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role in post COVID-19 
neurological symptoms? A 
randomized, double-blind, 
placebo-controlled, crossover, 
proof-of-concept study
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Background: Many patients with severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infection experience neurologic changes post-infection, which 
has been hypothesized to be  due to dysregulation in the infectious-immune 
axis that leads to a neuro-immune response. This immune dysfunction has been 
termed “Alzheimer’s of the Immune System” or AIS and there are several immune 
factors that may play a key role. These include, among others, complement 
activation due to low levels of C1-esterase inhibitor (C1-INH) and function, 
and a decrease in signaling of Toll-like receptor (TLR)-3. We propose that C1-
INH replacement may upregulate the immune dysfunction, thereby improving 
neurological symptoms.
Methods: In this randomized, double-blind, placebo-controlled, crossover, 
proof-of-concept study, adults experiencing SARS-CoV-2 post-viral fatigue 
syndrome for >4 weeks post-recovery from coronavirus disease 2019 
(COVID-19) infection were randomized 1:1 to two arms: Arm 1 (C1-INH for 
8 weeks, then placebo for 8 weeks) or to Arm 2 (placebo for 8 weeks, then 
C1-INH for 8 weeks). Patients were assessed for adult executive function, 
abnormal cognitive decline, depression [Beck Depression Inventory-II (BDI-II)], 
migraine, fatigue [Fatigue Severity Scale (FSS)] and pain (Short-form McGill Pain 
Questionnaire). Percent change in TLR signaling in response to zymosan was 
compared with controls at baseline, Week 8 and Week 16. Safety was assessed 
throughout.
Results: At this interim analysis, 36 patients with SARS-CoV-2 post-viral fatigue 
syndrome had completed the two 8-week treatment periods. In Arm 1, trends 
toward improvements from baseline at Week 8 of C1-INH therapy were observed 
in BDI-II score (−8.7 points), mean FSS score (0.6 points), and mean McGill Pain 
Questionnaire score (−0.4 points). These improvements were either sustained 
or worsened at Week 16, following crossover to placebo. The outcomes in Arm 
2 were compatible with those in Arm 1. Patients with SARS-CoV-2 post-viral 
fatigue syndrome had low levels of TLR-related signaling biomarkers compared 
with healthy controls.
Conclusion: This proof-of-concept study demonstrates sustained dysregulation 
of the immune system after COVID-19 infection. Improvements in depression, 
fatigue, and pain were observed with C1-INH treatment in patients with SARS-
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CoV-2 post-viral fatigue syndrome, indicating C1-INH may be  a potential 
therapeutic target.
Clinical trial registration: https://clinicaltrials.gov/study/NCT04705831, 
NCT04705831.
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1 Introduction

Findings suggest that neurological symptoms (memory issues, 
cognitive changes, tremors, etc.) after an infection may be related to a 
form of post-infectious autoimmunity. Various disorders are 
associated with neurological and cognitive changes, which may occur 
post-infection, including chronic fatigue syndrome (1), pediatric 
acute-onset neuropsychiatric syndrome (PANS) (2), Lyme disease (3, 
4), and autism (5). Notably, approximately 30–80% of patients with 
persistent coronavirus disease 2019 (COVID-19) symptoms (long 
COVID) develop fatigue and cognitive deficits lasting 1–6 months, 
including reduced executive functions, memory, processing speed, 
and attention (6–9).

The key mechanism for brain autoimmunity may 
be  dysfunctional neuroimmune responses to various infectious 
pathogens. In 2016, we coined the term “Alzheimer’s of the Immune 
System” (AIS) to identify this syndrome (10). In certain patients, a 
memory defect of the immune system may result in failure to 
recognize infectious pathogens that cause the neurological diseases 
(10). This memory defect may create a neurological storm that likely 
includes various factors, including low levels of C1-esterase inhibitor 
(C1-INH) resulting in complement activation, reduction in Toll-like 
receptor (TLR)-3 signaling, and low response to T-cell antigens 
(10, 11).

