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The impracticality of radiomics
research in acute ischemic stroke:
from the perspective of primary
healthcare institutions
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Department of Emergency, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated
Hospital of Zhejiang University School of Medicine, The Shengzhou Hospital of Shaoxing University),
Shengzhou, Zhejiang, China

Acute ischemic stroke (AlS) is a leading global cause of disability and mortality,
imposing a substantial socioeconomic burden. Neuroimaging serves as the primary
and indispensable tool for AlS diagnosis and plays a pivotal role in guiding treatment
decisions and prognostic evaluations. Radiomics enables the extraction of high-
dimensional features from medical imaging data, which can be integrated with clinical
endpoints to construct highly accurate predictive models, thereby informing disease
diagnosis and therapeutic strategies. Consequently, radiomics-based investigations
into AlS etiology, prognosis, and treatment selection have emerged as a prominent
research focus. Numerous published studies have demonstrated that radiomics
models achieve satisfactory predictive performance, offering valuable guidance
across various clinical aspects of AIS. Primary care institutions represent the frontline
in real-world AIS management—a critical yet often overlooked component of
the diagnostic and therapeutic workflow. Their clinical capabilities significantly
influence patient outcomes. Due to inherent resource limitations, these settings
stand to benefit most from the translation of such research into practice. However,
whether existing radiomics models are truly applicable to primary care remains
unexplored. Thus, there is an urgent need for more radiomics studies tailored to
the realities of primary care to address this gap. This article critically examines
the potential limitations of current AIS radiomics research in terms of clinical
utility for primary care settings and provides recommendations to guide future
development and implementation.
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1 Introduction

Stroke is the second leading cause of death globally and the third leading cause of disability
(1). It is defined as an acute episode of focal dysfunction in the brain, retina, or spinal cord
lasting more than 24 h—or any duration if neuroimaging (CT or MRI) or autopsy reveals focal
infarction or hemorrhage consistent with clinical symptoms (1). Strokes are generally classified
into two categories: hemorrhagic strokes (e.g., intracerebral hemorrhage) and ischemic strokes
(e.g., cerebral infarction) (2). Acute ischemic stroke (AIS), accounting for approximately 80%
of all strokes, results from inadequate cerebral blood flow, leading to ischemic hypoxia,
localized tissue necrosis, or softening (3). Common causes of AIS include cerebral thrombosis,
lacunar infarction, and cerebral embolism (3). Although stroke mortality has declined over
the past two decades, the incidence of stroke, disability-adjusted life years (DALYs) lost, and
the absolute number of stroke-related deaths continue to rise (4).
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Radiomics is the process of converting digital medical images into
high-dimensional data that can be mined for clinical insights (5, 6).
By integrating imaging data with other patient information—such as
clinical data, genomics, and drug responses—radiomics can
significantly aid medical decision-making (7-10). Unlike qualitative
assessments made by radiologists, radiomics transforms regions of
interest (ROIs) within images into quantifiable, high-dimensional
features, reducing subjective variability and improving diagnostic
accuracy (11). Additionally, radiomics can help address disparities in
imaging quality across hospitals and clinicians. Its versatility allows it
to predict various clinical outcomes, including diagnosis, treatment
plans, and prognosis, thereby supporting clinical decision-making (6).
As a result, radiomics is increasingly applied in emergency medicine,
assisting emergency physicians in the rapid diagnosis and treatment
of AIS patients (12).

Neuroimaging, including cranial CT (Computed Tomography)
and MRI (Magnetic Resonance Imaging), is essential in the
management of AIS. It plays a critical role in diagnosing AIS, guiding
treatment strategies, and assessing prognosis (13). In recent years,
radiomics has been increasingly applied to AIS, with uses ranging
from early diagnosis of stroke etiology to informing treatment
decisions and predicting outcomes (14). For example, radiomics has
been used to predict the likelihood of complications such as malignant
brain edema, helping guide treatment choices, including conservative
management or decompressive craniectomy (15, 16). Radiomics thus
holds significant potential for improving AIS treatment and
patient care.

Given the time-sensitive nature of AIS and the critical treatment
window, patients are often transported to the nearest medical facility
rather than directly to comprehensive stroke centers (17). While
primary care institutions serve as the frontline for AIS management,
limitations in diagnostic capabilities, imaging equipment, and
treatment options frequently hinder accurate diagnosis and optimal
therapeutic decision-making. Consequently, these settings stand to
benefit most from clinically actionable radiomics research that could
bridge existing gaps in AIS care. However, to our knowledge, despite
the proliferation of radiomics studies in AIS, no research has
systematically evaluated the applicability of these models from a
primary care perspective. This paper examines the clinical practicality
of existing AIS radiomics studies from the perspective of primary
healthcare institutions, finding that most are unsuitable due to
imaging modalities bias, clinical misalignment, implementation
barriers, and performance gaps. This critique underscores the urgent
need for radiomics research that addresses the realities of primary
stroke care—where diagnostic uncertainty and time pressures are
greatest. Future work must prioritize accessibility, interpretability, and
immediate clinical actionability to fulfill the promise of precision
medicine in AIS.

