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Alzheimer's disease (AD) and frontotemporal dementia (FTD) are major
neurodegenerative disorders with characteristic EEG alterations. While most
prior studies have focused on eyes-closed (EC) EEG, where stable alpha rhythms
support relatively high classification performance, eyes-open (EO) EEG has
proven particularly challenging for AD, as low-frequency instability obscures the
typical spectral alterations. In contrast, FTD often remains more discriminable
under EO conditions, reflecting distinct neurophysiological dynamics between
the two disorders. To address this challenge, we propose a CNN-based
framework that applies Dynamic Mode Decomposition (DMD) to segment
EO EEG into shorter temporal windows and employs a 3D CNN to capture
spatio-temporal-spectral representations. This approach outperformed not
only the conventional short-epoch spectral ML pipeline but also the same
CNN architecture trained on FFT-based features, with particularly pronounced
improvements observed in AD classification. Excluding delta yielded small
gains in AD-involving contrasts, whereas FTD/CN was unchanged or slightly
better with delta retained—suggesting delta is more perturbative in AD under
EO conditions.

KEYWORDS

convolution neural network (CNN), electroencephalography (EEG), brain dynamics, fast
Fourier transformation (FFT), Alzheimer’'s disease (AD), cognitive disorders, Dynamic
Mode Decomposition (DMD), open-eyes EEG

1 Introduction

Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are two of the most
common progressive neurodegenerative disorders, predominantly affecting older adults
and leading to memory loss, cognitive decline, and behavioral impairments (Levy et al.,
1996; Ntetska et al., 2025; Perry and Hodges, 2000; Zuin et al., 2024). While AD is
primarily characterized by memory deterioration, language deficits, and visuospatial
dysfunction, FTD manifests early through behavioral changes such as disinhibition, apathy,
compulsivity, and language impairment, with relative preservation of memory in the
early course (Perry and Hodges, 2000; Nishida et al,, 2011). Despite differences, the
two disorders exhibit overlapping symptoms, complicating diagnosis. Currently, there
are no curative treatments for either condition, making early and accurate diagnosis of
paramount importance.

Diagnosis of AD and FTD typically involves neuropsychological testing, magnetic
resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography
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(FDG-PET). Although effective, these methods are costly, not
universally accessible, and limited in their sensitivity during the
early stages (Davatzikos et al., 2008; Jack et al, 2018; Jiang,
2023). Electroencephalography (EEG), on the other hand, is a low-
cost, non-invasive, and widely accessible tool that captures neural
activity with millisecond-level temporal resolution. Characteristic
EEG changes, such as posterior alpha rhythm slowing and increased
theta/delta power, have been consistently reported in AD and FTD
(Jeong, 2004; Musaeus et al., 2018; Nishida et al., 2011).

In parallel, recent advances in machine learning (ML) and
deep learning (DL) have enabled automatic classification of EEG
signals, uncovering spatial and temporal patterns indicative of
neurodegenerative disorders (AlSharabi et al., 2023; Cansiz et al,,
2025; Khan et al.,, 2025; Zhang et al., 2025). Studies have reported
abnormalities in oscillatory dynamics and functional connectivity
in AD and FTD patients using ML/DL models (Adebisi et al., 2023;
Afshari and Jalili, 2017).

In particular, a publicly available dataset of resting-state EEG
recordings under eyes-closed (EC) conditions (Miltiadous et al.,
2023) and its extension with CNN-based classification (Stefanou
et al, 2025) have demonstrated the potential of EEG-driven
computational models for dementia detection.

According to Stefanou et al. (2025), the authors proposed a
novel CNN-based framework for Alzheimer’s disease detection
that employed EEG spectrogram representations under eyes-closed
(EC) conditions. Specifically, they transformed EEG recordings
into time-frequency spectrograms (using FFT) and used these
as inputs to a convolutional neural network. Their approach
achieved robust classification performance in distinguishing AD,
FTD, and healthy controls (CN), validated with a leave-N-subjects-
out (LNSO) scheme—79.45% for AD/CN, 72.85% for FTD/CN, and
80.69% for AD+FTD/CN—underscoring the utility of eyes-closed
spectrogram-based CNNs for dementia EEG.

Most EEG-based biomarkers of dementia have historically
been derived from eyes-closed (EC) recordings, where stable alpha
rhythms provide reliable spectral features (Babiloni et al., 2017;
Rossini et al., 2020). In contrast, eyes-open (EO) EEG has been far
less studied due to reduced alpha activity, greater variability, and
susceptibility to ocular and attentional artifacts, making it more
challenging to analyze (Ntetska et al., 2025). The recent release of
an EO EEG dataset under photostimulation by Ntetska et al. (2025)
provides a timely opportunity to explore this condition, which
captures neural dynamics distinct from EC.

Whereas EC recordings are typically dominated by posterior
alpha rhythms reflecting a relaxed resting state, EO EEG
exhibits marked alpha suppression alongside increased theta and
beta activity, reflecting attentional and cognitive engagement.
Importantly, Ntetska et al. reported that AD and FTD patients
showed reduced alpha suppression compared to controls,
indicating impaired neural reactivity to visual stimulation. These
findings highlight that EO EEG provides distinct and clinically
relevant neural dynamics, underscoring the importance of
developing tailored analytic approaches.
FFT-based
effective in EC conditions, tend to overemphasize low-frequency

However, conventional spectrograms, while
power in EO recordings, potentially obscuring other relevant

patterns. To address this limitation, we propose a CNN-based
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framework that incorporates novel features derived from
Dynamic Mode Decomposition (DMD). Unlike FFT, DMD
captures spatio-temporal coherent modes and thus provides a
representation that emphasizes dynamic neural characteristics
beyond static frequency-domain power. This approach is
expected to yield complementary biomarkers for dementia
classification by better characterizing the unique dynamics of
EO EEG.

In previous CNN studies on the EC dataset, spectrograms
derived from longer windows (e.g., 30-s epochs) outperformed
shorter windows (Stefanou et al., 2025), consistent with findings
that longer epochs improve spectral reliability (Ng et al., 2022). By
contrast, our EO recordings contain sequential photic stimulation,
so long windows would mix multiple stimulus conditions and
blur nonstationary dynamics: SSVEP(Steady-State Visually Evoked
Potential) responses exhibit time-ordered, frequency-dependent
changes in phase synchrony and propagation (Norcia et al., 2015;
Tsoneva et al., 2021). Accordingly, we do not model long series
directly. Instead, we deliberately avoid long-window aggregation
and apply Dynamic Mode Decomposition (DMD) to short, non-
overlapping 2-s slices, obtaining coherent spatiotemporal modes
with identifiable oscillation frequencies beyond per-channel power
(Schmid, 2010; Tu et al, 2014). The slice-wise DMD mode-
magnitude maps are then stacked in order to form a 3D tensor
for the CNN, preserving segment-to-segment evolution while
preventing stimulus mixing and reducing the computational
burden of long-horizon DMD.

Because SSVEP responses are sensitive to stimulus paradigm
and frequency (Norcia et al, 2015), we treat subject-specific
stimulus heterogeneity as a nuisance and adopt a stimulus-agnostic,
uniform epoching strategy. Within a single slice-based pipeline,
recordings are partitioned uniformly within stimulus-on periods
into non-overlapping short slices for feature extraction, so that
stimulus composition is not explicitly stratified or encoded as
a predictive cue. For a like-for-like comparison, we also derive
an FFT-based spectrotemporal representation using the same
epoching and slicing scheme in place of DMD; aside from the
feature extractor (DMD vs. FFT), the classifier configuration,
input shape, and training protocol are identical, and matched-
dimensionality tensors are fed to the same CNN. Consistent with
this design choice, we verified on the dataset—via class—category
distribution analysis—that stimulus composition did not materially
bias between-group comparisons.

