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Acute ischemic stroke (AIS) is a leading global cause of disability and mortality, 
imposing a substantial socioeconomic burden. Neuroimaging serves as the primary 
and indispensable tool for AIS diagnosis and plays a pivotal role in guiding treatment 
decisions and prognostic evaluations. Radiomics enables the extraction of high-
dimensional features from medical imaging data, which can be integrated with clinical 
endpoints to construct highly accurate predictive models, thereby informing disease 
diagnosis and therapeutic strategies. Consequently, radiomics-based investigations 
into AIS etiology, prognosis, and treatment selection have emerged as a prominent 
research focus. Numerous published studies have demonstrated that radiomics 
models achieve satisfactory predictive performance, offering valuable guidance 
across various clinical aspects of AIS. Primary care institutions represent the frontline 
in real-world AIS management—a critical yet often overlooked component of 
the diagnostic and therapeutic workflow. Their clinical capabilities significantly 
influence patient outcomes. Due to inherent resource limitations, these settings 
stand to benefit most from the translation of such research into practice. However, 
whether existing radiomics models are truly applicable to primary care remains 
unexplored. Thus, there is an urgent need for more radiomics studies tailored to 
the realities of primary care to address this gap. This article critically examines 
the potential limitations of current AIS radiomics research in terms of clinical 
utility for primary care settings and provides recommendations to guide future 
development and implementation.
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1 Introduction

Stroke is the second leading cause of death globally and the third leading cause of disability 
(1). It is defined as an acute episode of focal dysfunction in the brain, retina, or spinal cord 
lasting more than 24 h—or any duration if neuroimaging (CT or MRI) or autopsy reveals focal 
infarction or hemorrhage consistent with clinical symptoms (1). Strokes are generally classified 
into two categories: hemorrhagic strokes (e.g., intracerebral hemorrhage) and ischemic strokes 
(e.g., cerebral infarction) (2). Acute ischemic stroke (AIS), accounting for approximately 80% 
of all strokes, results from inadequate cerebral blood flow, leading to ischemic hypoxia, 
localized tissue necrosis, or softening (3). Common causes of AIS include cerebral thrombosis, 
lacunar infarction, and cerebral embolism (3). Although stroke mortality has declined over 
the past two decades, the incidence of stroke, disability-adjusted life years (DALYs) lost, and 
the absolute number of stroke-related deaths continue to rise (4).

OPEN ACCESS

EDITED BY

Jean-Claude Baron,  
University of Cambridge, United Kingdom

REVIEWED BY

Luis Rafael Moscote-Salazar,  
Colombian Clinical Research Group in 
Neurocritical Care, Colombia
Jacobo Porto Álvarez,  
Servicio Gallego de Salud, Spain

*CORRESPONDENCE

Shaojun Zhang  
 919656823@qq.com

RECEIVED 13 January 2025
ACCEPTED 24 July 2025
PUBLISHED 17 September 2025

CITATION

Zhang S and Tu J (2025) The impracticality of 
radiomics research in acute ischemic stroke: 
from the perspective of primary healthcare 
institutions.
Front. Neurol. 16:1559998.
doi: 10.3389/fneur.2025.1559998

COPYRIGHT

© 2025 Zhang and Tu. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  17 September 2025
DOI  10.3389/fneur.2025.1559998

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1559998&domain=pdf&date_stamp=2025-09-17
https://www.frontiersin.org/articles/10.3389/fneur.2025.1559998/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1559998/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1559998/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1559998/full
mailto:919656823@qq.com
https://doi.org/10.3389/fneur.2025.1559998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1559998


Zhang and Tu� 10.3389/fneur.2025.1559998

Frontiers in Neurology 02 frontiersin.org

Radiomics is the process of converting digital medical images into 
high-dimensional data that can be mined for clinical insights (5, 6). 
By integrating imaging data with other patient information—such as 
clinical data, genomics, and drug responses—radiomics can 
significantly aid medical decision-making (7–10). Unlike qualitative 
assessments made by radiologists, radiomics transforms regions of 
interest (ROIs) within images into quantifiable, high-dimensional 
features, reducing subjective variability and improving diagnostic 
accuracy (11). Additionally, radiomics can help address disparities in 
imaging quality across hospitals and clinicians. Its versatility allows it 
to predict various clinical outcomes, including diagnosis, treatment 
plans, and prognosis, thereby supporting clinical decision-making (6). 
As a result, radiomics is increasingly applied in emergency medicine, 
assisting emergency physicians in the rapid diagnosis and treatment 
of AIS patients (12).

Neuroimaging, including cranial CT (Computed Tomography) 
and MRI (Magnetic Resonance Imaging), is essential in the 
management of AIS. It plays a critical role in diagnosing AIS, guiding 
treatment strategies, and assessing prognosis (13). In recent years, 
radiomics has been increasingly applied to AIS, with uses ranging 
from early diagnosis of stroke etiology to informing treatment 
decisions and predicting outcomes (14). For example, radiomics has 
been used to predict the likelihood of complications such as malignant 
brain edema, helping guide treatment choices, including conservative 
management or decompressive craniectomy (15, 16). Radiomics thus 
holds significant potential for improving AIS treatment and 
patient care.

