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Information-theoretic gradient
flows in mouse visual cortex
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Introduction: Neural activity can be described in terms of probability

distributions that are continuously evolving in time. Characterizing how these

distributions are reshaped as they pass between cortical regions is key to

understanding how information is organized in the brain.

Methods: We developed a mathematical framework that represents these

transformations as information-theoretic gradient flows — dynamical

trajectories that follow the steepest ascent of entropy and expectation.

The relative strengths of these two functionals provide interpretable measures

of how neural probability distributions change as they propagate within neural

systems. Following construct validation in silico, we applied the framework to

publicly available continuous 1F/F two-photon calcium recordings from the

mouse visual cortex.

Results: The analysis revealed consistent bi-directional transformations between

the rostrolateral area and the primary visual cortex across all five mice.

These findings demonstrate that the relative contributions of entropy and

expectation can be disambiguated and used to describe information flow within

cortical networks.

Discussion: We introduce a framework for decomposing neural signal

transformations into interpretable information-theoretic components. Beyond

the mouse visual cortex, the method can be applied to diverse neuroimaging

modalities and scales, thereby providing a generalizable approach for

quantifying how information geometry shapes cortical communication.

KEYWORDS

information geometry, gradient flows, neural connectivity, entropy, expectation, two
photon, calcium imaging

Introduction

The electrical activity in the brain reflects a combination of hidden internal states
which, although not directly observable, can be inferred via the signals picked up by
neuroimaging devices (Fiser et al., 2010; Friston, 2005; Ma et al., 2006). One way
to describe these signals is in terms of probability distributions evolving in time. As
conditions change in the brain, the probability distributions shift accordingly, reflecting an
ongoing reorganization of internal representations. Understanding the processes by which
probability distributions transform as they pass among brain regions remains a central
challenge in computational neuroscience.

Changes in neural activity can be analyzed by studying how specific functionals
act on probability distributions. Two key examples of such functionals are entropy
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(Fagerholm et al., 2023; Keshmiri, 2020; Luczak, 2024) and 
expectation (Gerstner and Kistler, 2002; Helias et al., 2014; Lánskı 
and Sacerdote, 2001), where the former widens the variance and 
the latter shifts the mean of a given probability distribution. Each 
functional is associated, via its gradient, with a specific flow across 
the space of probability densities. This geometric (Nielsen, 2022) 
perspective allows for a decomposition of transformations into 
interpretable information-theoretic components. 

We describe how neural activity distributions change when 
viewed at dierent observational scales, and formalize these 
changes using information-theoretic geometry. The adaptation of 
neural distributions, central to predictive coding (Clark, 2013; 
Rao and Ballard, 1999) and eÿcient representation (Barlow, 
1961; Simoncelli and Olshausen, 2001; Wei and Stocker, 2015), 
corresponds to systematic transformations in probability space. 
By expressing these transformations as gradient flows, we provide 
a mathematical description of how distributions evolve under 
the competing influences of variability (entropy) and stability 
(expectation). We show that in the specific case of a centered 
symmetric distribution, entropy and expectation form orthogonal 
components, and are thus able to be added as basis flows. 

Previous work on neural signal transmissions has been largely 
focused on statistical dependencies between observed activation 
patterns (Bastos and Schoelen, 2016; Friston, 2011). For instance, 
metrics such as mutual information (Borst and Theunissen, 1999; 
Panzeri et al., 2017) and Granger causality (Seth et al., 2015) 
quantify how strongly activity in one region predicts activity in 
another. However, these metrics do not capture how the full 
probability distributions transform across regions. This is precisely 
the missing component that our methodology addresses. 

While the present study applies the framework to continuous 
F/F calcium signals, the formulation itself is modality-agnostic. 
Because it operates on empirical probability densities, rather than 
on “raw” measurements, the same principles can be applied 
to spiking activity. This is achieved by constructing firing-rate 
distributions or by using smooth approximations of Poisson 
processes — a standard approach in population coding models. 