The complement system may be crucial in AIS. As well as directly 
interacting with pathogens, the complement system forms a bridge 
between the innate and adaptive immune responses (12–15). For the 
adaptive immune response, complement components are involved in 
the regulation of T-cell and B-cell activation (14). For the innate 
immune response, complement engages in signaling crosstalk with 
TLRs to coordinate immune and inflammatory responses. 
Complement component C1 triggers the classical pathway for 
complement activation; as such, C1-INH plays an important role as a 
check against uncontrolled complement activation (13, 16). 
We hypothesize that the dysregulation of the complement and TLR 
signaling pathways may lead to a dampening of the response to 
infection and, therefore, persistent post-infectious neuroinflammation.

Dysregulation of the complement system has been linked with 
various neurodevelopmental disorders, including schizophrenia, 
autism spectrum disorder, anxiety and mood disorders (17). Several 
non-clinical studies suggest that targeting this system through 
treatment with C1-INH can improve neurological function, 
potentially through anti-inflammatory effects (18–21). In order to 
further understand the immune mechanisms that lead to post-
infectious neuroinflammation, we  report an ongoing study 
investigating post-viral fatigue in patients experiencing long 
COVID. We  investigated whether recombinant human C1-INH 
(RUCONEST®, Pharming Group N. V.) therapy may upregulate the 

immune dysfunction and therefore improve neurological symptoms, 
compared with placebo.

2 Materials and methods

2.1 Study design and oversight

This ongoing Phase 1, randomized, double-blind, placebo-
controlled, crossover, proof-of-concept study (ClinicalTrials.gov 
number, NCT04705831) comprises a 2-week screening period, 8-week 
initial treatment period, and 8-week crossover treatment period. Study 
visits occurred during screening (Weeks −2 or −1; when baseline 
assessments were conducted) and once per week in both 
treatment periods.

Patients were randomized 1:1 to two arms. C1-INH or placebo 
were administered once a week, from the first day of Week 0. In Arm 
1, patients were treated initially with C1-INH (last dose at Week 7) 
followed by crossover to placebo (last dose at Week 15), and in Arm 2 
with placebo (last dose at Week 7) followed by crossover to C1-INH 
(last dose at Week 15). Each dose of C1-INH (4,200 U once a week) 
and placebo was administered intravenously for approximately 5 min.

Randomization was conducted by pharmacy staff using a 10-block 
method. Pharmacy staff were not blinded and maintained drug 
accountability records. All other study staff were blinded, including 
investigators. Should an adverse drug reaction or serious adverse event 
(SAE) occur, investigators could request unblinding. In the event of 
unblinding, study participation would cease.

C1-INH (RUCONEST®, Pharming Group N. V.) was supplied in 
single-use 25 mL glass vials, each containing 2,100 U C1-INH 
lyophilized powder for reconstitution in 14 mL of sterile water. The 
reconstituted solution contained 150 IU/mL C1-INH and was clear 
and colorless. Placebo was sterile saline, administered at the same 
volume as the study medication, using the same pumps and 
infusion rates.

A local ethics committee provided unconditional written approval 
for the study. The study was conducted according to local regulatory 
requirements and International Conference for Harmonisation Good 
Clinical Practice guidelines.

2.2 Patients

Patient eligibility criteria are shown in Supplementary Table 1. In 
brief, eligible patients were adults ≥18 years of age experiencing severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) post-viral 
fatigue syndrome for more than 4 weeks after recovering from 
COVID-19 infection, documented by polymerase chain reaction 
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(PCR) or spike antibody testing, who provided written informed 
consent before any study procedures were conducted. There were no 
cases of severe COVID or hospitalizations in the patient 
population studied.

2.3 Endpoints

Neuropsychological outcomes were assessed using the following 
scales: Beck Depression Inventory-II (BDI-II), Behavior Rating 
Inventory of Executive Function-Adult (BRIEF-A), Repeatable Battery 
for the Assessment of Neuropsychological Status (RBANS), and 
Montreal Cognitive Assessment (MoCA). BDI-II scores indicate no 
depression (0–9) or depression that is mild–moderate (10–18), 
moderate–severe (19–29), and severe (30–63) (22). BRIEF-A captures 
executive functions across two domains [Behavioral Regulation Index 
(BRI) and Metacognition Index (MI)], resulting in the Global 
Executive Composite (GEC) score (23). Lower values represent less 
impairment. RBANS captures cognitive function (immediate memory, 
visuospatial/constructional, language, attention, and delayed 
memory), with scores ≥70, 55–69, and <54 indicating mild, moderate, 
and severe impairment, respectively (24). MoCA also assesses 
cognitive function, with a normal score considered to be ≥27.4 (25).