2 Image modality bias

We conducted a search on PubMed for articles published from
January 2017 to November 2024 using the keywords “radiomics” and
“AIS” This search yielded 101 articles, including 9 reviews or meta-
analyses and 92 research articles. Of the research articles, 4 were
unrelated to radiomics or AIS, leaving 88 studies for analysis. These
studies were categorized based on the imaging modalities used: CT,
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MRI, and ultrasound. Among the 88 studies, 44 utilized CT, 42
utilized MRI, and 2 utilized ultrasound (Figure 1). Of the 44 CT-based
studies, 28 used NCCT (non-contrast CT), 11 used CTA (CT
angiography), and 2 used both NCCT and CTA. The MRI-based
studies included a variety of sequences, such as T1-weighted (T1w),
T2-weighted (T2w), FLAIR (fluid-attenuated inversion recovery),
DWI (diffusion-weighted imaging), ADC (apparent diffusion
coeflicient), as well as advanced sequences like DSC-PWT (dynamic
susceptibility contrast perfusion-weighted imaging), HR-VWMRI
(high-resolution vessel wall MRI), and HRMRI (high-resolution MRI)
(Figure 1).

While acknowledging the undeniable value of MRI in the
diagnosis and prognostic evaluation of AIS (18), we must recognize
its limited suitability as a first-line imaging modality in clinical
practice. The prolonged acquisition time necessitates prolonged
patient immobility, which proves challenging for severe AIS patients
experiencing delirium or agitation, often resulting in either
non-compliance or significant discomfort. Furthermore, the MRI
environment’s strict restrictions on metallic objects preclude the use
of essential life-support equipment such as cardiac monitors, oxygen
delivery systems, and infusion pumps—rendering the modality
inaccessible for critically unstable patients. This inherent selection bias
raises concerns about the generalizability of MRI-based radiomics
research. Additionally, the substantial costs associated with MRI
technology limit its availability primarily to urban tertiary care
centers, while most AIS patients initially present to resource-limited
primary care facilities due to time-sensitive treatment requirements
(17). The financial impracticality of widespread MRI deployment in
community hospitals fundamentally questions the clinical applicability
of MRI-derived radiomics models in real-world settings where such
infrastructure is absent. This significant disconnect between research
focus and clinical reality is particularly evident given our finding that
MRI-based studies constitute 42 out of 88 (47.7%) published AIS
radiomics investigations.

Ultrasound is a convenient, cost-effective, and non-invasive
diagnostic tool, but its use in diagnosing acute ischemic stroke (AIS)
has not been well established. The two radiomics studies involving
ultrasound and AIS reviewed in this paper primarily focus on
analyzing carotid artery plaques to predict the risk of AIS (19, 20),
rather than directly guiding its diagnosis or treatment. Currently,
ultrasound is mainly used to assess large intracranial blood vessels
(21), primarily for evaluating stenosis and vascular plaques. While
significant occlusion or stenosis of large vessels can indicate ischemia
or infarction in the corresponding regions, this connection is not
always definitive. Moreover, intracranial vascular ultrasound is not a
straightforward procedure, and many primary healthcare settings,
such as emergency departments or ultrasound units, may lack the
necessary equipment or expertise. Therefore, from a practical
standpoint in primary healthcare institutions, radiomics research
involving ultrasound for AIS diagnosis may have limited clinical value.

CT offers distinct advantages over MRI in the diagnosis of
AIS. First, CT examinations are significantly faster than MRI—even
when performing CTA or CTP, the acquisition time remains
substantially shorter than DSC-PWI, markedly reducing patient
cooperation requirements and minimizing discomfort. Importantly,
the CT environment accommodates continuous cardiac monitoring
and intravenous medication administration, significantly enhancing
patient safety during scanning for severe AIS cases. From an
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FIGURE 1
Image types of AlS radiomics research. (A) Flowchart of AlS radiomics image type analysis. (B) Types of literature on AIS radiomics research.
(C) Distribution of imaging types of AlS studies.

infrastructure perspective, CT scanners are more affordable and
therefore more widely available in primary care settings, which
represent the frontline of AIS patient management. Clinically, since
AIS symptoms (altered consciousness, motor/sensory deficits) closely
resemble those of acute intracranial hemorrhage (22), CT serves as the
primary modality for this critical differential diagnosis. The
characteristic hyperdense appearance of hemorrhage versus
hypodense ischemic changes on CT makes it the universal first-line
imaging choice—virtually all suspected AIS patients undergo initial
CT before subsequent MRI (when available) or treatment initiation
(23). This clinical pathway ensures that CT images represent the
largest potential dataset for radiomics research, where sample size
directly correlates with model performance (24). For resource-limited
primary care facilities that often can only perform CT, radiomics
models derived from CT data could provide crucial decision support
for diagnosis, treatment selection, and prognosis prediction. Despite
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this compelling rationale, our analysis revealed only 44 CT-based
radiomics studies (50% of total publications), highlighting a critical
need for more CT-focused AIS radiomics research that aligns with
real-world clinical capabilities and workflows.

