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Background: Repetitive peripheral nerve sensory stimulation (RPSS) is a potential
add-on intervention to motor training for rehabilitation of upper limb paresis after stroke.
Benefits of RPSS were reported in subjects in the chronic phase after stroke, but there is
limited information about the effects of this intervention within the 1st weeks or months.
The primary goal of this study is to compare, in a head-to-head proof-of-principle study,
the impact of a single session of suprasensory vs. subsensory RPSS on the upper limb
motor performance and learning in subjects at different phases after stroke subacute
and chronic phases and mild upper limb motor impairments after stroke. In addition,
we examine the effects of RPSS on brain perfusion, functional imaging activation, and
γ-aminobutyric acid (GABA) levels. Subjects with mild upper limb motor impairments
will be tested with MRI and clinical assessment either at an early (7 days to 3 months
post-stroke) or at a chronic (>6 months) stage after stroke.

Methods: In this multicenter, randomized, parallel-group, proof-of-principle clinical
trial with blinded assessment of outcomes, we compare the effects of one session
of suprasensory or subsensory RPSS in patients with ischemic or hemorrhagic stroke
and upper limb paresis. Clinical assessment and MRI will be performed only once in
each subject (either at an early or at a chronic stage). The primary outcome is the
change in performance in the Jebsen–Taylor test. Secondary outcomes: hand strength,
cerebral blood flow assessed with arterial spin labeling, changes in the blood oxygenation
level-dependent (BOLD) effect in ipsilesional and contralesional primary motor cortex
(M1) on the left and the right hemispheres assessed with functional MRI (fMRI) during
a finger-tapping task performed with the paretic hand, and changes in GABA levels
in ipsilesional and contralesional M1 evaluated with spectroscopy. The changes in
outcomes will be compared in four groups: suprasensory, early; subsensory, early;
suprasensory, chronic; and subsensory, chronic.
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Discussion: The results of this study are relevant to inform future clinical trials to tailor
RPSS to patients more likely to benefit from this intervention.

Trial Registration: NCT03956407.

Keywords: sensory stimulation, stroke, rehabilitation, upper limb, nerve stimulation

INTRODUCTION

Upper limb paresis is very common after stroke, a leading cause
of disability worldwide (1, 2). Interventions based on intensive,
repetitive tasks training can improve motor performance (3).
Over the past two decades, neuromodulation interventions,
such as repetitive transcranial magnetic stimulation (TMS)
(4), transcranial direct current stimulation (5), and repetitive
peripheral sensory stimulation (RPSS) (6), have been investigated
as potential add-on therapies to boost the effects of training in
subjects with stroke.

Repetitive peripheral sensory stimulation, in particular, is a
straightforward intervention designed to enhance somatosensory
input. In RPSS, trains of electric pulses are delivered to
peripheral nerves by surface electrodes with parameters of
stimulation aimed to predominantly activate proprioceptive and
large cutaneous sensory fibers (6). The intensity of stimulation is
set to elicit paresthesia but minimal or absent motor responses.
RPSS targets a brain sensorimotor network known to be
physiologically relevant for motor performance and learning
(7). Sensory information is relayed from peripheral nerves to
the spinal cord, then, via the dorsal medial lemniscus in the
brainstem, reaches the thalamus and finally, the sensorimotor
cortex. Increased excitability, activity, or use-dependent plasticity
of the motor cortex have been reported in healthy subjects (8–10)
or subjects with stroke (11–13) after 2 h of RPSS. The connections
between neurons that represent the motor area of the stimulated
body segment may be strengthened, leading to enhancement of
motor performance or learning (9, 14–16). Disinhibition of silent
synapses by alterations in glutamatergic receptors or reduction
of GABAergic inhibition, as well-activation of silent synapses
and modulation of neuronal interactions (17) may mediate these
effects. The presence of functional and structural connections
between areas that are responsible for motor control (16) and its
relationship with somatosensory afferents underlies the rationale
for the use of RPSS in individuals with motor impairment, such
as stroke (18).