Patient-reported pain, fatigue, and migraine outcomes were 
assessed using the following questionnaires: Short-form (SF) McGill 
Pain Questionnaire, Fatigue Severity Scale (FSS), Migraine Disability 
Assessment (MIDAS), and six-item Headache Impact Scale (HIT-6). 
The SF McGill Pain scoring scale ranges from 0 (no pain) to 10 (worst 
pain imaginable) (26). FSS scoring ranges from 1 to 7, with higher 
scores indicating worse fatigue (27). MIDAS measures both the 
number of days in the last 3 months that the patient had a headache 
and uses a scoring scale for pain, ranging from 0 (no pain) to 10 (pain 
as bad as it can be) (28). HIT-6 (score range, 36–78) was designed as 
an instrument to measure the impact headaches have on the ability to 
function at work, in school, and in social situations, with reductions 
showing improvement (29).

TLR activity was evaluated by measuring three inflammatory 
markers [tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and 
IL-6] in patients before treatment and comparing these to healthy 
controls. Blood (10 mL) was collected and analyzed by ARUP 
laboratories. TLR signaling was tested independently by stimulation 
with TLR6-TLR2 ligand using zymosan cell wall particles from 
Saccharomyces cerevisiae in a peripheral blood mononuclear cell 
(PBMC) culture. PBMC production of TNFα, IL-1β, and IL-6 was 
determined by multiplex bead assay.

Efficacy and safety outcomes were assessed in the initial treatment 
period (up to Week 8) and crossover treatment period (up to 
Week 16).

2.4 Statistical analysis

This ongoing, exploratory, proof-of-concept study used descriptive 
statistics. No sample size calculation was conducted. Analysis was 
performed for participants with available data. For responder analyses, 
patients with any improvement from baseline were classified as 
responders and patients with missing values were classified as 
non-responders. Statistical analyses were performed in GraphPad 

Prism (10.2.3). Shapiro–Wilk normality tests were performed prior to 
the Mann–Whitney U Test for TLR activity between patients and 
healthy controls, and the Wilcoxon matched-pairs signed rank test for 
depression, fatigue, and pain scores (between baseline and Week 8, 
and baseline and Week 16). p < 0.05 were considered 
statistically significant.

3 Results

3.1 Baseline characteristics and patient 
disposition

This ongoing study commenced in December 2020, during which 
time the predominant strain of SARS-CoV-2 was the Alpha variant 
(B.1.1.7). The time from infection to enrollment was between 4 weeks 
and 3 months for all patients and was not related to the acute phase of 
COVID infection. Overall, 36 participants with SARS-CoV-2 post-
viral fatigue syndrome were randomized 1:1 to Arms 1 and 2 
(Figure 1). All 36 patients completed initial 8-week and crossover 
8-week treatment periods.

At baseline, patient demographics were comparable between the 
treatment arms (Table 1). Nineteen patients were vaccinated against 
SARS-CoV-2 at study enrollment. Preexisting conditions included 
attention deficit hyperactivity disorder (ADHD; n = 7), post-traumatic 
stress disorder (n = 1), and documented insomnia (n = 3). At 
enrollment, 12 patients began taking antidepressive agents and 15 
began taking anti-anxiety medication post-COVID-19 infection. Four 
patients had been taking sleep medication prior to infection, and two 
were treated for atypical seizure after infection. Mean age was 
48.7 years (standard deviation 11.9 years). Most patients were female 
(80.5%) and White non-Hispanic (91.7%).

Neuropsychological measures were comparable in Arms 1 and 2 at 
baseline, with some imbalances. In Arms 1 and 2, mean BDI-II scores 
were 27.2 and 19.7 (based on a 0–63 point scale), mean FSS scores were 
2.7 and 3.5 (based on a 1–7 point scale), and SF McGill Pain scores 
were 3.4 and 2.9 (based on a 0–10-point scale), respectively (Table 1). 
Both mean BDI-II scores indicated moderate–severe depression.