Given the time-sensitive nature of AIS and the critical treatment 
window, patients are often transported to the nearest medical facility 
rather than directly to comprehensive stroke centers (17). While 
primary care institutions serve as the frontline for AIS management, 
limitations in diagnostic capabilities, imaging equipment, and 
treatment options frequently hinder accurate diagnosis and optimal 
therapeutic decision-making. Consequently, these settings stand to 
benefit most from clinically actionable radiomics research that could 
bridge existing gaps in AIS care. However, to our knowledge, despite 
the proliferation of radiomics studies in AIS, no research has 
systematically evaluated the applicability of these models from a 
primary care perspective. This paper examines the clinical practicality 
of existing AIS radiomics studies from the perspective of primary 
healthcare institutions, finding that most are unsuitable due to 
imaging modalities bias, clinical misalignment, implementation 
barriers, and performance gaps. This critique underscores the urgent 
need for radiomics research that addresses the realities of primary 
stroke care—where diagnostic uncertainty and time pressures are 
greatest. Future work must prioritize accessibility, interpretability, and 
immediate clinical actionability to fulfill the promise of precision 
medicine in AIS.

2 Image modality bias

We conducted a search on PubMed for articles published from 
January 2017 to November 2024 using the keywords “radiomics” and 
“AIS.” This search yielded 101 articles, including 9 reviews or meta-
analyses and 92 research articles. Of the research articles, 4 were 
unrelated to radiomics or AIS, leaving 88 studies for analysis. These 
studies were categorized based on the imaging modalities used: CT, 

MRI, and ultrasound. Among the 88 studies, 44 utilized CT, 42 
utilized MRI, and 2 utilized ultrasound (Figure 1). Of the 44 CT-based 
studies, 28 used NCCT (non-contrast CT), 11 used CTA (CT 
angiography), and 2 used both NCCT and CTA. The MRI-based 
studies included a variety of sequences, such as T1-weighted (T1w), 
T2-weighted (T2w), FLAIR (fluid-attenuated inversion recovery), 
DWI (diffusion-weighted imaging), ADC (apparent diffusion 
coefficient), as well as advanced sequences like DSC-PWI (dynamic 
susceptibility contrast perfusion-weighted imaging), HR-VWMRI 
(high-resolution vessel wall MRI), and HRMRI (high-resolution MRI) 
(Figure 1).

While acknowledging the undeniable value of MRI in the 
diagnosis and prognostic evaluation of AIS (18), we must recognize 
its limited suitability as a first-line imaging modality in clinical 
practice. The prolonged acquisition time necessitates prolonged 
patient immobility, which proves challenging for severe AIS patients 
experiencing delirium or agitation, often resulting in either 
non-compliance or significant discomfort. Furthermore, the MRI 
environment’s strict restrictions on metallic objects preclude the use 
of essential life-support equipment such as cardiac monitors, oxygen 
delivery systems, and infusion pumps—rendering the modality 
inaccessible for critically unstable patients. This inherent selection bias 
raises concerns about the generalizability of MRI-based radiomics 
research. Additionally, the substantial costs associated with MRI 
technology limit its availability primarily to urban tertiary care 
centers, while most AIS patients initially present to resource-limited 
primary care facilities due to time-sensitive treatment requirements 
(17). The financial impracticality of widespread MRI deployment in 
community hospitals fundamentally questions the clinical applicability 
of MRI-derived radiomics models in real-world settings where such 
infrastructure is absent. This significant disconnect between research 
focus and clinical reality is particularly evident given our finding that 
MRI-based studies constitute 42 out of 88 (47.7%) published AIS 
radiomics investigations.

Ultrasound is a convenient, cost-effective, and non-invasive 
diagnostic tool, but its use in diagnosing acute ischemic stroke (AIS) 
has not been well established. The two radiomics studies involving 
ultrasound and AIS reviewed in this paper primarily focus on 
analyzing carotid artery plaques to predict the risk of AIS (19, 20), 
rather than directly guiding its diagnosis or treatment. Currently, 
ultrasound is mainly used to assess large intracranial blood vessels 
(21), primarily for evaluating stenosis and vascular plaques. While 
significant occlusion or stenosis of large vessels can indicate ischemia 
or infarction in the corresponding regions, this connection is not 
always definitive. Moreover, intracranial vascular ultrasound is not a 
straightforward procedure, and many primary healthcare settings, 
such as emergency departments or ultrasound units, may lack the 
necessary equipment or expertise. Therefore, from a practical 
standpoint in primary healthcare institutions, radiomics research 
involving ultrasound for AIS diagnosis may have limited clinical value.

CT offers distinct advantages over MRI in the diagnosis of 
AIS. First, CT examinations are significantly faster than MRI—even 
when performing CTA or CTP, the acquisition time remains 
substantially shorter than DSC-PWI, markedly reducing patient 
cooperation requirements and minimizing discomfort. Importantly, 
the CT environment accommodates continuous cardiac monitoring 
and intravenous medication administration, significantly enhancing 
patient safety during scanning for severe AIS cases. From an 
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infrastructure perspective, CT scanners are more affordable and 
therefore more widely available in primary care settings, which 
represent the frontline of AIS patient management. Clinically, since 
AIS symptoms (altered consciousness, motor/sensory deficits) closely 
resemble those of acute intracranial hemorrhage (22), CT serves as the 
primary modality for this critical differential diagnosis. The 
characteristic hyperdense appearance of hemorrhage versus 
hypodense ischemic changes on CT makes it the universal first-line 
imaging choice—virtually all suspected AIS patients undergo initial 
CT before subsequent MRI (when available) or treatment initiation 
(23). This clinical pathway ensures that CT images represent the 
largest potential dataset for radiomics research, where sample size 
directly correlates with model performance (24). For resource-limited 
primary care facilities that often can only perform CT, radiomics 
models derived from CT data could provide crucial decision support 
for diagnosis, treatment selection, and prognosis prediction. Despite 

this compelling rationale, our analysis revealed only 44 CT-based 
radiomics studies (50% of total publications), highlighting a critical 
need for more CT-focused AIS radiomics research that aligns with 
real-world clinical capabilities and workflows.