While DMD provides a representation that captures spatio-
temporal modes beyond conventional frequency power, a further
consideration is the role of low-frequency activity in EO EEG.
In previous EC-based CNN studies (Stefanou et al., 2025),
spectrogram features yielded high classification accuracy; however,
when the same methodology was applied to the EO dataset (Ntetska
et al, 2025), the performance for AD was substantially lower.
We attribute this reduction to the disproportionate influence of
delta activity (0.5-4 Hz, as defined in Ntetska et al., 2025) in EO
recordings, which may obscure disease-relevant dynamics.

To test this hypothesis, we conducted controlled comparisons
using both FFT- and DMD-based representations, evaluating
conditions with and without the delta-band (0.5-40 Hz vs. 4-40
Hz). By applying the same CNN framework across all feature sets,
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we were able to directly assess the extent to which excluding delta
activity improves classification performance in EO EEG.

A critical issue in EEG-based deep learning for dementia
classification lies in the choice of evaluation methodology.
Several earlier studies employed segment-based or random cross-
validation procedures, in which EEG segments from the same
subject could appear in both the training and test sets, leading
to data leakage and overly optimistic performance estimates
(Brookshire et al., 2024). Brookshire et al. explicitly demonstrated
that such leakage can dramatically inflate classification accuracy
in Alzheimer’s studies, and strongly recommended subject-wise
validation strategies to avoid identity confounding. Following this
recommendation, the EC-based CNN spectrogram study adopted
a subject-wise scheme, namely (LNSO), where entire subjects are
excluded from the training set whenever they are used for testing
(Stefanou et al., 2025).

The importance of subject-wise partitioning has been widely
emphasized in the EEG literature. For example, Zanola et al.
(2025) showed that nested leave-N-subjects-out (LNSO) validation
provides more reliable performance estimates than non-nested
approaches that are prone to overfitting. Similarly, Kunjan
et al. (2021) demonstrated that subject-level cross-validation (e.g.,
LOSO) yields substantially more robust generalization estimates
than random k-fold validation in EEG-based disease diagnosis.
Building on this evidence, we adopted an LNSO validation
framework to ensure fair and reliable evaluation across participants,
thereby avoiding inflated metrics and enhancing the credibility of
the reported results.

Therefore, in this study, we introduce a CNN-based framework
that incorporates DMD-derived features for analyzing EO EEG
in dementia classification. By addressing the limitations of
FFT-based representations and ensuring rigorous subject-wise
evaluation, our work contributes a novel perspective on the
role of EO EEG as a complementary biomarker for AD
and FTD.

2 Materials and methods

This section provides a detailed description of the dataset,
feature construction process, and classification framework adopted
in this study. We first introduce the dataset of stimulus-related EEG
recordings, including its characteristics and the criteria used for
subject inclusion and exclusion. Next, we describe the Dynamic
Mode Decomposition (DMD) procedure applied to the segmented
EEG data, which transforms each epoch into a set of spatio-
temporal modes. The subsequent feature extraction step outlines
how DMD-derived representations were converted into fixed-
size images, together with the construction of alternative FFT-
based features for comparative analysis. We then present the CNN
model architecture used for classification, along with the baseline
algorithms against which our approach was evaluated. Finally,
we detail the validation methodology, emphasizing the use of
subject-wise partitions to ensure a fair and reliable assessment of
classification performance.
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2.1 Dataset

This study used scalp EEG recordings from a publicly available
dataset (OpenNeuro, dataset ID: ds006036, version 1.0.4; DOI:
10.18112/openneuro.ds006036.v1.0.4, which was updated in April
2025. EEG signals were collected using 19 Ag/AgCl electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
and O2) by the international 10-20 system and sampled at 500 Hz
with a resolution of 10 WV/mm. A total of 88 participants were
included in this study, comprising 36 patients with Alzheimer’s
disease (AD), 23 patients with frontotemporal dementia (FTD), and
29 healthy controls (CN).

The international Mini-Mental State Examination (MMSE) was
used to evaluate the cognitive and neuropsychological status of
subjects, with scores ranging from 0 to 30 (lower scores indicating
more severe impairment). The AD group (12 males, 24 females) had
a mean age of 66.4 years (SD = 7.9) and an average MMSE score of
17.75 (SD = 4.5). The FTD group (14 males, 9 females) had a mean
age of 63.7 years (SD = 8.2) with an average MMSE score of 22.17
(SD = 2.6). The CN group (18 males, 11 females) had a mean age of
67.9 years (SD = 5.4), all scoring 30 on the MMSE. Data acquisition
was ethically approved by the Scientific and Ethical Committee
of the Aristotle University of Thessaloniki and AHEPA University
Hospital (protocol number: 142/12-04-2023).

Note that in our experiments four recordings with insufficient
usable duration (<30s; IDs 15, 64, 65, 78) were excluded;
accordingly, all analyses use the post-exclusion sample with the
following demographics: AD (11M/24F), age 66.5 &= 8.0y, MMSE
17.7 £ 4.6; FTD (13M/9F), age 63.7 & 8.4y, MMSE 22.2 + 2.7; CN
(17M/10F), age 67.9 + 5.6y, MMSE 30.

While this dataset provides both raw and preprocessed EEG
signals, many previous studies have utilized the preprocessed
version, which includes noise filtering and artifact removal
(see Ntetska et al, 2025). In this study, we also employed
the preprocessed EEG signals. Consequently, no additional
preprocessing steps were applied during the feature extraction
stage, as the provided data were already cleaned and ready
for analysis.

Furthermore, since our focus was on evaluating brain responses
to visual stimulation, only EEG segments corresponding to visual
stimulus events were selected for analysis. Specifically, for each
subject, we identified periods during which visual stimuli were
presented and extracted EEG data exclusively within these intervals.
The detailed onset/offset boundaries for each subject and stimulus
frequency are reported in the Photic stimulation intervals by
frequencies table (Appendix Table 5). As shown in Table 1, the
resulting segments do not have a uniform duration across subjects.
Consequently, some recordings with relatively short durations
could not be included in subsequent analyses, as our methodology
required sufficiently long segments to ensure reliable evaluation of
stimulus-related brain dynamics.

Note that as shown in Table 1, usable segment durations vary
across subjects. To obtain stable subject-level estimates under
LNSO, we required that each recording allow construction of
at least one > 24s epoch after preprocessing; recordings with
total usable duration < 30s were excluded. This threshold
was motivated by the empirical duration distribution and a
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TABLE 1 Summary of visual stimulus onset and offset times (in seconds) and the corresponding stimulus durations for each subject in the Alzheimer’s
disease (AD), Normal control (CN), and Frontotemporal dementia (FTD) groups.