3 Prediction targets mismatch

We analyzed the prediction targets of the 88 radiomics studies
identified in our search and found that radiomics research on AIS
covers a wide range of aspects, including diagnosis, treatment
strategies, treatment outcomes, and prognosis. The breadth of these
studies appears to be comprehensive. Based on the prediction targets
of the radiomics models, we categorized the studies into five main
groups: “Differential diagnosis,” “Treatment,” “Prognosis;” “Risk;” and
“Special” Among these, 32 studies focused on “Prognosis,” 28 on
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“Treatment;” 13 on “Differential diagnosis,” 9 on “Risk;” and 6 on
“Special” (Figure 2). This distribution indicates that the primary focus
of AIS radiomics research is on predicting prognosis and
treatment outcomes.

We categorize disease progression, complications, and sequelae
of AIS under the “Prognosis” category. Further analysis of these 32
prognostic studies revealed that 22 focused specifically on
predicting functional outcomes in AIS patients, with the modified
Rankin Scale (mRS) serving as the primary evaluation tool (25).
Interestingly, 20 of the 22 studies on functional outcomes were
based on MRI images. As mentioned earlier, MRI may not be readily
available in primary healthcare settings, and not all AIS patients are
suitable candidates for MRI. It must be acknowledged that in actual
clinical practice at primary care institutions, most AIS patients are
ultimately transferred to specialized stroke centers at tertiary
hospitals. These advanced medical centers possess dedicated
neurology and neuroradiology teams for comprehensive AIS
management (26), where obtaining MRI examinations presents no
significant difficulty. Under these circumstances, the application of
MRI-based radiomics models for predicting functional outcomes
in AIS patients represents an appropriate and feasible approach

10.3389/fneur.2025.1559998

within such well-resourced settings. However, compared to
functional outcomes in AIS patients, frontline physicians in primary
care settings are more clinically concerned about other potential
disease  progression  patterns, particularly hemorrhagic
transformation and malignant cerebral edema. These complications
typically indicate clinical deterioration, often necessitating urgent
transfer to advanced medical centers or even emergency surgical
operation (27, 28). For primary care facilities managing AIS cases,
the ability to predict these hemorrhagic complications prospectively
is critically important. A high-performance radiomics model
capable of accurately predicting hemorrhagic transformation or
malignant edema would enable risk stratification—guiding
decisions about whether to administer tPA onsite or immediately
transfer patients to tertiary hospitals. Expanding this concept
further, radiomics could address other pressing clinical challenges
in primary care, such as predicting risks of hemodynamic instability
during transfer or recurrent infarction. These applications would
directly solve real-world clinical dilemmas faced by community
healthcare providers. Surprisingly, current radiomics research has
largely overlooked these critical endpoints, with only 4 studies
focusing on hemorrhagic transformation and 2 on cerebral edema
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among prognostic investigations—representing just a minimal
fraction of the literature.

Treatment strategies, treatment outcomes, and treatment
complications for acute AIS are grouped under the “Treatment”
category, with a total of 28 studies. Rapid identification of cerebral
infarction and prompt hospital transfer for thrombolytic therapy or
mechanical thrombectomy can maximally reduce the incidence of
disability (29-31). Therefore, as the first line of care for AIS patients,
primary care physicians urgently need the capability to rapidly
determine whether patients are eligible for thrombolysis or
thrombectomy. The traditional paradigm of “time is brain” dictated
that eligibility for thrombolysis or mechanical thrombectomy in AIS
patients was determined solely based on whether they presented
within the established treatment time window (32, 33). Since primary
care facilities are typically only equipped to administer thrombolytic
therapy, their physicians’ primary responsibility became assessing
whether patients fell within the 4.5-h thrombolysis window—
immediately initiating treatment for those meeting this criterion.
However, in clinical practice, the actual stroke onset time is often
uncertain due to various factors, creating significant challenges in
determining whether patients remain within the therapeutic window
and consequently affecting treatment decisions (34, 35). This clinical
dilemma is reflected in our analysis, which identified 6 studies (out of
28 treatment-related publications) specifically focused on predicting
stroke onset time. Notably, half of these (3 studies) utilized MRI-based
radiomics models, again highlighting the tension between research
approaches and real-world primary care capabilities where MRI is
frequently unavailable.

However, the traditional time-window paradigm has significant
limitations as it fails to account for individual patient variability.
Current standards for mechanical thrombectomy in AIS have evolved
from a time-centric approach to a tissue-based model, requiring
comprehensive evaluation of both the ischemic penumbra and
collateral circulation status in each patient (36, 37). Consequently,
previous radiomics studies focusing solely on predicting time
windows can no longer provide meaningful clinical guidance in
isolation. Various imaging modalities, including CTP, CTA,
DWI-PWI, and ASL (38), can effectively assess the ischemic
penumbra. For primary care institutions, while DWI-PWI may
be difficult to obtain, CTP represents the most accessible and practical
option. However, despite its routine use in comprehensive stroke
centers, CTP implementation in primary care settings still faces
significant barriers, including high hardware and technical
requirements, complex operation and interpretation protocols, as well
as cost and insurance reimbursement limitations. The ideal scenario
would involve overcoming these challenges to achieve widespread
CTP adoption across primary care facilities. For institutions where
CTP remains unavailable, an alternative interim solution could
involve radiomics models capable of accurately predicting penumbra-
to-core infarction ratios using NCCT alone—this would similarly
enable clinicians to make informed treatment decisions. However, no
such radiomics models have been reported in current literature.