3.2 Immunological biomarkers

When assessed at baseline, patients with SARS-CoV-2 post-viral 
fatigue syndrome (n = 36) had significantly lower mean levels of 
TLR-related signaling biomarkers, compared with healthy controls 
(n = 36) (Figure 2). Patients with SARS-CoV-2 had a 37.7% reduction 
in TNF-α signaling (p = 0.0002), 75.0% reduction in IL-1β signaling 
(p < 0.0001), and 70.0% reduction in IL-6 signaling (p < 0.0001) as 
compared with healthy controls.

3.3 Efficacy outcomes

3.3.1 Cognitive changes
Trends toward improvements were observed in depressed patients 

based on BDI-II score during treatment with C1-INH (Figure 3A). In 
Arm 1, mean BDI-II score improved at Week 8 during treatment with 
C1-INH [decreasing by 32.0% (8.7 points) from baseline; p = 0.0010] 
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and was maintained after crossover to placebo (p = 0.0003). In Arm 2, 
mean BDI-II score improved slightly at Week 8 with placebo 
[decreasing by 22.8% (4.5 points) from baseline; p = 0.0132] and, 
notably, improved further at Week 16 during treatment with C1-INH 
[by 19.1% (7.4 points) from baseline; p = 0.0036].

No notable improvements with C1-INH treatment were 
observed in other rating scales, including in executive function 
(BRIEF-A) and cognitive function (RBANS and MoCA) 
(Supplementary Table  2). For Arm 1 starting on C1-INH 
treatment, the mean percent change in RBANS showed an overall 
improvement in cognition with an increase of 1.9% and a 
reduction of 4.6% after moving to placebo. In Arm 2, mean 
RBANS score increased by 2.6% while on placebo followed by a 
slight decrease of 0.4% while on C1-INH.

In an analysis of RBANS score by patient, seven patients in Arm 
1 and three patients in Arm 2 were observed to have improved RBANS 
score after C1-INH treatment (Figure 4). In general, patients with no 
other underlying neurological symptoms before SARS-CoV-2 
infection had better RBANS responses, and those with conditions 
such as ADHD and depression had a worse response.

3.3.2 Fatigue, migraine, and headache
Mean FSS score improved at Week 8 during treatment with 

C1-INH (increasing by 0.6 points from baseline; p = 0.5337) in Arm 
1, with continued improvement at Week 16 following crossover to 
placebo (increased by 1.1 points from baseline; p = 0.5137) (Figure 3B). 
In Arm 2, a similar trend was observed, with FSS score increasing by 
1.3 points from baseline at Week 8 with placebo (p = 0.0664), and then 
further improvement after crossover to C1-INH treatment, increasing 
by 2.1 points from baseline at Week 16 (p = 0.0078).

Outcomes assessing headache (HIT-6) or migraine (MIDAS) did 
not observe any notable improvements with C1-INH treatment in 
Arm 1 or Arm 2 (Supplementary Table 2).

3.3.3 Pain
Mean SF McGill Pain score in Arm 1 improved at Week 8 during 

treatment with C1-INH (decreasing by 0.4 points from baseline; 
p = 0.6270) and then worsened at Week 16 following crossover to 
placebo (increasing by 0.5 points from baseline; p = 0.2031) 
(Figure 3C). In Arm 2, SF McGill Pain score increased slightly at Week 
8 of placebo (by 0.2 points from baseline; p = 0.3750) and decreased 

slightly at Week 16 after crossover to C1-INH (by 0.2 points from 
baseline; p = 0.1719).

3.4 Safety

No new safety signals were identified (Table 2). No SAEs were 
observed. Most adverse events were mild in intensity in each treatment 
group. One SAE (fatigue) was observed in the Arm 2 placebo group.

4 Discussion

In this ongoing proof-of-concept study, we  observed trends 
toward improvement in depression, fatigue, and pain during 8 weeks 
of C1-INH therapy in patients with SARS-CoV-2 post-viral fatigue 
syndrome. Furthermore, we demonstrated reduced TLR signaling 
components upon stimulation in patients with SARS-CoV-2 post-
viral fatigue syndrome, in comparison with healthy controls. Although 
not statistically significant, we found that patients with no underlying 
neurological symptoms such as ADHD or depression did not respond 
as well as those with no underlying conditions.