3 Prediction targets mismatch

We analyzed the prediction targets of the 88 radiomics studies 
identified in our search and found that radiomics research on AIS 
covers a wide range of aspects, including diagnosis, treatment 
strategies, treatment outcomes, and prognosis. The breadth of these 
studies appears to be comprehensive. Based on the prediction targets 
of the radiomics models, we categorized the studies into five main 
groups: “Differential diagnosis,” “Treatment,” “Prognosis,” “Risk,” and 
“Special.” Among these, 32 studies focused on “Prognosis,” 28 on 

FIGURE 1

Image types of AIS radiomics research. (A) Flowchart of AIS radiomics image type analysis. (B) Types of literature on AIS radiomics research. 
(C) Distribution of imaging types of AIS studies.
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“Treatment,” 13 on “Differential diagnosis,” 9 on “Risk,” and 6 on 
“Special” (Figure 2). This distribution indicates that the primary focus 
of AIS radiomics research is on predicting prognosis and 
treatment outcomes.

We categorize disease progression, complications, and sequelae 
of AIS under the “Prognosis” category. Further analysis of these 32 
prognostic studies revealed that 22 focused specifically on 
predicting functional outcomes in AIS patients, with the modified 
Rankin Scale (mRS) serving as the primary evaluation tool (25). 
Interestingly, 20 of the 22 studies on functional outcomes were 
based on MRI images. As mentioned earlier, MRI may not be readily 
available in primary healthcare settings, and not all AIS patients are 
suitable candidates for MRI. It must be acknowledged that in actual 
clinical practice at primary care institutions, most AIS patients are 
ultimately transferred to specialized stroke centers at tertiary 
hospitals. These advanced medical centers possess dedicated 
neurology and neuroradiology teams for comprehensive AIS 
management (26), where obtaining MRI examinations presents no 
significant difficulty. Under these circumstances, the application of 
MRI-based radiomics models for predicting functional outcomes 
in AIS patients represents an appropriate and feasible approach 

within such well-resourced settings. However, compared to 
functional outcomes in AIS patients, frontline physicians in primary 
care settings are more clinically concerned about other potential 
disease progression patterns, particularly hemorrhagic 
transformation and malignant cerebral edema. These complications 
typically indicate clinical deterioration, often necessitating urgent 
transfer to advanced medical centers or even emergency surgical 
operation (27, 28). For primary care facilities managing AIS cases, 
the ability to predict these hemorrhagic complications prospectively 
is critically important. A high-performance radiomics model 
capable of accurately predicting hemorrhagic transformation or 
malignant edema would enable risk stratification—guiding 
decisions about whether to administer tPA onsite or immediately 
transfer patients to tertiary hospitals. Expanding this concept 
further, radiomics could address other pressing clinical challenges 
in primary care, such as predicting risks of hemodynamic instability 
during transfer or recurrent infarction. These applications would 
directly solve real-world clinical dilemmas faced by community 
healthcare providers. Surprisingly, current radiomics research has 
largely overlooked these critical endpoints, with only 4 studies 
focusing on hemorrhagic transformation and 2 on cerebral edema 

FIGURE 2

Distribution of prediction targets categories of AIS radiomics studies.
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among prognostic investigations—representing just a minimal 
fraction of the literature.

Treatment strategies, treatment outcomes, and treatment 
complications for acute AIS are grouped under the “Treatment” 
category, with a total of 28 studies. Rapid identification of cerebral 
infarction and prompt hospital transfer for thrombolytic therapy or 
mechanical thrombectomy can maximally reduce the incidence of 
disability (29–31). Therefore, as the first line of care for AIS patients, 
primary care physicians urgently need the capability to rapidly 
determine whether patients are eligible for thrombolysis or 
thrombectomy. The traditional paradigm of “time is brain” dictated 
that eligibility for thrombolysis or mechanical thrombectomy in AIS 
patients was determined solely based on whether they presented 
within the established treatment time window (32, 33). Since primary 
care facilities are typically only equipped to administer thrombolytic 
therapy, their physicians’ primary responsibility became assessing 
whether patients fell within the 4.5-h thrombolysis window—
immediately initiating treatment for those meeting this criterion. 
However, in clinical practice, the actual stroke onset time is often 
uncertain due to various factors, creating significant challenges in 
determining whether patients remain within the therapeutic window 
and consequently affecting treatment decisions (34, 35). This clinical 
dilemma is reflected in our analysis, which identified 6 studies (out of 
28 treatment-related publications) specifically focused on predicting 
stroke onset time. Notably, half of these (3 studies) utilized MRI-based 
radiomics models, again highlighting the tension between research 
approaches and real-world primary care capabilities where MRI is 
frequently unavailable.