In subjects in the chronic phase after stroke, the effect size
of RPSS to improve upper limb motor function is similar
to or greater than the effect sizes of other neuromodulation
interventions (6). On the other hand, information about the
effects of RPSS in the subacute phase after stroke is limited. While
all studies in chronic subjects with mild-to-moderate upper limb
motor impairments showed benefits of this intervention, only
two addressed effects in the subacute stage: one reported an
increase in thumb strength after one session of RPSS compared
to stimulation to the level of perception (19), whereas another
described more significant improvement after subsensory RPSS
compared to suprasensory RPSS (20). In patients in the chronic

phase after stroke, suprasensory stimulation led to greater
improvements than subsensory stimulation, and the latter was
used as a control intervention in patients in the chronic phase
after stroke (21, 22). Therefore, the finding of greater effects of
subsensory stimulation, compared to suprasensory stimulation
in patients in the subacute phase (20), was surprising and raised
the hypothesis that optimal intensities/doses of stimulation may
be different early, compared to at a later stage after stroke. Until
now, patients in the subacute and chronic stages have not been
included in a single study, in order to perform head-to-head
comparisons between the effects of subsensory and suprasensory
stimulation at these two phases after stroke.

Neuronal excitability, activity, or connectivity undergo
changes over time after stroke. For instance, motor and sensory
representations near the lesion may be remapped after cortical
infarcts (23). Connectivity between primary sensorimotor and
secondary motor areas changes over several weeks (24).
Intracortical inhibition assessed with TMS may decrease in the
contralateral motor cortex early after a cerebellar stroke and
increase in the chronic phase, more than 6 months later (25).

Since excitability changes over time after lesion onset, and
effects of neuromodulation interventions are known to be state-
dependent (19), it is expected that results of these interventions
vary at different stages after stroke. It is possible that, early after
lesion onset, the variability in activity or excitability during the
dynamic process of spontaneous recovery contributes to a less
consistent effect of neuromodulation interventions. A systematic
review and meta-analysis indicated that the potential benefits
of transcranial direct current stimulation might be greater in
patients in the chronic than in the subacute stage after stroke
(26, 27). Furthermore, constraint-induced movement therapy
(CIMT), a rehabilitation intervention that increases afferent
input and provides training to decrease learned non-use of the
upper limb, seems to be more beneficial in the chronic than
in the subacute phase after stroke considering that the EXCITE
trial (28) showed significant benefits of CIMT in patients treated
between 3 and 9 months post-stroke, whereas the VECTORS
(29) study showed no differences in effects of this intervention,
compared to usual care, on average within the first 10 days
after stroke.

Data from TMS studies suggest that RPSS enhances cortical
excitability in animals (30), healthy subjects (31, 32), and patients
in the chronic phase after stroke affecting the corticospinal tract
(24). RPSS, compared to no stimulation (sham), leads to an
increase in signal intensity and in the number of voxels activated
in the primary motor cortex (M1) during thumb movements,
in a paradigm of functional MRI (fMRI) based on the blood
oxygen level-dependent (BOLD) effect. Perfusion in M1 assessed
with arterial spin labeling at rest in healthy subjects increases
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after RPSS (7). This finding may be explained by increased blood
flow driven by enhanced neuronal activity in M1. Whether RPSS
can increase BOLD activation or global/regional cerebral blood
flow (CBF) in subjects with stroke at different stages remains to
be determined.

Likewise, the effects of RPSS on synaptic activity or
concentration of neurotransmitters are unknown. γ-
Aminobutyric acid in the sensorimotor cortex has been
implicated in the processing of afferent input. For instance, in
healthy subjects, GABA concentrations evaluated with magnetic
resonance spectroscopy predict changes in perceptual outcome
after afferent, tactile stimulation of fingertips (33). In rats,
GABAergic inhibition modulates responsiveness to afferent
stimulation of the forepaw (34). The GABA concentration
or activity in M1 may influence responsiveness to RPSS.
Furthermore, RPSS may also increase or decrease GABA levels in
the cortex. Until now, these hypotheses have not yet been tested.

The primary goal of this study is to compare the effects
of a single session of RPSS on motor performance and motor
learning in subjects with stroke in the subacute (EARLYgroup)
and chronic (CHRONICgroup) phases with mild upper limb
motor impairments. We hypothesize that enhancement of motor
performance and motor learning by RPSS will be significantly
greater in subjects in the CHRONICgroup than in subjects
in the EARLYgroup, when exposed to the same experimental
paradigm. In addition, we compare the effects of a single session
of RPSS on cerebral perfusion, changes in the BOLD effect,
and on GABA levels changes in ipsilesional and contralesional
M1. Our hypothesis is that changes in these outcomes will be
significantly greater after RPSS in subjects in the chronic, than
in the early stage.

METHODS AND ANALYSIS

Study Design
This is a multicenter, randomized, parallel-group, proof-of-
principle clinical trial with blinded assessment of outcomes.
Figure 1 summarizes the study protocol.

