:' frontiers ‘ Frontiers in Neuroinformatics

’ ® Check for updates

OPEN ACCESS

EDITED BY
Pedro Antonio Valdes-Sosa,

University of Electronic Science
and Technology of China, China

REVIEWED BY
Hiroshi Yamada,

University of Tsukuba, Japan
Kosio Beshkov,

University of Oslo, Norway

*CORRESPONDENCE
Erik D. Fagerholm
erik.daniel.fagerholm@med.muni.cz

RECEIVED 06 September 2025
ACCEPTED 14 October 2025
PUBLISHED 30 October 2025

CITATION

Fagerholm ED, Tanaka H and Brazdil M
(2025) Information-theoretic gradient flows
in mouse visual cortex.

Front. Neuroinform. 19:1700481.

doi: 10.3389/fninf.2025.1700481

COPYRIGHT

© 2025 Fagerholm, Tanaka and Brazdil. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics

TYPE Original Research
PUBLISHED 30 October 2025
pol 10.3389/fninf.2025.1700481

Information-theoretic gradient
flows in mouse visual cortex

Erik D. Fagerholm'*, Hirokazu Tanaka? and Milan Brazdil!

'First Department of Neurology, St. Anne'’s University Hospital and Faculty of Medicine, Masaryk
University, Brno, Czechia, *Faculty of Information Technology, Tokyo City University, Tokyo, Japan

Introduction: Neural activity can be described in terms of probability
distributions that are continuously evolving in time. Characterizing how these
distributions are reshaped as they pass between cortical regions is key to
understanding how information is organized in the brain.

Methods: We developed a mathematical framework that represents these
transformations as information-theoretic gradient flows — dynamical
trajectories that follow the steepest ascent of entropy and expectation.
The relative strengths of these two functionals provide interpretable measures
of how neural probability distributions change as they propagate within neural
systems. Following construct validation in silico, we applied the framework to
publicly available continuous AF/F two-photon calcium recordings from the
mouse visual cortex.

Results: The analysis revealed consistent bi-directional transformations between
the rostrolateral area and the primary visual cortex across all five mice.
These findings demonstrate that the relative contributions of entropy and
expectation can be disambiguated and used to describe information flow within
cortical networks.

Discussion: We introduce a framework for decomposing neural signal
transformations into interpretable information-theoretic components. Beyond
the mouse visual cortex, the method can be applied to diverse neuroimaging
modalities and scales, thereby providing a generalizable approach for
quantifying how information geometry shapes cortical communication.

KEYWORDS

information geometry, gradient flows, neural connectivity, entropy, expectation, two
photon, calcium imaging

Introduction

The electrical activity in the brain reflects a combination of hidden internal states
which, although not directly observable, can be inferred via the signals picked up by
neuroimaging devices (Fiser et al., 2010; Friston, 2005; Ma et al,, 2006). One way
to describe these signals is in terms of probability distributions evolving in time. As
conditions change in the brain, the probability distributions shift accordingly, reflecting an
ongoing reorganization of internal representations. Understanding the processes by which
probability distributions transform as they pass among brain regions remains a central
challenge in computational neuroscience.

Changes in neural activity can be analyzed by studying how specific functionals
act on probability distributions. Two key examples of such functionals are entropy
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(Fagerholm et al., 2023; Keshmiri, 2020; Luczak, 2024) and
expectation (Gerstner and Kistler, 2002; Helias et al., 2014; Lanski
and Sacerdote, 2001), where the former widens the variance and
the latter shifts the mean of a given probability distribution. Each
functional is associated, via its gradient, with a specific flow across
the space of probability densities. This geometric (Nielsen, 2022)
perspective allows for a decomposition of transformations into
interpretable information-theoretic components.

We describe how neural activity distributions change when
viewed at different observational scales, and formalize these
changes using information-theoretic geometry. The adaptation of
neural distributions, central to predictive coding (Clark, 2013;
Rao and Ballard, 1999) and efficient representation (Barlow,
1961; Simoncelli and Olshausen, 2001; Wei and Stocker, 2015),
corresponds to systematic transformations in probability space.
By expressing these transformations as gradient flows, we provide
a mathematical description of how distributions evolve under
the competing influences of variability (entropy) and stability
(expectation). We show that in the specific case of a centered
symmetric distribution, entropy and expectation form orthogonal
components, and are thus able to be added as basis flows.