For AIS patients eligible for either thrombolysis or endovascular
therapy, treatment efficacy and potential complications naturally
become the primary focus (39). Our analysis identified 21 relevant
studies, with the majority (19 papers) being CT-based radiomics
research focused on predicting outcomes and complications of
endovascular therapy. These endovascular interventions—including
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intra-arterial thrombolysis, mechanical thrombectomy, and
emergency angioplasty—require specialized DSA equipment,
interventional devices, and neurointerventional specialists (40). For
primary care institutions, establishing such comprehensive capabilities
presents even greater challenges than acquiring MRI technology,
creating a significant disconnect between current radiomics research
focus and frontline clinical realities. Although endovascular therapy
is primarily performed at specialized comprehensive stroke centers,
the ability to predict treatment outcomes and complications using
NCCT—readily available in primary care settings—could significantly
improve patient management. Promising progress has already been
made in this area. Wen et al. developed a radiomics model based on
pre-intervention NCCT in acute anterior circulation infarction
patients that accurately predicted post-thrombectomy malignant
cerebral edema with an AUC reaching 0.879 (41). When advanced
stroke centers are forewarned of high malignant edema risk through
such predictions, they can better inform families during preoperative
consultations, prepare for potential decompressive craniectomy
during the procedure, and intensify postoperative osmotic therapy
(e.g., mannitol administration). In another advancement, Hofmeister
et al. utilized radiomic features of thrombi on pre-procedural NCCT
to predict both first-pass successful recanalization with the ADAPT
technique and the likely number of retrieval attempts needed if stent-
assisted thrombectomy becomes necessary (42). These predictive
insights provide valuable guidance for neurointerventionalists in
selecting optimal endovascular strategies. While thrombectomy
remains beyond their capabilities, primary care institutions can still
administer intravenous thrombolysis for AIS patients. However,
notably, our analysis identified only two radiomics studies focusing on
intravenous thrombolysis in AIS patients. Among these, one
developed its prediction model using DSC-PWI—an advanced MRI
perfusion technique typically unavailable in primary care settings
(43). The sole remaining study utilized NCCT and CTA imaging to
predict the likelihood of successful recanalization following alteplase
administration (44). Consequently, radiomics models predicting post-
thrombolysis ~ outcomes—including  recanalization  success,
hemorrhagic transformation, or cerebral edema—would better align
with the actual clinical needs of primary care institutions compared
to thrombectomy recanalization prediction models (45). This targeted
approach would directly address the decision-making challenges faced
by frontline physicians managing AIS patients within their
therapeutic capabilities.

The “Differential diagnosis” category includes only 13 studies, yet
7 of these focus on carotid artery plaques and thrombosis. For
example, some radiomics models aim to predict the vulnerability of
carotid artery plaques or the physiological and compositional
properties of thrombosis (46-49). Clearly, these prediction targets are
more aligned with pre-stroke risk assessment rather than directly
addressing the diagnosis and treatment of AIS, which is the primary
focus of this paper. Similarly, the 9 studies categorized under “Risk”
all focus on predicting the likelihood of cerebral infarction, which
again does not match the objectives of this paper. The “Special”
category includes studies on the stability of radiomics features (50),
such as the conversion of CT to MRI (51), which are also not directly
relevant to the diagnosis and treatment of AIS.

In conclusion, while radiomics research on AIS has broadly
addressed various aspects such as diagnosis (52), treatment strategies
(42), treatment outcomes (53, 54), and prognosis (55, 56), few studies
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offer genuine clinical utility for primary care settings. Some studies
focus on prediction targets that do not align with the capabilities of
primary healthcare facilities, while others address issues that are not
directly relevant to their clinical priorities. This disconnect likely
stems from the academic origins of most radiomics research, as teams
from tertiary medical centers naturally focus on challenges relevant
to their advanced practice environment rather than primary care
needs. It’s easy to add to abundance, but hard to relieve necessity.
Future AIS radiomics research would benefit greatly from
incorporating primary care perspectives—aligning prediction targets
with actual diagnostic dilemmas and therapeutic decision points faced
by community physicians. Only through such targeted approaches can
radiomics truly address the most pressing needs at the frontline of
stroke care.

4 Prediction models not
instrumentalized

Radiomics represents a computational process that converts
medical images into analyzable high-dimensional data through
standardized procedures including image acquisition, preprocessing,
feature extraction, and predictive modeling (11) (Figure 3). This
methodology integrates expertise from statistics, programming, and
machine learning, typically requiring multidisciplinary team
collaboration due to its technical complexity (57). The ultimate
objective is to develop clinically applicable predictive models using
quantitative imaging features for specific clinical endpoints. In theory,
consistent application of published radiomics protocols to AIS patient
CT or MRI scans should yield comparable predictive results to guide
clinical decisions. However, from the perspective of primary
healthcare institutions, the key question remains: Are radiomics-based
predictive models for AIS truly practical and useful in real-world
clinical practice?