Alzheimer's disease (AD) Normal control (CN) Frontotemporal dementia (FTD)
[Onset, Offset] Duration [Onset, Offset] Duration ID [Onset, Offset] Duration

1 [3.80, 73.79] 69.99 37 [6.48, 76.47] 69.99 66 [1.26,91.25] 89.99
2 [17.39,107.38] 89.99 38 [14.82, 84.82] 69.99 67 [16.01, 106.00] 89.99
3 [0.03, 45.49] 45.46 39 [14.94, 165.01] 150.07 68 [0.30, 90.29] 89.99
4 [15.35,105.34] 89.99 40 [0.52,70.51] 69.99 69 [14.25, 104.24] 89.99
5 [5.37, 94.87] 89.50 41 [19.09, 109.08] 89.99 70 (7.11,97.10] 89.99
6 [14.37, 123.38] 109.01 42 [16.49, 106.49] 89.99 71 [3.88, 93.88] 89.99
7 [17.39, 107.39] 89.99 43 [7.25,157.78] 150.53 72 [0.95, 90.94] 89.99
8 [15.57, 105.56] 89.99 44 [9.52,99.52] 89.99 73 [18.57, 108.56] 89.99
9 [21.89, 111.88] 89.99 45 [1.51, 126.46] 124.96 74 [4.23, 94.22] 89.99
10 [15.08, 105.07) 89.99 46 [14.29, 104.28) 89.99 75 [12.63, 122.50] 109.86
11 [13.99, 103.98] 89.99 47 [14.33,104.33] 89.99 76 [10.85, 100.67] 89.81
12 [2.99,92.98] 89.99 48 [4.57, 94.56] 89.99 77 [8.49, 98.48] 89.99
13 [17.18,107.17] 89.99 49 [27.09, 117.08] 89.99 78 [8.11, 38.10] 30.00
14 [10.05, 100.04] 89.99 50 [9.49, 99.48] 89.99 79 [14.65, 84.64] 69.99
15 [0.45, 30.45] 30.00 51 [12.25,102.24] 89.99 80 8.56, 78.55] 69.99
16 [5.05, 95.04] 89.99 52 [2.08, 92.07] 89.99 81 [21.90, 91.89] 69.99
17 [19.54, 109.53] 89.99 53 [10.55, 100.54] 89.99 82 (3.81, 73.80] 69.99
18 [24.73,114.72] 89.99 54 [3.83, 153.64] 149.81 83 [1.40, 71.39] 69.99
19 [0.68, 90.67] 89.99 55 [15.39, 105.38] 89.99 84 [2.29,72.28] 69.99
20 [0.95, 90.95] 89.99 56 [17.39,107.38] 89.99 85 [29.51, 99.50] 69.99
21 [18.10, 108.09] 89.99 57 [0.06, 69.45] 69.39 86 [9.77,79.76] 69.99
22 [4.05, 94.04] 89.99 58 [0.05, 61.44] 61.39 87 [5.51,75.50] 69.99
23 [2.92,72.91] 69.99 59 [0.45, 70.44] 69.99 88 (58.40, 128.39] 69.99
24 [7.33,77.32] 69.99 60 [0.74,130.71] 129.97
25 [3.81,73.80] 69.99 61 [6.05, 76.04] 69.99
26 [12.33,82.32] 69.99 62 [16.58, 86.57] 69.99
27 [4.97, 94.96] 89.99 63 [2.74, 72.73] 69.99
28 [3.89, 73.88] 69.99 64 [0.03, 23.48] 23.45
29 [34.24, 104.23] 69.99 65 [0.03, 20.28] 2025
30 [1.59, 71.58] 69.99
31 [7.27,77.26] 69.99
32 [2.79, 72.78] 69.99
33 [25.86, 95.85] 69.99
34 [16.08, 86.07] 69.99
35 [18.33,108.32] 89.99
36 [5.32,75.32] 69.99

brief sensitivity check, which indicated that including very short 2.2 Dynamic mode decom position

recordings led to unstable estimates and a noticeable drop in

accuracy. Applying this rule excluded four short recordings One established use of Dynamic Mode Decomposition (DMD)
(Subject IDs: 15, 64, 65, and 78) from subsequent analyses. is to characterize the temporal evolution of high-dimensional
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signals (Schmid, 2010; Tu et al., 2014), with EEG/ERP applications
demonstrating phase-consistent dynamics captured by DMD (Li
et al, 2022). DMD decomposes the changing patterns of the
signal into fundamental elements known as “dynamic modes.”
These modes represent the characteristics of the signal as it varies
over time, and each mode represents the movement of a specific
frequency within the signal (Schmid, 2010).

The EEG signal is decomposed into a sum of signals in
the DMD mode using DMD, and the filtering is performed by
reconstructing the signal with only the modes that meet the filtering
parameters. We briefly explain the DMD and its components,
which are the results needed for decomposing the EEG signal. In
addition, we specify the eigenfrequency of the decomposed mode
signals to be used for filtering.

2.2.1 Mathematical formulation

Dynamic Mode Decomposition (DMD) is a technique used to
slice states distinguished by dynamic modes. These modes consist
of empirically derived vectors, extracted directly from the data,
a process elaborated in Tu et al. (2014). Fundamentally, DMD
operates as a method for order reduction, proficient in distilling the
intrinsic dynamics present in multidimensional complex systems
by isolating specific frequencies, as explored in Dang et al. (2018).

Consider a time series

X:={xt)),, 1)

where x (t;) belongs to RM, and the time interval between sample
points t; — ti is fixed at At. For a given signal X in Equation 1,
the (MS) x (Ns) shift-stack Hankel matrix Y is constructed as:

x(t) x(t2) x(tNy)
© x(t2) x(t3) -+ x(tng+1)
YW: = =[Y1Y2"'YN5] (2)
x(ts) x(tsy1) -+ x(tn)

where Ng: = N —S+1and S denotes the predetermined stack size.
To encapsulate the maximal spectrum and temporal complexity of
the original signal, it is imperative to maximize the dimensions of
(MS) x (Ns).
The DMD
eigendecomposition of the matrix A by optimally approximating

algorithm  accomplishes a  low-rank

Yk in the least squares sense, minimizing the following:

[yk+1 — Ak - (3)

To diminish Equation 3, the Ng column vectors are assembled
into two data matrices with size (MS) x (Ng — 1):

Yi=[yiy2 - yn-1]> Ya=[y2y3 - - yng]

Subsequently, the local linear approximation can be articulated
as:

Y, ~ AYj, 4

The resolution to Equation4 entails discovering A that
minimizes:

”YZ —AY, ”Frobenius .
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2.2.2 Eigen decomposition and mode calculation

Rather than conducting the eigendecomposition of A directly,
the DMD algorithm employs a low-dimensional surrogate, A, via
Singular Value Decomposition (SVD) (Dang et al., 2018; Faires and
Burden, 2012) of Y;:

A=0AD! (5)

diag (A1, A2,...,AR) € CR*R j5 o diagonal matrix
containing R (< Ns) eigenvalues of A, and ® € CMH*R) denotes
the DMD modes.

In Equation 5, each snapshot, yi4; can be approximated as:

where A =

Yit1 ~ Ayg

for k = 1,2,...,Ng — 1. Hence, the matrix A furnishes an
approximation of the sample data, decomposing it into a unified
space-time matrix:

Vi & Kkilyl = oAk ¢ (6)

for k = 1,2,...,Ns where c is a sequence of weights for which
y1 = ®c. Employing the components ®, A, and ¢ from Equation 6
we define a vector function

X(t) = [*a (), .o (81"

for approximating the term x (#;) given by
R
B(t):=Y M '®uhc, k=12... N )
j=1

,CR) T An
approximation X of the original M-dimensional time series X in

fori =1,2,...,M where A;: = A and c: = [cy,. ..

Equation 1 is provided by Equation 7 as follows:
X:=Z@h, 8)

Each X (#) in Equation 8 represents the data point at time #;
reconstructed via DMD, minimizing the influence of noise and
encapsulating the quintessential characteristics of the underlying
dynamics. For additional details on the computational process,
refer to Seo et al. (2020).