We validate this framework in silico and then extract dominant 
flows linking regions within the murine visual cortex, captured 
using two-photon imaging. The visual cortex in mice is particularly 
well-suited to our study, given that adjacent areas therein 
exhibit coordinated patterns of activity (Felleman and Van Essen, 
1991; Harris et al., 2019) across functionally specialized regions 
(Andermann and Moore, 2006; Glickfeld et al., 2013; Marshel et al., 
2011). Beyond this specific application, our approach introduces 
a generalizable method for analysing any scenario in which 
distributions are transformed — not just among cortical regions, 
but also between measurement devices, or across spatiotemporal 
scales. 

Materials and methods 

Here we formalize how probability distributions transform 
when the observation scale changes. This formulation reveals two 
flows — one linked to entropy and the other to expectation. In 
the case of a centered symmetric distribution these two flows form 
orthogonal bases for information-theoretic transformations. 

We begin with the following definitions: 

x ∈ Rn: the state of the system, represented by an n-
dimensional variable. 
λS ∈ R+: a positive-valued parameter that controls the 
scale of observation. 
q (x; λS): a probability density function over x, conditioned 
on the observation scale λS, which remains normalized for all 
scales: 

Z 
qdx = 1 ∀ λS . (1) 

We define the space of all valid (smooth, positive, normalized) 
probability distributions as the information space P : 

P = 

ˆ 

q ∈ C1 � Rn  q (x) > 0, 
Z 

q (x) dx = 1 ̇

 

, (2) 

which yields a nonlinear manifold of valid distributions within 
the space of all possible functions. 

Power law generators: Due to the ubiquity of power laws in the 
analysis of neural systems (Fiser et al., 2010), we investigate how 
the probability distribution q (x; λS) changes to a new distribution 
˜ q (x; λS) via: 

q̃  
qλS R 
qλS dx 

, (3) 

where the partition function in the denominator ensures correct 
normalization of the new distribution ˜ q for all values of λS. 

We next analyze the form of Equation 3 for very small 
changes in scale. Specifically, we seek the associated generator 
(Amari and Nagaoka, 2000) — i.e., the infinitesimal power law 
transformation associated with an increase in λS. As motivated by 
Noether’s theorem (Noether, 1983) and Lie theory (Cohn, 1957), 
the derivation of a generator creates a powerful tool that allows for 
the recovery of arbitrary transformations. 

To see how this applies to our particular case, we begin by 
defining the scale parameter λS in terms of an arbitrarily small 
constant ε: 

λS = 1 + ε, (4) 

thereby allowing for any scale parameter λS to be defined by the 
iterated application of ε. 

Applying Equation 4 to Equation 3, we obtain: 

q̃  
q 1+ε R 
q1+εdx 

. (5) 

Next, using the fact that ex 
≈ 1 + x for small x, we expand 

q1+ε to first order in ε and use the identities: q1+ε 
= qqε , and 

qqε 
= qeε log q, to linearize the eect of the power law transform: 

q 1+ε 
≈ (1 + ε log q)q, (6) 

which evaluates Equation 3 near λS = 1. 
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To ensure that the transformed density remains normalized, we 
divide Equation 6 by its associated partition function: 

q̃  
1 + εlogqR 

qdx + ε 
R
qlogqdx 

q . (7) 

Substituting the normalization condition from Equation 1 into 
the denominator, and using the definition of the mean: 

logq = 
Z 

qlogqdx . (8) 

Equation 7 simplifies to: 

q̃  
1 + εlogq 

1 + ε logq 
q . (9) 

Finally, we use the fact that 1+x
1+y ≈ 1 + x − y for small x and y 

to linearize Equation 9, thereby yielding the power law generator: 

q̃  
 
1 + ε 

� 
logq − logq 

 
q, (10) 

which can equivalently be expressed as the following dierential 
equation: 

