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Introduction: Self-limited epilepsy with centrotemporal spikes (SeLECTs)
represents a common idiopathic focal epilepsy syndrome in childhood. Although
most patients demonstrate a favorable prognosis, some patients develop ESES.
ESES is associated with poorer neuropsychological prognosis. This association
challenges the “benign” classification of SeLECTs. Currently, the diagnostic
threshold for ESES remains controversial. Moreover, traditional long-term video-
EEG monitoring presents certain limitations.
Methods: The research utilizes the “Biovital-P1” software integrated with
Oppo smart bands to collect multimodal physiological signals. Simultaneously,
a 21-channel digital EEG system acquires electroencephalographic data. The
study constructs brain networks through DTF analysis. Additionally, it performs
preprocessing and feature extraction on multimodal physiological signals (ACC,
EDA, PPG).
Results: The results demonstrate strong functional connectivity in the
centrotemporal region in all frequency bands and the delta band. However, as
SWI levels increase, the brain network’s global and local efficiency significantly
reduces. Analyzing multimodal physiological signals reveals statistically
significant differences in ACC and PPG signal time-domain features (Maximum,
Minimum, Peak) among different SWI groups. Multiple characteristic parameters
of EDA signals also show significant intergroup differences. Notably, EDA signals
exhibit excellent sensitivity in reflecting stress responses of the autonomic
nervous system. The characteristic features of EDA signals demonstrate a
significant negative correlation with SWI levels.
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1 Introduction

Self-limited epilepsy with centrotemporal spikes (SeLECTs)
represents the most common idiopathic focal epilepsy syndrome
in childhood (1). Traditionally, this condition, formerly known
as “benign epilepsy with central temporal lobe spikes,” has been
considered to have a favorable prognosis, with most patients
in remission by the age of 16 (2). In epidemiologic surveys,
SeLECTs is the most common form of self-limited focal epilepsy,
accounting for 6–7% of all childhood epilepsies. Its incidence
is about 6.1 cases per 100,000 children under 16 years of age
per year (3). The most distinctive feature of SeLECTs is the
presence of variable spike discharges in the Rolandic region during
interictal periods. Notably, these discharges’ quantity significantly
correlates with disease severity (4). However, some patients develop
electrical status epilepticus during sleep (ESES), which complicates
the clinical picture. ESES is frequently associated with poorer
neuropsychological prognosis, manifesting as significant cognitive
deficits, intellectual decline, and behavioral problems (5). These
associations challenge the traditional classification of SeLECTs as
a “benign” condition.

ESES is characterized by generalized spike-and-wave complexes
at 1.5–3.0 Hz during non-rapid eye movement (NREM) sleep,
demonstrating continuous or near-continuous discharges (6, 7).
The Spike and Wave Index (SWI) is a crucial diagnostic criterion
for ESES. In 1971, Patry et al. (8) first identified ESES and
established that a diagnosis requires three consecutive monthly
recordings showing SWI between 85% and 100%. Subsequent
studies have revealed that patients with SWI ranging from
50% to 65% exhibit relatively better performance in cognitive
function tests. When SWI falls below 85%, the impact on
cognitive impairment appears less significant. Currently, significant
discrepancies exist among researchers regarding the diagnostic
threshold for ESES. These differences reflect the complexity
and diversity of ESES diagnosis. Different diagnostic thresholds
may lead to substantially varied diagnoses for the same patient,
potentially affecting treatment decisions and prognosis evaluation.
Furthermore, this inconsistency presents considerable challenges
for establishing unified diagnostic criteria through future research.

Clinical studies demonstrate that in SeLECTs, higher SWI
values correlate with increased epileptic activity and more
significant abnormalities in brain electrical activity, elevating
the risk of neuropsychological complications (9). Patients with
discharge indices ≥50% exhibit prolonged P300 latency, reduced
amplitude, and lower cognitive test scores compared to those with
lower discharge indices (10). These findings indicate intellectual
impairment in SeLECTs patients, with the severity increasing
with more frequent electroencephalogram(EEG) discharges.
Correlation analysis confirms negative relationships between
EEG discharge index and both P300 parameters and intelligence
test scores.The most common cognitive deficits in children
with SeLECTs are attention deficits (selective attention, impulse
control) and language dysfunction (vocabulary extraction and
comprehension), which are both directly related to active epileptic
phases, and their early identification and targeted interventions
can improve the long-term prognosis (11, 12). Therefore,
traditional EEG alone cannot comprehensively assess patient
conditions, necessitating additional cognitive function evaluations.

Furthermore, the substantial workload associated with long-term
video-EEG monitoring poses significant challenges for clinicians.
This monitoring method requires considerable time and human
resources while impacting patients’ daily lives. Consequently,
identifying a simplified and effective alternative approach has
become crucial for clinical practice.