2.2.3 DMD components and eigen-frequencies
The signal x (#;) is approximated to X (#) given in Equation 7
by applying the DMD algorithm to the following three components:
the mode matrix ® € CM9*®) | the eigenvalue diagonal matrix
A € CR*R and the initial amplitude vector ¢ € CR. Here,
® represents the dominant spatial structure, A~! represents
the temporal evolution, and ¢ represents the amplitude of the
modes. For convenience, these three components used in the
signal approximation are collectively referred to as the “DMD
S (t0)"
in Equation 1, which defines the time series X, is extended to a

components.” The discrete function x (t):= [x1 (), . .

continuous function x (f) using the DMD components, which is
approximated by

R
xi(t) ~ Ze(log*f)f/mq%i,j)cj, fh<t<t,
j=1
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fori =1,2,...,M. Then the jth “eigenfrequency”, denoted by wj, is
given by

_Im (log A))

= i=1,2,...,R 9
@ 2w At ] ©)

where w; represents the frequency, expressed in cycles per second,
of the j" mode signal D) ei'¢j corresponding to Aj, and “Im (-)”
denotes the imaginary part of a complex number (Seo et al., 2020).

2.3 Features extraction

To ensure sufficient temporal coverage, only participants with
total durations longer than 30s were included. This criterion
resulted in the exclusion of four subjects (Subject IDs: 15, 64, 65,
and 78) with shorter recordings.

Feature extraction proceeds in three steps: (i) epoch
construction, (ii) DMD-based windowed segmentation, and
(iii) formation of 3D sequenced mode maps.

2.3.1 Creation of epochs

From the stimulus-related EEG recordings described in Table 1,
10 epochs of length 24s were constructed for evert eligible subject
by sliding time window across the continuous recordings between
photic stimulus onset and offset. Rather than enforcing strictly
non-overlapping intervals, a partially overlapping windowing
strategy was adopted. This approach ensured that each participant
contributed an equal number of epochs while efficiently utilizing
the available data, particularly for subjects with limited recording
durations. The procedure is illustrated in Preprocessed EEG
Recording & Epoch Creation in Figure 1.

2.3.2 Segmentation of epochs

Each 24s epoch was further subdivided into 12 segments of
length 2s, on which Dynamic Mode Decomposition (DMD) was
applied separately to each segment to extract dynamic modes. This
process is visualized in Windowed Feature Extraction using DMD in
Figure 1.

2.3.3 Formation of 3D sequenced images

The resulting mode representations were converted into 50 x 50
grayscale mode maps (resized to 50 x 50 by bilinear interpolation
and rescaled to [0, 1]), which were sequentially stacked to form a
three-dimensional array of size 50 x 50 x 12 and used directly as
numeric tensors for the CNN. When persisted, arrays were stored
in a lossless binary format for direct loading into the training
pipeline. A visual example of this structured input is provided in
3D Sequenced Images in Figure 1.

Our uniform epoch selection was designed a priori to
minimize the direct encoding of stimulus composition as a
feature; we then validated this design by summarizing and
testing the class—category distribution at the dataset level (see
Supplementary Material Section 2; Figure S1), which showed no
material imbalance across groups.
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Note that the 24s epoch length reflects an empirical trade-
off: longer epochs reduced the pool of eligible recordings under
the LNSO protocol, whereas shorter epochs degraded classification
accuracy; accordingly, 24 s was fixed throughout the analyses as a
balance between data retention and performance.

For the image construction step, we performed the DMD
decomposition described in Equation 5 on each 2 s segment, using
a stacking parameter of S = 48 and a truncation rank of R = 100,
which yielded the mode matrix

(1,02 ....0r] € CMXR,

together with the corresponding eigenfrequencies wj; in Equation 9.

Since each mode ¢; is uniquely associated with its
eigenfrequency wj, we sort the set of eigenfrequency-mode
pairs {(w),$;)} in ascending order of frequency, and denote the
reordered quantities by

(6)1>$1)> (6)2) &2)) e ((Z)Rx &R))

such that0 < @) <@y < ---
satisfying

< @g. Among these, only the pairs

4Hz < d)j <40 Hz
are retained. This selection yields a frequency-filtered mode matrix

€ RMXK)

(I,(seg) — ’[$]1 ’&jz’ e )&jk]

where M is the number of EEG channels (M = 19) and K is
the number of retained modes. Because K varies across segments,
the dimensions of ®©® are not fixed. To provide a consistent
representation, each ®(°®) is interpolated into a 50 x 50 square
image, which serves as the basic unit of the CNN input tensor.

Figure 1 illustrates the overall feature extraction pipeline.

It should be noted that the analysis of very low-frequency
dynamics is particularly challenging under EO conditions, as
alpha suppression and increased variability reduce the stability
of spectral estimates in this regime. This challenge is further
compounded in our dataset by the heterogeneity of total recording
durations across subjects, ranging from approximately 30 seconds
to over 150 seconds (Table 1). For subjects with shorter recordings,
constructing ten epochs of 24 seconds required substantial overlap,
which can impair the reliable estimation of slow rhythms, as
overlapping windows may introduce spurious entrainment at
the overlap rate (Benjamin et al, 2021). Accordingly, to avoid
confounding effects in the delta-band and ensure robust feature
extraction, we restricted the DMD-based analysis to the 4-40 Hz
range. To provide a fair comparison, however, we also implemented
a parallel pipeline using the broader 0.5-40 Hz range, serving
as a comparable algorithm. Thus, classification performance was
evaluated across both conditions, with the 4-40 Hz range regarded
as the main analysis and the 0.5-40 Hz condition used as a
benchmark to quantify the contribution of delta-band activity.

This approach is consistent with prior observations that EO
EEG is less suited for the study of very low-frequency components,
whereas the 4-40 Hz range more reliably reflects attentional
and cognitive neural dynamics (Babiloni et al, 2017; Ntetska
et al, 2025). Accordingly, our analysis was designed to test
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FIGURE 1

Overview of the preprocessing and feature extraction pipeline. Continuous EEG recordings were segmented into 24-second epochs with overlap.
Each epoch was further divided into 2-second windows, from which features were extracted using Dynamic Mode Decomposition (DMD). The
resulting spectro-spatial representations were mapped into 50 x 50 grayscale mode maps, and by stacking 12 consecutive segments, each epoch
was represented as a 50 x 50 x 12 three-dimensional image for CNN-based classification.

this hypothesis by directly comparing classification performance
between the 0.5-40 Hz and 4-40 Hz ranges within the same
CNN framework.

To better illustrate the characteristics of the frequency-
filtered mode matrix ®©®), we aggregated the results at the
class level by averaging the absolute values of the retained
DMD modes and their corresponding eigenfrequencies. A side-
by-side visual comparison with FFT-based spectra is presented
in Section 3, highlighting the differences between the two
approaches.

Note that all feature-extraction parameters (epoch length,
segment duration, number of modes, and image map size) were
selected via pilot sweeps/ablation studies under a performance-
compute trade-off; settings that increased runtime with only
marginal gains were not adopted.

Frontiersin Neuroinformatics

2.4 Classification

In this section, the proposed 3D-CNN model architecture is
described, the algorithms used for performance comparison are
presented, and the validation method and performance metrics
are analyzed.

2.4.1 Model architecture

Spectrogram-CNN approaches on long windows primarily
learn static spectral-power patterns from a single time-frequency
2025). In EO with photic stimulation,
however, our objective is to track segment-to-segment changes in

image (Stefanou et al,

inter-sensor coherence. Since whole-epoch DMD is computationally
prohibitive, we compute DMD on short segments and stack the
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resulting maps; a 3D CNN then acts jointly across the two spatial
axes and the segment axis. This induces an explicit modeling bias
toward the temporal evolution of coherence under stimulation, in
contrast to long-window spectrogram models that emphasize static
long-epoch power.