∂ logq 

∂λS 
= logq − logq . (11) 

Power laws and entropic flow: We now note that the generator 
derived in Equation 10 includes a term qlogq, which resembles the 
integrand of entropy S 


q 
 
, hinting at a connection between power 

law transformations and entropy: 

S = − 
Z 

q log q dx. (12) 

We investigate this connection by calculating in which 
direction entropy increases most rapidly, within the space of valid 
probability distributions P in Equation 2. This direction is given by 
the functional gradient of the negative entropy in Equation 12: 

δS 

δq 
= 1 + logq. (13) 

Equation 13 has a mean given by: ˝ 
δS 

δq 

˛ 
= 

Z 
qdx + 

Z 
qlogqdx, (14) 

which, using Equations 1, 8, can be written as: ˝ 
δS 

δq 

˛ 
= 1 + logq . (15) 

We define an entropic flow vS as the mean gradient in 
Equation 15 subtracted from the gradient in Equation 13. This has 
the eect of projecting the gradient onto the manifold P of valid 
probability densities in Equation 2: 

vS = 
δS 

δq 
− 

˝ 
δS 

δq 

˛ 
, (16) 

which, using Equations 13, 15, reads: 

vS = logq − logq , (17) 

i.e., we discover exactly the same expression as in Equation 11, 
meaning that we can write: 

∂ logq 

∂λS 
= vS. (18) 

This reveals a relationship between entropic flow and power law 
transformations indexed by a scale parameter λS. 

Generalized flow: The form of Equation 18 can be generalized 
to arbitrary functionals F 


q 
 
, which define continuous trajectories 

through information space P via associated flow parameters λF . 
The flow of F 

 
q 
 

preserves the geometric structure of Equation 18, 
in terms of a projected gradient on the log density of q, while 
allowing for arbitrary functionals: 

∂ logq 

∂λF 
= vF , vF = 

δF 

δq 
− 

˝ 
δF 

δq 

˛ 
. (19) 

Here, the logq term is not an artefact of the entropic expression 
in Equation 18. Rather, logq persists in the generalized flow 
expression in Equation 19 because λF parameterizes a flow of 
the form ∂q/∂λF ∼ q, which maps to ∂ logq/∂λF . Equation 19 
therefore yields a class of projected gradient flows vF which depend 
on the choice of functional F . 

Basis flows: Thus far we have established that: 

1. Power law transformations are associated with entropic flow, 
2. The power law/entropy link can be generalized to arbitrary 

functionals beyond entropy. 

Given these two points, our next question is whether we can 
find a flow vF that is orthogonal to entropic flow vS, as this would 
allow for a decomposition into independent components. To find 
such an orthogonal flow, we require that the inner product between 
vF and vS equals zero: 

vS, vF  = 0, (20) 

where we can use Equations 17, 19 to write the covariance as: 

vS, vF  = 
Z � 

logq − logq 
  

δF 

δq 
− 

˝ 
δF 

δq 

˛ 

q (x) dx, (21) 

which is equivalent to the covariance between logq and δF/δq 
under q (x): 

vS, vF  = Covq 

 

logq , 
δF 

δq 

 

. (22) 

The simplest class of F is given by linear expectation: 

F 

q 
 

= 
Z 

xq (x) dx, (23) 

with a functional derivative given by: 

δF 

δq 
= x. (24) 

If we then assume a zero-mean Gaussian form for q (x), for 
which logq ∼ x2 , Equation 22 becomes: 

vS, vF  = Covq 
� 
x 2 , x 

 
, (25) 
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which satisfies the orthogonality condition in Equation 20, 
which in turn shows that entropy and expectation define 
orthogonal flows in the specific case of a centered 
symmetric distribution. 

