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Background: Patients with acute ischaemic stroke (AIS) undergoing endovascular 
treatment may have a poor prognosis, even with successful recanalization. This 
study aims to evaluate a machine learning model based on CT-thrombosis 
radiomics to assess clinically ineffective reperfusion (CIR) after endovascular 
treatment (EVT) in patients with AIS.
Methods: A total of 144 patients from two centres were included in this 
study, spanning from December 2021 to October 2024. The participants were 
randomly divided into a training set (70%) and a test set (30%). Patient outcomes 
were defined as clinically ineffective reperfusion (thrombolysis in cerebral 
infarction, TICI ≥2b, three-month post-surgery modified Rankin Scale, mRS 
≥3) and effective reperfusion (TICI ≥2b, three-month post-surgery mRS <3). A 
total of 1,702 features were extracted from the intrathrombus and perithrombus 
regions. The minimum redundancy maximum relevance (mRMR) and least 
absolute shrinkage and selection operator (LASSO) algorithm were used for 
feature selection to construct the machine learning model, with the AUC of the 
receiver operating characteristic (ROC) curve used for model evaluation.
Results: In the test set, the random forest (RF) model demonstrated the highest 
diagnostic performance among all the models (RF_INTRA AUC = 0.78, RF_PERI 
AUC = 0.76, RF_F AUC = 0.83).
Conclusion: The machine learning model based on intrathrombus and 
perithrombus radiomics features can accurately predict clinically ineffective 
reperfusion in patients after EVT. However, further study is needed to validate 
these findings in larger, independent cohorts and explore the broader clinical 
applicability of the model.
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Introduction

Acute ischaemic stroke (AIS) is a cerebrovascular disease 
associated with a high burden of disability and mortality (1, 2). 
Endovascular therapy (EVT) is an established intervention for 
managing acute large vessel occlusion (3, 4). However, EVT is 
associated with complications, such as post-thrombectomy bleeding 
and cerebral oedema caused by ischaemia-reperfusion (5, 6). 
Therefore, not all patients with AIS benefit from EVT. Consequently, 
it is crucial to find effective methods of identifying patients suitable 
for EVT and accurately predicting successful reperfusion.

Traditional prognostic imaging markers, such as hyper-dense 
middle cerebral artery signs (7), large core infarcts (8), and CT 
perfusion mismatch (9), are considered indicators of patient 
prognosis. However, these existing imaging biomarkers rely on 
subjective interpretation, resulting in varying conclusions among 
clinicians, limiting their reliability in predicting successful reperfusion. 
Therefore, an objective and accurate approach to predicting successful 
reperfusion is urgently needed.

Radiomics (10), is a quantitative imaging analysis technique 
designed to facilitate the extraction of numerous quantitative 
features from medical images. These features aid in disease 
diagnosis, treatment outcome prediction, and assessment of 
therapeutic efficacy.

Machine learning complements radiomics by efficiently 
processing large datasets, automatically optimising the model 
performance, and identifying complex patterns. Advanced models 
such as support vector machine (SVM) and K-nearest neighbors 
(KNN) often outperform traditional statistical models in terms of 
predictive efficacy (11). Current research on thrombus radiomics has 
primarily focused on thrombus composition (12), identification of 
cardiovascular stroke (13), and prediction of the first-pass effect (14) 
and has yielded notable promising results. However, a gap persists in 
leveraging this approach for predicting effective recanalization.

In this study, we developed a machine learning model based on 
the radiomics features derived from the thrombus and surrounding 
tissue to accurately predict whether CIR occurs after EVT in patients 
with AIS. Our goal was to facilitate the identification of patients with 
AIS who are unsuitable for EVT and to provide informed guidance for 
future clinical practice.

Materials and methods

Patients

We conducted a retrospective analysis of all patients with AIS 
admitted to the two participating hospital stroke centres between 
December 2021 and October 2024 (Centre A, n = 109; Centre B, 
n = 35). The inclusion criteria were as follows: (1) acute ischaemic 
stroke caused by large-vessel occlusion; (2) visible thrombosis on CT; 
(3) undergoing EVT; and (4) availability of complete clinical and 
imaging data. Exclusion criteria included: (1) incomplete imaging data 
or low-quality images unsuitable for radiomic feature extraction; and 
(2) loss to follow-up at 3 months post-surgery. CIR was defined as 
achieving a TICI score of ≥2b post-thrombectomy and a modified 
Rankin Scale (mRS) score ≥3 at three-month follow-up. This study 
followed the Helsinki guidelines and received approval from the 

institutional ethics review board. Informed consent was obtained from 
all patients.

