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Background: Hemorrhagic transformation (HT) is a common and potentially 
serious complication following intravenous thrombolysis (IVT) in patients with 
acute ischemic stroke (AIS). Despite its high incidence, there remains a lack of 
simple and effective tools for predicting HT risk.
Objective: This study aimed to develop an interpretable machine learning (ML) 
model incorporating the platelet distribution width to platelet count ratio (PPR) 
to predict HT occurrence in AIS patients after IVT.
Methods: We included AIS patients who underwent IVT at the First Affiliated 
Hospital of Kunming Medical University between July 2019 and April 2024. 
Four ML models—logistic regression (LR), random forest (RF), support vector 
machine (SVM), and extreme gradient boosting (Xgboost)—were constructed 
using 5-fold cross-validation, with HT after IVT as the outcome. Feature 
selection was performed using least absolute shrinkage and selection operator 
(LASSO) regression. Model performance was evaluated based on the area 
under the receiver operating characteristic curve (AUC), accuracy, sensitivity, 
specificity, and balanced F-score. The best-performing model was selected for 
interpretability analysis, and feature importance was assessed.
Results: LASSO regression identified six predictive features with non-zero 
coefficients: age, diabetes, malignancy, onset-to-treatment time (OTT), baseline 
National Institutes of Health Stroke Scale (NIHSS) score, and PPR. Among the 
models, LR demonstrated the highest predictive performance, achieving an 
optimal AUC of 0.919, along with average accuracy, sensitivity, and specificity 
of 0.825, 0.830, and 0.832, respectively. Feature importance in the LR model 
ranked as follows: baseline NIHSS score, diabetes, PPR, malignancy, age, and 
OTT.
Conclusion: The LR-based model incorporating PPR effectively predicts HT risk 
in AIS patients after IVT, providing clinicians with a rapid and accurate tool to 
assess thrombolytic hemorrhage risk and support treatment decision-making.

KEYWORDS

hemorrhagic transformation, intravenous thrombolytic therapy, stroke, platelet 
distribution width-to-count ratio, machine learning

OPEN ACCESS

EDITED BY

Jean-Claude Baron,  
University of Cambridge, United Kingdom

REVIEWED BY

Kais Gadhoumi,  
Duke University, United States
Yao Yu,  
The Affiliated Hospital of Qingdao University, 
China

*CORRESPONDENCE

Wen Jiang  
 arainjw@126.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 22 July 2024
ACCEPTED 16 September 2025
PUBLISHED 02 October 2025

CITATION

Li X, Lei C, Xu H, Yuan C, Zhou Y and 
Jiang W (2025) Prediction of hemorrhagic 
transformation after thrombolysis based on 
machine learning models combined with 
platelet distribution width-to-count ratio.
Front. Neurol. 16:1466543.
doi: 10.3389/fneur.2025.1466543

COPYRIGHT

© 2025 Li, Lei, Xu, Yuan, Zhou and Jiang. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  02 October 2025
DOI  10.3389/fneur.2025.1466543

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1466543&domain=pdf&date_stamp=2025-10-02
https://www.frontiersin.org/articles/10.3389/fneur.2025.1466543/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1466543/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1466543/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1466543/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1466543/full
mailto:arainjw@126.com
https://doi.org/10.3389/fneur.2025.1466543
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1466543


Li et al.� 10.3389/fneur.2025.1466543

Frontiers in Neurology 02 frontiersin.org

1 Introduction

Alteplase intravenous thrombolytic therapy (IVT) is effective in 
treating acute ischemic stroke (AIS) (1). Hemorrhagic transformation 
(HT) is a frequently occurring potentially adverse complication of 
intravenous thrombolysis in AIS patients, and the occurrence of HT 
in AIS patients following thrombolysis is significantly higher than that 
in AIS patients without thrombolysis (2). HT is further grouped into 
hemorrhagic infarction (HI) and parenchymal hemorrhage (PH), 
where PH, as a progressive manifestation of HI, usually indicates poor 
prognosis (3–5). Therefore, early identification of potential HT during 
thrombolysis and asymptomatic HI patients after thrombolysis 
is crucial.

Currently, most of the studies use multiple linear regression (MLR) 
to identify risk factors (6, 7) for HT following thrombolysis, including 
white blood cells (8), coagulation function (9), bilirubin (10), and uric 
acid (11). However, MLR is restrained by linear hypotheses between 
predicted variables and results, and the sensitivity to outliers may have 
adverse effects on predictive performance (12). Machine learning 
(ML), as an emerging discipline in the medical field, leverages computer 
science and statistical techniques to address healthcare challenges (13), 
making up for the shortcomings mentioned above and thus being 
widely applied. Due to the varying performance of different ML 
algorithms in different application scenarios, it is necessary to select 
appropriate algorithms to optimize model performance and accuracy 
before constructing a risk model for predicting HT after thrombolysis.