Location and Setting
This ongoing study is conducted in three hospitals in Brazil:
Hospital Israelita Albert Einstein (HIAE, coordinating center),
Hospital das Clínicas da Faculdade de Medicina da Universidade
de São Paulo (HCFMUSP) both in São Paulo, and Hospital
São Rafael (HSR) in Salvador. Initially, the study would involve
two centers (HIAE and HSR). HCFMUSP was included as an
additional center due to difficulties in patient recruitment. The
coordinating center (HIAE) was responsible for the design of
the protocol, submission of the project to the HIAE Ethics
Committee and to the funding agency (Fundação de Amparo
à Pesquisa do Estado de São Paulo, FAPESP), creation of the
research forms, and management of the project. It is also
responsible for the submission of amendments, for providing and
assessing the training of researchers involved in the protocol,
and for communication with all centers. Weekly meetings were
performed between researchers from the three centers.

The first patient was included in December 2019. The study
was interrupted in March 2020 due to the COVID-19 pandemic.
Recruitment was restarted in São Paulo in May 2021 and in
Salvador in July 2021.

The protocol is reported according to the Standard Protocol
Items: Recommendations for Intervention Trials (SPIRIT)
statement (Supplementary Materials).

Participants
The inclusion and exclusion criteria are shown in Table 1.
Subjects able to perform at least four of the tasks of the Jebsen–
Taylor test (JTT) are included. The JTT scores the time (in
seconds) required to perform activities often used in daily living:
copying a sentence; turning over cards; picking up small common
objects such as coins, bottle-cap, and paper clips; simulated
feeding using a spoon; stacking checkers; and moving large light
and heavy objects (32, 35).

Recruitment
Subjects are recruited in the community through advertisements
on websites or social media, and from admissions to HSR, HIAE,
and HCFMUSP. In the three hospitals, preliminary eligibility
is assessed according to information from medical records.
Information about the protocol is also sent to physicians or
therapists from these three institutions and from other hospitals
or clinics, to be disseminated to patients who may be interested
in participating in the study.

Subjects’ Characteristics
The following characteristics are evaluated at baseline
in the first experimental session (Figure 1): age, gender,
ethnicity, years of education, time from stroke, type of stroke
(ischemic/hemorrhagic), medications, lesion side/location,
etiology of ischemic strokes according to the Causative
Classification System (36) and scores in the following scales: the
Modified Rankin Scale, National Institutes of Health Stroke Scale
(NIHSS) (37), Modified Ashworth Scale (MAS—elbow, wrist,
and finger joints) (38), Oldfield Inventory (prior to stroke) (39),
Fugl-Meyer Assessment of Sensorimotor recovery (upper limb—
FMA) (40), Mini-Mental State Examination (37), Patient Health
Questionnaire-9 (PHQ-9) (41), and Edinburgh Handedness
Inventory (39). Assessments are performed by researchers
(therapists or medical students). Prior to the onset of patient
recruitment, all researchers had to be certified in performance of
the NIHSS (https://www.nihstrokescale.org/). After availability
of a certification of the Portuguese version of the MRS
(https://docs.google.com/forms/d/e/1FAIpQLSfJIzi6G9SH8VaP
xqe7txcK55ApfFRVvReWV37FRaARG6PbYQ/viewform), all
researchers involved in the MRS assessment were certified. A
video with demonstrations of how to administer and rate each
item of the FMA was produced, watched, and discussed in
meetings with all researchers, prior to realistic simulations in
which the researchers played roles of assessors and “patients.”
Data collection only started in each center after the local
principal investigator considered that characteristics of the
patients and outcomes had been consistently evaluated in the
realistic simulations. After the beginning of the COVID-19
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FIGURE 1 | Experimental paradigm. NIH, national institutes of health; PHQ-9, patient health questionnaire-9; MMSE, mini-mental state exam; MRI, magnetic
resonance imaging; RPSS, repetitive peripheral nerve sensory stimulation; JTT, jebsen–taylor test.

TABLE 1 | Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

• Age ≥ 18 years
• Ischemic or hemorrhagic

stroke confirmed by computed
tomography or magnetic
resonance imaging, between 7
days and 3 months before
enrollment (subacute phase),
and at least 6 months (chronic
phase)

• Ability to perform at least 4 of
7 tasks performed in daily life
that is part of the
Jebsen–Taylor test;

• Upper limb paresis
contralateral to the lesion

• Inability to provide consent
• Anesthesia of the paretic hand
• Severe spasticity at the paretic elbow,

fist or fingers, defined with a score larger
than 3 on the Modified Ashworth Scale

• Shoulder pain or join deformity in the
paretic limb

• Lesions affecting cerebellum, or
cerebellar pathways in the brainstem

• Uncontrolled psychiatric disease
• Neurological diseases such as Parkinson

disease or chronic uncontrolled chronic
disease such as cancer or cardiac
insufficiency

• Aphasia or severe cognitive deficit

pandemic, data were not collected for several months. All
researchers involved in the assessment of characteristics of
patients or outcomes were trained again before data collection
was restarted.

