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Background: Hemorrhagic transformation (HT) is a common and potentially
serious complication following intravenous thrombolysis (IVT) in patients with
acute ischemic stroke (AIS). Despite its high incidence, there remains a lack of
simple and effective tools for predicting HT risk.

Objective: This study aimed to develop an interpretable machine learning (ML)
model incorporating the platelet distribution width to platelet count ratio (PPR)
to predict HT occurrence in AlS patients after IVT.

Methods: We included AIS patients who underwent IVT at the First Affiliated
Hospital of Kunming Medical University between July 2019 and April 2024.
Four ML models—logistic regression (LR), random forest (RF), support vector
machine (SVM), and extreme gradient boosting (Xgboost)—were constructed
using 5-fold cross-validation, with HT after IVT as the outcome. Feature
selection was performed using least absolute shrinkage and selection operator
(LASSO) regression. Model performance was evaluated based on the area
under the receiver operating characteristic curve (AUC), accuracy, sensitivity,
specificity, and balanced F-score. The best-performing model was selected for
interpretability analysis, and feature importance was assessed.

Results: LASSO regression identified six predictive features with non-zero
coefficients: age, diabetes, malignancy, onset-to-treatment time (OTT), baseline
National Institutes of Health Stroke Scale (NIHSS) score, and PPR. Among the
models, LR demonstrated the highest predictive performance, achieving an
optimal AUC of 0.919, along with average accuracy, sensitivity, and specificity
of 0.825, 0.830, and 0.832, respectively. Feature importance in the LR model
ranked as follows: baseline NIHSS score, diabetes, PPR, malignancy, age, and
OTT.

Conclusion: The LR-based model incorporating PPR effectively predicts HT risk
in AIS patients after IVT, providing clinicians with a rapid and accurate tool to
assess thrombolytic hemorrhage risk and support treatment decision-making.

KEYWORDS

hemorrhagic transformation, intravenous thrombolytic therapy, stroke, platelet
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1 Introduction

Alteplase intravenous thrombolytic therapy (IVT) is effective in
treating acute ischemic stroke (AIS) (1). Hemorrhagic transformation
(HT) is a frequently occurring potentially adverse complication of
intravenous thrombolysis in AIS patients, and the occurrence of HT
in AIS patients following thrombolysis is significantly higher than that
in AIS patients without thrombolysis (2). HT is further grouped into
hemorrhagic infarction (HI) and parenchymal hemorrhage (PH),
where PH, as a progressive manifestation of HI, usually indicates poor
prognosis (3-5). Therefore, early identification of potential HT during
thrombolysis and asymptomatic HI patients after thrombolysis
is crucial.

Currently, most of the studies use multiple linear regression (MLR)
to identify risk factors (6, 7) for HT following thrombolysis, including
white blood cells (8), coagulation function (9), bilirubin (10), and uric
acid (11). However, MLR is restrained by linear hypotheses between
predicted variables and results, and the sensitivity to outliers may have
adverse effects on predictive performance (12). Machine learning
(ML), as an emerging discipline in the medical field, leverages computer
science and statistical techniques to address healthcare challenges (13),
making up for the shortcomings mentioned above and thus being
widely applied. Due to the varying performance of different ML
algorithms in different application scenarios, it is necessary to select
appropriate algorithms to optimize model performance and accuracy
before constructing a risk model for predicting HT after thrombolysis.

Platelet is the main component of blood and plays a crucial role in
the onset and progression of AIS by maintaining the integrity of
vascular endothelial cells, coagulation, and other pathophysiological
functions (14, 15). Platelet count changes in hemorrhagic diseases are
typically more rapid and pronounced than fibrinolytic markers.
Thrombocytopenia or dysfunction is often an early sign of bleeding,
while fibrinolytic indicators require some time to accumulate before
showing any changes, which may not reflect risks in the early stages of
HT. Additionally, fibrinolytic markers can be influenced by more
complex factors, such as liver dysfunction and inflammatory responses
(16), which can limit their clinical utility. These markers primarily
reflect the degree of fibrinolytic activity, and although fibrin degradation
products and D-dimer have some predictive value for HT after IVT (17,
18), their accuracy and timeliness are inferior to platelet count. Studies
has demonstrated a positive correlation of elevated platelet distribution
width (PDW) with a heightened likelihood of severe HT (19). As a new
hematological indicator, PDW to platelet count ratio (PPR) can more
comprehensively reflect platelet function, and its prognostic value has
been confirmed in the prediction of other diseases (20, 21).

The objective of this study is to assess the predictive capabilities of
various models utilizing different algorithms, develop a ML model
that incorporates the PPR index for predicting the risk of HT after
thrombolysis, and compare the performance of models to establish an
effective assessment tool.