Platelet is the main component of blood and plays a crucial role in 
the onset and progression of AIS by maintaining the integrity of 
vascular endothelial cells, coagulation, and other pathophysiological 
functions (14, 15). Platelet count changes in hemorrhagic diseases are 
typically more rapid and pronounced than fibrinolytic markers. 
Thrombocytopenia or dysfunction is often an early sign of bleeding, 
while fibrinolytic indicators require some time to accumulate before 
showing any changes, which may not reflect risks in the early stages of 
HT. Additionally, fibrinolytic markers can be  influenced by more 
complex factors, such as liver dysfunction and inflammatory responses 
(16), which can limit their clinical utility. These markers primarily 
reflect the degree of fibrinolytic activity, and although fibrin degradation 
products and D-dimer have some predictive value for HT after IVT (17, 
18), their accuracy and timeliness are inferior to platelet count. Studies 
has demonstrated a positive correlation of elevated platelet distribution 
width (PDW) with a heightened likelihood of severe HT (19). As a new 
hematological indicator, PDW to platelet count ratio (PPR) can more 
comprehensively reflect platelet function, and its prognostic value has 
been confirmed in the prediction of other diseases (20, 21).

The objective of this study is to assess the predictive capabilities of 
various models utilizing different algorithms, develop a ML model 
that incorporates the PPR index for predicting the risk of HT after 
thrombolysis, and compare the performance of models to establish an 
effective assessment tool.

2 Methods

2.1 Study design and object

A single-center, observational, and retrospective study was 
conducted, and all subjects were collected from the First Affiliated 

Hospital of Kunming Medical University. The Ethics Committee of the 
hospital [No. 2022-L-157] provided approval for this study. Due to the 
retrospective nature of this study, which entailed anonymous and 
non-invasive data collection, the requirement for obtaining informed 
consent was waived. All procedures were performed in compliance 
with the principles outlined in the Declaration of Helsinki.

This study enrolled AIS patients who received IVT from July 2019 
to April 2024. Subsequently, the patients were grouped into two 
groups, namely HT and non-HT, based on CT or MRI (magnetic 
resonance imaging) findings. A predictive model was constructed to 
assess the risk of HT following AIS.

The inclusion criteria were as follows: (1) Patients who met the 
World Health Organization (WHO) diagnostic criteria for AIS; (2) 
Hospitalized patients who received rt-PA IVT after excluding cerebral 
hemorrhage through transcranial CT examination or magnetic 
resonance imaging; (3) Patients aged ≥ 18 years; (4) Participants 
without a recent history of surgical treatment or brain injury. The 
exclusion criteria were as follows: (1) Patients with concurrent vital 
organ diseases, such as liver and kidney impairment; (2) Patients 
complicated with blood system diseases, coagulation dysfunction, 
connective tissue diseases, cerebral aneurysms, and cerebrovascular 
malformations; (3) Patients lacked of PDW and PLT at admission 
(Figure 1).

2.2 Data collection and processing

The demographic data and clinical characteristics of the study 
participants (age, gender, diabetes, hypertension, atrial fibrillation, 
body mass index (BMI), smoking history, drinking history, malignant 
tumor, previous use of lipid-lowering drugs, previous use of antiplatelet 
drugs, previous use of anticoagulants, intravascular treatment after 
onset of disease, blood pressure, baseline National Institutes of Health 
Stroke Scale (NIHSS) score, time from onset to thrombolysis), along 
with their initial laboratory test results, which were first obtained 
before IVT initiation in AIS patients upon admission [blood routine, 
coagulation function, fibrinolysis, liver function, kidney function, 
electrolytes, blood lipids, glucose, myoglobin, brain natriuretic peptide 
(BNP)], were retrieved from the laboratory information system of the 
First Affiliated Hospital of Kunming Medical University. The PPR was 
calculated as (PDW/PLT). To predict missing values in continuous 
variables, a multiple imputation technique was utilized when the 
proportion of missing values was less than 20%. Categorical variables 
with more than 20% missing values were excluded. To mitigate 
multicollinearity, variables exhibiting a variance inflation factor (VIF) 
exceeding 5 were eliminated from the model.

2.3 LASSO regression for feature selection

LASSO regression was utilized to identify and select features 
significantly associated with HT, leveraging its ability to perform both 
variable selection and regularization. The primary strength of LASSO 
lies in its L1 regularization, which shrinks some regression coefficients 
to zero, thus effectively excluding irrelevant predictors. This automatic 
feature selection is conducive to focus the model with the most relevant 
variables related to HT, thus enhancing its interpretability. The optimal 
regularization parameter (λ) for LASSO was determined through 
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cross-validation, a technique that helped to select the λ value and 
minimized model error by testing the model on different subsets of the 
data. By doing so, overfitting was mitigated, ensuring that the model 
generalized well to new data while still retaining the most meaningful 
predictors. Through this process of variable selection and regularization, 
LASSO improved both the accuracy and interpretability of the model, 
making it more effective for identifying significant predictors of HT.