An experienced radiologist defines lesion locations
by the evaluation of MRI (FLAIR, T2, and T1-
weighted images—see “Imaging protocol”) as: right/left;
frontal/temporal/occipital/parietal/insular; corticosubcortical,
cortical, or subcortical; involving or not the precentral gyrus,

postcentral gyrus, centrum semiovale, corpus callosum,
posterior limb of the internal capsule, thalamus, basal ganglia,
mesencephalon, pons, or medulla.

At HIAE, the presence of motor-evoked potentials (MEPs)
to TMS is assessed by the principal investigator, who has been
trained and performed the procedure for the past 20 years,
in the absence of contraindications (42). A safety screening
questionnaire is filled before the procedure (43). TMS is delivered
to the affected hemisphere through a figure-of-eight-shaped
coil (MC B-70, outer diameter 100 mm, max dB/dt31 kT/s
near the coil surface) held by an investigator, connected to
a biphasic MagPro X100 (Alpine Biomed). Electromyography
(EMG) activity is recorded at rest from the surface electrodes
placed over the abductor pollicis brevis muscle in the paretic hand.
EMG responses are amplified (× 1,000), filtered (2 Hz−2 kHz)
and sampled at 5 kHz with a computerized data acquisition
system built with the LabVIEW graphical programming language
(44). The intervals between TMS pulses are randomized between
5 and 7 s. If no MEPs are registered at 100% of the stimulator’s
output, they are considered “absent.”

Randomization, Allocation Concealment,
and Blinding
Patients are randomized to one of four groups: suprasensory or
subsensory in the EARLYgroup, suprasensory or subsensory in
the CHRONICgroup. The randomization sequence was created
by a statistician in an Excel spreadsheet in 12 blocks of 4
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patients at HIAE or HCFMUSP and in 6 blocks of 4 patients
at HSR, weighted 1:1 toward the suprasensory treatment group.
Randomization was stratified by phase after stroke (subacute
or chronic), gender, age (18–50, 51–79, ≥80 years), side of
upper limb paresis and baseline upper limb FMA scores (≤47/66
or >47/66). Randomization tables are kept in locked cabinets
accessed only by the principal investigator and the researcher
responsible for RPSS in each center, and password-protected files.

Researchers responsible for the evaluation of outcomes are
blinded to treatment allocation. All researchers received training
before the onset of data collection. Videos with instructions
for administration of the JTT were produced, and realistic
simulations were performed. Patients are not informed about the
type of stimulation they receive (suprasensory or subsensory) and
are naive to the experimental hypothesis. They are instructed not
to share their perceptions about the experimental sessions with
other participants and researchers.

Interventions
Suprasensory or subsensory RPSS was initially administered
in the second experimental session (Figure 1) at HSR and at
HIAE, and also in the third experimental session at HIAE. After
approval of an amendment in August 2021, RPSS started to
be administered in the first visit, after the assessment of the
patient characteristics. This protocol corresponds to version 5
of the project and includes all the amendments approved until
August 2021.

Subjects are comfortably seated during RPSS. Trains of
electrical pulses (1 ms of duration for each) at a frequency of
10 Hz are delivered at 1 Hz (500 ms on and 500 ms off) to the
median nerve on the wrist by one pair of surface electrodes
(Kendall; cathode, proximal) connected to a customized
stimulator (Alfamedic Ltda, São Paulo, Brazil; maximum output,
130 V). The median nerve is stimulated between the tendons of
the flexor carpi radialis and palmaris longus with the cathode
positioned 2–3 cm proximal to the wrist. Three measurements of
the minimum stimulation intensity required to elicit paresthesia
(sensory threshold) are performed.

For suprasensory stimulation, intensities are set at the
highest intensity able to induce paresthesia without overt muscle
contraction or pain and adjusted if required (21, 39, 45).
In subsensory, the intensity of stimulation is below sensory
threshold, not sufficient to elicit paresthesia (20).