2 Methods
2.1 Study design and object

A single-center, observational, and retrospective study was
conducted, and all subjects were collected from the First Affiliated
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Hospital of Kunming Medical University. The Ethics Committee of the
hospital [No. 2022-L-157] provided approval for this study. Due to the
retrospective nature of this study, which entailed anonymous and
non-invasive data collection, the requirement for obtaining informed
consent was waived. All procedures were performed in compliance
with the principles outlined in the Declaration of Helsinki.

This study enrolled AIS patients who received IVT from July 2019
to April 2024. Subsequently, the patients were grouped into two
groups, namely HT and non-HT, based on CT or MRI (magnetic
resonance imaging) findings. A predictive model was constructed to
assess the risk of HT following AIS.

The inclusion criteria were as follows: (1) Patients who met the
World Health Organization (WHO) diagnostic criteria for AIS; (2)
Hospitalized patients who received rt-PA IVT after excluding cerebral
hemorrhage through transcranial CT examination or magnetic
resonance imaging; (3) Patients aged > 18 years; (4) Participants
without a recent history of surgical treatment or brain injury. The
exclusion criteria were as follows: (1) Patients with concurrent vital
organ diseases, such as liver and kidney impairment; (2) Patients
complicated with blood system diseases, coagulation dysfunction,
connective tissue diseases, cerebral aneurysms, and cerebrovascular
malformations; (3) Patients lacked of PDW and PLT at admission
(Figure 1).

2.2 Data collection and processing

The demographic data and clinical characteristics of the study
participants (age, gender, diabetes, hypertension, atrial fibrillation,
body mass index (BMI), smoking history, drinking history, malignant
tumor, previous use of lipid-lowering drugs, previous use of antiplatelet
drugs, previous use of anticoagulants, intravascular treatment after
onset of disease, blood pressure, baseline National Institutes of Health
Stroke Scale (NIHSS) score, time from onset to thrombolysis), along
with their initial laboratory test results, which were first obtained
before IVT initiation in AIS patients upon admission [blood routine,
coagulation function, fibrinolysis, liver function, kidney function,
electrolytes, blood lipids, glucose, myoglobin, brain natriuretic peptide
(BNP)], were retrieved from the laboratory information system of the
First Affiliated Hospital of Kunming Medical University. The PPR was
calculated as (PDW/PLT). To predict missing values in continuous
variables, a multiple imputation technique was utilized when the
proportion of missing values was less than 20%. Categorical variables
with more than 20% missing values were excluded. To mitigate
multicollinearity, variables exhibiting a variance inflation factor (VIF)
exceeding 5 were eliminated from the model.

2.3 LASSO regression for feature selection

LASSO regression was utilized to identify and select features
significantly associated with HT, leveraging its ability to perform both
variable selection and regularization. The primary strength of LASSO
lies in its L1 regularization, which shrinks some regression coefficients
to zero, thus effectively excluding irrelevant predictors. This automatic
feature selection is conducive to focus the model with the most relevant
variables related to HT, thus enhancing its interpretability. The optimal
regularization parameter (1) for LASSO was determined through

frontiersin.org


https://doi.org/10.3389/fneur.2025.1466543
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Lietal. 10.3389/fneur.2025.1466543
1 Patients met the WHO diagnostic criteria for AIS

AIS patients who received IVT from July 2019 to 2 Hospitalized patients receiving rt-PA IVT were enrolled after excluding

April 2024, with all subjects from the First cerebral hemorrhage via transcranial CT or MRI

Affiliated Hospital of Kunming Medical University 3 Age= 18 years

4) All included participants had no recent history of surgery or brain injury
Eligible patients
(n=352)
_| Patients with vital organ diseases were
excluded (n =6)
Patients with vital hematologic,
coagulation, and cerebrovascular
disorders were excluded (n=11)
Patients without PDW and PLT data
were excluded (n=4)
Patients included (n=331)
Endovascular treatment patients (n =25 )
Non-endovascular treatment patients (n= 306)
HT Patients (n=43) Non-HT Patients (n =288)

FIGURE 1
Patient selection process. AlS, Acute Ischemic Stroke; IVT, Intravenous Thrombolytic Therapy; PDW, Platelet Distribution Width; PLT, Platelet Count; HT,
Hemorrhagic Transformation.

cross-validation, a technique that helped to select the A value and
minimized model error by testing the model on different subsets of the
data. By doing so, overfitting was mitigated, ensuring that the model
generalized well to new data while still retaining the most meaningful
predictors. Through this process of variable selection and regularization,
LASSO improved both the accuracy and interpretability of the model,
making it more effective for identifying significant predictors of HT.