2.4 Model construction

This retrospective study employed four widely used ML 
algorithms—Logistic Regression (LR), Random Forest (RF), Support 
Vector Machine (SVM), and xgboost—to predict the onset of HT 
following thrombolysis, as illustrated in Figure 2. The process began by 
selecting a set of significant features that were most strongly associated 
with the occurrence of HT. These features were then used as the input 
variables for training each of the four ML models. To ensure optimal 
model performance, hyperparameter tuning was conducted for each 
algorithm using a grid search approach. This method systematically 
explored different combinations of hyperparameters within a 
predefined parameter space specific to each algorithm. The models 
were then fine-tuned based on performance metrics obtained from an 

extensive search, ensuring that they were optimized to achieve their 
highest performance potential. For the four machine learning models 
(LR, RF, SVM, and xgboos), the following hyperparameters were fine-
tuned: LR: The regularization strength (L1 or L2 regularization) was 
adjusted. RF: Hyperparameters such as the number of trees, maximum 
depth, and minimum samples required to split a node were optimized. 
SVM: The penalty parameter C and the type of kernel function were 
tuned.xgboos: Key hyperparameters like learning rate, number of trees, 
and maximum depth were adjusted. These hyperparameters were 
optimized through techniques like cross-validation, grid search, and 
random search, to find the optimal combination that maximized the 
model’s generalization ability on the validation set.

2.5 Training model

To train our models and mitigate the risk of overfitting, 
we  implemented 5-fold cross-validation. This method involved 
dividing the dataset into 5 separate folds. This method involved 
dividing the dataset into 5 separate folds, maximizing the number of 
folds while ensuring that each fold contained a sufficient number of 
HT patient samples (8–9 positive samples per fold). In each round, the 
model was trained on 4 of the folds and validated on the remaining 

FIGURE 1

Patient selection process. AIS, Acute Ischemic Stroke; IVT, Intravenous Thrombolytic Therapy; PDW, Platelet Distribution Width; PLT, Platelet Count; HT, 
Hemorrhagic Transformation.
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fold. The process was repeated 5 times, with each fold acting as the 
validation set once. The final model performance was calculated by 
taking the average of the metrics obtained from each iteration. By 
using this technique, the dataset was effectively split into 5 parts, and 
the model was trained and validated on different combinations of 
these parts. This helped to minimize potential bias in the performance 
assessment. As a result, this strategy provided a more robust and 
generalizable evaluation, producing performance metrics that were 
less reliant on any single partition of the data.

2.6 Model evaluation

To evaluate and ensure the generalizability of each model, the 
performance was assessed by calculating the mean [standard deviation 
(SD)] of key metrics across the 5-fold cross-validation, including the 
Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC), accuracy, sensitivity, specificity, and balanced F-score. These 
metrics provided a comprehensive evaluation of each model’s 
predictive capabilities. To explain the impact of predictors in a model, 
feature importance analysis was used.

2.7 Nomogram for HT prediction after IVT

The best-performing model, selected based on the highest AUC 
and overall metric scores, was used to identify the key features most 

strongly associated with HT. These selected features, along with the 
model’s predictions, were then incorporated into the development of 
a nomogram. The nomogram allows for the calculation of the 
probability of HT occurrence using multiple clinical variables. For 
each predictive variable, a horizontal line was drawn, with a scale 
beneath it indicating the possible values of that variable. Based on the 
actual observed value of each variable, the corresponding score was 
located on the scale. The scores for all variables were then summed to 
obtain a total score. This total score was finally mapped to a probability 
curve on the nomogram, allowing for the conversion of the total score 
into the predicted probability of HT occurrence in AIS patients who 
received IVT. The nomogram provided a visual, intuitive tool that 
allowed clinicians to estimate the probability of HT in individual 
patients following thrombolysis, facilitating decision-making and 
personalized care.

2.8 Statistical analysis

Continuous variables were represented as mean (SD) or median 
(upper and lower quartiles), and compared through student t-tests or 
non-parametric tests according to specific circumstances. Categorical 
variables were represented as frequency and percentage (%), and 
Pearson chi square test or Fisher’s exact test was adopted for 
comparison between groups. p < 0.05 was set to indicate a statistically 
significant difference. The statistical analysis of this study was 
performed using R software (version 4.3.2).