In summary, significant controversy remains regarding the
diagnostic threshold of spike-wave index (SWI) in SeLECTS, and
the mechanisms by which epileptiform discharges impair brain
function are not yet fully understood. Conversely, traditional
long-term video-EEG monitoring, though widely utilized, imposes
several limitations with regard to accessibility, comfort, and
continuous tracking in real-life settings.

The primary objective of this study is to investigate the
intrinsic mechanisms of SWI-related brain function impairment
in SeLECTS from a neurophysiological signal perspective, while
also evaluating the potential of portable monitoring devices as
a practical and non-invasive alternative to conventional EEG.To
achieve this objective, we first collected electroencephalogram
(EEG) and multimodal physiological data from 15 patients
diagnosed with SeLECTS. The participants were stratified into
three groups based on their SWI levels ( 50% − 65%,
65% − 80%, and > 85%), with the objective of enabling a
comprehensive examination of the differential impact of discharge
burden on brain function. Subsequently, by comparing traditional
electroencephalogram (EEG) monitoring with physiological signals
acquired from portable devices, the feasibility and accuracy of
wearable technologies in SeLECTS monitoring were assessed.
Finally, we employed brain network analysis and multimodal
feature extraction techniques to explore changes in brain functional
connectivity and neurophysiological signals. As shown in Figure 1,
the research framework comprises three main components: data
collection and preprocessing, brain network construction and
analysis, and multimodal physiological signal feature extraction
with statistical analysis.

2 Materials and methods

2.1 Patients

All patient data were collected from Anhui Provincial
Children’s Hospital, strictly adhering to medical ethics standards.
Informed consent was obtained from all patients’ guardians, and
the study fully complied with institutional ethical regulations.
Data were collected between 8 April 2021 and December 2023,
encompassing 432 epilepsy patients aged 3–13 years, representing
various epilepsy types. Each patient wore an Oppo smart
band featuring “Biovital-P1” software for physiological signal
acquisition. The device integrates a three-axis accelerometer and
gyroscope for effective data collection. EEG signals were recorded
using 32 electrodes positioned according to the 10–20 system (Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,
Pz, etc.). Linked mastoids (M1/M2) served as the online reference
and AFz as the ground. ECG was monitored using chest electrodes,
and two EMG channels (submental and tibialis anterior muscles)
tracked muscle activity. Signals were sampled at 500 Hz (EEG),
200 Hz (ECG/EMG), and were bandpass-filtered (EEG: 0.1–70 Hz;
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FIGURE 1

The flowchart comprises three distinct sections to systematically illustrate the methodology. The leftmost section delineates the instrumentation and
raw data acquisition process. Subsequently, the central section elaborates on the signal extraction procedures for EEG, PPG, ACC, and EDA
modalities. The concluding section presents the statistical analytical framework employed for result interpretation. EEG, Electroencephalogram; PPG,
Photoplehysmography; ACC, Three-axis acceleration; EDA, Electrodermal activity.

TABLE 1 Demographics detailed information.

Characteristic Patients with
SeLECTs

p-values

Demographics

Age(y) 7.733 ± 1.279 0.632

Sex(M/FM) 7/8 0.523

DI (Discharge index)

> 50% 15

50% − 65% 5

65% − 80% 7

85% − 100% 3

History of epilepsy

Age at epilepsy onset(y) 5.867 ± 1.798

Time to last seizure(m) 0.516 ± 0.467

Types of antiepileptic drugs 2 ± 1

Frequency of seizures at recording 0.467 ± 0.483

ECG: 1–40 Hz; EMG: 10–200 Hz). EEG monitoring lasted 16 h, and
sleep-wake phases were scored in 30-s cycles based on American
Academy of Sleep Medicine (AASM) criteria. Total sleep time and
wake duration were quantified from EEG/electroencephalography
patterns. The recording protocol included both wakefulness and
sleep states, with a minimum of 4 h dedicated to sleep state
recording for the comprehensive capture of brain activity across
different states. The following inclusion criteria were applied for
SeLECTs patient selection:

1. The age range of SeLECTs patients was 6–13 years.
2. SWI exceeded 50%.
3. Patients had no history of stroke or neuropsychiatric disorders

and had not taken antiepileptic drugs in the past three months.

4. Patients exhibited no motor dysfunction and had normal
cognitive function before epilepsy onset.

Clinical EEG experts accurately marked seizure periods and
SWI by visual inspection. SWI, defined as the percentage of spike-
wave discharges per unit time, serves as a key indicator for assessing
the severity of abnormal EEG discharges in SeLECTs patients.
Research has demonstrated that SWI is closely associated with
seizure frequency, cognitive impairment, and disease prognosis
(13), with a higher SWI indicating more frequent abnormal
discharges and the development of more severe neurological
dysfunction (14). Grouping patients according to SWI therefore
facilitates a deeper understanding of disease severity and its specific
impacts on patients. Studies have shown that SeLECTs patients with
SWI> 50% often exhibit more significant cognitive impairment,
while those with SWI > 85% face a higher risk of seizures. Patients
in this study were divided into three SWI interval groups: SWI
50%− 65%(Group 1), SWI 65%− 80% (Group 2), and SWI > 85%
(Group 3). Ultimately, five patients were in the SWI 50% − 65%
group, seven patients in the SWI 65% − 80% group, and three
patients in the SWI > 85% group. This categorization facilitates
a more detailed analysis of the correlation between abnormal
discharge levels and physiological signals recorded by wristbands
and provides more precise data for subsequent analyses. Detailed
patient information is presented in Table 1.