In this study, a dysfunction in TLR signaling response (TNFα, 
IL-1β, and IL-6) was demonstrated in patients with SARS-CoV-2 
post-viral fatigue syndrome, suggesting a possible dysregulation of 
innate immunity in these patients. Dysregulation of the innate 
immune system has been reported in patients with SARS-CoV-2 post-
viral fatigue syndrome in several other studies (30–32) and are 
compatible with our previous reports of reduced TLR-3 expression 
following other infections (10). Innate immune cells have been shown 
to play a key role in neuropathic pain, being the first line of 
immunosurveillance and activation of neurogenic inflammation (33). 
Inflammatory processes, involving TLR-related molecules, have also 
previously been implicated in their pathogenesis of depression and 
fatigue (34–36). The dysfunction observed in TLR signaling in 
patients with SARS-CoV-2 post-viral fatigue syndrome may therefore 
play a role in the neurological symptoms of pain, depression 
and fatigue.

Complement has been previously shown to engage in signaling 
crosstalk with the TLR and acts as a bridge between the innate and 
adaptive immune responses to coordinate immune responses (12–15). 

FIGURE 1

Study design. Thirty-six patients with SARS-CoV-2 post-viral fatigue syndrome were randomized 1:1 to Arms 1 and 2. In Arm 1, patients received  
C1-INH from Week 0, crossing over to placebo from Week 8. In Arm 2, patients received placebo from Week 0, crossing over to C1-INH from Week 8. 
C1-INH was dosed at 4,200 U once a week. C1-INH, C1 esterase inhibitor; IV, intravenous; R, randomized.
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Therefore, it is notable we observed not only dysfunction in the innate 
immune response but trends toward improvements in depression, 
fatigue, and pain during treatment with C1-INH. C1-INH plays a 
major role in controlling complement activation and has been 
previously reported to improve neurological functions by exerting an 
anti-inflammatory effect (18, 19). Complement may therefore play a 
contributory role in the persistent post-infection inflammation 
we  observed through crosstalk between the innate and adaptive 
immune systems.

Dysregulation of the immune system and neurological changes 
have been described previously following other infections, such as 
Epstein Barr virus in MS (10), PANS (2), Lyme disease (37) and 

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (38) 
among others (10). Lyme disease, caused by Borrelia bacteria, is 
associated with various neurological symptoms such as headache, 
fatigue, myalgia and arthralgia, with emerging evidence that attributes 
clinical manifestation to abnormalities in the host immune response 
(37). Further, SARS-CoV-2 post-viral fatigue syndrome shares similar 
symptoms to ME/CFS, another chronic condition characterized by 
neurological symptoms that often occurs following an “infectious-
like” illness (38). Like SARS-CoV-2 post-viral fatigue syndrome and 
Lyme disease, immunological and metabolic abnormalities have also 
been described in ME/CFS (38) underlying the hypothesis that 
immune dysregulation may alter the relationship of infectious 
immune and lead to the neuro-immune response observed.

This proof-of-concept study has notable limitations and 
strengths. This exploratory analysis was limited by sample size, 
with some imbalance observed at baseline in disease 
characteristics and medication use that may have influenced 
treatment outcomes. Most patients at baseline had very mild 
RBANS and MoCA scores, indicating no cognitive impairment 
and, therefore, a possible ceiling effect may explain the lack of 
improvement in RBANS and MoCA. As some patients had 
neurological symptoms before they had COVID-19, which was 
not factored into the randomization, this could also confound the 
interpretation of the results. However, we hypothesize that some 
of the population with pre-existing neurological conditions may 
not have had post-SARS-CoV-2 fatigue syndrome, therefore 
affecting treatment outcomes with C1-INH. This is further 
supported through the responder analysis of RBANS score, in 
which improved cognitive was noted in many patients. Most 
patients were White non-Hispanic, thus limiting generalizability. 
Additionally, although the central hypothesis at the heart of this 
study involves both innate and adaptive immunity, linked 
through complement system crosstalk, the absence of direct 
complement activation markers and adaptive immunity data 
limits our ability to confirm these mechanistic pathways. As a 
result, further studies are warranted to confirm this. Regarding 
strengths, the study benefitted from a randomized, double-blind, 
crossover design, with patients serving as their own placebo 
controls, theoretically reducing some confounders and variability.