FIGURE 2

Machine learning flowchart for constructing predictive models. AIS, Acute Ischemic Stroke; IVT, Intravenous Thrombolytic Therapy; LR, Logistic 
Regression; RF, Random Forest; SVM, Support Vector Machine; xgboost, Extreme Gradient Boosting.
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3 Results

3.1 Characteristics of patients

In this study, 331 AIS patients after IVT were included, of whom 
43 (13.0%) developed HT. The patients had a median age of 68 [58, 77] 
years, and there were 205 (61.9%) males and 126 (38.1%) females. 
Differences were observed regarding the following variables between 
the HT group and the non-HT group: age, baseline NIHSS score, 
hemoglobin (Hb), BNP, D-dimer (D-D) (p < 0.05). The details are 
presented in Table 1.

3.2 Selection of predictive variables

The function selection was carried out using the Least 
Absolute Shrinkage and Selection Operator (LASSO) method, 
where the penalty for β coefficient was determined by the tuning 
parameter λ (λ = 0.02651381). In this study, 37 variables were 
included, and 37 lines of different colors were obtained, each 
representing the change trajectory of a specific independent 
variable’s coefficient. As the value of λ increased, the coefficients 
gradually decreased, reflecting the regularization effect of the 
LASSO method (Figure  3A). The dashed line on the left 
represented λ value, and the value minimized the bias and 
corresponded to the optimal model fit. Regarding this value, the 
model selected 6 variables, indicating that these variables provided 
the most reliable and predictive relationship with the outcome. 
Consequently, six feature variables with non-zero coefficients 
were chosen, including age, diabetes, malignancy, onset to 
treatment time (OTT), baseline NIHSS score, and PPR 
(Figure 3B).

3.3 Model performance

Four ML algorithms, namely Logistic, Random Forest, SVM, and 
Xgboost, were selected to construct models. The optimized ML model 
underwent 5-fold cross-validation, and the mean value obtained from 
each algorithm was utilized as the prediction result for that algorithm. 
The mean accuracy values of LR, RF, SVM, and XGBoost models were 
0.825, 0.743, 0.773, and 0.813, respectively; the mean AUC values were 
0.851, 0.763, 0.711, and 0.718, respectively; the mean sensitivity values 
were 0.830, 0.821, 0.731, and 0.636, respectively; the mean specificity 
values were 0.832, 0.725, 0.776, and 0.841, respectively. The details are 
represented in Table 2. The optimal ROC curves for different models 
are shown in Figure 4. It could be found that the optimal AUC values 
for all four models were above 0.8 (LR > Xgboost>SVM > RF), 
indicating good fitting effect.

The results in Table  2 and Figure  5 indicated that after 
comprehensive evaluation of the four models, the LR model exhibited 
the best performance in terms of mean value of AUC, accuracy, 
sensitivity, precision, and F1. Therefore, it could be considered that the 
LR model had the best performance among these four models. 
According to the Nomogram constructed from the LR model and the 
statistical analysis of the LR mode, for AIS patients undergoing IVT, 
a total score of 226 corresponded to an estimated probability of 0.64 
for HT (Figure 6).

3.4 Feature importance

The LR model demonstrated the best overall performance. 
We further ranked these features based on their contribution to the 
model’s predictive capability. The feature importance of the LR model 
are summarized in Figure 5. In addition, based on their contribution 
to the model, feature variables were ranked in descending order as 
baseline NIHSS score, diabetes, PPR, malignancy, age, and OTT.

4 Discussion

In this study, the occurrence of HT in AIS patients following IVT 
was found to be 13.0%, which was similar to the results in previous 
studies (22). The ML model based on patient PPR exhibited favorable 
performance in predicting HT, with optimal AUC values exceeding 
0.8. Particularly, the LR model performed well in this study, with an 
optimal AUC value exceeding 0.9. In addition, the mean values of the 
model in accuracy, sensitivity, specificity, were all over 0.8. Overall, the 
LR model exhibited well in performance evaluation and model 
calibration, providing strong support in clinical decision-making. The 
reason LR may perform optimally compared to other models is that 
LR is a relatively simple linear model, particularly suitable for 
situations with small datasets and clear linear relationships between 
features. While other complex models like XGBoost have advantages 
in handling non-linear relationships, LR may demonstrate better 
predictive performance when dealing with linear data, less noise, or a 
lower risk of overfitting (23). Moreover, the ML-based predictive 
model developed in this study demonstrated superior risk prediction 
capabilities compared to previous MLR models (6). Compared with 
ML models developed by other researchers, the model developed by 
Wang et al. (24) was slightly inferior in terms of optimal performance 
(AUC = 0.82), and its inclusion of missing values in variables exceeded 
30%, which might cause bias in HT prediction. The study by Li et al. 
(25) showed that the Xgboost model exhibited the highest 
performance in terms of AUC (AUC > 0.95). However, the CO2-CP 
included in this model was not a conventional testing index for AIS 
admission, which might also affect the promotion and application of 
the model in primary hospitals (25). The modeling variables in this 
study included age, diabetes, malignant tumor, OTT, baseline NIHSS 
score, and PPR. These were convenient for popularization. In 
summary, the HT risk predictive model developed in this study 
performed well in multiple performance indicators and had high 
clinical application potential compared to other ML models.