2.4 Model construction

This retrospective study employed four widely used ML
algorithms—Logistic Regression (LR), Random Forest (RF), Support
Vector Machine (SVM), and xgboost—to predict the onset of HT
following thrombolysis, as illustrated in Figure 2. The process began by
selecting a set of significant features that were most strongly associated
with the occurrence of HT. These features were then used as the input
variables for training each of the four ML models. To ensure optimal
model performance, hyperparameter tuning was conducted for each
algorithm using a grid search approach. This method systematically
explored different combinations of hyperparameters within a
predefined parameter space specific to each algorithm. The models
were then fine-tuned based on performance metrics obtained from an
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extensive search, ensuring that they were optimized to achieve their
highest performance potential. For the four machine learning models
(LR, RE, SVM, and xgboos), the following hyperparameters were fine-
tuned: LR: The regularization strength (L1 or L2 regularization) was
adjusted. RF: Hyperparameters such as the number of trees, maximum
depth, and minimum samples required to split a node were optimized.
SVM: The penalty parameter C and the type of kernel function were
tuned.xgboos: Key hyperparameters like learning rate, number of trees,
and maximum depth were adjusted. These hyperparameters were
optimized through techniques like cross-validation, grid search, and
random search, to find the optimal combination that maximized the
model’s generalization ability on the validation set.

2.5 Training model

To train our models and mitigate the risk of overfitting,
we implemented 5-fold cross-validation. This method involved
dividing the dataset into 5 separate folds. This method involved
dividing the dataset into 5 separate folds, maximizing the number of
folds while ensuring that each fold contained a sufficient number of
HT patient samples (8-9 positive samples per fold). In each round, the
model was trained on 4 of the folds and validated on the remaining
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Clinical characteristics
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Laboratory Indicators Machine Learning Feature importance
. Model Building
AIS Patients Post IVT
Vital Signs and Comorbidities R
RF
SVM
Xgboost
Compared 4 Algorithms Clinical Decision-making
FIGURE 2

Machine learning flowchart for constructing predictive models. AlS, Acute Ischemic Stroke; IVT, Intravenous Thrombolytic Therapy; LR, Logistic
Regression; RF, Random Forest; SVM, Support Vector Machine; xgboost, Extreme Gradient Boosting.

fold. The process was repeated 5 times, with each fold acting as the
validation set once. The final model performance was calculated by
taking the average of the metrics obtained from each iteration. By
using this technique, the dataset was effectively split into 5 parts, and
the model was trained and validated on different combinations of
these parts. This helped to minimize potential bias in the performance
assessment. As a result, this strategy provided a more robust and
generalizable evaluation, producing performance metrics that were
less reliant on any single partition of the data.

2.6 Model evaluation

To evaluate and ensure the generalizability of each model, the
performance was assessed by calculating the mean [standard deviation
(SD)] of key metrics across the 5-fold cross-validation, including the
Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC), accuracy, sensitivity, specificity, and balanced F-score. These
metrics provided a comprehensive evaluation of each model’s
predictive capabilities. To explain the impact of predictors in a model,
feature importance analysis was used.

2.7 Nomogram for HT prediction after IVT

The best-performing model, selected based on the highest AUC
and overall metric scores, was used to identify the key features most
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strongly associated with HT. These selected features, along with the
model’s predictions, were then incorporated into the development of
a nomogram. The nomogram allows for the calculation of the
probability of HT occurrence using multiple clinical variables. For
each predictive variable, a horizontal line was drawn, with a scale
beneath it indicating the possible values of that variable. Based on the
actual observed value of each variable, the corresponding score was
located on the scale. The scores for all variables were then summed to
obtain a total score. This total score was finally mapped to a probability
curve on the nomogram, allowing for the conversion of the total score
into the predicted probability of HT occurrence in AIS patients who
received IVT. The nomogram provided a visual, intuitive tool that
allowed clinicians to estimate the probability of HT in individual
patients following thrombolysis, facilitating decision-making and
personalized care.

2.8 Statistical analysis

Continuous variables were represented as mean (SD) or median
(upper and lower quartiles), and compared through student ¢-tests or
non-parametric tests according to specific circumstances. Categorical
variables were represented as frequency and percentage (%), and
Pearson chi square test or Fisher’s exact test was adopted for
comparison between groups. p < 0.05 was set to indicate a statistically
significant difference. The statistical analysis of this study was
performed using R software (version 4.3.2).
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3 Results
3.1 Characteristics of patients

In this study, 331 AIS patients after IVT were included, of whom
43 (13.0%) developed HT. The patients had a median age of 68 [58, 77]
years, and there were 205 (61.9%) males and 126 (38.1%) females.
Differences were observed regarding the following variables between
the HT group and the non-HT group: age, baseline NIHSS score,
hemoglobin (Hb), BNP, D-dimer (D-D) (p < 0.05). The details are
presented in Table 1.

