveletLLHfirstorderMeanCTAINTRA,
waveletLHLngtdmBusynessCTAPERI,
waveletHHHfirstorderMeanCTPERI,
originalngtdmBusynessCTPERI,  waveletHHHglcmIdCTAPERI,
waveletLLHglszmGrayLevelNonUniformityCTPER],

High
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WavelettHHfirstorderMeanCTPERI
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Feature value
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OriginalngtdmBusynessCTPERT
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FIGURE 3
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SHAP diagram of RF_F model. (a) SHAP honeycomb diagram of RF_F model. (b) SHAP value ranking of the variables in the RF_F model.
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TABLE 1 Patients’ baseline characteristics.

10.3389/fneur.2025.1606287

Characteristics Effective reperfusion Clinically ineffective Test value
(n =99) reperfusion (n = 45)
Age 71+13 76 + 11 2.14 0.97
Sex 0.09 0.77
Male 51 22
Female 48 23
Hypertension 50 28 1.71 0.19
Diabetes 34 15 0.014 0.91
NIHSS 10£9 17£9 4.21 0.29
Site
ICA 23 12 — >0.05
MCA 60 24 — >0.05
M1 43 17 - -
M2 12 6 — —
M3 5 1 - -
ACA 1 0 - >0.05
VA 11 6 — >0.05
BA 1 3 - >0.05
PCA 3 0 — >0.05

TABLE 2 The performances of different machine learning models.

Sensitivity Specificity AUC (95% Cl)
RE_INTRA 0.77 1.0 0.78 (0.61-0.96) ™ 0.23
DT_INTRA 0.45 0.85 0.70 (0.55-0.86) 3.00 0.65
SVM_INTRA 0.85 0.33 0.67 (0.50-0.84) 1.27 0.45
KNN_INTRA 0.40 0.94 0.69 (0.53-0.86) 6.67 0.64
RE_PERI 03 0.95 0.76 (0.55-0.97) 6.00 0.74
DT_PERI 03 1.0 0.69 (0.51-0.95) 0 0.70
SVM_PERI 0.62 0.62 0.73 (0.57-0.89) 1.63 0.61
KNN_PERI 0.30 0.88 0.64 (0.50-0.82) 0.94 1.03

Positive likelihood ratio (LR+), negative likelihood ratio (LR").

waveletLLLfirstorderKurtosisCTPERI,
waveletHHLglszmSmallAreaEmphasisCTAPERL

Models performances

Table 2 shows the model performance for intrathrombus,
perithrombus, and fusion areas. For the intrathrombus region, the
AUC values for RF-INTRA, DT-INTRA, SVM-INTRA, and
KNN-INTRA are 0.78, 0.70, 0.67, and 0.69, respectively. For
perithrombus models, the AUC values for RF-PERI, DT-PERI,
SVM-PERI, and KNN-PERI are 0.76, 0.69, 0.73, and 0.64,
respectively. Fusion models, which combined intrathrombus and
perithrombus features, had AUC values for the RF-F, DT-F, SVM-F,
and KNN-F models as 0.83, 0.73, 0.86, and 0.73, respectively
(Figure 4). Among the models tested, only RF_INTRA, KNN_
INTRA, and RF_PERI yielded LR* values above 5, indicating
potential clinical utility for ruling in disease. However, none of the

Frontiers in Neurology

05

models achieved LR~ values below 0.2, suggesting limited utility
for ruling out disease.

According to Table 3, the RF_F model demonstrated the highest
sensitivity (0.79) and specificity (0.71), along with the most favorable
LR* (2.72) and LR~ (0.30) values. The SVM_F model showed
comparable performance with sensitivity of 0.78, specificity of 0.69,
LR" 0f 2.52, and LR~ 0f 0.32. The DT_F and KNN_F models exhibited
relatively lower performance across all metrics, with DT_F having the
lowest specificity (0.52) and KNN_F showing sensitivity and
specificity values of 0.70 and 0.59, respectively.

SHAP

Figure 3 illustrates the contribution of each parameter to the RF_F
model, as analysed by the SHAP algorithm. Among the parameters,
WaveletLHHglszmSizeZoneNonUniformityCTAINTRA emerged as
the most significant variable, representing the primary RFs factor
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FIGURE 4
The performance of machine learning models. (a) RF_F model. (b) DT_F model. (c) SVM_F model. (d) KNN_F model.