The role of platelets in ischemia–reperfusion injury has gained 
increasing attention in the pathophysiological process of AIS. The 
activation of platelets and activated platelets can exacerbate post-
stroke ischemia–reperfusion injury, and the disruption of the 
blood–brain barrier by reperfusion injury is one of the important 
causes for HT (26–28). Platelet aggregation and clot retraction play 
important roles in the bleeding process. Among them, platelet 
aggregation is a key step in the hemostasis process, while clot 
retraction helps stabilize thrombosis and reduce the risk of 
hemorrhage (29). Alteplase can inhibit platelet aggregation and 
clot retraction by inhibiting ADP, collagen, and adrenaline, thereby 
affecting platelet function (30). Platelets can also enhance 
fibrinolysis by participating in the plasminogen activation system, 
thereby increasing the risk of HT after IVT (31). In addition, 
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TABLE 1  Clinical baseline characteristics.

Characteristic Level Overall Non-HT HT p

Characteristics 331 288 43

Age [median (IQR)] 68.00 [58.00, 77.00] 68.00 [57.00, 77.00] 72.00 [65.50, 82.00] 0.005

Gender (%)
Female 126 (38.1) 110 (38.2) 16 (37.2) 1

male 205 (61.9) 178 (61.8) 27 (62.8)

BMI [median (IQR)] 23.66 [22.04, 26.08] 23.66 [22.04, 26.03] 23.88 [20.39, 26.22] 0.736

Smoking (%)
None 228 (68.9) 195 (67.7) 33 (76.7) 0.309

Yes 103 (31.1) 93 (32.3) 10 (23.3)

Drinking (%)
None 275 (83.1) 238 (82.6) 37 (86.0) 0.735

Yes 56 (16.9) 50 (17.4) 6 (14.0)

Hypertension (%)
None 138 (41.7) 123 (42.7) 15 (34.9) 0.421

Yes 193 (58.3) 165 (57.3) 28 (65.1)

Diabetes (%)
None 251 (75.8) 224 (77.8) 27 (62.8) 0.051

Yes 80 (24.2) 64 (22.2) 16 (37.2)

CAD (%)
None 297 (89.7) 261 (90.6) 36 (83.7) 0.262

Yes 34 (10.3) 27 (9.4) 7 (16.3)

Stroke (%)
None 277 (83.7) 244 (84.7) 33 (76.7) 0.272

Yes 54 (16.3) 44 (15.3) 10 (23.3)

Arrhythmia (%)
None 309 (93.4) 269 (93.4) 40 (93.0) 1

Yes 22 (6.6) 19 (6.6) 3 (7.0)

Malignancy (%)
None 321 (97.0) 281 (97.6) 40 (93.0) 0.251

Yes 10 (3.0) 7 (2.4) 3 (7.0)

Antiplatelets (%)
None 280 (84.6) 246 (85.4) 34 (79.1) 0.396

Yes 51 (15.4) 42 (14.6) 9 (20.9)

Anticoagulants (%)
None 315 (95.2) 275 (95.5) 40 (93.0) 0.748

Yes 16 (4.8) 13 (4.5) 3 (7.0)

LLAs (%)
None 288 (87.0) 252 (87.5) 36 (83.7) 0.657

Yes 43 (13.0) 36 (12.5) 7 (16.3)

EVT (%)
None 306 (92.4) 268 (93.1) 38 (88.4) 0.438

Yes 25 (7.6) 20 (6.9) 5 (11.6)

OTT [median (IQR)] (h) 3.00 [2.10, 3.50] 3.00 [2.10, 3.60] 2.80 [1.85, 3.25] 0.124

NIHSS [median (IQR)] 5.00 [3.00, 10.00] 5.00 [3.00, 9.00] 14.00 [8.50, 18.00] <0.001

SBP [mean (SD)] (mmHg) 143.51 (22.02) 143.07 (21.73) 146.42 (23.89) 0.353

DBP [median (IQR)] (mmHg) 84.00 [75.00, 93.00] 82.50 [75.00, 92.00] 88.00 [74.50, 95.50] 0.186

WBC [median (IQR)] (109/L) 7.52 [6.08, 9.22] 7.52 [6.04, 9.26] 7.62 [6.16, 9.16] 0.921

ANC [median (IQR)] (109/L) 4.97 [3.76, 6.84] 4.99 [3.76, 6.83] 4.77 [3.78, 6.84] 0.84

LYM [median (IQR)] (109/L) 1.59 [1.13, 2.13] 1.58 [1.13, 2.14] 1.67 [1.19, 2.09] 0.786