3.2 Selection of predictive variables

The function selection was carried out using the Least
Absolute Shrinkage and Selection Operator (LASSO) method,
where the penalty for § coefficient was determined by the tuning
parameter 4 (4 =0.02651381). In this study, 37 variables were
included, and 37 lines of different colors were obtained, each
representing the change trajectory of a specific independent
variable’s coefficient. As the value of 1 increased, the coefficients
gradually decreased, reflecting the regularization effect of the
LASSO method (Figure 3A). The dashed line on the left
represented A value, and the value minimized the bias and
corresponded to the optimal model fit. Regarding this value, the
model selected 6 variables, indicating that these variables provided
the most reliable and predictive relationship with the outcome.
Consequently, six feature variables with non-zero coefficients
were chosen, including age, diabetes, malignancy, onset to
treatment time (OTT), baseline NIHSS score, and PPR
(Figure 3B).

3.3 Model performance

Four ML algorithms, namely Logistic, Random Forest, SVM, and
Xgboost, were selected to construct models. The optimized ML model
underwent 5-fold cross-validation, and the mean value obtained from
each algorithm was utilized as the prediction result for that algorithm.
The mean accuracy values of LR, RE, SVM, and XGBoost models were
0.825, 0.743, 0.773, and 0.813, respectively; the mean AUC values were
0.851,0.763,0.711, and 0.718, respectively; the mean sensitivity values
were 0.830, 0.821, 0.731, and 0.636, respectively; the mean specificity
values were 0.832, 0.725, 0.776, and 0.841, respectively. The details are
represented in Table 2. The optimal ROC curves for different models
are shown in Figure 4. It could be found that the optimal AUC values
for all four models were above 0.8 (LR > Xgboost>SVM > RF),
indicating good fitting effect.

The results in Table 2 and Figure 5 indicated that after
comprehensive evaluation of the four models, the LR model exhibited
the best performance in terms of mean value of AUC, accuracy,
sensitivity, precision, and F1. Therefore, it could be considered that the
LR model had the best performance among these four models.
According to the Nomogram constructed from the LR model and the
statistical analysis of the LR mode, for AIS patients undergoing IVT,
a total score of 226 corresponded to an estimated probability of 0.64
for HT (Figure 6).
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3.4 Feature importance

The LR model demonstrated the best overall performance.
We further ranked these features based on their contribution to the
model’s predictive capability. The feature importance of the LR model
are summarized in Figure 5. In addition, based on their contribution
to the model, feature variables were ranked in descending order as
baseline NIHSS score, diabetes, PPR, malignancy, age, and OTT.

4 Discussion

In this study, the occurrence of HT in AIS patients following IVT
was found to be 13.0%, which was similar to the results in previous
studies (22). The ML model based on patient PPR exhibited favorable
performance in predicting HT, with optimal AUC values exceeding
0.8. Particularly, the LR model performed well in this study, with an
optimal AUC value exceeding 0.9. In addition, the mean values of the
model in accuracy, sensitivity, specificity, were all over 0.8. Overall, the
LR model exhibited well in performance evaluation and model
calibration, providing strong support in clinical decision-making. The
reason LR may perform optimally compared to other models is that
LR is a relatively simple linear model, particularly suitable for
situations with small datasets and clear linear relationships between
features. While other complex models like XGBoost have advantages
in handling non-linear relationships, LR may demonstrate better
predictive performance when dealing with linear data, less noise, or a
lower risk of overfitting (23). Moreover, the ML-based predictive
model developed in this study demonstrated superior risk prediction
capabilities compared to previous MLR models (6). Compared with
ML models developed by other researchers, the model developed by
Wang et al. (24) was slightly inferior in terms of optimal performance
(AUC = 0.82), and its inclusion of missing values in variables exceeded
30%, which might cause bias in HT prediction. The study by Li et al.
(25) showed that the Xgboost model exhibited the highest
performance in terms of AUC (AUC > 0.95). However, the CO2-CP
included in this model was not a conventional testing index for AIS
admission, which might also affect the promotion and application of
the model in primary hospitals (25). The modeling variables in this
study included age, diabetes, malignant tumor, OT'T, baseline NIHSS
score, and PPR. These were convenient for popularization. In
summary, the HT risk predictive model developed in this study
performed well in multiple performance indicators and had high
clinical application potential compared to other ML models.