It is well-established that radiomics features are extracted from
ROIs in medical images (11), with three primary segmentation
methods employed: manual, semi-automatic, and automatic. Manual
segmentation typically involves multiple radiologists independently
delineating ROIs (e.g., hemorrhage or infarction areas) slice-by-slice
to create precise masks (58). Semi-automatic approaches utilize
threshold-based techniques for ROI identification (59), while
automatic methods leverage specialized software or neural networks
for segmentation (60). In our analysis of 82 AIS radiomics studies,
we found that 59 studies (72%) used manual delineation, 12 studies
(15%) used semi-automatic methods, and 9 studies (11%) used
automatic methods (Figure 4). Additionally, two studies used the
entire brain as the ROL

Despite the prevalence of manual delineation, this method has
several significant drawbacks. First, the labor-intensive process
typically requires experienced radiologists to meticulously delineate
ROIs slice-by-slice (58), particularly challenging for thin-section
imaging like CTA or DSC-PWI where slice thickness often measures
<1 mm, potentially necessitating annotation across dozens of slices.
This time-consuming process (often requiring >15 min per case)
becomes particularly problematic for time-sensitive AIS management,
where every minute counts in preserving brain tissue. This paradox is
starkly illustrated in time-window prediction studies, where 5 of 6
identified publications relied on manual segmentation despite their
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purported goal of accelerating treatment decisions (61-65), and 1
used a semi-automatic threshold-based method (66).

Second, manual segmentation suffers from substantial inter-rater
variability, with different radiologists often producing markedly
different ROI boundaries that may significantly impact extracted
features and subsequent predictions (67). Nearly all manual
segmentation studies involve >2 experienced radiologists, frequently
requiring third-party adjudication for discordant cases—a luxury
unavailable in many primary care settings, especially during off-hours
when AIS frequently occurs. Compounding these challenges, ischemic
lesion boundaries on CT are notoriously ambiguous, potentially
magnifying interpretation discrepancies (68). The clinical stakes are
high: inaccurate predictions could directly compromise patient
outcomes. While automated/semi-automated methods (neural
networks in 6 of 9 automated studies) theoretically address these
inconsistencies, they introduce their own barriers: substantial
hardware requirements and technical expertise that may exceed
primary care capabilities (60, 69, 70). This creates a fundamental
implementation gap between radiomics research and frontline
clinical realities.

Radiomics predictive models require the input of radiomics
features, which must be extracted through a standardized yet intricate
preprocessing pipeline (11). This workflow typically includes skull
stripping,
operations (e.g., mask opening), and other computational steps. While

image registration, downsampling, morphological
most AIS radiomics studies follow broadly similar preprocessing
methodologies, subtle but potentially consequential variations exist
across studies in implementation details. The requirement for
radiomics feature extraction to strictly adhere to each predictive
model's original preprocessing pipeline introduces several
significant challenges.

First, the extraction process itself is inherently complex, involving
imaging preprocessing and feature calculation steps (11). Even a single
procedure like skull stripping can be performed using various software
packages (71-73) or deep learning algorithms (74-76). For example,
the commonly used BET (Brain Extraction Tool) offers multiple
parameters that yield substantially different results (71). Mastering
this technically demanding workflow may prove prohibitively difficult
for primary care settings. Furthermore, the complete processing chain
is time-intensive, requiring not only execution time for each step but
also manual verification and correction. For example, BET-derived
masks often require slice-by-slice manual refinement due to
suboptimal performance (58).

For a single AIS patient requiring multiple predictive analyses, the
necessity to repeat distinct preprocessing pipelines for different
prediction models leads to duplicated processing efforts and
exponentially increased time consumption. Following preprocessing
completion, feature extraction typically relies on packages like
PyRadiomics (77), which demands Python programming expertise—
while theoretically available in primary care settings, the
computational burden becomes non-trivial when extracting
thousands of radiomics features. This protracted analytical process
fundamentally contradicts the time-sensitive nature of AIS
management, where treatment delays measured in minutes may
significantly impact clinical outcomes.

Current AIS radiomics research remains prohibitively complex
for clinical application in primary care settings, where physicians

require simplified predictive tools focused solely on actionable
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outputs rather than technical processes. Therefore, simplifying AIS
radiomics prediction models is a key focus for future development
in the field. The ideal solution would involve packaging all the
intermediate steps of radiomics into a user-friendly software. In this
scenario, doctors would simply input AIS images, select the desired
prediction target, and the software would handle the necessary
computations, outputting the results directly to the doctor. However,
achieving this goal involves overcoming several challenges. (1)
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implementing automated ROI segmentation to eliminate inter-rater
variability and reduce processing time, deep learning neural network
is a viable direction (60, 69, 70); (2) establishing standardized
preprocessing protocols to enable feature sharing across different
prediction models; and (3) consolidating research models into
publicly available software tools—or ideally, a unified platform if
standardization is achieved. Our review of 80+ existing AIS
radiomics studies revealed none have developed such clinical tools,
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5 Unreliable prediction results

Given the critical nature of AIS, all clinical assessments—
particularly those guiding treatment decisions—must be conducted
with utmost precision and reliability. Consequently, radiomics
prediction models for AIS must demonstrate high accuracy and
robustness to possess meaningful clinical utility. Our systematic
analysis of relevant literature reveals that model reliability constitutes
a significant concern that cannot be overlooked in current research.