Previous work on neural signal transmissions has been largely
focused on statistical dependencies between observed activation
patterns (Bastos and Schoffelen, 2016; Friston, 2011). For instance,
metrics such as mutual information (Borst and Theunissen, 1999;
Panzeri et al,, 2017) and Granger causality (Seth et al., 2015)
quantify how strongly activity in one region predicts activity in
another. However, these metrics do not capture how the full
probability distributions transform across regions. This is precisely
the missing component that our methodology addresses.

While the present study applies the framework to continuous
AF/F calcium signals, the formulation itself is modality-agnostic.
Because it operates on empirical probability densities, rather than
on “raw” measurements, the same principles can be applied
to spiking activity. This is achieved by constructing firing-rate
distributions or by using smooth approximations of Poisson
processes — a standard approach in population coding models.

We validate this framework i silico and then extract dominant
flows linking regions within the murine visual cortex, captured
using two-photon imaging. The visual cortex in mice is particularly
well-suited to our study, given that adjacent areas therein
exhibit coordinated patterns of activity (Felleman and Van Essen,
1991; Harris et al., 2019) across functionally specialized regions
(Andermann and Moore, 2006; Glickfeld et al., 2013; Marshel et al.,
2011). Beyond this specific application, our approach introduces
a generalizable method for analysing any scenario in which
distributions are transformed — not just among cortical regions,
but also between measurement devices, or across spatiotemporal
scales.

Materials and methods

Here we formalize how probability distributions transform
when the observation scale changes. This formulation reveals two
flows — one linked to entropy and the other to expectation. In
the case of a centered symmetric distribution these two flows form
orthogonal bases for information-theoretic transformations.
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We begin with the following definitions:

x € R™ the state of the system, represented by an n-
dimensional variable.

s € RT: a positive-valued parameter that controls the
scale of observation.

q (x; Xs): a probability density function over x, conditioned
on the observation scale \g, which remains normalized for all
scales:

/qu:lvxs. (1)

We define the space of all valid (smooth, positive, normalized)
probability distributions as the information space P:

P = [q eC'(R") q >0, /q(x)dx = 1] )
which yields a nonlinear manifold of valid distributions within
the space of all possible functions.

Power law generators: Due to the ubiquity of power laws in the
analysis of neural systems (Fiser et al., 2010), we investigate how
the probability distribution g (x; hs) changes to a new distribution
q (x; \s) via:

s 4°

q W, (3)

where the partition function in the denominator ensures correct
normalization of the new distribution g for all values of k.

We next analyze the form of Equation 3 for very small
changes in scale. Specifically, we seek the associated generator
(Amari and Nagaoka, 2000) — i.e., the infinitesimal power law
transformation associated with an increase in Ag. As motivated by
Noether’s theorem (Noether, 1983) and Lie theory (Cohn, 1957),
the derivation of a generator creates a powerful tool that allows for
the recovery of arbitrary transformations.

To see how this applies to our particular case, we begin by
defining the scale parameter Ag in terms of an arbitrarily small
constant €:

As = 1+e¢, (4)

thereby allowing for any scale parameter A s to be defined by the
iterated application of €.

Applying Equation 4 to Equation 3, we obtain:
s 47

" e o

Y

Next, using the fact that ¢* &~ 1 4+ x for small x, we expand
g'*® to first order in ¢ and use the identities: g'** = gq°, and
qq° = qe1°84, to linearize the effect of the power law transform:

7' ~ (1+¢logq)g, (6)

which evaluates Equation 3 near hg = 1.
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To ensure that the transformed density remains normalized, we
divide Equation 6 by its associated partition function:

A 1 + elogg
-~ [qdx+ sfqloquxq’

Substituting the normalization condition from Equation 1 into

q )

the denominator, and using the definition of the mean:

logg = / qlogqdx . (8)
Equation 7 simplifies to:

- 1 + ¢lo,
ga %, ©)
1+¢ logq

Lix o
1+y
to linearize Equation 9, thereby yielding the power law generator:

Finally, we use the fact that 1+ x — y for small x and y

A

g = [1+¢(logg— logq))] a. (10)

which can equivalently be expressed as the following differential
equation:

ologq
O\s

= logq — logq . (11)

Power laws and entropic flow: We now note that the generator
derived in Equation 10 includes a term glogq, which resembles the
integrand of entropy S [q], hinting at a connection between power
law transformations and entropy:

S= —/qloqux. (12)

We investigate this connection by calculating in which
direction entropy increases most rapidly, within the space of valid
probability distributions P in Equation 2. This direction is given by
the functional gradient of the negative entropy in Equation 12:

8
— = 1+ logg. 13
5 + logq (13)

Equation 13 has a mean given by:

<2—S> = /qu+/qloqux, (14)
q

which, using Equations 1, 8, can be written as:

38
—) =1 . 1
<8q> + logg (15)

We define an entropic flow vg as the mean gradient in
Equation 15 subtracted from the gradient in Equation 13. This has
the effect of projecting the gradient onto the manifold P of valid
probability densities in Equation 2:

3S 3S (16)

vg = — —(—),
P78 \bg

which, using Equations 13, 15, reads:

vs = logq — logq , (17)
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i.e., we discover exactly the same expression as in Equation 11,
meaning that we can write:

ologq
O\s

= vs. (18)

This reveals a relationship between entropic flow and power law
transformations indexed by a scale parameter As.