Image acquisition and thrombus 
segmentation

CT and CTA images were obtained using 64-slice, 128-row CT 
scans (Siemens, Germany) with a slice thickness of 0.5 mm. 
Preoperative CTA images were matched to postoperative DSA images 
using ANTS software to accurately identify the thrombus (Figure 1). 
Thrombus segmentation was performed based on the matching 
results of CTA and postoperative DSA; the location of the thrombus 
was annotated using NCCT and CTA (Figure 1). Segmentation was 
conducted by two experienced clinicians using 3D Slicer (version 
4.9.0, National Institutes of Health) with verification by another 
senior physician. Appropriate measures were taken to minimise 
patient discomfort during the procedures. Following thrombus 
segmentation, Python (version 2.7.13) was used to automatically 
segment the perithrombus areas within a 1 mm boundary. 
Additionally, researchers were blinded to the patients’ 
clinical information.

Radiomics parameters (RFs) extraction and 
selection

All images were resampled to a voxel size of 1 mm × 1 mm × 1 mm, 
and radiomics parameters were extracted using radiomics. Thrombus 
segmentation and radiomics parameter extraction were conducted by 
two experienced clinicians. Data consistency was evaluated using the 
intraclass correlation coefficient (ICC), with parameters having an 
ICC >0.8 included in subsequent analyses. Z-scores were used to 
standardise the data across the entire dataset, and the minimum 
redundancy maximum relevance (mRMR) algorithm (Figure 2) was 
used to select the top 10 variables for further study. The least absolute 
shrinkage and selection operator (LASSO) was applied to refine the 
selection of variables for subsequent model construction.

Model building and evaluation

Datasets were randomly divided into training and testing sets in 
a 7:3 ratio. A 10-fold cross-validation was used applied to the training 
set for model development. Diagnostic performance was evaluated on 
the testing set using receiver operating characteristic (ROC) curves 
(Figure  2). Machine learning models were constructed for the 
intrathrombus and perithrombus areas, labelled RF_INTRA, DT_
INTRA, SVM_INTRA, and KNN_INTRA for intrathrombus, and 
RF_PERI, DT_PERI, SVM_PERI, and KNN_PER for perithrombus. 
Fusion models (RF_F, DT_F, SVM_F, and KNN_F) were developed 
by integrating features from both regions.

We selected the point on the ROC curve with the minimum 
distance from the left-upper corner of the curve and used the 
corresponding sensitivities and specificities to calculate likelihood 
ratios. LR+ represents the ratio of the probability of a positive test 
result in patients with the condition to the probability in those without 
the condition, while LR− reflects the opposite. The formulas were as 
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FIGURE 1

The workflow for thrombus radiomics feature extraction.

FIGURE 2

The workflow of this study design. RFs, radiomics features; mRMR, maximal relevance and minimal redundancy; CV, cross validation; LASSO, least 
absolute shrinkage selection operator; SHAP, SHapley Additive exPlanations.
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follows: LR+ = Sensitivity/(1 − Specificity), LR− = (1 − Sensitivity)/
Specificity.

The clinical impact of LRs was interpreted using established 
thresholds: LR+ >10 or LR− <0.1 indicate strong evidence to rule in or 
rule out a diagnosis, respectively. LR+ 5–10 or LR− 0.1–0.2 suggest 
moderate diagnostic value. LR+ 2–5 or LR− 0.2–0.5 provide limited but 
potentially useful shifts in probability.

SHAP analysis

The SHAP algorithm was used to assess the contribution of each 
parameter in the RF-F model. The variable importance plot ranked 
the impact of each parameter on the model performance according to 
the SHAP values (Figure 3).

Statistical analysis

Statistical analyses were conducted using R software (version 
4.2.2), primarily using the glmnet, e1071, and caTools packages. 
Quantitative data following normal distribution were reported as 
mean ± standard deviation (M ± SD), and group differences were 
compared using the t-test. Non-normally distributed quantitative 
data were reported as the M, Q1, and Q3, and group comparisons 
were conducted using the Mann–Whitney U test. Qualitative data 
were presented as frequencies (N) and percentages (%), with 
group differences assessed using the chi-square test or Fisher’s 
exact test for sample sizes <5. Statistical significance was set at 
p < 0.05. The Test value refers to the test statistic (e.g., *t*-value 
for *t*-tests or chi-square value for chi-square tests) generated 
during hypothesis testing. It quantifies the difference or 
association between groups.

Results

Patients characteristics

A total of 144 patients were included in this study, of whom 45 
(31.25%) experienced clinically ineffective reperfusion after 
EVT. Table 1 presents the baseline characteristics of the effective and 
ineffective reperfusion groups. No significant differences were 
observed between the groups regarding age, sex, hypertension, 
diabetes, or NIHSS scores (p > 0.05).