The use of mutually independent datasets for model training and
validation represents a standard approach to assess predictive robustness
(78). In our analysis of 78 AIS radiomics studies, we categorized them
as single-center (data from one institution) or multi-center (>2
institutions). Results showed 56 studies (71.8%) utilized single-center
data versus only 22 (28.2%) incorporating multi-center data (Figure 5).
Among multi-center studies, most involved 2 institutions (60, 69, 70, 79,
80), with 5 leveraging publicly available datasets and a maximum of 7
participating centers (43). Single-institution datasets carry inherent
biases that may compromise a model’s generalizability, leaving its
predictive performance for data from other institutions uncertain (81).
Implementing such unvalidated models in clinical practice—
particularly for a critical condition like AIS—requires extreme caution
given the potentially grave consequences of unreliable predictions.

In addition to sample diversity, the sample size also significantly
impacts a prediction model’s performance and reliability. Generally,
larger sample sizes yield more robust predictive models with greater
clinical validity (82). Our analysis of 79 AIS radiomics studies revealed
substantial variation in sample sizes (Figure 5), ranging from a
minimum of 10 patients (48) to a maximum of 4,163 patients (60), with
a mean of 420 and median of 191 patients. Notably, only 19 studies
(24.3%) exceeded the mean sample size, while 20 studies (25.6%)
included fewer than 100 patients. Although some small-sample studies
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reported impressive predictive performance (AUC > 0.9) (83-85), their
reliability remains justifiably questionable given the limited cohort sizes.

Beyond total sample size, the ratio between positive and negative
cases warrants careful consideration. Ideally, this ratio should
approximate 1:1 (86), but for certain AIS prediction targets with low
incidence rates, significant class imbalance often occurs. For example,
in Meng et al’s study predicting hemorrhagic transformation in AIS,
the cohort comprised only 71 patients—merely 11 with positive
outcomes (87). Although SMOTE algorithm was employed to address
this imbalance, this method has inherent limitations: it may introduce
redundant information causing overfitting and remains vulnerable to
noise interference (88). Notably, despite reporting impressive metrics
(AUC = 0.911, accuracy = 0.894) (87), a naive model predicting all
negative cases would still achieve 0.845 accuracy in this dataset. This
demonstrates that conventional performance metrics (AUC, accuracy,
sensitivity, specificity) alone prove insufficient for reliably evaluating
radiomics models, particularly for critical conditions like AIS—more
comprehensive validation paradigms are essential.

AUC serves as the most widely adopted metric for evaluating
model performance, with values exceeding 0.85 typically indicating
excellent predictive capability (89). Applying this threshold to our
literature analysis—while additionally requiring sample sizes >100
and focusing on “prognosis” and “treatment” prediction categories—
yielded only 24 qualifying studies (Figure 5). Among these, 14 utilized
CT imaging while 10 employed MRI. From a primary care perspective,
CT-based models hold greater practical relevance, prompting further
analysis of the 14 CT studies, 1 employed dual-energy CT (a
specialized technology rarely available in community settings) (65), 8
focused on endovascular treatment outcomes (largely irrelevant for
centers lacking neurointerventional capabilities). This left merely 5
CT-based radiomics models potentially suitable for primary care
application—a strikingly small proportion given the extensive AIS
radiomics literature. Among these five studies, Ren et al. developed a
model for predicting hemorrhagic transformation (HT) in AIS with
an AUC of 0.942, accuracy of 0.861, and specificity of 0.949, but
sensitivity was only 0.758 (90). Given that HT in AIS patients typically
indicates greater severity, higher surgical risks, poorer prognosis, and
necessitates closer monitoring plus more conservative treatment
approaches (including cautious consideration of endovascular
thrombolysis) (91), high sensitivity is clinically paramount for HT
prediction models—whereas specificity becomes secondary. The 0.758
sensitivity reported by Ren et al. remains suboptimal for clinical
deployment. In contrast, Zhang et al’s HT prediction model achieved
superior sensitivity (0.95) with an AUC of 0.957 and accuracy of 0.861,
albeit at the cost of lower specificity (0.75) (92). However, this study’s
sample size (n = 180) was substantially smaller than Ren et al’s cohort
(n =517), raising concerns about its generalizability.

Consequently, while the quantity of AIS radiomics prediction
models appears substantial, rigorous evaluation across critical
parameters—including sample size, class distribution, AUC
performance, and clinical relevance—reveals that only a limited subset
can be considered truly reliable for practical application.