Generalized flow: The form of Equation 18 can be generalized
to arbitrary functionals 7 [g], which define continuous trajectories
through information space P via associated flow parameters A r.
The flow of F [q] preserves the geometric structure of Equation 18,
in terms of a projected gradient on the log density of g, while
allowing for arbitrary functionals:

ologq 3F <8}' >
= V]: s V]-' = < —\< /-
ONF dq dq

(19)

Here, the logq term is not an artefact of the entropic expression
in Equation 18. Rather, logq persists in the generalized flow
expression in Equation 19 because Ar parameterizes a flow of
the form 6q/0hr ~ ¢, which maps to dlogg/0\ F. Equation 19
therefore yields a class of projected gradient flows v which depend
on the choice of functional F.

Basis flows: Thus far we have established that:

1. Power law transformations are associated with entropic flow,
2. The power law/entropy link can be generalized to arbitrary
functionals beyond entropy.

Given these two points, our next question is whether we can
find a flow vz that is orthogonal to entropic flow v, as this would
allow for a decomposition into independent components. To find
such an orthogonal flow, we require that the inner product between
vr and vg equals zero:

(vs, vE) = 0, (20)

where we can use Equations 17, 19 to write the covariance as:

(vs,vF) = | (logg — logg)) N gwa e
8q

8q
which is equivalent to the covariance between logg and 8.F /3g
under g (x):

3
(vs, vF) = Covy (logq , ?)i-) . (22)
q

The simplest class of F is given by linear expectation:

f[q] = /xq (x) dx, (23)
with a functional derivative given by:
8F
— =X (24)
8q

If we then assume a zero-mean Gaussian form for q (x), for
which logg ~ x?, Equation 22 becomes:

(vs,vE) = Covy (xz, x) N (25)
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which satisfies the orthogonality condition in Equation 20,
which in turn shows that entropy and expectation define
orthogonal flows in the specific case of a centered
symmetric distribution.

We next look for the transformation associated with the

expectation functional using Equation 19:

ol
= -, (26)
which has a solution given by:
logq (x; %) = logq (x; 0) + ) (x — (x)), (27)
and hence:
x; 0) eM*
qlx; ) = 40x: ) (28)

J q(x; 0) ¥ dx’

where the partition function in the denominator ensures correct
normalization.

Therefore, just as entropic flow arises from power law
transformations in Equation 18, the expectation flow corresponds
to an exponential tilt in Equation 28. Intuitively, the entropic and
expectation flows capture how variance and expectation change
with observational scale, respectively. We summarize the links
between these two information-theoretic functionals and their
associated geometric transformations in Table 1.

Synthetic data: Having established entropy and expectation as
orthogonal basis functionals, we use Equations 17, 26 to define a
mixed entropic-expectation flow combining both components:

ologgq
o\

= o (logg — logq)) + B (x — (x)), (29)
where the coefficients o and B control the relative contributions of
entropy and expectation, respectively.

To verify that the model parameters can be accurately recovered
from data, we performed two in silico tests. The flow in Equation 29
was simulated using pre-specified o and B-values applied to
samples drawn from: (1) a Gaussian process, and (2) a one-
dimensional Langevin process with a time-varying oscillatory drift
term. Recovery accuracy was assessed by comparing true versus
fitted parameters and evaluating similarity between distributions
using Wasserstein-2 distance, total variation, and L? metrics.

Two-photon imaging data: We next applied the same mixed-
flow framework to publicly available empirical data in the form of
two-photon calcium-imaging recordings from five mice (Kumar
et al, 2021). The dataset includes neuronal responses from
six retinotopically defined visual areas: primary visual cortex
(V1), lateromedial (LM), anterolateral (AL), rostrolateral (RL),
anteromedial (AM), and posteromedial (PM) (Figure 1).

Visual stimuli consisted of natural movies (30-120 s) and
resting-state recordings under a constant grey screen (5 min). AF/F

TABLE 1 Summary properties for entropy and expectation flows.