Figure 2 depicts the discharge patterns during non-rapid eye
movement sleep across the three groups, illustrating distinct
differences in their EEG activity. Group 3 exhibited greater EEG
signal abnormalities than Group 1, where more stable patterns were
observed. Figure 3 presents three types of physiological signals:
accelerometer signals (ACC_X, ACC_Y , ACC_Z), electrodermal
activity (EDA), and photoplethysmography (PPG). The figure
demonstrates an overall increasing trend in the amplitude
fluctuations of these physiological signals from Group 1 to Group 3.
This pattern suggests that Group 3 patients may exhibit more active
or unstable physiological states, while Group 1 patients maintain
relatively stable physiological conditions. These differences may be
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FIGURE 2

Patients were categorized into three groups based on SWI: group 1: %–65%, group 2: 65%–80%, and group 3: 85%–100%. The raw EEG data from the
patients were extracted and filtered.

FIGURE 3

The filtered signals from the ACC, PPG, and EDA in the patient’s portable wristband were extracted. PPG, Photoplehysmography; ACC, Three-axis
acceleration; EDA, Electrodermal activity.

related to the grouping criteria (e.g., SWI index) used in this study.
Further analysis of the relationship between these physiological
signals and clinical indicators could provide deeper insights into
patients’ disease severity and changes in their physiological state.

2.2 Data processing

2.2.1 EEG signal preprocessing and brain
network construction

Traditional EEG analysis primarily focuses on changes in
electrical activity in individual electrodes or localized brain
regions, making it challenging to ascertain a comprehensive

picture of the brain’s functional state (15) comprehensively.
Brain network analysis addresses this challenge by integrating
multi-channel EEG signals to construct functional connectivity
networks between different brain regions, clearly illustrating
information transfer and interaction patterns across them. In
SeLECTs patients, abnormal discharges affect local brain regions
and may spread to other areas through brain network connections,
subsequently exerting widespread impacts on cognitive functions
comprehensively (16). Brain network analysis thus facilitates
the direct observation of propagation pathways and the extent
of abnormal discharges within the brain network, enabling
accurate identification of key affected brain regions and their
interrelationships.
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Channel selection and signal filtering are crucial steps
for preprocessing EEG signals. Earlobe electrodes A1 and A2
contribute minimally to the analysis of abnormal discharges
in SeLECTs, brain functional network connectivity, and the
investigation of cognitive impairment mechanisms. Therefore,
their data were removed from the dataset to ensure the brain
network analysis focused on core EEG information, improving
analysis accuracy and specificity. During data cleaning, a 1–70 Hz
filter was applied to prevent the masking of characteristic abnormal
discharge signals in SeLECTs by high-frequency electromagnetic
interference, ensuring these signals were more distinguishable.
Given the prevalence of 50 Hz power-line interference in everyday
environments and its significant impact on EEG signal acquisition,
a 50 Hz notch filter was employed to eliminate this frequency
interference, ensuring that the signals accurately reflected SeLECTs
discharge patterns, providing reliable data for constructing brain
networks. Additionally, EEG signal accuracy may be compromised
by unconscious limb movements during sleep, which can generate
motion artifacts. To mitigate this effect, a 500 μV threshold was set
for the filtered data, ensuring that the acquired EEG signals more
precisely reflect the actual SeLECTs discharge characteristics. This
approach enables a more accurate capture of fundamental changes
in brain functional connectivity during network construction,
providing more reliable evidence for in-depth investigation of
the relationship between abnormal discharges and cognitive
impairment. δ waves are low-frequency brain waves that are most
prominent during the N3 stage of NREM sleep. In patients with
ESES, sleep EEG is characterized by continuous spike and slow-
wave activity within the 1.5–4 Hz range, which overlaps with
the δ wave frequency band. We excluded the alpha frequency
band analysis since α rhythms typically dissociate during sleep.
Furthermore, considering that hospitalization may negatively affect
sleep quality and duration, we focused on the N3 stage of NREM
sleep to minimize environmental interference, making delta waves
an ideal target for our analysis (6).