6 Discussion

Primary healthcare institutions, as the first line of care for most
AIS cases, serve as the frontline for initial diagnosis and treatment,
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playing a critical role in combating this severe condition. However, it
is undeniable that limitations in medical equipment, staffing, and
diagnostic capabilities often render these institutions passive in
managing AIS patients. Ideally, the widespread adoption of CTP—or
even MR perfusion—in primary healthcare settings would be the
optimal solution to enhance AIS management. Yet, from a health
economics perspective, achieving this remains highly challenging in
low-resource regions (93). Even in economically advanced countries
like China, comprehensive CTP implementation at the primary level
has not yet been realized and cannot be rapidly achieved in the short
term (94).

As the frontline providers for most AIS cases, primary care
institutions serve as the critical first point of diagnosis and treatment—
the essential battleground against this devastating disease (95).
However, their diagnostic and therapeutic capabilities remain severely
constrained by limited equipment, staffing shortages, and inadequate
infrastructure, creating significant challenges in AIS management.
Radiomics enables accurate prediction of clinical outcomes through
quantitative image feature analysis, offering potential to guide AIS
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diagnosis and treatment (57). As medical imaging is essential in AIS
management, radiomics-based prediction represents a technically
feasible approach. The development costs for building precise
radiomics models are relatively modest (96), and their deployment in
primary care settings would incur negligible expenses compared to
the substantial investment required for widespread CTP or MRI
implementation. This makes radiomics a potentially cost-effective
interim solution to address current diagnostic and therapeutic
limitations in resource-constrained settings during the gradual
adoption of advanced imaging technologies. However, our critical
evaluation demonstrates that most existing AIS radiomics studies
exhibit poor clinical applicability for primary care, primarily due to
their reliance on sophisticated imaging modalities unavailable in
community hospitals and inadequate alignment with frontline clinical
decision-making needs.

Current radiomics research in AIS predominantly utilizes CT
and MRI in approximately equal proportions. Compared to MRI, CT
offers distinct advantages for AIS management, including superior
differentiation between ischemic stroke and cerebral hemorrhage,
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faster examination times, and less restrictive scanning requirements.
From both economic and accessibility perspectives, CT remains
more widely available in primary care settings, making CT-based
radiomics models substantially more feasible for clinical
implementation at the community level. This practical consideration
strongly suggests that CT-derived models hold greater potential for
widespread adoption in resource-constrained
healthcare environments.

Nevertheless, half of current AIS radiomics studies rely on
MRI—a phenomenon we attribute to the specialized nature of
radiomics research. The field’s high technical barriers mean most
investigators originate from advanced medical institutions where MRI
is routinely available (57). MRI's multi-sequence protocols and
superior resolution enable researchers to extract richer imaging data,
theoretically yielding more robust models. While primary care settings
demonstrate clear need for CT-based AIS radiomics solutions, these
same technical barriers prevent their active participation in model
development. This institutional bias manifests in the observed 1:1
CT-to-MRI ratio in published literature.

We must emphasize this analysis does not discount the scientific
value of MRI-based radiomics. Should future MRI technology become
cost-effective for widespread primary care adoption, such models may
indeed prove more clinically valuable. Notably, emerging research
explores CT-to-MRI translation using radiomics-guided generative
adversarial networks (GANSs) (51). Preliminary results demonstrate
synthetic MRIs that accurately preserve lesion location and
morphology compared to authentic scans. Whether these synthesized
images could reliably feed existing MRI-based radiomics pipelines
warrants rigorous investigation—an exciting frontier that may
eventually bridge the current modality divide.

The mismatch in prediction targets between research and clinical
needs stems from systemic differences in healthcare settings,
mirroring the previously discussed imaging modality disparity. The
observed disparity in radiomics research focus stems fundamentally
from the divergent clinical priorities and capabilities across healthcare
tiers. Investigators from advanced medical institutions—who
dominate radiomics research—naturally extend their scholarly
inquiry beyond basic clinical parameters (e.g., symptom onset
estimation and complication prediction) to investigate more
specialized aspects like functional outcomes, thrombus etiology, and
even the temporal stability of radiomics features in AIS. This academic
inclination reflects their institutional mandate to pioneer cutting-edge
therapies, particularly endovascular interventions that demand
sophisticated angiography suites, specialized devices, and highly
typically
unavailable in primary care settings. Primary care institutions are

trained neurointerventional teams (97)—resources
typically limited to administering intravenous thrombolysis before
promptly transferring AIS patients to advanced centers for potential
endovascular therapy evaluation. This fundamental division of clinical
responsibilities creates corresponding disparities in research priorities:
while frontline providers would benefit most from radiomics models
predicting thrombolysis-related outcomes (e.g., hemorrhagic
transformation risk or recanalization success), academic researchers
at tertiary hospitals naturally focus on endovascular treatment
predictions aligned with their institutional capabilities. Our systematic
review confirms this misalighment—among identified studies,
vascular intervention-related radiomics research (20 publications)
outnumbers thrombolysis-focused investigations (2 publications) (43,
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44) by an order of magnitude, precisely reflecting the healthcare
hierarchy’s influence on scholarly attention.