The role of platelets in ischemia-reperfusion injury has gained
increasing attention in the pathophysiological process of AIS. The
activation of platelets and activated platelets can exacerbate post-
stroke ischemia-reperfusion injury, and the disruption of the
blood-brain barrier by reperfusion injury is one of the important
causes for HT (26-28). Platelet aggregation and clot retraction play
important roles in the bleeding process. Among them, platelet
aggregation is a key step in the hemostasis process, while clot
retraction helps stabilize thrombosis and reduce the risk of
hemorrhage (29). Alteplase can inhibit platelet aggregation and
clot retraction by inhibiting ADP, collagen, and adrenaline, thereby
affecting platelet function (30). Platelets can also enhance
fibrinolysis by participating in the plasminogen activation system,
thereby increasing the risk of HT after IVT (31). In addition,
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TABLE 1 Clinical baseline characteristics.
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Characteristic Level Overall Non-HT HT p
Characteristics 331 288 43
Age [median (IQR)] 68.00 [58.00, 77.00] 68.00 [57.00, 77.00] 72.00 [65.50, 82.00] 0.005

Female 126 (38.1) 110 (38.2) 16 (37.2) 1
Gender (%)

male 205 (61.9) 178 (61.8) 27 (62.8)
BMI [median (IQR)] 23.66 [22.04, 26.08] 23.66 [22.04, 26.03] 23.88 [20.39, 26.22] 0.736

None 228 (68.9) 195 (67.7) 33 (76.7) 0.309
Smoking (%)

Yes 103 31.1) 93 (32.3) 10 (23.3)

None 275 (83.1) 238 (82.6) 37 (86.0) 0.735
Drinking (%)

Yes 56 (16.9) 50 (17.4) 6 (14.0)

None 138 (41.7) 123 (42.7) 15 (34.9) 0.421
Hypertension (%)

Yes 193 (58.3) 165 (57.3) 28 (65.1)

None 251 (75.8) 224 (77.8) 27 (62.8) 0.051
Diabetes (%)

Yes 80 (24.2) 64 (22.2) 16 (37.2)

None 297 (89.7) 261 (90.6) 36 (83.7) 0.262
CAD (%)

Yes 34(10.3) 27 (9.4) 7(16.3)

None 277 (83.7) 244 (84.7) 33(76.7) 0.272
Stroke (%)

Yes 54 (16.3) 44 (15.3) 10 (23.3)

None 309 (93.4) 269 (93.4) 40 (93.0) 1
Arrhythmia (%)

Yes 22 (6.6) 19 (6.6) 3(7.0)

None 321(97.0) 281 (97.6) 40 (93.0) 0.251
Malignancy (%)

Yes 10 (3.0) 7 (2.4) 3(7.0)

None 280 (84.6) 246 (85.4) 34(79.1) 0.396
Antiplatelets (%)

Yes 51(15.4) 42 (14.6) 9(20.9)

None 315 (95.2) 275 (95.5) 40 (93.0) 0.748
Anticoagulants (%)

Yes 16 (4.8) 13 (4.5) 3(7.0)

None 288 (87.0) 252 (87.5) 36 (83.7) 0.657
LLAs (%)

Yes 43 (13.0) 36 (12.5) 7 (16.3)

None 306 (92.4) 268 (93.1) 38(88.4) 0.438
EVT (%)

Yes 25 (7.6) 20 (6.9) 5(11.6)
OTT [median (IQR)] (h) 3.00 [2.10, 3.50] 3.00 [2.10, 3.60] 2.80 [1.85, 3.25] 0.124
NIHSS [median (IQR)] 5.00 [3.00, 10.00] 5.00 [3.00, 9.00] 14.00 [8.50, 18.00] <0.001
SBP [mean (SD)] (mmHg) 143.51 (22.02) 143.07 (21.73) 146.42 (23.89) 0.353
DBP [median (IQR)] (mmHg) 84.00 [75.00, 93.00] 82.50 [75.00, 92.00] 88.00 [74.50, 95.50] 0.186
WBC [median (IQR)] (109/L) 7.52 [6.08, 9.22] 7.52 [6.04, 9.26] 7.62 [6.16, 9.16] 0.921
ANC [median (IQR)] (109/L) 4.97 [3.76, 6.84] 4.99 [3.76, 6.83] 4.77 [3.78, 6.84] 0.84
LYM [median (IQR)] (109/L) 1.59 [1.13,2.13] 1.58 [1.13, 2.14] 1.67 [1.19, 2.09] 0.786
RBC [median (IQR)] (1,012/L) 4.85[4.51,5.24] 4.86 [4.55, 5.25) 4.69 [4.38, 5.15] 0.152
Hb [median (IQR)] (g/L) 149.00 [137.50, 161.00] 150.00 [139.00, 161.00] 141.00 [130.50, 156.50] 0.027
RDW-CV [median (IQR)] (%) 13.00 [12.80, 14.00] 13.00 [12.78, 14.00] 13.10 [12.90, 14.00] 0.267
CK-MB [median (IQR)] (ng/mL) 35.26 [22.18, 56.89] 34.98 [20.94, 56.72] 38.30 [28.24, 72.89] 0.16
Glucose [median (IQR)] (mmol/L) 7.13 [6.10, 8.95] 7.10 [6.10, 8.89] 7.30 [6.00, 10.07] 0.618
UA [mean (SD)] (umol/L) 353.50 [275.10, 431.30] 354.05 [282.62, 433.55] 323.60 [238.90, 417.75] 0.188
Creatinine [median (IQR)] (jmol/L) 90.54 (54.95) 90.92 (57.99) 87.98 (27.05) 0.744
K + [median (IQR)] (mmol/L) 3.71 [3.46, 4.01] 3.70 [3.44, 4.01] 3.74 [3.50, 4.03] 0.649