Due to variations in EEG sampling duration among SeLECTs
patients, the constructed functional brain networks exhibit
different sensitivities. Research indicates that longer sampling
durations result in reduced functional connectivity values, and
different connectivity metrics require varying durations to reach
stable states (17). The present study employed the Directed
Transfer Function (DTF) method to ensure consistency and
accuracy in analyzing abnormal discharge levels and functional
connectivity in SeLECTs and further investigate the underlying
mechanisms of cognitive impairment. This study employed the
Directed Transfer Function (DTF) method. Sleep EEG data from all
SeLECTs patients were segmented into 4-s epochs with 50% overlap
for subsequent in-depth analysis (18). The DTF method quantifies
the direction and strength of information transfer between different
nodes in the brain network, enabling a precise analysis of the
propagation of abnormal discharges throughout the network and
their impact on cognitive function. The DTF calculation formula is
generally given by:

DTFij(f ) = |Sij(f )|√
Sii(f )Sjj(f )

where Sij(f ) is an element of the cross-spectral density matrix
of multi-channel EEG signals, representing the frequency domain
relationship between signals xi(t) and xj(t).This relationship
enables an in-depth exploration of the signal transmission patterns
between brain regions associated with abnormal discharges in
SeLECTs and their association with cognitive impairment.Sii(f )
and Sjj(f ) are the power spectral density (PSD) of signals xi(t)
and xj(t), respectively, reflecting the spectral characteristics of each
EEG signal. These PSDs help identify the frequency characteristics
of abnormal discharges in SeLECTs, facilitating analysis of the
impact of these discharges’ different frequency components on
cognitive function. The magnitude of the cross-spectral density,
|Sij(f )|, indicates the strength of information transfer from signalis
xi(t) to xj(t). This measure is useful for assessing the propagation
strength of abnormal discharges across different brain regions
and its relationship with the degree of cognitive impairment. The
normalization factor

√
Sii(f )Sjj(f ) ensures that the DTF values lie

within the range [0, 1], allowing for quantitative comparison and
analysis of causal relationships between different brain regions.

2.2.2 Preprocessing of multimodal physiological
signals from wearable devices

After grouping patients based on SWI criteria, we gave each
participant a portable, non-invasive wristband device to investigate
its potential as an alternative to long-term video-EEG monitoring.
This multimodal physiological signal acquisition system was
designed to capture three key biosignals: ACC, EDA, and PPG. Each
modality provides multidimensional data support through distinct
physiological relevance and sampling frequencies:

• ACC signals were collected at a sampling frequency of
50 Hz to capture real-time limb movement states. These
signals provided critical data for analyzing movement-
interictal epileptiform discharge (IED) relationships, given
the established association between limb activity, IEDs
during peri-ictal periods, and sleep in SeLECTs patients, as
well as their potential cognitive implications.This facilitated
exploration of the potential cognitive impacts of abnormal
discharges. ACC signal noise primarily originates from
physiological movements and motion artifacts (19). To
address this, we first removed the 0 Hz component to calibrate
baseline drift and eliminate direct current offset effects.
Subsequently, a median filter was applied to suppress motion
artifacts and high-frequency interference, enhancing signal
quality for downstream analysis.

• EDA signals were recorded at 4 Hz to monitor autonomic
nervous system (ANS) dynamics. During SeLECTs episodes,
Sympathetic arousal responses mediated by the ANS have
been associated with cognitive alterations during SeLECTs
episodes. Continuous EDA monitoring enabled systematic
investigation of ANS-cognition interactions (20), providing
novel insights into the pathophysiological mechanisms
underlying SeLECTs-related cognitive impairment. We
implemented a signal quality index (SQI) calculation
protocol to ensure data integrity following established
methodologies (21).Given EDA signals’ slow-varying nature
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and susceptibility to motion artifacts, we deployed a median
filter identical to the ACC processing pipeline to remove
contaminating components, improving the specificity of
ANS-related electrophysiological features.

• PPG signals were acquired at 4 Hz, matching the EDA
sampling rate, to provide cardiovascular system metrics.
Research has demonstrated significant associations between
cardiovascular dynamics, epileptiform discharges, and
cognitive dysfunction in SeLECTs. PPG signals therefore
offer essential data for investigating cardiovascular-
cognition relationships, enabling a systemic perspective
on SeLECTs-related cognitive impairment. However, PPG
recordings are particularly vulnerable to motion-induced
noise contamination. To address this limitation, we applied
the same median filtering approach used for ACC and EDA
processing, effectively suppressing motion artifacts to ensure
reliable signal quality for subsequent cardiovascular feature
analysis (22).

Integrating multimodal physiological signals from the wrist-
worn device with brain network analysis enables a comprehensive,
multidimensional assessment of SeLECTs patients’ physiological
states and neural functional alterations . This integrated analytical
framework provides robust, system-level insights for evaluating
cognitive impairment, facilitating mechanistic investigations of
the relationship between epileptiform discharges and cognitive
dysfunction. To optimize feature extraction and analysis, we
rigorously selected 20-min artifact-free recording segments
according to strict inclusion criteria (23). These segments were
processed using a sliding window approach with a 4-s window
duration and a 50% overlap, balancing temporal continuity with
independent analytical units (24). Subsequently, modality-specific
features were extracted from each window for systematic statistical
analysis.