However, the traditional time-window paradigm has significant 
limitations as it fails to account for individual patient variability. 
Current standards for mechanical thrombectomy in AIS have evolved 
from a time-centric approach to a tissue-based model, requiring 
comprehensive evaluation of both the ischemic penumbra and 
collateral circulation status in each patient (36, 37). Consequently, 
previous radiomics studies focusing solely on predicting time 
windows can no longer provide meaningful clinical guidance in 
isolation. Various imaging modalities, including CTP, CTA, 
DWI-PWI, and ASL (38), can effectively assess the ischemic 
penumbra. For primary care institutions, while DWI-PWI may 
be difficult to obtain, CTP represents the most accessible and practical 
option. However, despite its routine use in comprehensive stroke 
centers, CTP implementation in primary care settings still faces 
significant barriers, including high hardware and technical 
requirements, complex operation and interpretation protocols, as well 
as cost and insurance reimbursement limitations. The ideal scenario 
would involve overcoming these challenges to achieve widespread 
CTP adoption across primary care facilities. For institutions where 
CTP remains unavailable, an alternative interim solution could 
involve radiomics models capable of accurately predicting penumbra-
to-core infarction ratios using NCCT alone—this would similarly 
enable clinicians to make informed treatment decisions. However, no 
such radiomics models have been reported in current literature.

For AIS patients eligible for either thrombolysis or endovascular 
therapy, treatment efficacy and potential complications naturally 
become the primary focus (39). Our analysis identified 21 relevant 
studies, with the majority (19 papers) being CT-based radiomics 
research focused on predicting outcomes and complications of 
endovascular therapy. These endovascular interventions—including 

intra-arterial thrombolysis, mechanical thrombectomy, and 
emergency angioplasty—require specialized DSA equipment, 
interventional devices, and neurointerventional specialists (40). For 
primary care institutions, establishing such comprehensive capabilities 
presents even greater challenges than acquiring MRI technology, 
creating a significant disconnect between current radiomics research 
focus and frontline clinical realities. Although endovascular therapy 
is primarily performed at specialized comprehensive stroke centers, 
the ability to predict treatment outcomes and complications using 
NCCT—readily available in primary care settings—could significantly 
improve patient management. Promising progress has already been 
made in this area. Wen et al. developed a radiomics model based on 
pre-intervention NCCT in acute anterior circulation infarction 
patients that accurately predicted post-thrombectomy malignant 
cerebral edema with an AUC reaching 0.879 (41). When advanced 
stroke centers are forewarned of high malignant edema risk through 
such predictions, they can better inform families during preoperative 
consultations, prepare for potential decompressive craniectomy 
during the procedure, and intensify postoperative osmotic therapy 
(e.g., mannitol administration). In another advancement, Hofmeister 
et al. utilized radiomic features of thrombi on pre-procedural NCCT 
to predict both first-pass successful recanalization with the ADAPT 
technique and the likely number of retrieval attempts needed if stent-
assisted thrombectomy becomes necessary (42). These predictive 
insights provide valuable guidance for neurointerventionalists in 
selecting optimal endovascular strategies. While thrombectomy 
remains beyond their capabilities, primary care institutions can still 
administer intravenous thrombolysis for AIS patients. However, 
notably, our analysis identified only two radiomics studies focusing on 
intravenous thrombolysis in AIS patients. Among these, one 
developed its prediction model using DSC-PWI—an advanced MRI 
perfusion technique typically unavailable in primary care settings 
(43). The sole remaining study utilized NCCT and CTA imaging to 
predict the likelihood of successful recanalization following alteplase 
administration (44). Consequently, radiomics models predicting post-
thrombolysis outcomes—including recanalization success, 
hemorrhagic transformation, or cerebral edema—would better align 
with the actual clinical needs of primary care institutions compared 
to thrombectomy recanalization prediction models (45). This targeted 
approach would directly address the decision-making challenges faced 
by frontline physicians managing AIS patients within their 
therapeutic capabilities.

The “Differential diagnosis” category includes only 13 studies, yet 
7 of these focus on carotid artery plaques and thrombosis. For 
example, some radiomics models aim to predict the vulnerability of 
carotid artery plaques or the physiological and compositional 
properties of thrombosis (46–49). Clearly, these prediction targets are 
more aligned with pre-stroke risk assessment rather than directly 
addressing the diagnosis and treatment of AIS, which is the primary 
focus of this paper. Similarly, the 9 studies categorized under “Risk” 
all focus on predicting the likelihood of cerebral infarction, which 
again does not match the objectives of this paper. The “Special” 
category includes studies on the stability of radiomics features (50), 
such as the conversion of CT to MRI (51), which are also not directly 
relevant to the diagnosis and treatment of AIS.

In conclusion, while radiomics research on AIS has broadly 
addressed various aspects such as diagnosis (52), treatment strategies 
(42), treatment outcomes (53, 54), and prognosis (55, 56), few studies 
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offer genuine clinical utility for primary care settings. Some studies 
focus on prediction targets that do not align with the capabilities of 
primary healthcare facilities, while others address issues that are not 
directly relevant to their clinical priorities. This disconnect likely 
stems from the academic origins of most radiomics research, as teams 
from tertiary medical centers naturally focus on challenges relevant 
to their advanced practice environment rather than primary care 
needs. It’s easy to add to abundance, but hard to relieve necessity. 
Future AIS radiomics research would benefit greatly from 
incorporating primary care perspectives—aligning prediction targets 
with actual diagnostic dilemmas and therapeutic decision points faced 
by community physicians. Only through such targeted approaches can 
radiomics truly address the most pressing needs at the frontline of 
stroke care.

4 Prediction models not 
instrumentalized

Radiomics represents a computational process that converts 
medical images into analyzable high-dimensional data through 
standardized procedures including image acquisition, preprocessing, 
feature extraction, and predictive modeling (11) (Figure  3). This 
methodology integrates expertise from statistics, programming, and 
machine learning, typically requiring multidisciplinary team 
collaboration due to its technical complexity (57). The ultimate 
objective is to develop clinically applicable predictive models using 
quantitative imaging features for specific clinical endpoints. In theory, 
consistent application of published radiomics protocols to AIS patient 
CT or MRI scans should yield comparable predictive results to guide 
clinical decisions. However, from the perspective of primary 
healthcare institutions, the key question remains: Are radiomics-based 
predictive models for AIS truly practical and useful in real-world 
clinical practice?