(Continued)
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TABLE 1 (Continued)

Characteristic Level Overall Non-HT HT p

Na + [median (IQR)] (mmol/L) 139.50 [137.47, 141.50] 139.52 [137.64, 141.49] 139.16 [137.00, 141.38] 0.482
Cl + [median (IQR)] (mmol/L) 103.92 [101.47, 106.55] 103.94 [101.70, 106.64] 103.72 [100.28, 106.16] 0.228
Ca2 + [median (IQR)] (mmol/L) 223[2.17,2.32] 2.24[2.18,2.33] 221[2.16, 2.28] 0.056
Dbil [median (IQR)] (pmol/L) 4.00 [2.90, 5.80] 3.95 [2.80, 5.70] 4.60 [3.35, 6.85] 0.174
Ibil [median (IQR)] (pmol/L) 7.60 [5.20, 10.15] 750 [5.27, 10.12] 7.80 [5.05, 10.05] 0.686
ALB [median (IQR)] (g/L) 40.09 [37.45, 43.05] 40.10 [37.50, 43.02] 39.90 [36.35, 43.10] 0.731
BNP [median (IQR)] (pg/mL) 37.41[10.84, 162.75] 31.24 [10.00, 155.10] 125.90 [51.66, 311.12] <0.001
PTR [median (IQR)] 1.00 [0.97, 1.06] 1.00 [0.96, 1.06] 1.01 [0.97, 1.08] 0.653
PT [median (IQR)] (s) 13.10 [12.50, 13.80] 13.10 [12.50, 13.80] 13.20 [12.65, 13.70] 0.727
TT [median (IQR)] (s) 18.50 [17.60, 19.65] 18.60 [17.60, 19.70] 18.30 [17.60, 19.20] 0.462
INR [median (IQR)] 1.01 [0.96, 1.08] 1.00 [0.95, 1.08] 1.01 [0.96, 1.09] 0.687
FIB [median (IQR)] (g/L) 2.95 [2.58,3.52] 2.95 [2.56,3.50] 2.92 [2.68, 3.60] 0.626
D-D [median (IQR)] (mg/mL) 0.40 [0.25, 0.91] 0.36 [0.23,0.85] 0.65 [0.32,1.57] 0.003
PPR [median (IQR)] 0.07 [0.05, 0.09] 0.07 [0.05, 0.09] 0.07 [0.05, 0.09] 0.344

P> p-value from the statistical test comparing the HT and non-HT groups. BMI, Body Mass Index; CAD, Coronary Artery Disease; LLAs, Lower Limb Arterial Stenosis; EVT, Endovascular
Therapy; OTT, Onset to Treatment Time; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; WBC, White Blood Cell; ANC, Absolute Neutrophil Count; LYM, Lymphocytes; RBC,
Red Blood Cell; Hb, Hemoglobin; RDW-CV, Red Cell Distribution Width-Coefficient of Variation; CK-MB, Creatine Kinase-MB; UA, Uric Acid; Dbil, Direct Bilirubin; Ibil, Indirect Bilirubin;
ALB, Albumin; BNP, Brain Natriuretic Peptide; PTR, Prothrombin Ratio; PT, Prothrombin Time; T'T, Thrombin Time; INR, International Normalized Ratio; FIB, Fibrinogen; D-D, D-dimer;
PPR, Platelet Distribution Width to Platelet Count Ratio.
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FIGURE 3
Results of variable screening using the LASSO regression. (A) The 5-fold cross-validation was performed, and the coefficients of all predictors gradually
returned to zero. 1 = 0.02651381. (B) There were 6 predictors of non-zero coefficients at the far right dotted line.