2.3 Feature extractions

2.3.1 EEG: extraction of graph theoretic features
Graph theory is a fundamental mathematical framework that

represents a practical approach to modeling brain networks. It
enables the extraction of critical information about functional brain
organization from EEG signals and facilitates the understanding
of neural mechanisms in both healthy and pathological states.
IIn the present study, we implemented DTF analysis to derive
directed graph-theoretical features from SeLECTs patients. This
method captures causal relationships and directionality in EEG
signals, offering significant insights into propagation patterns and
the spatial extent of epileptiform discharges within brain networks
(25, 26). Specifically, we focused on analyzing routing and
diffusion efficiency to elucidate the potential mechanisms
linking abnormal discharges to functional impairments
in SeLECTs.

2.3.1.1 Diffusion efficiency
Diffusion efficiency refers to the average first-passage time

from node i to node j, reflecting a networks’ ability to transmit

information between its nodes, where mf pt (i, j) is the mean first
passage time from node i to node j.

Ediff(i, j) = 1
mf · pt(i, j)

Global mean diffusion efficiency is the average diffusion
efficiency of all node pairs, excluding self-connections. It reflects
the overall information transmission and integration capabilities of
the brain network.

GEdiff(i, j) =
∑

i�=j Ediff(i, j)

n(n − 1)

In this study, diffusion efficiency represents the shortest
duration of the transport of information between two channels
or brain regions, reflecting the speed of information flow between
them.

2.3.1.2 Routing efficiency
Global routing efficiency is an important tool for evaluating

the ability of the network to spread information, optimize network
structure, and improve network robustness. It results from the sum
of the shortest path between all nodes and the average value.

GErout =
∑ (

1
ERout·(∼eye(n)>0)

)

n(n − 1)

In the formula above, ERout represents the routing efficiency
matrix between nodes. This study defines routing efficiency as the
transmission distance of information flow between two channels
or brain regions. It reflects the efficiency and reliability of
information transmission between these channels or regions. All
graph theoretical features in this paper were extracted using the
BCT toolbox in MATLAB.

2.3.2 Multimodal physiological signal feature
extraction

We implemented a multimodal signal analysis framework to
comprehensively investigate physiological state alterations during
SeLECTs episodes in multiple dimensions.

• For ACC signals, time-domain features were prioritized
due to their computational efficiency, enabling real-
time analysis. During SeLECTs episodes, abnormal limb
movements were using through ACC time-domain analysis,
providing quantitative evidence for examining the impact of
epileptiform discharges on motor activity (27).

• PPG signals, reflecting cardiovascular dynamics, were
transformed into the frequency domain using Fourier
analysis. This enabled the identification of frequency-specific
components associated with ictal events (28).

• EDA nonlinear features were analyzed to capture sympathetic
nervous system responses. The sensitivity of these features
to skin conductance variations enabled precise monitoring of
ANS activation during seizures, supporting investigations of
ANS cognition interactions (29).
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TABLE 2 Signaling characteristic abbreviations.

Characteristic Abbreviations

Maximum Max

Minimum Min

Peak Peak

Peak-to-peak P2P

Mean Mean

Average amplitude AVP

Root amplitude RAT

Standard deviation SD

Variance VAR

Root mean squared RMS

Kurtosis KUR

Skewness SKW

Shape factor SHF

Peaking factor PKF

Pulse factor PF

Margin factor MF

Clearance factor CF

Mean square frequency MSF

Frequency component FC

Root mean square fluctuation RMSF

Root variance fluctuation RVF

Mean power spectral density MPSD

Mean frequency of maximum deviation MFMD

Our feature extraction framework encompassed time-domain,
frequency-domain, and nonlinear features, supplemented by
statistical descriptors (mean, standard deviation, skewness,
and kurtosis) (Table 2) to comprehensively quantify ictal-
interictal transitions. This multimodal approach, integrating
motor, cardiovascular, and autonomic nervous system metrics,
demonstrated superior seizure detection accuracy to unimodal
analysis. By correlating these multimodal features with SWI
levels, we were able to establish quantitative relationships
between electrophysiological markers and physiological responses,
advancing our understanding of the mechanisms underlying
SeLECTs-related cognitive impairment.

2.4 Statistical analysis

To elucidate the relationships between multimodal signal
features, SeLECTs -related seizure activity, and cognitive
impairment, we employed rigorous statistical methods, including
analysis of variance (ANOVA) and Pearson correlation analysis.
The assumptions for the ANOVA were assessed using Shapiro-Wilk
normality testing and Levene’s test for homogeneity of variance.

Multiple comparisons were subsequently performed following
significant ANOVA outcomes. The ANOVA was conducted
to assess the statistical significance of feature variations across
different SWI levels. The F-statistic was calculated as follows:

F = MSbetween

MSwithin
(1)

where MSbetween and MSwithin represent between-group and within-
group mean squares, respectively. This analysis identified features
significantly associated with ictal events, enabling the selection of
robust biomarkers for SeLECTs detection.