RBC [median (IQR)] (1,012/L) 4.85 [4.51, 5.24] 4.86 [4.55, 5.25] 4.69 [4.38, 5.15] 0.152

Hb [median (IQR)] (g/L) 149.00 [137.50, 161.00] 150.00 [139.00, 161.00] 141.00 [130.50, 156.50] 0.027

RDW-CV [median (IQR)] (%) 13.00 [12.80, 14.00] 13.00 [12.78, 14.00] 13.10 [12.90, 14.00] 0.267

CK-MB [median (IQR)] (ng/mL) 35.26 [22.18, 56.89] 34.98 [20.94, 56.72] 38.30 [28.24, 72.89] 0.16

Glucose [median (IQR)] (mmol/L) 7.13 [6.10, 8.95] 7.10 [6.10, 8.89] 7.30 [6.00, 10.07] 0.618

UA [mean (SD)] (μmol/L) 353.50 [275.10, 431.30] 354.05 [282.62, 433.55] 323.60 [238.90, 417.75] 0.188

Creatinine [median (IQR)] (μmol/L) 90.54 (54.95) 90.92 (57.99) 87.98 (27.05) 0.744

K + [median (IQR)] (mmol/L) 3.71 [3.46, 4.01] 3.70 [3.44, 4.01] 3.74 [3.50, 4.03] 0.649

(Continued)
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platelets form platelet-fibrin aggregates around the thrombus, 
leading to living contracting of cerebral thrombosis, thereby 
affecting the severity and prognosis of AIS (32). Mean platelet 
volume (MPV) and PDW together provide comprehensive 

information on platelet production, activation, and functional 
status. Compared to MPV, PDW is a more sensitive marker of 
variation in platelet volume, providing more comprehensive 
platelet activation information and effectively indicating the 

TABLE 1  (Continued)

Characteristic Level Overall Non-HT HT p

Na + [median (IQR)] (mmol/L) 139.50 [137.47, 141.50] 139.52 [137.64, 141.49] 139.16 [137.00, 141.38] 0.482

Cl + [median (IQR)] (mmol/L) 103.92 [101.47, 106.55] 103.94 [101.70, 106.64] 103.72 [100.28, 106.16] 0.228

Ca2 + [median (IQR)] (mmol/L) 2.23 [2.17, 2.32] 2.24 [2.18, 2.33] 2.21 [2.16, 2.28] 0.056

Dbil [median (IQR)] (μmol/L) 4.00 [2.90, 5.80] 3.95 [2.80, 5.70] 4.60 [3.35, 6.85] 0.174

Ibil [median (IQR)] (μmol/L) 7.60 [5.20, 10.15] 7.50 [5.27, 10.12] 7.80 [5.05, 10.05] 0.686

ALB [median (IQR)] (g/L) 40.09 [37.45, 43.05] 40.10 [37.50, 43.02] 39.90 [36.35, 43.10] 0.731

BNP [median (IQR)] (pg/mL) 37.41 [10.84, 162.75] 31.24 [10.00, 155.10] 125.90 [51.66, 311.12] <0.001

PTR [median (IQR)] 1.00 [0.97, 1.06] 1.00 [0.96, 1.06] 1.01 [0.97, 1.08] 0.653

PT [median (IQR)] (s) 13.10 [12.50, 13.80] 13.10 [12.50, 13.80] 13.20 [12.65, 13.70] 0.727

TT [median (IQR)] (s) 18.50 [17.60, 19.65] 18.60 [17.60, 19.70] 18.30 [17.60, 19.20] 0.462

INR [median (IQR)] 1.01 [0.96, 1.08] 1.00 [0.95, 1.08] 1.01 [0.96, 1.09] 0.687

FIB [median (IQR)] (g/L) 2.95 [2.58, 3.52] 2.95 [2.56, 3.50] 2.92 [2.68, 3.60] 0.626

D-D [median (IQR)] (mg/mL) 0.40 [0.25, 0.91] 0.36 [0.23, 0.85] 0.65 [0.32, 1.57] 0.003

PPR [median (IQR)] 0.07 [0.05, 0.09] 0.07 [0.05, 0.09] 0.07 [0.05, 0.09] 0.344

p, p-value from the statistical test comparing the HT and non-HT groups. BMI, Body Mass Index; CAD, Coronary Artery Disease; LLAs, Lower Limb Arterial Stenosis; EVT, Endovascular 
Therapy; OTT, Onset to Treatment Time; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; WBC, White Blood Cell; ANC, Absolute Neutrophil Count; LYM, Lymphocytes; RBC, 
Red Blood Cell; Hb, Hemoglobin; RDW-CV, Red Cell Distribution Width-Coefficient of Variation; CK-MB, Creatine Kinase-MB; UA, Uric Acid; Dbil, Direct Bilirubin; Ibil, Indirect Bilirubin; 
ALB, Albumin; BNP, Brain Natriuretic Peptide; PTR, Prothrombin Ratio; PT, Prothrombin Time; TT, Thrombin Time; INR, International Normalized Ratio; FIB, Fibrinogen; D-D, D-dimer; 
PPR, Platelet Distribution Width to Platelet Count Ratio.