It is well-established that radiomics features are extracted from 
ROIs in medical images (11), with three primary segmentation 
methods employed: manual, semi-automatic, and automatic. Manual 
segmentation typically involves multiple radiologists independently 
delineating ROIs (e.g., hemorrhage or infarction areas) slice-by-slice 
to create precise masks (58). Semi-automatic approaches utilize 
threshold-based techniques for ROI identification (59), while 
automatic methods leverage specialized software or neural networks 
for segmentation (60). In our analysis of 82 AIS radiomics studies, 
we found that 59 studies (72%) used manual delineation, 12 studies 
(15%) used semi-automatic methods, and 9 studies (11%) used 
automatic methods (Figure  4). Additionally, two studies used the 
entire brain as the ROI.

Despite the prevalence of manual delineation, this method has 
several significant drawbacks. First, the labor-intensive process 
typically requires experienced radiologists to meticulously delineate 
ROIs slice-by-slice (58), particularly challenging for thin-section 
imaging like CTA or DSC-PWI where slice thickness often measures 
<1 mm, potentially necessitating annotation across dozens of slices. 
This time-consuming process (often requiring >15 min per case) 
becomes particularly problematic for time-sensitive AIS management, 
where every minute counts in preserving brain tissue. This paradox is 
starkly illustrated in time-window prediction studies, where 5 of 6 
identified publications relied on manual segmentation despite their 

purported goal of accelerating treatment decisions (61–65), and 1 
used a semi-automatic threshold-based method (66).

Second, manual segmentation suffers from substantial inter-rater 
variability, with different radiologists often producing markedly 
different ROI boundaries that may significantly impact extracted 
features and subsequent predictions (67). Nearly all manual 
segmentation studies involve ≥2 experienced radiologists, frequently 
requiring third-party adjudication for discordant cases—a luxury 
unavailable in many primary care settings, especially during off-hours 
when AIS frequently occurs. Compounding these challenges, ischemic 
lesion boundaries on CT are notoriously ambiguous, potentially 
magnifying interpretation discrepancies (68). The clinical stakes are 
high: inaccurate predictions could directly compromise patient 
outcomes. While automated/semi-automated methods (neural 
networks in 6 of 9 automated studies) theoretically address these 
inconsistencies, they introduce their own barriers: substantial 
hardware requirements and technical expertise that may exceed 
primary care capabilities (60, 69, 70). This creates a fundamental 
implementation gap between radiomics research and frontline 
clinical realities.

Radiomics predictive models require the input of radiomics 
features, which must be extracted through a standardized yet intricate 
preprocessing pipeline (11). This workflow typically includes skull 
stripping, image registration, downsampling, morphological 
operations (e.g., mask opening), and other computational steps. While 
most AIS radiomics studies follow broadly similar preprocessing 
methodologies, subtle but potentially consequential variations exist 
across studies in implementation details. The requirement for 
radiomics feature extraction to strictly adhere to each predictive 
model’s original preprocessing pipeline introduces several 
significant challenges.

First, the extraction process itself is inherently complex, involving 
imaging preprocessing and feature calculation steps (11). Even a single 
procedure like skull stripping can be performed using various software 
packages (71–73) or deep learning algorithms (74–76). For example, 
the commonly used BET (Brain Extraction Tool) offers multiple 
parameters that yield substantially different results (71). Mastering 
this technically demanding workflow may prove prohibitively difficult 
for primary care settings. Furthermore, the complete processing chain 
is time-intensive, requiring not only execution time for each step but 
also manual verification and correction. For example, BET-derived 
masks often require slice-by-slice manual refinement due to 
suboptimal performance (58).

For a single AIS patient requiring multiple predictive analyses, the 
necessity to repeat distinct preprocessing pipelines for different 
prediction models leads to duplicated processing efforts and 
exponentially increased time consumption. Following preprocessing 
completion, feature extraction typically relies on packages like 
PyRadiomics (77), which demands Python programming expertise—
while theoretically available in primary care settings, the 
computational burden becomes non-trivial when extracting 
thousands of radiomics features. This protracted analytical process 
fundamentally contradicts the time-sensitive nature of AIS 
management, where treatment delays measured in minutes may 
significantly impact clinical outcomes.

Current AIS radiomics research remains prohibitively complex 
for clinical application in primary care settings, where physicians 
require simplified predictive tools focused solely on actionable 
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outputs rather than technical processes. Therefore, simplifying AIS 
radiomics prediction models is a key focus for future development 
in the field. The ideal solution would involve packaging all the 
intermediate steps of radiomics into a user-friendly software. In this 
scenario, doctors would simply input AIS images, select the desired 
prediction target, and the software would handle the necessary 
computations, outputting the results directly to the doctor. However, 
achieving this goal involves overcoming several challenges. (1) 

implementing automated ROI segmentation to eliminate inter-rater 
variability and reduce processing time, deep learning neural network 
is a viable direction (60, 69, 70); (2) establishing standardized 
preprocessing protocols to enable feature sharing across different 
prediction models; and (3) consolidating research models into 
publicly available software tools—or ideally, a unified platform if 
standardization is achieved. Our review of 80+ existing AIS 
radiomics studies revealed none have developed such clinical tools, 

FIGURE 3

Flowchart of radiomics. (A) Schematic diagram of radiomics research. Radiomics research is the process of extracting radiomics features from medical 
images and then using them to build models to achieve various goals. (B) Schematic diagram of the radiomics feature extraction process. Through a 
series of image preprocessing steps, comparable radiomics features that can reflect image characteristics are extracted.
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despite their potential to significantly enhance real-
world applicability.