We next look for the transformation associated with the 
expectation functional using Equation 19: 

∂ logq 

∂λ 
= x − x , (26) 

which has a solution given by: 

logq (x; λ) = logq (x; 0) + λ (x − x) , (27) 

and hence: 

q(x; λ) = 
q(x; 0) eλx R 
q(x; 0) eλx dx 

, (28) 

where the partition function in the denominator ensures correct 
normalization. 

Therefore, just as entropic flow arises from power law 
transformations in Equation 18, the expectation flow corresponds 
to an exponential tilt in Equation 28. Intuitively, the entropic and 
expectation flows capture how variance and expectation change 
with observational scale, respectively. We summarize the links 
between these two information-theoretic functionals and their 
associated geometric transformations in Table 1. 

Synthetic data: Having established entropy and expectation as 
orthogonal basis functionals, we use Equations 17, 26 to define a 
mixed entropic-expectation flow combining both components: 

∂ logq 

∂λ 
= α 

� 
logq − logq 

 
+ β (x − x) , (29) 

where the coeÿcients α and β control the relative contributions of 
entropy and expectation, respectively. 

To verify that the model parameters can be accurately recovered 
from data, we performed two in silico tests. The flow in Equation 29 
was simulated using pre-specified α and β-values applied to 
samples drawn from: (1) a Gaussian process, and (2) a one-
dimensional Langevin process with a time-varying oscillatory drift 
term. Recovery accuracy was assessed by comparing true versus 
fitted parameters and evaluating similarity between distributions 
using Wasserstein-2 distance, total variation, and L2 metrics. 

Two-photon imaging data: We next applied the same mixed-
flow framework to publicly available empirical data in the form of 
two-photon calcium-imaging recordings from five mice (Kumar 
et al., 2021). The dataset includes neuronal responses from 
six retinotopically defined visual areas: primary visual cortex 
(V1), lateromedial (LM), anterolateral (AL), rostrolateral (RL), 
anteromedial (AM), and posteromedial (PM) (Figure 1). 

Visual stimuli consisted of natural movies (30–120 s) and 
resting-state recordings under a constant grey screen (5 min). F/F 

TABLE 1 Summary properties for entropy and expectation flows. 

Entropy Expectation 

Functional F = − 
R 
qlogqdx F = 

R 
xq (x) dx 

Flow ∂ logq 
∂λ = logq − logq ∂ logq 

∂λ = x − x 

Transformation q → qλ R 
qλdx q → q0eλx R 

q0eλxdx

FIGURE 1 

The murine visual cortex, consisting of V1, LM, AL, RL, AM, and PM. 
Mouse M1 is shown in the large outline and the other four mice 
M2–M5 are shown in the smaller outlines. 

FIGURE 2 

Mice M1-M5 in the same layout as Figure 1, each showing a single 
frame of fluorescence intensity for the indicator GCaMP6s. We 
show a segment of these data evolving in time in Supplementary 
Movie 1. 

traces were pre-processed, aligned to stimulus timing, and grouped 
by retinotopically defined area (Figure 2). 

Model formulation: Although Equation 29 was derived for 
transformations within a single distribution under changes in 
observational scale, the same operator can describe transformations 
between marginal distributions of distinct brain regions. For 
regions A and B with empirical distributions pA (x) and pB (x), their 
relationship can be approximated as 

pB (x) ≈ Tα,β 
 
pA (x) 

 
, (30) 

where Tα,β denotes the mixed entropic–expectation flow operator. 
This treats inter-regional transformations as the best-fitting 
reweighting and tilting of pA in order to recover pB. The fitted 
coeÿcients α and β therefore quantify the relative influence 
of entropy- and expectation-driven transformations linking 
the two regions. 

For time-series data, the same operator yields a predictive 
mapping from the activity of region A to the estimated signal of 
region B: 

xest B = xA + α 
 
logqA (xA) − logqA 

 
+ β [xA − xA] , (31) 

where qA (xA) is the empirical probability density of xA. The term 
with coeÿcient α reflects local log-density deviations (entropic 
component) and the term with coeÿcient β captures global mean 
deviations (expectation component). 