Pearson correlation analysis quantified the linear relationships
between signal features and SWI levels using the following formula:

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(2)

This provided critical insights into feature-severity correlations,
supporting the development of accurate association models. The
integration of multimodal signals—capturing motor (ACC),
cardiovascular (PPG), and autonomic (EDA) dynamics—
comprehensively represented physiological states during SeLECTs
episodes. This framework significantly enhanced seizure detection
accuracy compared to unimodal approaches by leveraging
complementary information across physiological systems. By
systematically analyzing SWI- dependent variations in multimodal
features, we established quantitative association models between
electrophysiological markers and physiological responses.
These models, parameterized through rigorous statistical
analysis, advanced our understanding of the pathophysiological
mechanisms underlying SeLECTs-related cognitive dysfunction.

3 Results

We employed DTF to characterize brain network dynamics
for functional connectivity visualization and analysis, as shown
in Figures 4, 5. The whole frequency band (1–70 Hz) and delta
band (1–4 Hz) exhibited enhanced functional connectivity
in the centrotemporal regions, reflecting increased neuronal
synchronization associated with epileptiform discharges.
Comparative analysis revealed significant between-group
differences in connectivity patterns, demonstrating the influence
of SWI levels on interregional functional organization. Graph-
theoretical analysis further indicated that higher SWI levels were
associated with decreased network diffusion and routing efficiency.

We conducted a detailed analysis of graph-theoretical metrics,
focusing on diffusion and routing efficiency of SeLECTs activity,
as illustrated in Figure 6. Participants were stratified into three
groups based on SWI levels: Group 1 (50%–65%), Group 2
(65%–80%), and Group 3 (85%–100%). The analysis revealed an
inverse relationship between SWI levels and network efficiency
metrics, with both diffusion and routing efficiency demonstrating
significant declines as SWI increased. This pattern indicates that
heightened epileptiform discharges impair the brain’s capacity
for information propagation and integration (30). The observed
network inefficiencies may underlie specific cognitive deficits,
particularly in attention, memory, and executive functioning.
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FIGURE 4

The images above, from left to right, display the visualization results of the DTF function across a frequency range of 1 to 70 Hz. The images below,
also from left to right, depict the visualizations for the delta band DTF. In both the delta band and the full-screen segment, the central temporal
region exhibits strong functional connectivity.

FIGURE 5

Chordal maps illustrate the differences in brain network connectivity. Blue lines indicate that Delta bands exhibit reduced functional connectivity
compared to the full-screen segment bands. In contrast, red lines show that Delta bands have increased functional connectivity compared to the
full-screen segment bands.

The results of the multidimensional feature analysis of the
ACC, PPG, and EDA signals are shown in Table 3. The analysis
indicates that features such as Maximum, Minimum, and Peak in

the ACC and PPG all exhibit significant differences under different
experimental conditions(P < 0.05). The changes in these features
may reflect the abnormal limb movement patterns of patients
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FIGURE 6

This figure illustrates two theoretical concepts in graph theory: diffusion efficiency and routing efficiency. The left panel displays diffusion efficiency,
while the right panel shows routing efficiency.

TABLE 3 p-values of different features on 3-modal signals.

Features ACC PPG EDA

Maximum 0.0469 0.0120 0.0430

Minimum 0.0465 0.0110 0.0248

Peak 0.0065 0.0200 0.0443

Peak-to-Peak 0.0091 0.0031 0.0486

Mean 0.0353 0.0362 0.0424

Average amplitude 0.0258 0.0063 0.0441

Root amplitude 0.0264 0.0483 0.0371

Standard deviation 0.0211 0.0356 0.0088

Variance 0.0122 0.2933 0.0096

Root mean squared 0.0057 0.0014 0.0085

Kurtosis 0.0011 0.0012 0.0041

Skewness 0.0261 0.0168 0.0208

Shape factor 0.0035 0.0030 0.0021

Peaking factor 0.0201 0.0013 0.0026

Pulse factor 0.0012 0.0011 0.0021

Margin factor 0.0209 0.0448 0.0201

Clearance factor 0.0119 0.0168 0.0094

Mean square frequency 0.0060 0.0065 0.0031

Frequency component 0.0015 0.0050 0.0072

Root mean square fluctuation 0.0015 0.0041 0.8600

Root variance fluctuation 0.0312 0.0355 0.0186

Mean power spectral density 0.0028 0.007 0.0018

The assumptions for ANOVA were assessed using Shapiro-Wilk normality testing and
Levene’s test for homogeneity of variance.

during SeLECTs seizures and the disorder of the autonomic nerve
regulation function of the cardiovascular system (31). It is worth
noting that the analysis results of the EDA signal show that except
for Variance and Root Mean Square Fluctuation, the remaining
features all show significant statistical differences (P < 0.05), and

the magnitude of their changes is significantly larger than that of
the ACC and PPG signals.