The input to the three-dimensional (3D) CNN model consists
of 12 sequential 50 x 50 grayscale image with dimensions, 50 x
50 x 12 x 1 (height x width x depth x channel), where the
height represents resized brain channels (originally 19), the width
represents resized DMD modes between frequency 4-40 Hz, the
depth corresponds to the temporal sequence of 12 frames, and the
channel corresponds to a single grayscale channel.

The proposed 3D CNN model architecture begins with a 3D
image input layer that incorporates z-score normalization. The
initial 3D convolutional layer uses 16 filters, each of size 3 x 3
x 3. This is followed by a batch normalization layer to stabilize
learning and reduce the internal covariate shift. To introduce non-
linearity, a ReLU activation function is applied. This is followed by
a MaxPooling layer with a pool size of 2 x 2 x 2 and the same
padding to reduce spatial dimensions, maintaining critical features
while reducing computation.

The model proceeds with two consequent blocks with 3D
convolutional layer, increasing the number of filters to 32 and 64,
respectively, while maintaining the 3 x 3 x 3 kernel size. Similarly,
batch normalization layers and ReLU activations are used, followed
by another MaxPooling layer with a pool size of 2 x 2 x 2 and the
same padding.

Following the three convolutional layers, a dropout rate of 0.25
is used to ensure robust feature extraction and avoid overfitting.

10.3389/fninf.2025.1706099

Now, the network transitions to the fully connected stage. The
extracted features are flattened into a 1D vector and passed to a
fully connected layer with 128 units, followed by a ReLU activation
function and a dropout rate of 0.20 to improve robustness. The
next stage includes a fully connected layer with 64 units, again
followed by ReLU activation and a dropout rate of 0.25 to further
reduce overfitting.

Finally, the network concludes with a binary classification
via Softmax activation on 2 logits. This activation function is
suitable for multiclass classification as it converts the logits into
probabilities, with each unit corresponding to one of the two
target classes.

The final 3D-CNN configuration was determined after a series
of targeted ablation studies that varied architectural and training
choices (e.g., depth/width, kernel sizes, activation functions,
normalization, dropout, learning rate, and batch size). We selected
the present design because it offered a practical balance among
accuracy, computational cost, and robustness to overfitting.

Training was capped at 75 epochs, a limit chosen after
inspecting learning curves: training loss converged while validation
performance stabilized well before that point in most runs,
and larger caps yielded only marginal gains at higher cost.
Thus, 75 epochs served as a conservative ceiling for all
reported experiments.

The overall architecture of the proposed 3D CNN model is
illustrated in Figure 2. The architecture was determined through
comprehensive experimentation involving systematic testing of
different input dimensions, network configurations, and additional
hyperparameter settings.
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FIGURE 2

Overview of the proposed 3D CNN model for dementia EEG classification. After the initial input and preprocessing layers, the model comprises three
convolutional blocks with progressively increasing filter sizes (16, 32, and 64). Each block is followed by batch normalization, ReLU activation, and 3D
max-pooling with a pool size of 2 x 2 x 2. The extracted features are then flattened and passed through fully connected layers with 128 and 64 units,
both regularized with dropout (0.20 and 0.25, respectively). A final Softmax activation produces the class probabilities (AD/FTD vs. CN).
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FIGURE 3

The train accuracy (a) and train loss (b) in the AD/CN task, with respect to the number of epochs. An optimal performance is obtained at 75 epochs.

2.4.2 Comparison algorithms

For comparative analysis, an alternative feature representation
was constructed using the conventional Fourier Transform (FFT)
in a manner directly parallel to the DMD-based approach. From
the stimulus-related EEG recordings described in Table 1, after
excluding subjects with total durations shorter than 30s (Subject
ID: 15, 64, 65, 78), epochs of 24 s were first defined for each subject.
Then each epoch was divided into 12 overlapping 4 s windows with
a 2 s step size, producing 12 segments per epoch consistent with the
segmentation depth used for DMD.

For each 4 s segment (2,000 points at a 500 Hz sampling rate),
the power spectral density (PSD) was computed separately for each
channel using the FFT. The resulting PSD estimates were then
converted to decibel units (10log;, scale), which is a standard
practice in EEG spectral analysis to compress the dynamic range
and improve interpretability across frequency bands.

To systematically assess the role of low-frequency components,
two input sets were constructed using different retained ranges:
0.5-40Hz and 4-40Hz. For each condition, the corresponding
spectra were mapped into 50 x 50 x 1 grayscale images, and by
stacking 12 consecutive segments, each epoch was represented as a
three-dimensional array of size 50 x 50 x 12 x 1. The input sets were
then independently evaluated under the same CNN architecture to
ensure a fair comparison.

2.4.3 Validation methodology, classification
problems, and performance metrics

In EEG classification, conventional k-fold cross-validation
can cause data leakage, as it splits samples randomly without
considering the subject boundaries. This can result in data from
the same subject appearing simultaneously in both the training
and test folds, leading to artificially inflated performance due to
subject-specific features. To avoid this issue, we adopted a leave-N-
subjects-out (LNSO) validation strategy, which is a generalization
of the leave-one-subject-out (LOSO) approach. In LNSO, whenever
a subject is selected for validation, all data from that subject’s are
excluded from the training set. This separation provides a more
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faithful estimate of cross-subject generalization, which is a central
concern in EEG-based studies.

For each binary classification task, the dataset was divided into
five equally sized partitions per group, which we refer to collectively
as one batch. A total of five such batches were constructed. Within
each batch, one partition from every group was held out as the
testing set, while the remaining four partitions were used for
training. This procedure was repeated until each partition had
served once as the test set, resulting in five folds per batch. To
ensure stability of the training process, model learning was repeated
five times for each fold, and the average performance was recorded.
Consequently, for a single classification task (e.g., AD/CN), the
experimental protocol consisted of 5 x 5 5 runs (five batches x five
folds per batch x five training repetitions per fold). Considering the
three classification tasks (AD/CN, FTD/CN, and (AD+FTD)/CN),
the entire study involved a total of 5 x 5 x 5 x 3 experimental runs.

The binary classification scenarios considered were: AD/CN,
FTID/CN, and (AD+FTD)/CN. For each case, the following
evaluation metrics were reported: accuracy (ACC), precision
(PPV), recall (TPR), and F1-score (F1). After completing all runs,
the cumulative confusion matrix was constructed, from which these
metrics were derived.

It should be noted that in the (AD+FTD)/CN scenario, the
number of samples in the combined (AD+FTD) group was nearly
twice as large as that of the CN group. Such an imbalance can cause
misleading evaluation, since the metrics expressed in percentages
may appear balanced even when the minority class is poorly
classified. To address this issue, rather than artificially doubling
the number of CN epochs, we reduced the number of epochs
per AD and FID subject from 10 to 5, thereby bringing the
overall class proportions into balance. This adjustment ensured that
performance metrics reflected true classification ability rather than
being inflated by class imbalance.

2.4.4 Experimental setup

The experimental protocol and demographic characteristics
of the dataset can be found in Section 2.1. All preprocessing,
feature extraction, CNN classification, and spectrogram generation
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TABLE 2 Performance in terms of accuracy for the classification tasks:
AD/CN, FTD/CN, and (AD+FTD)/CN.