TABLE 2 Mean and standard deviation of 5-fold cross-validation for four ML Models.

Machine AUC (mean + Precision Sensitivity Specificity Accuracy F1 value
learning SD) (mean + SD) (mean + SD) (mean + SD) (mean + SD) (mean + SD)
LR 0.851 + 0.066 0.825 + 0.081 0.830 % 0.195 0.832+0.122 0.477 % 0.240 0.550 + 0.136
RF 0.763 = 0.084 0.743 £ 0.138 0.821 % 0.142 0725+ 0.174 0356 % 0.127 0481 +0.119
SVM 0.711+0.115 0.773 % 0.140 0.731%0.143 0.776 % 0.168 0373 £ 0.11 0.479 £ 0.112
XGBoost 0.718 +0.104 0.813 +0.096 0.636 +0.234 0.841 +0.138 0.461 +0.175 0.478 +0.075

LR, Logistic Regression; RE, Random Forest; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.

platelets form platelet-fibrin aggregates around the thrombus, information on platelet production, activation, and functional
leading to living contracting of cerebral thrombosis, thereby  status. Compared to MPV, PDW is a more sensitive marker of
affecting the severity and prognosis of AIS (32). Mean platelet  variation in platelet volume, providing more comprehensive
volume (MPV) and PDW together provide comprehensive  platelet activation information and effectively indicating the
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severity of the disease (19, 33, 34). In addition, Chen et al. (35)
discovered an obvious association between PDW and the severity
of stroke. Unfortunately, PDW may be affected by platelet count
(36). Some scholars believe that PDW should not be used alone as
a direct indicator of thromboembolic diseases (37). Lin et al’s (21)
study shows that the AUCs for predicting 120-day mortality in
severe burn patients using PDW, PLT, and PPR on the third day
post-burn are 0.792, 0.782, and 0.816, respectively. Therefore, as a
novel biological indicator, PPR, by reflecting both the distribution
width and platelet count, can more comprehensively reflect platelet
function and predict the risk of HT occurrence. In this study, the
baseline PPR lacked statistical significance, but p-values can

o |
© |
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. — LRauc=0.919
o 7 RF auc=0.874
—— SVMauc=0.846
g - — xgboost auc= 0.862
T T T
1.0 0.5 0.0
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FIGURE 4

Optimal ROC curves for four ML models. LR, Logistic Regression; RF,
Random Forest; SVM, Support Vector Machine; xgboost, Extreme
Gradient Boosting.

10.3389/fneur.2025.1466543

be influenced by sample size and may not accurately reflect the true
relationship between variables and outcomes, potentially leading
to bias in variable selection. This is especially true when p-values
are used as the sole criterion for feature selection, which may result
in the inclusion of variables with no practical significance. In
contrast, regularization methods like LASSO regression help
address this issue by penalizing coeflicients and automatically
selecting variables, effectively removing less important ones and
improving the model’s generalizability (38). Given that PPR was
included in the LASSO model and ranked third in feature
importance, its role as an independent impact factor is justifiable,
as it demonstrated a certain effect in predicting HT. Future studies
should further explore the predictive ability of PPR in different
patient populations and evaluate its application value in
clinical practice.

In our study, the key factors influencing the prediction results
include malignant tumors and diabetes. Malignant tumor patients
have a certain impact on the prediction results, which may be due
to the higher coagulation, platelet, and endothelial dysfunction
markers, as well as more circulating tumor microemboli in stroke
patients complicated with malignant tumors (39). However,
patients with malignant tumors may not necessarily develop HT
(40-42). Other variables still need to be explored for comprehensive
evaluation. In addition, in our model, diabetes may have an
important influence on the prediction results (Ranked 2rd in
feature importance), which may be due to the combined effect of
multiple mechanisms such as endothelial dysfunction, changes in
coagulation and fibrinolytic systems, abnormal platelet function,
and direct tissue damage caused by hyperglycemia in diabetes
patients (43). Previous studies have shown that the admission
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FIGURE 5
Nomogram model constructed based on LR. OTT, Onset to Treatment Time; PPR, Platelet Distribution Width to Platelet Count Ratio; Blue curve:
Represents the relationship between one modeling variable and the occurrence of HT in AIS patients who received IVT; Gray shaded area: Represents
the range of fluctuations in the occurrence of HT in AIS patients who received IVT as the input variables change.
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Feature importance results of the LR model. OTT, Onset to Treatment Time; PPR, Platelet Distribution Width to Platelet Count Ratio.

glucose performs better in predicting the adverse outcome of AIS
patients than diabetes (44, 45). It should be noted that there are
differences in physiological mechanism between chronic
hyperglycemia and stress hyperglycemia (46). Therefore, it may not
fully reflect the actual condition of patients to consider diabetes
and admission glucose alone. Future studies should further explore
biomarkers and clinical parameters that reflect comprehensive
blood glucose levels, and construct more accurate predictive
models. By incorporating age, OTT, and baseline NIHSS score into
the model, the findings of previous studies have been effectively
corroborated and validated (5, 47-49).