Every 5 min, participants are asked about the sensations
elicited by stimulation in order to avoid fluctuations in
wakefulness and in attention to the stimulated body part (46).
The intensity of stimulation is increased if paresthesia becomes
weaker, and lowered if they become uncomfortable or during
the 2-h period. Usually, it is necessary to adjust the intensity
of stimulation due to changes in the intensity of paresthesia
during the 2-h period. There may be changes in skin impedance
and subjects in the RPSS group may report increase or decrease
in paresthesia. The intensity of stimulation is then adjusted to
elicit strong paresthesia in the absence of pain or movement.
In the subsensory group, the initial intensity defined so that no
sensations are elicited may lead to paresthesia during the 2-h
period. When this occurs, the intensity of stimulation is lowered

below the sensory threshold. During RPSS, subjects watch videos
of their choice.

A single session of RPSS has been shown to improve motor
performance in the absence of training (19–22, 47) and to
enhance effects of training (11, 16, 18, 22). In session 3 (Figure 1),
patients are initially familiarized with the JTT by performing each
task once in two blocks of practice. Then, baseline assessments
are performed. After suprasensory RPSS or subsensory for 2 h,
the JTT scores and strength are reassessed. Then, the subjects
undergo two blocks of training of tasks of the JTT under the
supervision of a rehabilitation professional blinded to the type
of stimulation received (22). During motor training, subjects are
instructed to perform the JTT tasks that they can complete as
fast as possible. Two blocks of training are administered. In each
block, each task is performed once. JTT performance is reassessed
after training.

Adverse events are monitored during and immediately after
the stimulation. Studies included in a systematic review did not
report any serious adverse events (6). Two studies described
contact dermatitis on the skin under the electrode. If hyperemia
is identified after stimulation, this will be reported as an adverse
event. If it resolves spontaneously in 30 min, no further action
is taken. If there is itching or persistent hyperemia, a topical
corticoid cream may be used. In all three centers, the visits and
experiments take place inside hospitals with medical resources. A
specific insurance policy for clinical trials was taken for financial
protection of the sponsor and researchers.

The visual analog scale (VAS) assessed before and after
stimulation and after training, to grade sleepiness, fatigue, and
anxiety (42).

Outcome Measures
Primary Outcome: Change in Motor Performance
After Stimulation
The primary outcome is change in the JTT performance
after stimulation, compared to baseline (Figure 1): (JTT pre-
stimulation – JTT post-stimulation/JTT pre stimulation) × 100.
The task of copying a sentence is not performed. Previous studies
showed that RPSS can enhance JTT performance and motor
learning in subjects in the chronic phase after stroke (20, 29).

Secondary Outcomes
Change in motor performance after training JTT is also assessed
after two blocks of training (Figure 1). Changes in JTT after
stimulation + training are calculated as: [(JTT post-stimulation
+ training – JTT pre-stimulation)/(JTT pre-stimulation)] × 100.

Hand Strength
Lateral pinch and grasp strength are measured with a
dynamometer (Saehan grip) according to a protocol with
established validity (44). In Session 3 (Figure 1), patients are
initially familiarized by performing lateral pinch and grisp
strength once, using the dynamometer. Then, for outcome
assessments, five trials of pinch and handgrip are performed
before and after stimulation (Figure 1). During each trial, the
patient is instructed to perform the movement for 5 s. The
average of five trials is calculated. Improvement in pinch strength
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after RPSS was previously described in separate studies that
included patients in the subacute (8) and chronic (39) post-stroke
phases (44).

Imaging Outcomes
Before and after RPSS, GABA+ (GABA plus coedited
macromolecules) levels, CBF assessed with arterial spin
labeling, and task-related BOLD fMRI activation are assessed at
HIAE. MRI is performed before and after suprasensory RPSS
or subsensory on a 3T Magnetom PRISMA scanner (Siemens
Medical Solutions, Erlangen, Germany) using a 64-channel 1H
receive-only head coil, without contraindications.

A standard questionnaire is used to assess potential exclusion
criteria for MRI (Supplementary Materials). The following
sequences are acquired: MEGA-PRESS (48), BOLD fMRI (TR:
2,000 ms, TE: 25 ms, matrix 84 × 84, FOV 210 mm, number of
slices: 42, slice thickness: 2.5 mm, voxel: 2.5 mm) and perfusion
(3D GRASE Pseudo-Continuous Arterial Spin Labeling, pCASL;
TR: 4,300 ms, TE: 36.76 ms, bandwidth: 2,604 Hz/Px, label time
1,500 ms, post-labeling delay: 2,000 ms). In addition, before RPSS
a high resolution T1 volumetric (voxel size: 0.5 × 0.5 × 1
mm3, matrix size: 256 × 256, field of view: 256 × 256 mm2,
TR: 2,500 ms, TE: 3.47 ms, TI: 1,100 ms, flip angle: 7 degrees)
and after, DWI (voxel size: 2 mm, isotropic; TR:10,200 ms;
TE:103 ms) and GRE (voxel size: 0.9 mm × 0.9 mm × 5 mm,
matrix size: 256 × 192, field of view: 240 mm, TR: 250 ms,
TE:15 ms) are acquired.