5 Unreliable prediction results

Given the critical nature of AIS, all clinical assessments—
particularly those guiding treatment decisions—must be conducted 
with utmost precision and reliability. Consequently, radiomics 
prediction models for AIS must demonstrate high accuracy and 
robustness to possess meaningful clinical utility. Our systematic 
analysis of relevant literature reveals that model reliability constitutes 
a significant concern that cannot be overlooked in current research.

The use of mutually independent datasets for model training and 
validation represents a standard approach to assess predictive robustness 
(78). In our analysis of 78 AIS radiomics studies, we categorized them 
as single-center (data from one institution) or multi-center (≥2 
institutions). Results showed 56 studies (71.8%) utilized single-center 
data versus only 22 (28.2%) incorporating multi-center data (Figure 5). 
Among multi-center studies, most involved 2 institutions (60, 69, 70, 79, 
80), with 5 leveraging publicly available datasets and a maximum of 7 
participating centers (43). Single-institution datasets carry inherent 
biases that may compromise a model’s generalizability, leaving its 
predictive performance for data from other institutions uncertain (81). 
Implementing such unvalidated models in clinical practice—
particularly for a critical condition like AIS—requires extreme caution 
given the potentially grave consequences of unreliable predictions.

In addition to sample diversity, the sample size also significantly 
impacts a prediction model’s performance and reliability. Generally, 
larger sample sizes yield more robust predictive models with greater 
clinical validity (82). Our analysis of 79 AIS radiomics studies revealed 
substantial variation in sample sizes (Figure  5), ranging from a 
minimum of 10 patients (48) to a maximum of 4,163 patients (60), with 
a mean of 420 and median of 191 patients. Notably, only 19 studies 
(24.3%) exceeded the mean sample size, while 20 studies (25.6%) 
included fewer than 100 patients. Although some small-sample studies 

reported impressive predictive performance (AUC > 0.9) (83–85), their 
reliability remains justifiably questionable given the limited cohort sizes.

Beyond total sample size, the ratio between positive and negative 
cases warrants careful consideration. Ideally, this ratio should 
approximate 1:1 (86), but for certain AIS prediction targets with low 
incidence rates, significant class imbalance often occurs. For example, 
in Meng et al.’s study predicting hemorrhagic transformation in AIS, 
the cohort comprised only 71 patients—merely 11 with positive 
outcomes (87). Although SMOTE algorithm was employed to address 
this imbalance, this method has inherent limitations: it may introduce 
redundant information causing overfitting and remains vulnerable to 
noise interference (88). Notably, despite reporting impressive metrics 
(AUC = 0.911, accuracy = 0.894) (87), a naive model predicting all 
negative cases would still achieve 0.845 accuracy in this dataset. This 
demonstrates that conventional performance metrics (AUC, accuracy, 
sensitivity, specificity) alone prove insufficient for reliably evaluating 
radiomics models, particularly for critical conditions like AIS—more 
comprehensive validation paradigms are essential.

AUC serves as the most widely adopted metric for evaluating 
model performance, with values exceeding 0.85 typically indicating 
excellent predictive capability (89). Applying this threshold to our 
literature analysis—while additionally requiring sample sizes >100 
and focusing on “prognosis” and “treatment” prediction categories—
yielded only 24 qualifying studies (Figure 5). Among these, 14 utilized 
CT imaging while 10 employed MRI. From a primary care perspective, 
CT-based models hold greater practical relevance, prompting further 
analysis of the 14 CT studies, 1 employed dual-energy CT (a 
specialized technology rarely available in community settings) (65), 8 
focused on endovascular treatment outcomes (largely irrelevant for 
centers lacking neurointerventional capabilities). This left merely 5 
CT-based radiomics models potentially suitable for primary care 
application—a strikingly small proportion given the extensive AIS 
radiomics literature. Among these five studies, Ren et al. developed a 
model for predicting hemorrhagic transformation (HT) in AIS with 
an AUC of 0.942, accuracy of 0.861, and specificity of 0.949, but 
sensitivity was only 0.758 (90). Given that HT in AIS patients typically 
indicates greater severity, higher surgical risks, poorer prognosis, and 
necessitates closer monitoring plus more conservative treatment 
approaches (including cautious consideration of endovascular 
thrombolysis) (91), high sensitivity is clinically paramount for HT 
prediction models—whereas specificity becomes secondary. The 0.758 
sensitivity reported by Ren et  al. remains suboptimal for clinical 
deployment. In contrast, Zhang et al.’s HT prediction model achieved 
superior sensitivity (0.95) with an AUC of 0.957 and accuracy of 0.861, 
albeit at the cost of lower specificity (0.75) (92). However, this study’s 
sample size (n = 180) was substantially smaller than Ren et al.’s cohort 
(n = 517), raising concerns about its generalizability.

Consequently, while the quantity of AIS radiomics prediction 
models appears substantial, rigorous evaluation across critical 
parameters—including sample size, class distribution, AUC 
performance, and clinical relevance—reveals that only a limited subset 
can be considered truly reliable for practical application.