Entropy Expectation ‘
Functional F = — [qlogqdx F = [xq(x)dx
Flow % = logq — logq % = x— (x)
Transformation q— fZ:: e q— %
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Primary Visual
Cortex (V1)

FIGURE 1

The murine visual cortex, consisting of V1, LM, AL, RL, AM, and PM.
Mouse M1 is shown in the large outline and the other four mice
M2-M5 are shown in the smaller outlines.

€0
FIGURE 2 3 w

Mice M1-M5 in the same layout as Figure 1, each showing a single
frame of fluorescence intensity for the indicator GCaMP6s. We
show a segment of these data evolving in time in Supplementary
Movie 1.

traces were pre-processed, aligned to stimulus timing, and grouped
by retinotopically defined area (Figure 2).

Model formulation: Although Equation 29 was derived for
transformations within a single distribution under changes in
observational scale, the same operator can describe transformations
between marginal distributions of distinct brain regions. For
regions A and B with empirical distributions p4 (x) and pp (x), their
relationship can be approximated as

pB (%) ~ Tup [pa (0], (30)

where Ty g denotes the mixed entropic-expectation flow operator.
This treats inter-regional transformations as the best-fitting
reweighting and tilting of p4 in order to recover pp. The fitted
coefficients o and P therefore quantify the relative influence
of entropy- and expectation-driven transformations linking
the two regions.

For time-series data, the same operator yields a predictive
mapping from the activity of region A to the estimated signal of
region B:

x3' = x4+ ologga (xa) — logqa)] + B lxa — (xa)],  (31)

where g4 (x4) is the empirical probability density of x4. The term
with coefficient o reflects local log-density deviations (entropic
component) and the term with coeflicient f captures global mean
deviations (expectation component).

Density estimation and parameter fitting: Empirical densities
qa (x4) were recovered using Gaussian kernel density estimation
(KDE) via MATLAB’s ksdensity function, which implements
Silverman’s rule for bandwidth selection. This produces smooth,
data-adaptive estimates suitable for evaluating log-density terms.
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For each ordered region pair A — B, we optimized o and f by
minimizing the L? prediction error between the model-generated
and observed time-series signals using MATLAB’s fmincon with
the interior-point algorithm. The reverse direction B — A was
modeled separately, allowing directional asymmetries to emerge
from independently fitted parameters.

Validation and significance testing: To evaluate generalization,
we implemented two complementary validation procedures:

1. A hold-out test: o and f were fitted on the first 80 % of each
regional time series and tested on the remaining 20%.

2. A randomized cross-validation: 20 independent 80/20 splits
were used to assess robustness to data segmentation.
For each split, the coefficient of determination (Rz) was
computed between the predicted and empirical target signals.
Across all region pairs, the difference between training
and test performance was small [AR?> = (3.1 £ 0.4) x 1072]
indicating that the model generalizes well and does not overfit.

Statistical significance was assessed via temporal permutation.
Each input time series was circularly shifted 1,000 times with
random offsets within each session, and the transformation
was refitted for each surrogate. p-values were computed as the
proportion of surrogate R? values greater than or equal to the
empirical result. Multiple comparisons across all off-diagonal
region pairs and mice were corrected using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) (g = 0.01),
and results were additionally verified using Bonferroni adjustment.

Results

All results can be reproduced with the accompanying code (see
Code Availability).

Synthetic data: Using known entropy (o) and expectation (8)
flow parameters from Equation 29, we created the following two
forward-generative models:

1. A Gaussian process undergoing noise-driven diffusion
(Figure 3A).

2. A stochastic Langevin process with a sinusoidal drift
(Figure 3B).

In the case of the Gaussian process (Figure 3A), the model
recovered o and B with errors of 24.4% and 19.8%, respectively.
The recovered distributions accurately matched the ground-truth
distributions across time, with an average squared Wasserstein-2
distance of 9.3 x 1074, a total variation distance of 0.03, and a
mean L? error of 9.0 x 10™%. In the case of the Langevin process
(Figure 3B), the recovered o and B-values deviated from the
ground-truth values by 7.1% and 3.0%, respectively. The recovered
signal closely tracked the ground-truth trajectory, with a total
variation distance of 0.02 and an L? error of 0.03.