The GABA spectroscopy data are collected with MEGA-
PRESS (30 × 30 × 30 mm3 voxel, TR 2,000 ms, TE 68 ms; water
suppression band set to 4.7 ppm, and an editing band alternated
between 1.9 ppm and 7.5 ppm in even and odd acquisitions; 192
averages-−96 “edit off” and 96 “edit on”) and a water reference
scan using the MEGA-PRESS sequence without MEGA water
suppression. Data are collected first from the right and then
from the left cerebral hemispheres. Therefore, the ipsilesional and
contralesional hemispheres are assessed. In each hemisphere, the
region of interest is centered on the “hand knob” in the primary
motor cortex (49). Patients are instructed to keep their eyes closed
during imaging acquisition.

During fMRI scans, six blocks of finger tapping followed by
rest are performed. Before being scanned, subjects practice a self-
paced rhythmic finger tapping task consisting of 6 epochs of 30 s
of finger tapping alternated with epochs of 30 s rest. Patients are
instructed to keep their eyes open. Performance of finger tapping
is not one of the inclusion criteria but because patients must be
able to perform the JTT in order to be included, only patients
with mild upper limb impairments participate in the study. All
patients are encouraged to try to perform the task as accurately
as possible. It is possible that some patients, despite mild motor
impairments, are not able to accurately perform finger tapping.
In order to check task performance, finger tapping during fMRI
is videotaped. Two researchers review all the videos. Data from
patients unable to perform finger tapping are excluded from
the analysis.

Sleepiness can potentially influence task performance and
GABA levels. Subjects are instructed not to drink alcohol 48 h
before the tests, sleep the night before, drink the usual amount

of coffee, and do not perform vigorous physical activity on the
day of the test. Before MRI (Figure 1), the Epworth Sleepiness
Scale is evaluated (50). VAS scores for sleepiness, fatigue, and
anxiety (51), blood pressure, and heart rate are assessed before
and after MRI.

Imaging Data Analysis
GABA Spectroscopy
Data processing for the GABA quantification is carried out using
Gannet v. 3.1.5, an open-source software coded with MatLab
(52). Ratios of GABA levels between the affected and unaffected
hemispheres, before and after suprasensory or subsensory RPSS,
will be compared (53) in the EARLY and the CHRONIC groups.
The pipeline for analysis is shown in Supplementary Materials.

pCASL Data
Post-processing of pCASL data is performed offline using a
Java-based software package called CereFlow (Translational MRI,
LLC, Los Angeles, CA, USA). First, label and control paired
ASL images are corrected for motion and physiological noise
using principal component analysis (54). Subsequently, pairwise
subtraction between label and control images is performed,
averaging to generate the mean difference dataset. CBF is then
calculated using the standard pCASL model recommended by
ASL white paper (55). The computed CBF maps are then
normalized into a canonical space of the Montreal Neurological
Institute template. Once normalized, an additional template of
cerebral vascular territories is applied to extract the average CBF
values in the following regions: leptomeningeal and perforating
anterior cerebral artery, leptomeningeal and perforating middle
cerebral artery, posterior cerebral artery, anterior choroidal
artery, and posterior communicating artery on both (56).
Furthermore, the Alberta Stroke Program Early CT Score system
is applied to extract average CBF and arterial transit time (ATT)
values in M1—M6 perfusion territories, the caudate nucleus, the
lentiform nucleus, and the internal capsule (57, 58).

FMRI Pre-processing
The FMRI data processing is performed using FMRI Expert
Analysis Tool (FEAT) Version 6.00 in FSL1 High-resolution
registration to the MNI152 standard space image is carried
out using FLIRT (59, 60). To properly register patient’s brain
images into standard space, we use spatial normalization using
cost function masking (61), first registering functional images
into patients’ T1 images, and then to MNI 152 standard space
using a lesion mask to down-weight affected tissue during the
registration process. Lesion masks will be hand-drawn by a
researcher who received extensive training in how to perform
this procedure. The following pre-statistics processing is applied:
motion correction using MCFLIRT (60), slice-timing correction
using Fourier-space time-series phase-shifting, non-brain tissue
removal using BET (62), spatial smoothing using a Gaussian
kernel of FWHM 5 mm, grand-mean intensity normalization
of the entire 4D dataset by a single multiplicative factor, and
high-pass temporal filtering (Gaussian-weighted least-squares

1FMRIB’s Software Library, https://www.fmrib.ox.ac.uk/fsl
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straight line fitting, with sigma = 120 s). Time-series statistical
analysis is carried out using FILM with local autocorrelation
correction (62).