Imaging variables may encounter certain challenges in predicting
HT risk after IVT. Although IVT can effectively dissolve thrombus
and restore cerebral blood flow, it also increases the risk of
intracranial hemorrhage (50). Therefore, when deciding to perform
IVT on AIS patients, the risk of HT is one of the primary factors that
should be considered by clinicians. IVT is suitable for AIS patients
within 3 to 4.5 h after onset (51), which requires rapid and accurate
evaluation by clinicians. Imaging plays a pivotal role in the rapid
diagnosis and treatment of ischemic stroke. Head computed
tomography (CT) scan can quickly and accurately determine cerebral
hemorrhage; CT angiography (CTA) can locate ischemic blood
vessels; CT perfusion (CTP) imaging can detect ischemic penumbra
through multiple automated post-processing; MRI and diffusion-
weighted imaging (DWI) can clarify the diagnosis of AIS and the
extent of cerebral infarction (52). Due to the high risk of radiation
exposure and contrast agent application of CT and CTA, as well as
the longer duration, higher cost, and limited equipment accessibility
of CTP and MR, it may lead to different imaging protocols chosen
by clinicians, resulting in different imaging variables. MRI and CTP
may have moderate diagnostic performance in predicting HT in
patients with AIS (53, 54), but current clinical evidence is insufficient
to support these imaging parameters in predicting HT (55).

Frontiers in Neurology

Therefore, challenges still exist in incorporating imaging variables
into predictive models to assess the risk of HT after thrombolysis.
Moreover, multi-center studies have shown that early active
treatment and dehydration therapy for asymptomatic HT patients
can reduce the risk of hematoma enlargement and death (4). This
study aims to develop a model based on ML combined with
laboratory indicators that enables rapid and accurate prediction of
HT following IVT. This will assist clinicians in making informed
decisions regarding the administration of thrombolytic therapy and
facilitate the early identification of asymptomatic HT patients after
IVT, so as to prevent them from developing PH. By comprehensively
analyzing various clinical and laboratory data, and combining with
ML algorithms, the predictive model developed in this study has
been able to efficiently and accurately evaluate the risk of HT
(optimal AUC > 0.9). Future studies will focus on standardizing
multiple imaging variables to further optimize the predictive
ability of HT.

4.1 Limitations

This study used single-center data, lacked external validation, and
adopted a retrospective study design, which could potentially limit the
generalizability and accuracy of the research findings. Additionally,
while HT was assessed as a whole, it was not further divided into its
subtypes—HI and PH. PH was generally associated with more severe
outcomes and poorer prognosis compared to HI, making it a critical
factor for risk stratification and prediction in ischemic stroke patients.
Future studies should aim to distinguish between HI and PH to better
predict and manage the more severe forms of hemorrhagic
transformation. Incorporating multi-center data and adopting
prospective designs would also improve the generalizability and
accuracy of predictive models.
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5 Conclusion

It can be concluded in our research that the independent
predictors of HT are age, diabetes, malignancy, OT'T, baseline NTHSS
score, and PPR. Among the models constructed by four ML
algorithms, we have chosen the HT model with the best performance
constructed by the LR algorithm. This model offers precise predictions
of HT after IVT, providing valuable support to clinicians in promptly
and accurately assessing the risk of thrombolytic hemorrhage and
identifying asymptomatic HT patients after IVT.
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Glossary

HT - Hemorrhagic transformation
AIS - acute ischemic stroke

IVT - intravenous thrombolytic therapy
ML - machine learning

PPR - platelet count ratio

AUC - area under curve

ROC - receiver operating characteristic
OTT - onset to treatment time

HI - hemorrhagic infarction

PH - parenchymal hemorrhage

PDW - platelet distribution width
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WHO - World Health Organization

BMI - body mass index

NIHSS - National Institutes of Health Stroke Scale
BNP - brain natriuretic peptide

VIF - variance inflation factor

SD - standard deviation

MPY - Mean platelet volume

CT - computed tomography

CTA - CT angiography

CTP - CT perfusion

DWI - diffusion-weighted imaging
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