This study provides further evidence to support our hypothesis of 
AIS, by aiding our understanding of the role of the innate and adaptive 
immune response in SARS-CoV-2 post-viral fatigue syndrome. 
Furthering the understanding of the infectious-immune axis is 
important to provide the tools to identify treatment and management 
of neurologic changes that occur after infection. Future work will seek 
to better comprehend the role of C1-INH across other AIS conditions, 
and to explore further the role of the innate immune response and 
TLR signaling in SARS-CoV-2 post-viral fatigue syndrome. An open-
label, Phase 2 study has been planned to further evaluate the role of 
C1-INH in patients with SARS-CoV-2 post-viral fatigue syndrome.

In conclusion, this proof-of-concept study demonstrates sustained 
dysregulation of the immune system in patients with SARS-CoV-2 
post-viral fatigue syndrome and that treatment with C1-INH can 
improve associated symptoms of depression, fatigue, and pain. The 
results suggest that the complement system may play a key 
contributory role in this immune deficiency and could be a potential 
therapeutic target in patients with SARS-CoV-2 post-viral fatigue 
syndrome, though further studies are needed to confirm this.

TABLE 1  Baseline demographics and neuropsychological measures.

Characteristic* Arm 1: C1-INH 
→ PBO†

(N = 18)

Arm 2: PBO → 
C1-INH†

(N = 18)

Age, n

 � Mean 49.6 (12.5) 47.8 (11.3)

 � Median (range) 49 (26–75) 45 (28–70)

Female, n (%) 14 (77.8) 15 (83.3)

Race/ethnicity, n (%)

 � White non-Hispanic 16 (88.9) 17 (94.4)

 � Asian 2 (11.1) 1 (5.6)

BDI-II score n = 18

27.2 (15.9)

n = 18

19.7 (9.3)

FSS score n = 14

2.71 (2.40)

n = 15

3.53 (1.89)

SF McGill pain score n = 16

3.38 (2.78)

n = 13

2.92 (2.16)

BRIEF-A GEC T-score n = 18

66.0 (11.8)

n = 18

66.1 (14.1)

BRIEF-A BRI T-score n = 18

57.3 (9.1)

n = 18

62.4 (13.6)

BRIEF-A MI T-score n = 18

71.6 (13.5)

n = 18

66.9 (14.6)

RBANS score n = 18

97.1 (16.3)

n = 18

97.3 (16.1)

MoCA total score n = 18

26.0 (2.5)

n = 18

26.3 (2.0)

MIDAS quantity score n = 18

25.9 (27.5)

n = 16

21.5 (23.0)

MIDAS pain severity score n = 18

5.41 (2.37)

n = 16

4.06 (2.36)

HIT-6 score n = 18

56.6 (10.8)

n = 17

54.1 (11.6)

*Mean (SD), unless stated otherwise. †Patients were treated once a week, in Arm 1 with 
C1-INH (last dose at Week 7) and crossover to placebo (last dose at Week 15), and in Arm 2 
with placebo (last dose at Week 7) and crossover to C1-INH (last dose at Week 15). BDI-II, 
Beck Depression Inventory-II; BRIEF-A, Behavior Rating Inventory of Executive Function-
Adult; BRI, Behavioral Regulation Index; FSS, Fatigue Severity Scale; GEC, Global Executive 
Composite; HIT, Headache Impact Scale; MI, Metacognition Index; MIDAS, Migraine 
Disability Assessment; MoCA, Montreal Cognitive Assessment; RBANS, Repeatable Battery 
for the Assessment of Neuropsychological Status; SF McGill pain, Short Form McGill Pain 
Questionnaire.
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FIGURE 2

Immunological biomarkers in patients with SARS-CoV-2 post-viral fatigue syndrome versus healthy controls. IL, interleukin; TNF-α, tumor necrosis 
factor alpha.