Sample Size
Considering the SD of the data from Conforto et al. (22), it was
estimated that to assess the primary outcome with a power of
80%, 68 patients should be included in the protocol. Considering
an expected 5% dropout rate, the sample size was increased to 72.
Half of the patients will have <6 months post-stroke and half, at
least 6 months. Forty-eight patients will be included at HIAE or
HCFMUSP and 24 at HSR.

Data Monitoring
The assessments of behavioral outcomes are videotaped. Since
May 2021, all the data have been entered in electronic case report
forms built in the REDCap platform (redcap.einstein.br). The
data registered in paper forms before the onset of the COVID-19
pandemic were also entered in the platform. The forms detail all
the procedures and definitions used in the protocol. The principal
investigator oversees the conduct of the study, has meetings with
the researchers at least once a week, and reviews the data at
least once a month. All data are stored in secure servers in the
research centers, with password and computer access restricted
to researchers involved in the project.

Quality of imaging data is checked after each MRI by the
author BH. Quality of ASL data is also checked by the author
DJJW before analysis.

All the procedures in the protocol must follow Good Clinical
Practice guidelines. Every 6 months, an independent Research
Integrity Committee audits all the documents from the protocol,
including consent forms, case report forms, standard operating
procedures, and reports submitted to the Ethics Committee.

The local principal investigators from the three centers are
given access to the data sets available on the password-protected
REDCap platform. To ensure confidentiality, data shared with
all the project team members are blinded from any identifying
participant information.

Statistical Analysis
Mean (±SD) or median (ranges) is presented according to the
data distribution. Normality is tested with the Shapiro–Wilk
test. Changes in JTT scores, strength, GABA levels, and CBF
are compared between the four groups with general linear
models or generalized estimating equation models with factors
INTERVENTION (suprasensory/subsensory) and GROUP
(subacute/chronic) according to the distribution of the data. The
p-values below 0.05 are considered statistically significant.

For perfusion analyses, ratios between CBF in the
affected/unaffected hemisphere and ratios between CBF in
each region of interest in the affected/unaffected hemisphere
are assessed. Due to the exploratory nature of these analyses,
corrections for multiple comparisons are not performed.

For fMRI, a statistical analysis is implemented using a general
linear model approach. Activity in ipsilesional and contralesional
M1 during finger tapping is modeled by 30 s boxcar convolved
with a double gamma function regressor. We also include a

regressor with the first temporal derivative of the main regressor
and nuisance regressors derived from the extended motion
parameters. Two first-level analyses per participant are run,
one pre-stimulation and one post-stimulation. Second level of
analysis is carried to estimate the within-subject contrast between
pre- and post-stimulation using a fixed-effects model, by forcing
the random effects to zero in FLAME (FMRIB’s Local Analysis
of Mixed Effects) (63–65). At the third level of analysis, we
estimate contrasts for each group of participants using one-
sample t-tests to verify if there were effects of stimulation and
independent t-tests to see changes between groups using a mixed
effects model in FLAME (FMRIB’s Local Analysis of Mixed
Effects) stage 1 (63–65). Z (Gaussianized T/F) statistic images
are thresholded using clusters determined by Z > 3.1 and a
corrected cluster significance threshold of p = 0.05 (66). If
there is a significant difference in change in motor performance
(JTT or strength) between suprasensory and subsensory groups
in either the chronic or subacute stage after stroke, bivariate
analyses are performed (regressions or chi-square tests) to assess
the relationship between each of these variables at baseline, and
the magnitude of the improvement in behavior: baseline JTT
or strength, age, sex, the intensity of RPSS (relative to sensory
threshold), extent of BOLD activation (number of voxels and
signal intensity) in M1, CBF (global and regional), or GABA
concentration in M1 at baseline. Multiple regression is performed
to assess the effects of variables if p-values are below 0.1 in
bivariate analyses 0.05 (66).