Density estimation and parameter fitting: Empirical densities 
qA (xA) were recovered using Gaussian kernel density estimation 
(KDE) via MATLAB’s ksdensity function, which implements 
Silverman’s rule for bandwidth selection. This produces smooth, 
data-adaptive estimates suitable for evaluating log-density terms. 
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For each ordered region pair A → B, we optimized α and β by 
minimizing the L2 prediction error between the model-generated 
and observed time-series signals using MATLAB’s fmincon with 
the interior-point algorithm. The reverse direction B → A was 
modeled separately, allowing directional asymmetries to emerge 
from independently fitted parameters. 

Validation and significance testing: To evaluate generalization, 
we implemented two complementary validation procedures: 

1. A hold-out test: α and β were fitted on the first 80 % of each 
regional time series and tested on the remaining 20%. 

2. A randomized cross-validation: 20 independent 80/20 splits 
were used to assess robustness to data segmentation. 
For each split, the coeÿcient of determination 

� 
R2 was 

computed between the predicted and empirical target signals. 
Across all region pairs, the dierence between training 
and test performance was small [R2 

= (3.1 ± 0.4) × 10−2
] 

indicating that the model generalizes well and does not overfit. 

Statistical significance was assessed via temporal permutation. 
Each input time series was circularly shifted 1,000 times with 
random osets within each session, and the transformation 
was refitted for each surrogate. p-values were computed as the 
proportion of surrogate R2 values greater than or equal to the 
empirical result. Multiple comparisons across all o-diagonal 
region pairs and mice were corrected using the Benjamini– 
Hochberg procedure (Benjamini and Hochberg, 1995) (q = 0.01), 
and results were additionally verified using Bonferroni adjustment. 

Results 

All results can be reproduced with the accompanying code (see 
Code Availability). 

Synthetic data: Using known entropy (α) and expectation (β) 
flow parameters from Equation 29, we created the following two 
forward-generative models: 

1. A Gaussian process undergoing noise-driven diusion 
(Figure 3A). 

2. A stochastic Langevin process with a sinusoidal drift 
(Figure 3B). 

In the case of the Gaussian process (Figure 3A), the model 
recovered α and β with errors of 24.4% and 19.8%, respectively. 
The recovered distributions accurately matched the ground-truth 
distributions across time, with an average squared Wasserstein-2 
distance of 9.3 × 10−4 , a total variation distance of 0.03, and a 
mean L2 error of 9.0 × 10−4 . In the case of the Langevin process 
(Figure 3B), the recovered α and β-values deviated from the 
ground-truth values by 7.1% and 3.0%, respectively. The recovered 
signal closely tracked the ground-truth trajectory, with a total 
variation distance of 0.02 and an L2 error of 0.03. 

Empirical data: We computed the first principal component 
of pixel activity within each region of the visual cortex and used 
the mixed-flow transformation from Equation 29 to model signals 
within one region, based on another region’s activity. We show an 

FIGURE 3 

(A) We show a Gaussian distribution evolving according to a 
diffusion process at an early point in time t1 (red) and at a later point 
in time t2 (black). The solid and dashed lines indicate the 
distributions generated using ground-truth and recovered 
parameters, respectively. (B) A signal x(t) evolves according to a 
stochastic Langevin process with an oscillatory drift using 
ground-truth (red) and recovered (black) parameters. 

FIGURE 4 

A segment of the normalized first principal component of 
two-photon signal amplitude from area AM in mouse M3 is shown 
in black. The red trace shows the result of using V1 to predict 
activity in AM with the mixed-flow transformation model. 

example of using the primary visual cortex (V1) to estimate the 
anteromedial area (AM) (R2 

= 0.90, p = 0.001, Figure 4). 
Correcting for multiple comparisons using false discovery rate 

(FDR), we performed this same analysis for every pair of regions 
across mice (Figure 5). 