6 Discussion

Primary healthcare institutions, as the first line of care for most 
AIS cases, serve as the frontline for initial diagnosis and treatment, 

FIGURE 4

Region of interest delineation methods of AIS radiomics studies.
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playing a critical role in combating this severe condition. However, it 
is undeniable that limitations in medical equipment, staffing, and 
diagnostic capabilities often render these institutions passive in 
managing AIS patients. Ideally, the widespread adoption of CTP—or 
even MR perfusion—in primary healthcare settings would be  the 
optimal solution to enhance AIS management. Yet, from a health 
economics perspective, achieving this remains highly challenging in 
low-resource regions (93). Even in economically advanced countries 
like China, comprehensive CTP implementation at the primary level 
has not yet been realized and cannot be rapidly achieved in the short 
term (94).

As the frontline providers for most AIS cases, primary care 
institutions serve as the critical first point of diagnosis and treatment—
the essential battleground against this devastating disease (95). 
However, their diagnostic and therapeutic capabilities remain severely 
constrained by limited equipment, staffing shortages, and inadequate 
infrastructure, creating significant challenges in AIS management. 
Radiomics enables accurate prediction of clinical outcomes through 
quantitative image feature analysis, offering potential to guide AIS 

diagnosis and treatment (57). As medical imaging is essential in AIS 
management, radiomics-based prediction represents a technically 
feasible approach. The development costs for building precise 
radiomics models are relatively modest (96), and their deployment in 
primary care settings would incur negligible expenses compared to 
the substantial investment required for widespread CTP or MRI 
implementation. This makes radiomics a potentially cost-effective 
interim solution to address current diagnostic and therapeutic 
limitations in resource-constrained settings during the gradual 
adoption of advanced imaging technologies. However, our critical 
evaluation demonstrates that most existing AIS radiomics studies 
exhibit poor clinical applicability for primary care, primarily due to 
their reliance on sophisticated imaging modalities unavailable in 
community hospitals and inadequate alignment with frontline clinical 
decision-making needs.

Current radiomics research in AIS predominantly utilizes CT 
and MRI in approximately equal proportions. Compared to MRI, CT 
offers distinct advantages for AIS management, including superior 
differentiation between ischemic stroke and cerebral hemorrhage, 

FIGURE 5

Shortcomings of radiomics research in emergency medicine. (A) Data source of AIS radiomics studies. (B) Sample number of AIS radiomics studies. 
(C) Distribution of centers for AIS radiomics studies with multicenter data sources. (D) Distribution of AUC in AIS radiomics studies.
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faster examination times, and less restrictive scanning requirements. 
From both economic and accessibility perspectives, CT remains 
more widely available in primary care settings, making CT-based 
radiomics models substantially more feasible for clinical 
implementation at the community level. This practical consideration 
strongly suggests that CT-derived models hold greater potential for 
widespread adoption in resource-constrained 
healthcare environments.

Nevertheless, half of current AIS radiomics studies rely on 
MRI—a phenomenon we  attribute to the specialized nature of 
radiomics research. The field’s high technical barriers mean most 
investigators originate from advanced medical institutions where MRI 
is routinely available (57). MRI’s multi-sequence protocols and 
superior resolution enable researchers to extract richer imaging data, 
theoretically yielding more robust models. While primary care settings 
demonstrate clear need for CT-based AIS radiomics solutions, these 
same technical barriers prevent their active participation in model 
development. This institutional bias manifests in the observed 1:1 
CT-to-MRI ratio in published literature.

We must emphasize this analysis does not discount the scientific 
value of MRI-based radiomics. Should future MRI technology become 
cost-effective for widespread primary care adoption, such models may 
indeed prove more clinically valuable. Notably, emerging research 
explores CT-to-MRI translation using radiomics-guided generative 
adversarial networks (GANs) (51). Preliminary results demonstrate 
synthetic MRIs that accurately preserve lesion location and 
morphology compared to authentic scans. Whether these synthesized 
images could reliably feed existing MRI-based radiomics pipelines 
warrants rigorous investigation—an exciting frontier that may 
eventually bridge the current modality divide.

The mismatch in prediction targets between research and clinical 
needs stems from systemic differences in healthcare settings, 
mirroring the previously discussed imaging modality disparity. The 
observed disparity in radiomics research focus stems fundamentally 
from the divergent clinical priorities and capabilities across healthcare 
tiers. Investigators from advanced medical institutions—who 
dominate radiomics research—naturally extend their scholarly 
inquiry beyond basic clinical parameters (e.g., symptom onset 
estimation and complication prediction) to investigate more 
specialized aspects like functional outcomes, thrombus etiology, and 
even the temporal stability of radiomics features in AIS. This academic 
inclination reflects their institutional mandate to pioneer cutting-edge 
therapies, particularly endovascular interventions that demand 
sophisticated angiography suites, specialized devices, and highly 
trained neurointerventional teams (97)—resources typically 
unavailable in primary care settings. Primary care institutions are 
typically limited to administering intravenous thrombolysis before 
promptly transferring AIS patients to advanced centers for potential 
endovascular therapy evaluation. This fundamental division of clinical 
responsibilities creates corresponding disparities in research priorities: 
while frontline providers would benefit most from radiomics models 
predicting thrombolysis-related outcomes (e.g., hemorrhagic 
transformation risk or recanalization success), academic researchers 
at tertiary hospitals naturally focus on endovascular treatment 
predictions aligned with their institutional capabilities. Our systematic 
review confirms this misalignment—among identified studies, 
vascular intervention-related radiomics research (20 publications) 
outnumbers thrombolysis-focused investigations (2 publications) (43, 

44) by an order of magnitude, precisely reflecting the healthcare 
hierarchy’s influence on scholarly attention.