We analyzed both time-domain (EDA Peak, EDA mean, EDA
root Amplitude, EDA RMS) and frequency-domain (EDA MSF,
EDA MPSD, EDA MFMD) features of EDA across different SWI
groups, as shown in Figure 7. Significant between-group differences
were observed in EDA temporal dynamics. For instance, EDA
Peak values were consistently higher in Group 1 compared to
Group 3 during specific time intervals, with statistically significant
differences across multiple epochs. These findings suggest a
systematic relationship between EDA features and SWI levels,
indicating suppressed sympathetic nervous system activity in
patients with higher SWI.

4 Discussion

4.1 Analysis of neurophysiological signals
in the brain function impairment
mechanism caused by SeLECTs and high
spike-wave index

This study investigated the neurophysiological mechanisms
underlying brain functional impairment in SeLECTs using
EEG analysis. Our findings demonstrate a significant inverse
relationship between SWI and brain network efficiency metrics,
notably global and local efficiency. The observed reductions in
diffusion efficiency (reflecting information propagation speed)
and routing efficiency (indicating optimal path selection) suggest
that SeLECTs patients exhibit impaired information transfer
and integration. These network inefficiencies may lead to
slowed or unstable interregional communication, providing a
neurophysiological basis for the cognitive deficits—particularly in
executive functioning and memory processing—observed during
SeLECTs patients’ active seizure periods. Our analysis revealed
dynamic, SWI-dependent alterations in functional connectivity
and graph-theoretical metrics, indicating a dose-response
relationship between epileptiform discharge intensity and network
dysfunction. At lower SWI levels, the brain network retains partial
information transfer efficiency; however, as SWI increases, the
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FIGURE 7

The figure reveals significant intergroup differences in the spatiotemporal dynamics of EDA. From left to right, the features include EDA Peak, EDA
Mean, EDA Root Amplitude, and EDA RMS in the time-domain, as well as EDA MSF, EDA MPSD, and EDA MFMD in the frequency-domain. Peak, Peak;
Mean, Mean; RAT, Root Amplitude; RMS, Root Mean Squared; MSF, Mean Square Frequency; MPSD, Mean Power Spectral Density; MFMD, Mean
Frequency of Maximum Deviation.
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disruptive effects of abnormal discharges progressively intensify,
ultimately leading to significant network efficiency degradation.
These findings suggest that SeLECTs patients exhibit a state of
network instability, in which discharge intensity and frequency
directly modulate network stability and efficiency. Consequently,
clinical management strategies should extend beyond seizure
control to include targeted network restoration and stabilization
interventions, potentially improving cognitive outcomes in affected
patients.

4.2 Applications of non-invasive wristband
devices

A key objective of this study was to develop an accurate
and convenient alternative to long-term video-EEG monitoring
using portable devices. Leveraging the technical capabilities of
OPPO watch sensors, we investigated PPG, EDA, and ACC signals
as primary monitoring metrics. Our results demonstrated the
superior performance of EDA in detecting SeLECTs -related ANS
alterations, exhibiting greater sensitivity and dynamic range than
ACC and PPG signals. Specifically, several key EDA parameters,
such as peak value, root amplitude, RMS, temporal mean
value, mean square frequency, average power spectral density,
and maximum deviation of mean frequency, all demonstrated
significant reductions. These findings align with Horinouchi et al.’s
(32) reports of EDA attenuation in epilepsy patients due to
autonomic dysfunction, providing additional objective evidence of
peripheral autonomic abnormalities in epilepsy.

From a neurophysiological perspective, elevated SWI may
reflect the pathological hypersynchronization of cortical discharges
during epileptic episodes (33). This excessive synchronization
could impair information integration and transmission efficiency
among neural network nodes, potentially affecting higher cognitive
functions such as attention and memory. Concurrently, the
reduction in EDA signals might result from descending inhibition
of the peripheral autonomic nervous system by epileptic activity.
Research indicates that epileptiform discharges are not confined
to the central nervous system but can also suppress preganglionic
sympathetic neuronal activity through descending pathways,
including the brainstem reticular formation, leading to diminished
skin conductance responses. More significantly, increased SWI
may disrupt the negative feedback regulation of the hypothalamic-
pituitary-adrenal (HPA) axis, altering the rhythmic secretion
of glucocorticoids (34). This disruption could further suppress
sympathetic nervous system excitability, reducing EDA signal
intensity. The bidirectional interaction between the central
and peripheral ANS likely forms the neurobiological basis for
characteristic EDA signal alterations in SeLECTs patients.

It should be noted that while elevated SWI levels may correlate
with increased seizure frequency, currently, there is no direct
evidence establishing a causal relationship between increased SWI
and decreased EDA signal characteristics. However, it should
be noted that while elevated SWI levels may correlate with
increased seizure frequency, current research has not provided
direct evidence establishing a causal relationship between increased
SWI and decreased EDA signal characteristics. Vieluf et al.