Feature extraction and selection

From the intrathrombus and perithrombus area, 1,702 features 
were extracted, including 28 shape features, 36 first-order features, 150 
texture features, and 1,488 wavelet features. All parameters had an 
ICC greater than 0.8, ensuring their inclusion in subsequent analyses. 
The final variables used to develop the model were selected using the 
mRMR and LASSO algorithms, including:
waveletLHHglszmSizeZoneNonUniformityCTAINTRA, 
waveletHLHfirstorderMeanCTAINTRA, 
waveletHHLfirstorderMedianCTINTRA, 
waveletHHLglszmSmallAreaLowGrayLevelEmphasisCTAINTRA, 
waveletLLLfirstorder10PercentileCTAINTRA, 
waveletHHLglcmImc1CTINTRA, 
waveletLHHglszmSizeZoneNonUniformityNormalizedCTINTRA, 
waveletHLHglszmSizeZoneNonUniformityCTAINTRA, 
waveletLLHfirstorderMeanCTAINTRA, 
waveletLHLngtdmBusynessCTAPERI, 
waveletHHHfirstorderMeanCTPERI, 
originalngtdmBusynessCTPERI, waveletHHHglcmIdCTAPERI, 
waveletLLHglszmGrayLevelNonUniformityCTPERI, 

FIGURE 3

SHAP diagram of RF_F model. (a) SHAP honeycomb diagram of RF_F model. (b) SHAP value ranking of the variables in the RF_F model.
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waveletLLLfirstorderKurtosisCTPERI, 
waveletHHLglszmSmallAreaEmphasisCTAPERI.

Models performances

Table  2 shows the model performance for intrathrombus, 
perithrombus, and fusion areas. For the intrathrombus region, the 
AUC values for RF-INTRA, DT-INTRA, SVM-INTRA, and 
KNN-INTRA are 0.78, 0.70, 0.67, and 0.69, respectively. For 
perithrombus models, the AUC values for RF-PERI, DT-PERI, 
SVM-PERI, and KNN-PERI are 0.76, 0.69, 0.73, and 0.64, 
respectively. Fusion models, which combined intrathrombus and 
perithrombus features, had AUC values for the RF-F, DT-F, SVM-F, 
and KNN-F models as 0.83, 0.73, 0.86, and 0.73, respectively 
(Figure  4). Among the models tested, only RF_INTRA, KNN_
INTRA, and RF_PERI yielded LR+ values above 5, indicating 
potential clinical utility for ruling in disease. However, none of the 

models achieved LR− values below 0.2, suggesting limited utility 
for ruling out disease.

According to Table 3, the RF_F model demonstrated the highest 
sensitivity (0.79) and specificity (0.71), along with the most favorable 
LR+ (2.72) and LR− (0.30) values. The SVM_F model showed 
comparable performance with sensitivity of 0.78, specificity of 0.69, 
LR+ of 2.52, and LR− of 0.32. The DT_F and KNN_F models exhibited 
relatively lower performance across all metrics, with DT_F having the 
lowest specificity (0.52) and KNN_F showing sensitivity and 
specificity values of 0.70 and 0.59, respectively.

SHAP

Figure 3 illustrates the contribution of each parameter to the RF_F 
model, as analysed by the SHAP algorithm. Among the parameters, 
WaveletLHHglszmSizeZoneNonUniformityCTAINTRA emerged as 
the most significant variable, representing the primary RFs factor 

TABLE 1  Patients’ baseline characteristics.

Characteristics Effective reperfusion 
(n = 99)

Clinically ineffective 
reperfusion (n = 45)

Test value p-value

Age 71 ± 13 76 ± 11 2.14 0.97

Sex 0.09 0.77

 � Male 51 22

 � Female 48 23

Hypertension 50 28 1.71 0.19

Diabetes 34 15 0.014 0.91

NIHSS 10 ± 9 17 ± 9 4.21 0.29

Site

ICA 23 12 — >0.05

MCA 60 24 — >0.05

 � M1 43 17 — —

 � M2 12 6 — —

 � M3 5 1 — —

ACA 1 0 — >0.05

VA 11 6 — >0.05

BA 1 3 — >0.05

PCA 3 0 — >0.05

TABLE 2  The performances of different machine learning models.

Model Sensitivity Specificity AUC (95% CI) LR+ LR−

RF_INTRA 0.77 1.0 0.78 (0.61–0.96) ∞ 0.23

DT_INTRA 0.45 0.85 0.70 (0.55–0.86) 3.00 0.65

SVM_INTRA 0.85 0.33 0.67 (0.50–0.84) 1.27 0.45

KNN_INTRA 0.40 0.94 0.69 (0.53–0.86) 6.67 0.64

RF_PERI 0.3 0.95 0.76 (0.55–0.97) 6.00 0.74

DT_PERI 0.3 1.0 0.69 (0.51–0.95) ∞ 0.70

SVM_PERI 0.62 0.62 0.73 (0.57–0.89) 1.63 0.61

KNN_PERI 0.30 0.88 0.64 (0.50–0.82) 0.94 1.03

Positive likelihood ratio (LR+), negative likelihood ratio (LR−).
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influencing the CIR, whileWaveletHHHglcmIdcCTAPERI is the most 
influential perithrombus RFs affecting the CIR.