FIGURE 3

Results of variable screening using the LASSO regression. (A) The 5-fold cross-validation was performed, and the coefficients of all predictors gradually 
returned to zero. λ = 0.02651381. (B) There were 6 predictors of non-zero coefficients at the far right dotted line.

TABLE 2  Mean and standard deviation of 5-fold cross-validation for four ML Models.

Machine 
learning

AUC (mean ± 
SD)

Precision 
(mean ± SD)

Sensitivity 
(mean ± SD)

Specificity 
(mean ± SD)

Accuracy 
(mean ± SD)

F1 value 
(mean ± SD)

LR 0.851 ± 0.066 0.825 ± 0.081 0.830 ± 0.195 0.832 ± 0.122 0.477 ± 0.240 0.550 ± 0.136

RF 0.763 ± 0.084 0.743 ± 0.138 0.821 ± 0.142 0.725 ± 0.174 0.356 ± 0.127 0.481 ± 0.119

SVM 0.711 ± 0.115 0.773 ± 0.140 0.731 ± 0.143 0.776 ± 0.168 0.373 ± 0.11 0.479 ± 0.112

XGBoost 0.718 ± 0.104 0.813 ± 0.096 0.636 ± 0.234 0.841 ± 0.138 0.461 ± 0.175 0.478 ± 0.075

LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting.
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severity of the disease (19, 33, 34). In addition, Chen et al. (35) 
discovered an obvious association between PDW and the severity 
of stroke. Unfortunately, PDW may be affected by platelet count 
(36). Some scholars believe that PDW should not be used alone as 
a direct indicator of thromboembolic diseases (37). Lin et al.’s (21) 
study shows that the AUCs for predicting 120-day mortality in 
severe burn patients using PDW, PLT, and PPR on the third day 
post-burn are 0.792, 0.782, and 0.816, respectively. Therefore, as a 
novel biological indicator, PPR, by reflecting both the distribution 
width and platelet count, can more comprehensively reflect platelet 
function and predict the risk of HT occurrence. In this study, the 
baseline PPR lacked statistical significance, but p-values can 

be influenced by sample size and may not accurately reflect the true 
relationship between variables and outcomes, potentially leading 
to bias in variable selection. This is especially true when p-values 
are used as the sole criterion for feature selection, which may result 
in the inclusion of variables with no practical significance. In 
contrast, regularization methods like LASSO regression help 
address this issue by penalizing coefficients and automatically 
selecting variables, effectively removing less important ones and 
improving the model’s generalizability (38). Given that PPR was 
included in the LASSO model and ranked third in feature 
importance, its role as an independent impact factor is justifiable, 
as it demonstrated a certain effect in predicting HT. Future studies 
should further explore the predictive ability of PPR in different 
patient populations and evaluate its application value in 
clinical practice.

In our study, the key factors influencing the prediction results 
include malignant tumors and diabetes. Malignant tumor patients 
have a certain impact on the prediction results, which may be due 
to the higher coagulation, platelet, and endothelial dysfunction 
markers, as well as more circulating tumor microemboli in stroke 
patients complicated with malignant tumors (39). However, 
patients with malignant tumors may not necessarily develop HT 
(40–42). Other variables still need to be explored for comprehensive 
evaluation. In addition, in our model, diabetes may have an 
important influence on the prediction results (Ranked 2rd in 
feature importance), which may be due to the combined effect of 
multiple mechanisms such as endothelial dysfunction, changes in 
coagulation and fibrinolytic systems, abnormal platelet function, 
and direct tissue damage caused by hyperglycemia in diabetes 
patients (43). Previous studies have shown that the admission 

FIGURE 4

Optimal ROC curves for four ML models. LR, Logistic Regression; RF, 
Random Forest; SVM, Support Vector Machine; xgboost, Extreme 
Gradient Boosting.

FIGURE 5

Nomogram model constructed based on LR. OTT, Onset to Treatment Time; PPR, Platelet Distribution Width to Platelet Count Ratio; Blue curve: 
Represents the relationship between one modeling variable and the occurrence of HT in AIS patients who received IVT; Gray shaded area: Represents 
the range of fluctuations in the occurrence of HT in AIS patients who received IVT as the input variables change.
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glucose performs better in predicting the adverse outcome of AIS 
patients than diabetes (44, 45). It should be noted that there are 
differences in physiological mechanism between chronic 
hyperglycemia and stress hyperglycemia (46). Therefore, it may not 
fully reflect the actual condition of patients to consider diabetes 
and admission glucose alone. Future studies should further explore 
biomarkers and clinical parameters that reflect comprehensive 
blood glucose levels, and construct more accurate predictive 
models. By incorporating age, OTT, and baseline NIHSS score into 
the model, the findings of previous studies have been effectively 
corroborated and validated (5, 47–49).