The issue of unreliable predictive performance persists universally
across healthcare settings (98), from primary to tertiary institutions.
As previously noted, most AIS radiomics studies utilize single-center
datasets, leaving their generalizability to images from different
scanners and protocols unverified. Furthermore, many studies suffer
from severe class imbalance, necessitating careful scrutiny of their
models’ true discriminatory power. Crucially, nearly all existing
radiomics research remains retrospective in design—prospective
validation would provide more robust evidence for clinical
applicability (99). Most fundamentally, we contend that current AIS
radiomics models generally lack sufficient predictive accuracy to guide
clinical decision-making. Given that therapeutic choices in AIS can
profoundly impact survival and long-term outcomes, the demand for
exceptionally high model performance cannot be overstated. Yet our
analysis reveals only 21 studies (30%) achieved AUCs >0.9, while 10
(14.5%) fell below 0.8. This evidence unequivocally demonstrates the
imperative for future research to prioritize substantial improvements
in predictive accuracy.

The critical barrier to clinical adoption of radiomics models lies
in their failure to transition from research prototypes to practical
tools, as nearly all AIS radiomics studies conclude after model
validation without developing clinically operable applications. This
implementation gap stems from the formidable challenges of
integrating the complete radiomics pipeline—from ROI delineation
(requiring tools like MRIcron, FreeSurfer or fsleyes) (100-102)
through image registration, normalization, and feature extraction
(Figure 3)—into a unified platform. We propose establishing
standardized preprocessing protocols and a centralized radiomics
platform where individual models could be modularly integrated,
enabling uniform preprocessing while allowing “plug-and-play”
addition of new prediction models—an approach that would eliminate
redundant development efforts while ensuring methodological
consistency for clinical implementation, particularly crucial for time-
sensitive AIS management where prediction reliability directly
impacts outcomes.

Is there a way to bypass these cumbersome steps? We believe deep
learning approaches like neural networks could provide a solution.
Unlike traditional radiomics, neural networks require minimal image
preprocessing—raw images can be directly input to generate
predictions (103), making them inherently more suitable for tool
development. While neural networks operate as “black boxes” (104),
this opacity matters little to frontline clinicians who prioritize
actionable outputs over methodological transparency. However, the
critical limitation remains the substantial training data requirements—
individual institutions” AIS image collections likely prove insufficient,
necessitating multicenter public databases to achieve the necessary
sample sizes for robust model development (105).

Despite the limitations outlined above, we acknowledge that
we remain in the early stages of exploring artificial intelligence in
medical imaging. Radiomics simply represents one currently prevalent
methodology and does not fully encompass AT’s potential in this field
(106). Our critique of current radiomics research stems specifically
from the perspective of AIS management in primary care settings, and
thus carries inherent limitations. Different diseases present unique
characteristics that may reveal new challenges in radiomics
applications not addressed here. This paper’s primary objective is to
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evaluate whether radiomics could serve as a temporary alternative
given the current lack of widespread CTP/MRI availability in primary
care—not to universally dismiss radiomics or AI development.
We recommend future radiomics studies: (1) prioritize NCCT-based
approaches, (2) align research objectives with frontline clinical needs,
and (3) develop more integrated, user-friendly tools. Crucially,
we emphasize that advancing radiomics/AlI should never replace
efforts to expand CTP/MRI access in community hospitals, nor should
it divert focus from investigating AIS etiology and prevention
strategies. These fundamental diagnostic capabilities and research
directions must remain paramount, with radiomics applications
serving only as supplemental tools.

Some argue that future Al research for AIS may not need to
address primary care needs, given the emerging “direct transfer”
paradigm where suspected AIS patients bypass local hospitals to
immediately access comprehensive stroke centers equipped with CTP/
MRI and angiographic capabilities, along with multidisciplinary
stroke teams (107). This streamlined approach could reduce treatment
delays by eliminating unnecessary intermediate evaluations. Should
direct referral become standard practice, the transitional utility of
radiomics in primary care settings—as proposed in this study—would
become obsolete. Consequently, future radiomics research might
justifiably exclude primary care considerations. Future Al systems
may need to prioritize prehospital severity assessment of AIS patients,
safe transfer eligibility evaluation, and integration of multifunctional
Al tools. However, implementing direct referral requires robust
infrastructure—including accurate clinical triage (108), mobile stroke
units (109), teleconsultation (110), and cloud-based imaging
sharing—all dependent on regional network capacity, technological
resources, and policy frameworks. Global disparities remain profound:
While developed nations may achieve nationwide adoption,
developing and underserved regions face multifaceted barriers (111).
Primary care facilities will retain indispensable roles in AIS
management for the foreseeable future. Thus, our investigation into
radiomics’ utility in these settings remains clinically relevant during
this transitional period.

7 Conclusion

In summary, while radiomics could provide valuable decision
support for primary care institutions given their current technological
and clinical limitations, existing AIS radiomics research has largely
overlooked the practical needs of these frontline settings, resulting in
limited real-world applicability. To bridge this implementation gap,
future studies must prioritize primary care perspectives by optimizing
imaging modality selection, aligning clinically relevant prediction
targets, ensuring robust model performance meeting frontline
diagnostic standards, and developing user-friendly tool—ensuring
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