Discussion

Endovascular intervention for AIS often benefits most patients; 
however, some may not achieve a favorable prognosis despite 
successful recanalization. Therefore, accurately identifying these 

patients is critical. In this study, we  developed and validated a 
radiomics-based machine learning model, which uses thrombus and 
peri-thrombus areas to accurately predict CIR in patients with AIS 
undergoing EVT treatment. We also used the SHAP algorithm to 
interpret the RF-F model and found that 
waveletLHHglszmSizeZoneNonUniformityCTAINTRA is the most 
important parameter for predicting CIR.

Current thrombus radiomics research primarily investigates 
thrombus composition (12) and its association with the number of 

FIGURE 4

The performance of machine learning models. (a) RF_F model. (b) DT_F model. (c) SVM_F model. (d) KNN_F model.

TABLE 3  The performances of different machine learning models.

Model Sensitivity Specificity LR+ LR−

RF_F 0.79 0.71 2.72 0.3

DT_F 0.72 0.52 1.56 0.48

SVM_F 0.78 0.69 2.52 0.32

KNN_F 0.7 0.59 1.71 0.51

Positive likelihood ratio (LR+), negative likelihood ratio (LR−).
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thrombectomy attempts (15). Studies have confirmed that thrombus 
radiomics is related to the likelihood of successful recanalization, 
while the number of intervention attempts correlates with key patient 
prognostic factors (16, 17). In this study, nine features were extracted 
from intra-thrombus and seven from peri-thrombus regions, enabling 
the development of machine learning models that reliably predict the 
successful recanalization post-EVT in patients. Histopathological 
analysis indicates that thrombectomy often induces vascular wall 
injury (18), causing intimal damage, vascular wall thickening, 
inflammation, and blood–brain barrier disruption (19–21), 
contributing to a poor prognosis. To address this, we  included 
radiomics information from a 1 mm peri-thrombus region to provide 
insight into the intrinsic characteristics of the vascular wall and 
surrounding tissues, thereby developing a predictive model that 
provides accurate prognosis predictions.

This study combined the mRMR and LASSO algorithms to select 
prognostically significant, minimal correlated variables among the 
model parameters, enhancing the model’s predictive performance 
and accuracy.

Radiomic features from both the intra-thrombus and peri-
thrombus regions were extracted, enabling a comprehensive 
characterization of thrombus composition, vascular wall status, and 
perivascular inflammatory response. A hybrid machine learning 
model integrating both regions was developed and demonstrated 
superior predictive performance compared to single-region models.

Specifically, the random forest (RF) models based on intra-
thrombus, peri-thrombus, and combined radiomic features all 
exhibited good overall predictive performance. Among them, the 
RF_INTRA and RF_PERI models achieved positive likelihood ratios 
(LR+) of ∞ and 6.00, respectively, indicating strong clinical utility in 
confirming patients at high risk of poor cerebral infarct resolution 
(CIR) after EVT. The KNN_INTRA model also yielded a high LR+ of 
6.67. However, none of the models reached an LR− below 0.2, 
suggesting limited value for ruling out poor outcomes with high 
confidence. These findings support the use of radiomics-based 
machine learning models as clinically useful tools for risk stratification, 
particularly when the test result is positive. The LR values provide a 
practical and interpretable framework for applying these models in 
individual clinical decision-making.

The SHAP algorithm was applied to interpret the RF_F model, 
further clarifying the influence of each variable on the model and 
ranking their importance. Wavelet LHHglszm Size Zone 
NonUniformity CTAINTRA was identified as the most important 
parameter influencing patient prognosis. This parameter reflects the 
uneven distribution of grayscale region sizes, with higher values 
indicating greater disparity, while the multiscale features introduced 
by the wavelet transform enable the assessment of image texture 
complexity and structure at different levels, revealing high 
heterogeneity within the thrombus.

This study had several limitations. First, the relatively small 
sample size limits the generalizability of the findings, necessitating 
validation with a large independent dataset. Second, while thrombus 
segmentation was performed manually, and rigorous statistical 
methods such as ICC analysis were applied during subsequent feature 
selection, some subjective bias remained.

In conclusion, this study highlights the value of radiomics in 
analysing thrombus and peri-thrombus features to predict CIR in 
AIS patients following EVT. The radiomics-based machine learning 

model offers a robust tool for identifying patients at risk of poor 
outcomes and holds promise for improving clinical decision-
making. However, further study is needed to validate these findings 
in larger, independent cohorts and explore the broader clinical 
applicability of the model.
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