(35) observed circadian rhythm alterations in EDA patterns
among epilepsy patients during 24-h continuous monitoring.
These alterations were characterized by overall reductions in
skin conductance level and amplitude of the skin conductance
response. A preceding study demonstrated that EDA has the
capacity to reduce the frequency of seizures and is associated with
widespread activation of the cerebral cortex (36, 37). This study
further corroborated the findings that EDA signals are significantly
linked to cerebral network activity and revealed alterations in
specific network characteristics. These findings are of particular
significance for patients who experience seizure warning symptoms
or prodromal symptoms prior to seizures, as they provide a
basis for implementing timely preventive strategies. Furthermore,
the study indicated that SWI levels may play a substantial role
in these autonomous changes. This finding reveals a complex
interaction between central and peripheral autonomous regulation
in epilepsy. This objective evidence is pivotal for clinical diagnosis
and understanding of epilepsy-related autonomous nervous system
dysfunction. EDA signal monitoring has the capacity to facilitate
real-time seizure activity assessment, facilitate identification of
high-risk seizure states (ESES), and enhance the refinement of
treatment and follow-up management plans.

4.3 Study limitations and future directions

This study contributes to the understanding of brain
function impairment mechanisms in SeLECTs by applying
neurophysiological signal analysis. It explores a potential
alternative to long-term video—EEG monitoring using portable
devices. However, several limitations should be acknowledged,
and future research directions are proposed to advance this
field. Our study recognizes several important limitations in our
participant selection process: (1) the lack of a control group that
includes both non-ESES epileptic patients (e.g., patients with focal
epilepsy with SWI< 50%) and healthy controls. Although the
85% threshold has historically been dominant, recent guidelines
suggest a lower threshold of SWI ≥ 50% in NREM sleep. However,
some groups have adopted thresholds as low as 25%, and thus
these categorization criteria contributed to our SWI cut-off values
and the analysis of the control group (5, 38). (2) Relatively small
sample size. Although our research strategy is consistent with
previous ESES literature (39–41), these observations should be
interpreted with caution, and may not be generalizable.These
limitations primarily reflect the practical challenges of conducting
a single-center exploratory study with stringent inclusion criteria:
all enrolled ESES patients were required to meet both rigorous
electroclinical diagnostic standards (SWI≥ 85%) with documented
cognitive regression) and complete multimodal neurophysiological
assessments, which significantly prolonged case recruitment
and data collection timelines. We plan to collaborate on future
multicenter studies where the inclusion of diverse comparison
cohorts will be more feasible.

The current classification framework implicitly acknowledges
the phenotypic continuum of epilepsy, where some cases may
transition from benign presentations to non-benign stages during
disease progression, potentially accompanied by cognitive decline
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(2, 3). However, while these systems theoretically recognize this
continuum, further clinical validation is required to clarify critical
parameters. These include the specific proportion of children with
SeLECTs who progress to ESES, develop language or cognitive
regression, or evolve into drug-resistant epilepsy, as well as the
predictive factors underlying such transitions. More than 50
years since the first description of ESES, the pathophysiologic
mechanisms underlying the emergence of encephalopathies
associated with enhanced sleep-related epileptic discharges remain
incompletely elucidated (42). Current research on SWI and
cognitive impairment remains scarce. The effect of spikes on
long- and short-term cognitive impairment remains unclear.
The present study’s findings could be further strengthened by
optimizing data acquisition and analysis methods for non-invasive
wristband devices, particularly in terms of enhancing their accuracy
and convenience for epilepsy monitoring. Future studies should
consider expanding the sample size and implementing multicenter
research designs to validate the generalizability and reliability of the
results. Additionally, extending monitoring periods would enable
researchers to capture dynamic changes in physiological signals,
potentially leading to the development of comprehensive datasets
for early disease warning systems and facilitating personalized
treatment strategies using through longitudinal data analysis (43).
These future directions would address current limitations while
building upon the foundation established by this study, potentially
leading to more effective monitoring and treatment approaches for
SeLECTs patients.

5 Conclusions

This study aimed to investigate the intrinsic neural mechanisms
underlying brain function impairment caused by abnormal
discharges SeLECTs and to explore the potential of non-invasive
wristband devices in epilepsy monitoring. The results demonstrate
that increased SWI in SeLECTs patients significantly correlates
with reduced global and local efficiency of brain functional
networks, revealing the detrimental effects of abnormal discharges
on brain information transmission and integration capabilities.
Simultaneously, monitoring through non-invasive wristband
devices revealed that EDA signals exhibit excellent performance
in capturing SeLECTs-related autonomic nervous system activity
changes. The observed decrease in EDA parameters shows a
strong association with both central nervous system abnormal
discharges and peripheral autonomic inhibition, further elucidating
the bidirectional interactions between central and peripheral
nervous systems. These findings provide novel insights into the
pathological mechanisms of SeLECTs and establish a foundation
for optimizing and clinically applying non-invasive monitoring
technologies. Future research should focus on expanding sample
sizes, prolonging monitoring durations, and refining analytical
methods to advance early warning systems and personalized
treatment strategies for SeLECTs.
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