FIGURE 3

Depression, pain and fatigue in patients with SARS-CoV-2 post-viral fatigue syndrome. *Indicates p < 0.05. BL, baseline (value during the screening 
period); BDI-II, Beck Depression Inventory-II; C1-INH, C1-esterase inhibitor; FSS, Fatigue Severity Scale; PBO, placebo; SF, short-form; W, week.

FIGURE 4

Responder analysis for RBANS score at baseline, Week 8, and Week 16. *Indicates measure not reported. C1-INH, C1-esterase inhibitor; CV, clinical 
volunteer; PBO, placebo.
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TABLE 2  Summary of adverse events.

Number of adverse events Arm 1 (N = 18) Arm 2 (N = 18)

C1-INH* Placebo* Placebo* C1-INH*
Any adverse event 93 30 118 74

Intensity

 � Mild 88 29 93 64

 � Moderate 4 1 19 8

 � Severe 0 0 1 0

 � Unknown 1 0 5 2

Treatment causality

 � Not related 55 23 43 38

 � Possibly related 30 7 59 34

 � Probably related 7 0 12 2

 � Unknown 1 0 4 0

≥2 adverse events reported for either treatment in either arm

 � Anxiety/panic 0 0 3 0

 � Appetite loss 4 0 5 0

 � Brain fog 3 0 5 1

 � Burning in nose 2 0 0 0

 � Burning/watery eyes 2 0 0 0

 � Body/back ache 3 0 4 1

 � Constipation 2 0 0 0

 � Dehydration/dry mouth/thirst 1 0 2 0

 � Diarrhea/loose stool 4 1 1 6†

 � Dizziness 3 2 2 7

 � Elevated blood pressure 2 0 1 2

 � Elevated creatinine 0 0 3 0

 � Fatigue/lethargy 13 1 12 4

 � Fever/flu or cold symptoms 0 2 1 0

 � Headache/migraine 14 6 15 7

 � Head pressure 0 0 2 0

 � Infection‡ 2 1 3 2

 � Insomnia/sleeping difficulty 1 0 6 1

 � Irritability 2 0 0 0

 � Malaise 0 0 5 0

 � Nausea 3 2 12 6

 � Neck pain 0 0 0 2

 � Rash 2 3 0 0

 � Sore throat 0 1 0 3

 � Stomach-ache 2 1 1 1

 � Vertigo 2 0 1 0

 � Vomiting 0 1 0 2

 � Worsening of depression 2 0 0 0

*Patients were treated once a week, in Arm 1 with C1-INH (last dose at Week 7) and crossover to placebo (last dose at Week 15), and in Arm 2 with placebo (last dose at Week 7) and crossover 
to C1-INH (last dose at Week 15). †Another patient in Arm 2, treated with C1-INH, also reported an unspecified digestive issue. ‡Infections were: COVID-19 (n = 1) and urinary tract (n = 1) 
in Arm 1, C1-INH therapy. Urinary tract (n = 1) in Arm 1, placebo. Viral (n = 1), respiratory (n = 1), and urinary tract (n = 1) in Arm 2, placebo. Respiratory (n = 1) and yeast (n = 1) in Arm 
2, C1-INH therapy.
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Glossary

AIS - Alzheimer’s of the Immune System

BDI-II - Beck Depression Inventory-II

BRI - Behavioral Regulation Index

BRIEF-A - Behavior Rating Inventory of Executive Function-Adult

C1-INH - C1-esterase inhibitor

COVID-19 - coronavirus disease 2019

FSS - Fatigue Severity Scale

GEC - Global Executive Composite

HIT-6 - six-item Headache Impact Scale

IL - interleukin

ME/CFS - myalgic encephalomyelitis/chronic fatigue syndrome

MI - Metacognition Index

MIDAS - Migraine Disability Assessment

MoCA - Montreal Cognitive Assessment

PANS - pediatric acute-onset neuropsychiatric syndrome

PBMC - peripheral blood mononuclear cell

RBANS - Repeatable Battery for the Assessment of 
Neuropsychological Status

SAE - serious adverse event

SARS-CoV-2 - severe acute respiratory syndrome coronavirus 2

SF - Short-form

TLR - Toll-like receptor

TNFα - tumor necrosis factor alpha
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