TABLE 3 The performances of different machine learning models.

Model Sensitivity Specificity LR* LR™
RE_F 0.79 0.71 2.72 0.3

DT_F 0.72 0.52 1.56 0.48
SVM_F 0.78 0.69 252 0.32
KNN_F 0.7 0.59 1.71 0.51

Positive likelihood ratio (LR+), negative likelihood ratio (LR").

influencing the CIR, whileWaveletHHHglcmIdcCTAPERI is the most
influential perithrombus RFs affecting the CIR.

Discussion

Endovascular intervention for AIS often benefits most patients;
however, some may not achieve a favorable prognosis despite
successful recanalization. Therefore, accurately identifying these

Frontiers in Neurology

patients is critical. In this study, we developed and validated a
radiomics-based machine learning model, which uses thrombus and
peri-thrombus areas to accurately predict CIR in patients with AIS
undergoing EVT treatment. We also used the SHAP algorithm to
interpret the RF-F model and found that
waveletLHHglszmSizeZoneNonUniformityCTAINTRA is the most
important parameter for predicting CIR.

Current thrombus radiomics research primarily investigates
thrombus composition (12) and its association with the number of
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thrombectomy attempts (15). Studies have confirmed that thrombus
radiomics is related to the likelihood of successful recanalization,
while the number of intervention attempts correlates with key patient
prognostic factors (16, 17). In this study, nine features were extracted
from intra-thrombus and seven from peri-thrombus regions, enabling
the development of machine learning models that reliably predict the
successful recanalization post-EVT in patients. Histopathological
analysis indicates that thrombectomy often induces vascular wall
injury (18), causing intimal damage, vascular wall thickening,
inflammation, and blood-brain barrier disruption (19-21),
contributing to a poor prognosis. To address this, we included
radiomics information from a 1 mm peri-thrombus region to provide
insight into the intrinsic characteristics of the vascular wall and
surrounding tissues, thereby developing a predictive model that
provides accurate prognosis predictions.

This study combined the mRMR and LASSO algorithms to select
prognostically significant, minimal correlated variables among the
model parameters, enhancing the model’s predictive performance
and accuracy.

Radiomic features from both the intra-thrombus and peri-
thrombus regions were extracted, enabling a comprehensive
characterization of thrombus composition, vascular wall status, and
perivascular inflammatory response. A hybrid machine learning
model integrating both regions was developed and demonstrated
superior predictive performance compared to single-region models.

Specifically, the random forest (RF) models based on intra-
thrombus, peri-thrombus, and combined radiomic features all
exhibited good overall predictive performance. Among them, the
RF_INTRA and RF_PERI models achieved positive likelihood ratios
(LR") of oo and 6.00, respectively, indicating strong clinical utility in
confirming patients at high risk of poor cerebral infarct resolution
(CIR) after EVT. The KNN_INTRA model also yielded a high LR* of
6.67. However, none of the models reached an LR~ below 0.2,
suggesting limited value for ruling out poor outcomes with high
confidence. These findings support the use of radiomics-based
machine learning models as clinically useful tools for risk stratification,
particularly when the test result is positive. The LR values provide a
practical and interpretable framework for applying these models in
individual clinical decision-making.

The SHAP algorithm was applied to interpret the RF_F model,
further clarifying the influence of each variable on the model and
ranking their importance. Wavelet LHHglszm Size Zone
NonUniformity CTAINTRA was identified as the most important
parameter influencing patient prognosis. This parameter reflects the
uneven distribution of grayscale region sizes, with higher values
indicating greater disparity, while the multiscale features introduced
by the wavelet transform enable the assessment of image texture
complexity and structure at different levels, revealing high
heterogeneity within the thrombus.

This study had several limitations. First, the relatively small
sample size limits the generalizability of the findings, necessitating
validation with a large independent dataset. Second, while thrombus
segmentation was performed manually, and rigorous statistical
methods such as ICC analysis were applied during subsequent feature
selection, some subjective bias remained.

In conclusion, this study highlights the value of radiomics in
analysing thrombus and peri-thrombus features to predict CIR in
AIS patients following EVT. The radiomics-based machine learning
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model offers a robust tool for identifying patients at risk of poor
outcomes and holds promise for improving clinical decision-
making. However, further study is needed to validate these findings
in larger, independent cohorts and explore the broader clinical
applicability of the model.
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