Test accuracy AD/CN FTD/CN (AD+FTD)/CN
Batch 1 72.15% 78.16% 70.66%
Batch 2 73.41% 75.12% 74.55%
Batch 3 77.28% 79.71% 73.80%
Batch 4 74.61% 76.32% 74.58%
Batch 5 73.69% 74.01% 73.02%
Average 74.23% 77.06% 73.32%
Std 1.92% 1.61% 1.62%
Margin of Error (MoE) 2.38% 2.00% 2.01%
of 95% CI

Lower bound 71.85% 75.06% 71.31%
Upper bound 76.61% 79.06% 75.34%

were conducted in MATLAB R2025a using the Signal Processing,
Statistics and Machine Learning, and Deep Learning toolboxes.
Model training was accelerated using the Parallel Computing
Toolbox on a NVIDIA RTX 3060 GPU.

3 Results

In this section, the performance of the proposed model for each
task examined will be reported, along with the performance of the
comparison algorithms.

To determine the optimal number of training epochs, an 80%-
20% train-test split was used for both AD/CN and FTD/CN tasks,
and the epoch achieving the highest test accuracy was selected.
The optimal value was 75, which was adopted for all leave-N-
subjects-out (LNSO) runs. The mini-batch size and learning rate
were set to 16 and 0.0005, respectively, to minimize training
loss while maintaining high generalizability. Figure 3 presents the
performance of the classifier with respect to the number of epochs
for the AD/CN task.

Table 2 summarizes the accuracy results for each of the five
batches for AD/CN, FTD/CN, and (AD+FTD)/CN, including the
average accuracy across the batches. A 95% confidence interval
is also provided. The average accuracy for the FTD/CN task
(77.06%) was higher than that for the AD/CN task (74.23%). For
the (AD+FTD)/CN task, the average accuracy was 73.32%.

In terms of variability, the FTD/CN task showed the lowest
standard deviation at 1.61%, while the AD/CN experiment
exhibited the largest deviation of 1.92%, followed by 1.62% for
(AD+FTD)/CN. Based on these standard deviations, the 95%
confidence intervals were estimated as 71.85-76.61% for AD/CN,
75.06-79.06% for FTD/CN, and 71.31-75.34% for (AD+FTD)/CN.
These results indicate relatively stable performance across all three
classification settings, with FTD/CN vyielding the highest accuracy
on average.

Table 3 shows that the AD/CN task achieved balanced
performance across metrics, with an average precision of 73.73%,
recall of 73.95%, and F1 score of 73.83%. In comparison, the
FTD/CN task exhibited the highest overall performance, achieving
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TABLE 3 Precision, recall, and F1 score for each class, for the tasks
AD/CN, FTD/CN, and (AD+FTD)/CN.

Metric Group AD/CN FTD/CN (AD+FTD)/CN
Precision AD 78.67%
CN 68.79% 83.53% 62.77%
FID - 69.05%
AD+FTD 83.76%
Total 73.73% 76.29% 73.27%
Recall AD 76.57%
CN 71.33% 76.81% 78.55%
FTD - 77.35%
AD+FTD 70.37%
Total 73.95% 77.08% 74.46%
F1 score AD 77.61%
CN 70.04% 80.03% 69.78%
FTD - 72.97%
AD+FTD 76.48%
Total 73.83% 76.50% 73.13%

The final row of each section represents the averaged metric for all the classes of the task.

an average precision of 76.29%, recall of 77.08%, and F1 score of
76.50%. In contrast, the combined (AD+FTD)/CN task obtained
the lowest metrics, with an average precision of 73.27%, recall
of 74.46%, and F1 score of 73.13%. These findings indicate
that, although all three tasks yielded consistent results, the
FTD/CN task was comparatively the most separable under the
proposed framework.

In Figures 4, 5, we present the averaged DMD- and FFT-based
heatmaps for each group (CN, AD, and FID). Although both
representations summarize class-specific spectral content, they
emphasize complementary aspects of the data. The FFT heatmaps
primarily capture spectral power distributions, highlighting
the dominance of low-frequency activity and channel-specific
variations. In contrast, the DMD heatmaps provide a more
compact representation that captures spatio-temporal coherent
modes, producing smoother spatial patterns across channels, and
emphasizing dynamic structures that may not be as clearly visible
in the FFT view. Together, these complementary perspectives
underscore both the spectral differences and the underlying
dynamical alterations associated with Alzheimer’s disease and
frontotemporal dementia. All detailed interpretations of these
averaged heatmaps are provided in Section 4.

To compare and validate the performance of the proposed
methodology, we benchmarked it against the baseline results
reported in Ntetska et al. (2025), using the best-performing models
specified for the AD/CN and FTD/CN cases under EO conditions.
Conventional FFT-based feature extraction strategies were also
included for completeness. In addition, we included DMD-based
alternatives with delta-band activity. The results for the AD/CN,
FTD/CN, and (AD+FTD)/CN cases are summarized in Table 4,
respectively. For fair evaluation, all methods were trained and
validated using a leave-n-subject-out (LNSO) protocol, with a fixed
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FIGURE 4

Averaged and normalized DMD mode heatmaps for each group (CN, AD, and FTD) in the 0.5-40 Hz frequency range. The color intensity indicates
the magnitude of the DMD modes. In each heatmap, rows correspond to EEG channels, while columns represent the averaged eigenfrequencies
associated with the DMD modes. (a) Healthy control. (b) Alzheimer's disease. (c) FTD.
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FIGURE 5

Averaged and normalized FFT heatmaps for each group (CN, AD, and FTD) in the 0.5-45 Hz frequency range. Each row corresponds to an EEG
channel, while each column corresponds to a frequency bin, labeled in Hertz (Hz). To improve visual interpretability across frequency bands, the
power spectral densities were log-transformed (10 log, 4 scale) before normalized. (a) Healthy control. (b) Alzheimer's disease. (c) FTD.
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random seed to ensure that each batch used the same test set.
The proposed DMD+CNN framework consistently outperformed
conventional approaches, most notably in the AD/CN scenario,
where excluding the delta-band led to the highest and most
stable performance.

4 Discussion

In this study, a novel deep learning framework for the
automatic detection of AD and/or FID from eyes-open (EO)
EEG was proposed. We used the publicly released dataset of
stimulus-related EO EEG recordings, which had been preprocessed
in advance by the dataset providers according to their published
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pipeline. The methodology consisted of the following: (a) an
epoching step in which 24-second segments were defined and
further subdivided into twelve overlapping 2-second windows;
(b) a feature extraction step based primarily on Dynamic
Mode Decomposition (DMD) restricted to the 4-40 Hz range,
with conventional FFT-based spectrograms (4-second windows)
constructed as comparable baselines under two passbands (0.5-
40 Hz and 4-40 Hz); and (c) a convolutional neural network (CNN)
trained and evaluated using a subject-wise leave-N-subjects-out
(LNSO) validation protocol. Side-by-side comparisons within
the same CNN architecture indicated that the DMD-derived
representations yielded more stable performance for AD under
EO conditions while remaining competitive for FTD, suggesting
that suppressing the delta-band and modeling spatio-temporal
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TABLE 4 Performance comparison of the proposed methodology with baseline classification methods (Ntetska et al., 2025) for AD/CN and FTD/CN
tasks, and with alternative feature extraction strategies for AD/CN, FTD/CN, and (AD+FTD)/CN tasks.