The issue of unreliable predictive performance persists universally 
across healthcare settings (98), from primary to tertiary institutions. 
As previously noted, most AIS radiomics studies utilize single-center 
datasets, leaving their generalizability to images from different 
scanners and protocols unverified. Furthermore, many studies suffer 
from severe class imbalance, necessitating careful scrutiny of their 
models’ true discriminatory power. Crucially, nearly all existing 
radiomics research remains retrospective in design—prospective 
validation would provide more robust evidence for clinical 
applicability (99). Most fundamentally, we contend that current AIS 
radiomics models generally lack sufficient predictive accuracy to guide 
clinical decision-making. Given that therapeutic choices in AIS can 
profoundly impact survival and long-term outcomes, the demand for 
exceptionally high model performance cannot be overstated. Yet our 
analysis reveals only 21 studies (30%) achieved AUCs >0.9, while 10 
(14.5%) fell below 0.8. This evidence unequivocally demonstrates the 
imperative for future research to prioritize substantial improvements 
in predictive accuracy.

The critical barrier to clinical adoption of radiomics models lies 
in their failure to transition from research prototypes to practical 
tools, as nearly all AIS radiomics studies conclude after model 
validation without developing clinically operable applications. This 
implementation gap stems from the formidable challenges of 
integrating the complete radiomics pipeline—from ROI delineation 
(requiring tools like MRIcron, FreeSurfer or fsleyes) (100–102) 
through image registration, normalization, and feature extraction 
(Figure  3)—into a unified platform. We  propose establishing 
standardized preprocessing protocols and a centralized radiomics 
platform where individual models could be modularly integrated, 
enabling uniform preprocessing while allowing “plug-and-play” 
addition of new prediction models—an approach that would eliminate 
redundant development efforts while ensuring methodological 
consistency for clinical implementation, particularly crucial for time-
sensitive AIS management where prediction reliability directly 
impacts outcomes.

Is there a way to bypass these cumbersome steps? We believe deep 
learning approaches like neural networks could provide a solution. 
Unlike traditional radiomics, neural networks require minimal image 
preprocessing—raw images can be  directly input to generate 
predictions (103), making them inherently more suitable for tool 
development. While neural networks operate as “black boxes” (104), 
this opacity matters little to frontline clinicians who prioritize 
actionable outputs over methodological transparency. However, the 
critical limitation remains the substantial training data requirements—
individual institutions’ AIS image collections likely prove insufficient, 
necessitating multicenter public databases to achieve the necessary 
sample sizes for robust model development (105).

Despite the limitations outlined above, we  acknowledge that 
we remain in the early stages of exploring artificial intelligence in 
medical imaging. Radiomics simply represents one currently prevalent 
methodology and does not fully encompass AI’s potential in this field 
(106). Our critique of current radiomics research stems specifically 
from the perspective of AIS management in primary care settings, and 
thus carries inherent limitations. Different diseases present unique 
characteristics that may reveal new challenges in radiomics 
applications not addressed here. This paper’s primary objective is to 
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evaluate whether radiomics could serve as a temporary alternative 
given the current lack of widespread CTP/MRI availability in primary 
care—not to universally dismiss radiomics or AI development. 
We recommend future radiomics studies: (1) prioritize NCCT-based 
approaches, (2) align research objectives with frontline clinical needs, 
and (3) develop more integrated, user-friendly tools. Crucially, 
we  emphasize that advancing radiomics/AI should never replace 
efforts to expand CTP/MRI access in community hospitals, nor should 
it divert focus from investigating AIS etiology and prevention 
strategies. These fundamental diagnostic capabilities and research 
directions must remain paramount, with radiomics applications 
serving only as supplemental tools.

Some argue that future AI research for AIS may not need to 
address primary care needs, given the emerging “direct transfer” 
paradigm where suspected AIS patients bypass local hospitals to 
immediately access comprehensive stroke centers equipped with CTP/
MRI and angiographic capabilities, along with multidisciplinary 
stroke teams (107). This streamlined approach could reduce treatment 
delays by eliminating unnecessary intermediate evaluations. Should 
direct referral become standard practice, the transitional utility of 
radiomics in primary care settings—as proposed in this study—would 
become obsolete. Consequently, future radiomics research might 
justifiably exclude primary care considerations. Future AI systems 
may need to prioritize prehospital severity assessment of AIS patients, 
safe transfer eligibility evaluation, and integration of multifunctional 
AI tools. However, implementing direct referral requires robust 
infrastructure—including accurate clinical triage (108), mobile stroke 
units (109), teleconsultation (110), and cloud-based imaging 
sharing—all dependent on regional network capacity, technological 
resources, and policy frameworks. Global disparities remain profound: 
While developed nations may achieve nationwide adoption, 
developing and underserved regions face multifaceted barriers (111). 
Primary care facilities will retain indispensable roles in AIS 
management for the foreseeable future. Thus, our investigation into 
radiomics’ utility in these settings remains clinically relevant during 
this transitional period.

7 Conclusion

In summary, while radiomics could provide valuable decision 
support for primary care institutions given their current technological 
and clinical limitations, existing AIS radiomics research has largely 
overlooked the practical needs of these frontline settings, resulting in 
limited real-world applicability. To bridge this implementation gap, 
future studies must prioritize primary care perspectives by optimizing 
imaging modality selection, aligning clinically relevant prediction 
targets, ensuring robust model performance meeting frontline 
diagnostic standards, and developing user-friendly tool—ensuring 

these advanced analytical methods can truly enhance AIS 
management at the critical first point of care.
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