DISCUSSION

Effective telerehabilitation options are deeply needed due to
the constraints that the COVID-19 pandemic have imposed on
face-to-face treatment. RPSS is a strong candidate as an add-
on therapy to the upper limb motor training in this context
because it provides neuromodulation utilizing a portable device.
Operation of the device is straightforward. If future clinical
trials can confirm the benefits of this intervention to subjects
with stroke, and if RPSS can be safely administered by patients,
relatives, or caregivers, in line with the results from Dos Santos-
Fontes et al. (67), a novel tool for home-based neurorehabilitation
may emerge for clinical practice. The results of this proof-
of-principle study in which a single session of stimulation is
delivered are relevant to plan clinical trials in which several
sessions of stimulation are administered, as performed in other
studies that assessed effects of RPSS in outpatient facilities (20,
68–71).

The first studies about interventions’ effects on motor
rehabilitation in stroke were published more than two
decades ago. Yet, the evidence of clinical benefit for these
interventions is scarce, and doubts have been shed about
their future as therapeutic strategies (72). Major reasons
for the gap between studies performed in neuromodulation
laboratories and evidence-based rehabilitation practice are
insufficient comprehension of mechanisms underlying different
interventions, and the inclusion of patients with heterogeneous
characteristics in proof-of-principle studies and clinical
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trials. Stroke is a heterogeneous condition and a “one-size-
fits-all” approach is unlikely to significantly impact motor
rehabilitation (73–75).

Examples of success of therapeutic approaches that target
particular types of patients can be found in studies that led
to novel reperfusion treatments in the hyperacute phase after
stroke. For instance, after several trials that failed to prove benefit
of mechanical thrombectomy (76), studies that included novel
devices and narrowed eligibility criteria according to specific
neurobiological hypotheses according to clinical and imaging
characteristics showed that, for patients more likely to benefit,
mechanical thrombectomy is a game-changing strategy (77).

This study aims to compare the effects of a single session
of RPSS on learning and motor performance of patients after
stroke in two different stages—chronic and subacute. The results
of this study will be critical to help close one of the gaps
about effects of RPSS on the performance and motor learning
in subjects with stroke. They will be relevant to inform future
clinical trials based on mechanisms to tailor RPSS to patients
more likely to benefit from this intervention. This goal is
achieved by comparing behavioral effects according to time
after stroke (primary outcome) and by providing preliminary
evidence of mechanisms underlying these effects (secondary
outcomes). If there is a relation between time after stroke,
GABA levels, BOLD activation or CBF measured with ASL,
and responsiveness to RPSS as an add-on treatment to motor
training, these factors should be considered to select patients for
clinical trials.

One limitation of this study is that only patients with
mild-to-moderate upper limb impairments are included.
This strategy was adopted because this is a proof-of-
principle study and eligibility criteria were narrowed to test
a specific hypothesis. More work will be necessary to test
whether the effects of RPSS differ according to the time
after stroke, in patients with moderate-to-severe upper limb
motor impairments.

Another potential limitation of this study is the choice of
the control stimulation. There is no consensus about the best
control or sham condition for RPSS. According to a standard
definition, “sham is an arm type in which a group of participants
receives a procedure or device that appears to be the same as the
actual procedure or device being studied but does not contain
active processes or components”2 We opted for subsensory
stimulation—the stimulator is on, but subjects do not have
paresthesia. Other possible controls are no stimulation (with or
without placement of electrodes on the skin) or leg stimulation
(11, 12, 14). A disadvantage of no stimulation is that subjects may
conclude that they are not receiving active treatment, to the lack
of paresthesia at any point during the experiment. A limitation of
subsensory stimulation is that, in the 1st weeks after stroke (44),
this intervention may have similar effects to stimulation above
sensory threshold in the chronic phase. A caveat of stimulation
of lower limb nerves is that subjects may deduct that this consists

2Glossary of Common Site Terms, https://clinicaltrials.gov/ct2/about-studies/
glossary.

of a control/sham intervention if the upper limb performance is
tested, or if the upper limb training is provided as part of the
experimental protocol. Further studies are necessary to compare
patients’ perceptions about different types of controls for RPSS.

In summary, the results of the protocol “Comparison
between the mechanisms underlying the effects of peripheral
repetitive stimulation on upper limb motor performance in
the subacute and chronic phases after stroke” will be relevant
to inform future clinical trials in order to tailor RPSS to
patients more likely to benefit from this intervention, in
early or chronic stages. In addition, this study will provide
preliminary data about mechanisms underlying effects of this
intervention on GABA levels in the primary motor cortex,
BOLD activation, and CBF perfusion in different stages
after stroke.
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