The highest R2 values which are consistent across all five 
mice occur between the rostrolateral area and primary visual 
cortex. Across all region pairs, α averaged (−8.9 ± 8.0) × 10−6 

and β −1.0 ± 0.1 (see Supplementary Table 1), indicating that 
expectation-driven transformations dominated the mappings. 

Discussion 

In this study, we formalize the link between the geometric 
structure of probability distributions and their information-
theoretic content. Specifically, we show that transformations 
between zero-mean Gaussian distributions can be decomposed 
into orthogonal entropic and expectation-based components. The 
centered symmetric distribution assumption used here serves only 
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FIGURE 5 

Pairwise directional predictability between brain regions: anterolateral (A), anteromedial (M), lateromedial (L), posteromedial (P), rostrolateral (R), and 
primary visual cortex (V). Each matrix corresponds to one mouse (M1–M5, left to right). Greyscale values indicate the coefficient of determination � 
R2 
 

for directional prediction strength between each pair of cortical regions. Note that all values remain significant following FDR correction. We 
show the equivalent results using Bonferroni correction in Supplementary Figure 1. 

as an analytically tractable illustration of orthogonal entropy and 
expectation flows, not as a biological constraint. We validated this 
framework on synthetic data and then applied it to two-photon 
neuroimaging from the murine visual cortex, demonstrating 
how information geometry can reveal structured transformations 
between populations. 

Our analysis revealed a robust bi-directional transformation 
between the rostrolateral area (RL) and the primary visual cortex 
(V1). RL integrates visual input from V1 with movement- and task-
related signals (Rasmussen et al., 2021), playing a role analogous to 
the parietal cortex in primates (D’Souza et al., 2022). The observed 
reciprocity between RL and V1 therefore suggests a loop consistent 
with predictive-coding theories, in which visual processing arises 
from reciprocal exchanges between hierarchical regions (Huang 
and Rao, 2011; Jurjut et al., 2017; Wang and Burkhalter, 2007). 

The link between neural dynamics and information processing 
shown here also aligns with the eÿcient coding hypothesis, which 
posits that neural systems adapt their responses to match the 
statistical structure of sensory input (Manookin and Rieke, 2023). 
In our framework, entropic and expectation flows capture this 
adaptation by adjusting the spread and mean of neural activity. In 
communication-through-coherence (CTC) models (Fries, 2015), 
information exchange is most eective when inputs arrive during 
times of high excitability. Analogously, unpredictable sensory input 
corresponds to dominant entropic flow that broadens response 
range, whereas predictable or task-driven states correspond to 
dominant expectation flow that centers activity on relevant signal 
averages. 

In our formulation, the entropy term quantifies the spread 
of activity distributions within each region, reflecting intrinsic 
variability, whereas the expectation term quantifies systematic 
mean shifts reflecting signal transfer between regions. The fitted 
coeÿcients α and β thus separate transformation components 
driven by shared fluctuations versus structured shifts. Regions 
with strong shared components exhibit higher joint predictability 
and lower divergence, whereas those dominated by independent 
fluctuations exhibit higher entropy but weaker coupling. 

Traditional approaches such as Granger causality (Ding et al., 
2006) or mutual information (Quian Quiroga and Panzeri, 2009) 
quantify statistical dependencies between regions but do not specify 
the form of the transformation linking them. Our framework 
addresses this gap by modeling how one region’s probability 
distribution is geometrically transformed into that of another. 
Under zero-mean Gaussian assumptions, the orthogonality of 
entropic and expectation flows ensures that these transformation 

components can be interpreted independently. In summary, we 
introduce a framework that decomposes information-geometric 
transformations between neural probability distributions into 
interpretable information-theoretic flow components. Although 
demonstrated here in the murine visual cortex, the same approach 
provides a versatile tool for testing theories of neural function 
across species, modalities, and scales. 
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