Task Method Accuracy Precision Recall F1
AD/CN Baseline (SVM) 62.50% 57.60% 79.60% 66.80%
FFT with delta-band 70.69% 69.79% 70.28% 69.94%
FFT without delta-band 70.56% 69.80% 70.12% 69.91%
DMD with delta-band 72.96% 72.47% 72.62% 72.54%
Proposed: DMD w/o delta-band 74.23% 73.73% 73.95% 73.83%
FTD/CN Baseline (LightGBM) 71.00% 60.50% 68.00% 67.30%
FFT with delta-band 74.39% 74.21% 73.88% 73.99%
FFT without delta-band 73.24% 73.00% 72.60% 72.72%
DMD with delta-band 76.67% 76.54% 76.02% 76.18%
Proposed: DMD w/o delta-band 77.06% 76.29% 77.08% 76.50%
(AD+FTD)/CN FFT with delta-band 67.43% 67.29% 68.55% 66.94%
FFT without delta-band 69.85% 69.76% 70.70% 69.59%
DMD with delta-band 73.25% 73.23% 74.14% 73.14%
Proposed: DMD w/o delta-band 73.32% 73.27% 74.46% 73.13%

coherent modes mitigates EO-specific challenges and complements
conventional spectral-power features.

In our experiments, unlike previous EC-based work using
FFT spectrograms, which reported strong performance in AD
classification but notably weaker results for FTD (Stefanou et al.,
2025), our EO-centered approach demonstrated a different trend.
Specifically, the AD/CN task yielded consistent performance with
an average accuracy of 74.23% and an F1 score of 73.83%, while
the FTD/CN task achieved even higher results (accuracy 77.06%,
F1 score 76.50%). This indicates that, under EO conditions, FTD
patients may exhibit more discriminable EEG dynamics than AD
patients, contrasting with the EC scenario where AD features
were more robust. The combined (AD+FTD)/CN classification
produced balanced results (accuracy 73.32%, F1 score 73.13%),
further underscoring the robustness of the proposed methodology
across multiple diagnostic settings.

The comparative results against baseline classifiers and FFT-
based approaches are summarized in Table 4. For the AD/CN task,
the proposed DMD-based methodology achieved an accuracy of
74.23%, which is markedly higher than the baseline SVM (62.50%)
and also exceeded both FFT-based strategies. Notably, in this
task, the removal of delta-band (0.5-4 Hz) was crucial: the model
without delta components consistently yielded the most reliable
performance across precision, recall, and F1 score. This observation
supports our initial hypothesis that under EO conditions, delta-
band activity is unstable and can obscure the discriminative
features relevant for AD detection.

As shown in Section 6.1, a paired-samples t-test further
confirmed this observation, especially for AD/CN task (ACC
with Delta: 72.96%, without Delta: 74.23%). The test revealed a
statistically significant improvement in accuracy when delta-band
components were excluded [#(24) = 2.73, p = 0.0117, Cohen’s
d = 0.55]. This result quantitatively supports that, under eyes-
open conditions, delta-band activity may introduce noise rather
than informative patterns for AD/CN classification.
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In the FTD/CN task, our methodology also outperformed
the LightGBM baseline, reaching 77.06% accuracy compared to
71.00%. Interestingly, here the effect of delta-band removal was
less pronounced, as both DMD and FFT benefited only marginally.
This suggests that while FTD dynamics under EO conditions
are more distinguishable overall, they are less sensitive to delta
contamination than AD-related signals.

For the combined (AD+FTD)/CN setting, both DMD variants
produced comparable performance around 73%, with a slight edge
for delta exclusion (73.25% vs. 73.32%; Table 4). This contrasts
with the subtype-specific analyses, where excluding delta benefited
AD/CN and including delta benefited FTD/CN, and suggests
that, when AD and FTD are merged, their divergent delta-band
signatures may partially offset each other. As a result, delta
inclusion captures shared slowing features that help the combined
dementia class versus CN, while the overall accuracy remains lower
than in subtype-specific models.

Taken together, these findings emphasize that (a) the proposed
DMD-based representation offers consistent advantages over
conventional FFT-based features and baseline classifiers, and (b)
delta-band activity behaves chiefly as a nuisance: its perturbation
is stronger in AD.

Additionally, in exploratory analyses (Appendix Tables 7, 8),
AD/FTD showed a nonsignificant but favorable trend with delta
exclusion (mean A =~ +1.3 pp; Appendix Table 7). By contrast, in
the three-class AD/FTD/CN task, performance was slightly lower
when delta was excluded (overall A =~ —0.2 pp; Appendix Table 8),
reflecting a small, nonsignificant advantage for FTD/CN when delta
was retained.

Previous EEG studies using FFT-based spectrograms have
consistently reported that Alzheimers disease is characterized
by abnormal alterations in alpha and theta activity, particularly
reflected in changes in alpha rhythm, alpha-theta ratios, and,
in some cases, beta-theta interactions (Schmidt et al., 2013;
Ozbek et al, 2021; Fonseca et al, 2011). Building on these
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established findings, the present study visually examined whether
such abnormalities also manifest under EO conditions, using
DMD- and FFT-based spectrograms.

From a global spectral perspective, CN participants under EO
conditions exhibited the expected suppression of alpha activity
accompanied by relatively stronger beta power, in contrast to the
dominant posterior alpha peak typically observed in EC (Stefanou
etal., 2025). AD patients displayed the generalized slowing pattern
that has been consistently reported in EC studies, characterized
by increased theta and reduced alpha activity, but in EO the low-
frequency components appeared less stable and showed higher
variability across epochs. FTD patients also showed persistent
theta enhancement, yet with a more pronounced anterior-temporal
emphasis and reduced posterior dominance compared to EC. These
global differences highlight that EO reduces the reliability of very
low-frequency components, while shifting the relative contribution
of higher frequency bands.

At the channel level, further distinctions were observed. In
CN, alpha power was dominant in the occipital (O1, O2) and
posterior temporal (T5, T6) regions under EC, whereas in EO
the occipital alpha was suppressed and beta activity became
more diffuse, with a partial loss of hemispheric symmetry. In
AD, the classical EC pattern of posterior alpha loss and theta
increase (01/02, T5/T6) was replicated, but under EO, theta
power was less consistently localized and beta activity redistributed
in a patch-like manner over the frontotemporal areas (F7/F8,
T3/T4). In FID, the EC pattern of frontal-temporal theta
elevation and posterior alpha reduction was preserved, but EO
recordings revealed relatively stronger anterior-temporal power
in the alpha/beta range, together with a further decrease in
posterior activity. These channel-specific differences indicate that
EO accentuates frontal-temporal abnormalities while diminishing
posterior features, thereby altering the discriminability between AD
and FTD.

Therefore, both EC and EO conditions reveal a generalized
slowing of activity in dementia patients, but EO recordings
additionally exhibit reduced posterior alpha hemispheric symmetry
and a redistribution of spectral power toward frontal and temporal
regions. These alterations highlight the greater complexity and
variability of EO dynamics compared to EC, underscoring the need
for advanced analytic approaches such as DMD to capture these
non-stationary features.

Upon closer inspection of Figure 4, notable distinctions emerge
above 13 Hz (beta band) between dementia groups and controls.
While CN maintains relatively uniform activity in posterior
channels, both AD and FTD display distinct enhancements at
“frontotemporal sites,” particularly around “F7/F8” and “T3/T4.”
These regions are known to contribute to visual attention
and cognitive integration, and previous research supports this
functional role. For example, beta-band power over occipital
regions correlates with visual attention in elderly participants (Gola
et al., 2013). Moreover, altered alpha- and beta-band functional
connectivity has been observed in visuospatial memory tasks in
MCI and early AD (Fodor et al., 2021). Thus, the channel-specific
deviations we observe in the beta range likely reflect differential
recruitment of attention-related networks during visual stimulation
in dementia.