Empirical data: We computed the first principal component
of pixel activity within each region of the visual cortex and used
the mixed-flow transformation from Equation 29 to model signals
within one region, based on another region’s activity. We show an
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p(x) >

0.0

0 time (a.u.) 1

FIGURE 3

(A) We show a Gaussian distribution evolving according to a
diffusion process at an early point in time t; (red) and at a later point
in time t, (black). The solid and dashed lines indicate the
distributions generated using ground-truth and recovered
parameters, respectively. (B) A signal x(t) evolves according to a
stochastic Langevin process with an oscillatory drift using
ground-truth (red) and recovered (black) parameters

— empirical
— recovered

0 time (seconds) 15!

FIGURE 4

A segment of the normalized first principal component of
two-photon signal amplitude from area AM in mouse M3 is shown
in black. The red trace shows the result of using V1 to predict
activity in AM with the mixed-flow transformation model.

example of using the primary visual cortex (V1) to estimate the
anteromedial area (AM) (R* = 0.90, p = 0.001, Figure 4).

Correcting for multiple comparisons using false discovery rate
(FDR), we performed this same analysis for every pair of regions
across mice (Figure 5).

The highest R?* values which are consistent across all five
mice occur between the rostrolateral area and primary visual
cortex. Across all region pairs, a averaged (—8.9 4 8.0) x 107°
and p —1.0£0.1 (see Supplementary Table 1), indicating that
expectation-driven transformations dominated the mappings.

Discussion

In this study, we formalize the link between the geometric
structure of probability distributions and their information-
theoretic content. Specifically, we show that transformations
between zero-mean Gaussian distributions can be decomposed
into orthogonal entropic and expectation-based components. The
centered symmetric distribution assumption used here serves only
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FIGURE 5

Pairwise directional predictability between brain regions: anterolateral (A), anteromedial (M), lateromedial (L), posteromedial (P), rostrolateral (R), and
primary visual cortex (V). Each matrix corresponds to one mouse (M1-M5, left to right). Greyscale values indicate the coefficient of determination
(RZ) for directional prediction strength between each pair of cortical regions. Note that all values remain significant following FDR correction. We
show the equivalent results using Bonferroni correction in Supplementary Figure 1.

as an analytically tractable illustration of orthogonal entropy and
expectation flows, not as a biological constraint. We validated this
framework on synthetic data and then applied it to two-photon
neuroimaging from the murine visual cortex, demonstrating
how information geometry can reveal structured transformations
between populations.

Our analysis revealed a robust bi-directional transformation
between the rostrolateral area (RL) and the primary visual cortex
(V1). RL integrates visual input from V1 with movement- and task-
related signals (Rasmussen et al., 2021), playing a role analogous to
the parietal cortex in primates (D’Souza et al., 2022). The observed
reciprocity between RL and V1 therefore suggests a loop consistent
with predictive-coding theories, in which visual processing arises
from reciprocal exchanges between hierarchical regions (Huang
and Rao, 2011; Jurjut et al., 2017; Wang and Burkhalter, 2007).

The link between neural dynamics and information processing
shown here also aligns with the efficient coding hypothesis, which
posits that neural systems adapt their responses to match the
statistical structure of sensory input (Manookin and Rieke, 2023).
In our framework, entropic and expectation flows capture this
adaptation by adjusting the spread and mean of neural activity. In
communication-through-coherence (CTC) models (Fries, 2015),
information exchange is most effective when inputs arrive during
times of high excitability. Analogously, unpredictable sensory input
corresponds to dominant entropic flow that broadens response
range, whereas predictable or task-driven states correspond to
dominant expectation flow that centers activity on relevant signal
averages.

In our formulation, the entropy term quantifies the spread
of activity distributions within each region, reflecting intrinsic
variability, whereas the expectation term quantifies systematic
mean shifts reflecting signal transfer between regions. The fitted
coefficients a and f thus separate transformation components
driven by shared fluctuations versus structured shifts. Regions
with strong shared components exhibit higher joint predictability
and lower divergence, whereas those dominated by independent
fluctuations exhibit higher entropy but weaker coupling.

Traditional approaches such as Granger causality (Ding et al.,
2006) or mutual information (Quian Quiroga and Panzeri, 2009)
quantify statistical dependencies between regions but do not specify
the form of the transformation linking them. Our framework
addresses this gap by modeling how one region’s probability
distribution is geometrically transformed into that of another.
Under zero-mean Gaussian assumptions, the orthogonality of
entropic and expectation flows ensures that these transformation

Frontiers in Neuroinformatics

components can be interpreted independently. In summary, we
introduce a framework that decomposes information-geometric
transformations between neural probability distributions into
interpretable information-theoretic flow components. Although
demonstrated here in the murine visual cortex, the same approach
provides a versatile tool for testing theories of neural function
across species, modalities, and scales.
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