Imaging variables may encounter certain challenges in predicting 
HT risk after IVT. Although IVT can effectively dissolve thrombus 
and restore cerebral blood flow, it also increases the risk of 
intracranial hemorrhage (50). Therefore, when deciding to perform 
IVT on AIS patients, the risk of HT is one of the primary factors that 
should be considered by clinicians. IVT is suitable for AIS patients 
within 3 to 4.5 h after onset (51), which requires rapid and accurate 
evaluation by clinicians. Imaging plays a pivotal role in the rapid 
diagnosis and treatment of ischemic stroke. Head computed 
tomography (CT) scan can quickly and accurately determine cerebral 
hemorrhage; CT angiography (CTA) can locate ischemic blood 
vessels; CT perfusion (CTP) imaging can detect ischemic penumbra 
through multiple automated post-processing; MRI and diffusion-
weighted imaging (DWI) can clarify the diagnosis of AIS and the 
extent of cerebral infarction (52). Due to the high risk of radiation 
exposure and contrast agent application of CT and CTA, as well as 
the longer duration, higher cost, and limited equipment accessibility 
of CTP and MRI, it may lead to different imaging protocols chosen 
by clinicians, resulting in different imaging variables. MRI and CTP 
may have moderate diagnostic performance in predicting HT in 
patients with AIS (53, 54), but current clinical evidence is insufficient 
to support these imaging parameters in predicting HT (55). 

Therefore, challenges still exist in incorporating imaging variables 
into predictive models to assess the risk of HT after thrombolysis. 
Moreover, multi-center studies have shown that early active 
treatment and dehydration therapy for asymptomatic HT patients 
can reduce the risk of hematoma enlargement and death (4). This 
study aims to develop a model based on ML combined with 
laboratory indicators that enables rapid and accurate prediction of 
HT following IVT. This will assist clinicians in making informed 
decisions regarding the administration of thrombolytic therapy and 
facilitate the early identification of asymptomatic HT patients after 
IVT, so as to prevent them from developing PH. By comprehensively 
analyzing various clinical and laboratory data, and combining with 
ML algorithms, the predictive model developed in this study has 
been able to efficiently and accurately evaluate the risk of HT 
(optimal AUC > 0.9). Future studies will focus on standardizing 
multiple imaging variables to further optimize the predictive 
ability of HT.

4.1 Limitations

This study used single-center data, lacked external validation, and 
adopted a retrospective study design, which could potentially limit the 
generalizability and accuracy of the research findings. Additionally, 
while HT was assessed as a whole, it was not further divided into its 
subtypes—HI and PH. PH was generally associated with more severe 
outcomes and poorer prognosis compared to HI, making it a critical 
factor for risk stratification and prediction in ischemic stroke patients. 
Future studies should aim to distinguish between HI and PH to better 
predict and manage the more severe forms of hemorrhagic 
transformation. Incorporating multi-center data and adopting 
prospective designs would also improve the generalizability and 
accuracy of predictive models.

FIGURE 6

Feature importance results of the LR model. OTT, Onset to Treatment Time; PPR, Platelet Distribution Width to Platelet Count Ratio.
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5 Conclusion

It can be  concluded in our research that the independent 
predictors of HT are age, diabetes, malignancy, OTT, baseline NIHSS 
score, and PPR. Among the models constructed by four ML 
algorithms, we have chosen the HT model with the best performance 
constructed by the LR algorithm. This model offers precise predictions 
of HT after IVT, providing valuable support to clinicians in promptly 
and accurately assessing the risk of thrombolytic hemorrhage and 
identifying asymptomatic HT patients after IVT.
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Glossary

HT - Hemorrhagic transformation

AIS - acute ischemic stroke

IVT - intravenous thrombolytic therapy

ML - machine learning

PPR - platelet count ratio

AUC - area under curve

ROC - receiver operating characteristic

OTT - onset to treatment time

HI - hemorrhagic infarction

PH - parenchymal hemorrhage

PDW - platelet distribution width

WHO - World Health Organization

BMI - body mass index

NIHSS - National Institutes of Health Stroke Scale

BNP - brain natriuretic peptide

VIF - variance inflation factor

SD - standard deviation

MPV - Mean platelet volume

CT - computed tomography

CTA - CT angiography

CTP - CT perfusion

DWI - diffusion-weighted imaging
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