Frontiersin Neuroinformatics

10.3389/fninf.2025.1706099

In addition to the well-established slowing in the theta-alpha
range reported in dementia, our DMD-based analysis of EO
EEG highlighted distinct high-frequency (>30 Hz) dynamics.
Specifically, correlated activity in the frontal electrodes (Fp1-Fp2)
and asymmetric gamma-band patterns in temporal regions (T3/T4,
F7/F8) emerged as potential differentiating features between AD
and FTD. These alterations were not evident in conventional FFT
spectrograms (Figure 5), underscoring the advantage of DMD in
capturing spatio-temporal coherent modes beyond static power
spectra. Previous studies have suggested that gamma-band activity
is closely linked to cognitive and attentional processes and may be
disrupted in Alzheimer’s disease (Basar, 2013; Adaikkan and Tsai,
2020), while asymmetrical frontal-temporal alterations have also
been observed in FTD cohorts (Nishida et al., 2011; Stam, 2005).
Our findings suggest that EO EEG, when analyzed with spatio-
temporal methods such as DMD, may provide novel gamma-
band biomarkers that complement the traditionally emphasized
low-frequency alterations.

The novelty of this study lies in the application of Dynamic
Mode Decomposition (DMD) to eyes-open (EO) EEG analysis and
the use of finely segmented data to construct three-dimensional
(3D) input representations. Unlike previous CNN-based work
that employed relatively long (30 s) epochs, our approach
decomposed the data into shorter segments, thereby enabling DMD
to capture spatio-temporal coherent modes while preserving a
richer set of spectral-spatial dynamics. This design allowed for the
detection of frequency- and channel-specific alterations, including
higher-frequency (above 30 Hz) activity and strong inter-channel
correlations, particularly between frontal sites (Fp1-Fp2), that were
not as apparent in FFT-derived spectrograms.

An important finding of this study concerns the role of the
delta-band. Specifically, removing delta activity (0.5-4 Hz) led to
a clear improvement in AD classification performance, whereas
FTD classification showed little change or even modest gains when
delta was retained. This pattern is consistent with low-frequency
(<4 Hz) interference exerting a comparatively stronger effect in AD
under eyes-open visual stimulation (>5 Hz), while its influence in
CN/FTD appears limited.

When compared to prior work, a contrasting trend emerges. In
eyes-closed (EC) conditions, CNN-based spectrogram approaches
achieved relatively high accuracies for AD (accuracy = 79.45%,
F1 score = 77.60%) but lower values for FID (accuracy =
72.85%, F1 score = 67.85%), with the delta-band excluded from
the spectral representation. In contrast, under EO conditions,
baseline FFT studies generally included delta activity, yet showed
markedly reduced performance for AD (~60%) while maintaining
comparatively higher results for FTD (~71%).

Our DMD-based framework substantially improved these
outcomes, mitigating the limitations of small and imbalanced
datasets through its dynamic feature extraction and 3D
representation. Beyond this overall improvement, our findings
highlight a notable condition- and group-specific sensitivity to
the delta-band. Specifically, classification for FTD benefitted from
the inclusion of delta activity under both EC and EO conditions,
whereas AD classification improved when delta was excluded
in EO. Although we do not attribute these effects solely to delta
activity, this divergence represents a remarkable observation that
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underscores the need for careful consideration of spectral band
selection in dementia-related EEG analysis.

Nevertheless, residual constraints remain, including variability
in recording durations across subjects (ranging from approximately
30 to 150 seconds; see Table 1), which restricted the attainable
performance ceiling. These limitations emphasize the importance
of standardized, longer-duration EO datasets for future research.

In summary, DMD provides distinct advantages over FFT
by uncovering high-frequency activity and subtle channel-level
asymmetries that are not easily observed with conventional
approaches. Furthermore, the differential influence of the delta-
band on AD/FTD classification highlights its potential role
as a pathophysiological marker. Taken together, these findings
demonstrate that EO EEG, when analyzed with advanced
decomposition methods such as DMD, offers a promising avenue
for the development of robust and physiologically grounded
biomarkers for dementia classification.

In prior CNN-based work (Stefanou et al, 2025), it was
acknowledged that alternative time-frequency transforms, such
as the wavelet transform, could potentially improve time-
frequency resolution while addressing temporal inconsistencies
in EEG recordings. In this study, we extended this perspective
by employing DMD, which inherently provides both spectral
information and spatio-temporal coherence. This dual capacity
allowed us to better capture the complex dynamics of EO
EEG, and we confirmed that DMD-derived features yielded
competitive classification performance compared to conventional
FFT-based spectrograms.

Furthermore, while EEG coherence and other connectivity
measures have been proposed as useful features for dementia
classification, DMD partially alleviates the need for explicit
connectivity modeling by simultaneously analyzing all channels
and extracting coherent spatio-temporal modes. This property
offers an indirect yet effective way of incorporating connectivity-
like information without additional preprocessing steps.

However, DMD also presents important limitations. The
method is computationally more demanding than FFT, both in
terms of processing time and memory requirements. Although the
use of shorter segmentation windows (2 s) was found to provide
the best trade-off between stability and efficiency, DMD at longer
windows (e.g., 4 s) achieved slightly better performance but at the
cost of substantially slower computation and increased memory
load. These constraints may limit the scalability of DMD for large
datasets or real-time applications. Future work should therefore
focus on developing optimized or approximate implementations
of DMD to improve computational feasibility while retaining its
unique ability to capture dynamic EEG features.

Future research will aim to expand the dataset by combining
the existing EO recordings with the previously released EC data,
thereby enabling a more comprehensive exploration of dementia-
related EEG dynamics. In addition, a cross-condition transfer
learning strategy will be investigated, in which pre-trained layers
from both EC- and EO-based models are reused and fused, followed
by the addition of task-specific layers for joint fine-tuning. This
approach harnesses complementary representations learned under
different conditions and is expected to improve the robustness
and generalization of the final classifier. From a methodological
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perspective, the time efficiency of DMD will be revisited. A hybrid
strategy may be considered, in which longer windows are analyzed
using FFT for stable spectral estimation, whereas shorter windows
are processed with DMD to extract fine-grained dynamic features.
Finally, future studies will extend the current methodology to other
forms of dementia, thereby examining whether disease-specific
oscillatory patterns and spatial signatures can be consistently
identified across conditions.

5 Conclusion

This study investigated eyes-open (EO) EEG recordings for
the classification of Alzheimer’s disease (AD) and frontotemporal
dementia (FTD), a condition that has traditionally been considered
more challenging than eyes-closed (EC) EEG. While previous
FFT-based approaches on the same dataset reported limited
performance for AD under EO conditions, our work introduced
a CNN-based framework with Dynamic Mode Decomposition
(DMD)-derived features.

By segmenting EEG into short windows and transforming
them into long-epoch DMD representations, we enabled CNNs
to capture spatio-temporal dynamics beyond conventional spectral
power. In addition, we systematically examined the role of
low-frequency activity and found that excluding the delta-band
improved AD/CN classification accuracy, raising performance
above previously reported FFT-based baselines. These results
suggest that both delta suppression and DMD-based feature
representations are crucial for enhancing EO EEG discriminability.

Our findings suggest that EO EEG, when modeled with
appropriate feature extraction and learning strategies, can provide
reliable classification performance for AD, approaching levels
previously observed for FTD.
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