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Introduction: Autism Spectrum Disorder (ASD) diagnosis remains complex 
due to limited access to large-scale multimodal datasets and privacy concerns 
surrounding clinical data. Traditional methods rely heavily on resource-intensive 
clinical assessments and are constrained by unimodal or non-adaptive learning 
models. To address these limitations, this study introduces AutismSynthGen, 
a privacy-preserving framework for synthesizing multimodal ASD data and 
enhancing prediction accuracy.
Materials and methods: The proposed system integrates a Multimodal Autism 
Data Synthesis Network (MADSN), which employs transformer-based encoders 
and cross-modal attention within a conditional GAN to generate synthetic data 
across structural MRI, EEG, behavioral vectors, and severity scores. Differential 
privacy is enforced via DP-SGD (ε ≤ 1.0). A complementary Adaptive Multimodal 
Ensemble Learning (AMEL) module, consisting of five heterogeneous experts 
and a gating network, is trained on both real and synthetic data. Evaluation is 
conducted on the ABIDE, NDAR, and SSC datasets using metrics such as AUC, 
F1 score, MMD, KS statistic, and BLEU.
Results: Synthetic augmentation improved model performance, yielding 
validation AUC gains of ≥ 0.04. AMEL achieved an AUC of 0.98 and an F1 
score of 0.99 on real data and approached near-perfect internal performance 
(AUC ≈ 1.00, F1 ≈ 1.00) when synthetic data were included. Distributional 
metrics (MMD = 0.04; KS = 0.03) and text similarity (BLEU = 0.70) demonstrated 
high fidelity between the real and synthetic samples. Ablation studies confirmed 
the importance of cross-modal attention and entropy-regularized expert gating.
Discussion: AutismSynthGen offers a scalable, privacy-compliant solution 
for augmenting limited multimodal datasets and enhancing ASD prediction. 
Future directions include semi-supervised learning, explainable AI for clinical 
trust, and deployment in federated environments to broaden accessibility while 
maintaining privacy.
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1 Introduction

Autism spectrum disorder (ASD) encompasses a group of 
heterogeneous neurodevelopmental conditions defined by persistent 
deficits in social communication and interaction, along with restricted, 
repetitive patterns of behavior and interests. Early and accurate 
identification of ASD is critical: timely intervention can profoundly 
improve social, cognitive, and adaptive outcomes, yet standard 
diagnostic procedures remain labor-intensive and subjective. 
Clinicians currently rely on structured assessments, such as the 
Autism Diagnostic Observation Schedule (ADOS) and the Autism 
Diagnostic Interview–Revised (ADI-R), which require extensive 
training, can take several hours per evaluation, and exhibit substantial 
inter-rater variability (Levy et al., 2011). Meanwhile, the prevalence of 
ASD has risen to an estimated 1–2% among children worldwide, 
imposing growing burdens on healthcare systems, educational 
services, and families (Ding et al., 2024; Friedrich et al., 2023).

In response to these limitations, deep learning approaches have 
emerged as promising solutions for automating the detection of 
ASD. Convolutional neural networks (CNNs) applied to structural 
and functional MRI have shown encouraging results. For instance, 
ASD-DiagNet leveraged an autoencoder with perceptual loss and data 
augmentation via linear interpolation to achieve up to 80% 
classification accuracy on fMRI scans (Eslami et al., 2019). Similarly, 
generative adversarial networks (GANs) have been adapted to 
synthesize realistic biomedical time series. For instance, EEG-GAN 
demonstrated that GAN-based augmentation of 
electroencephalographic (EEG) data can enhance downstream 
classification performance in brain–computer interface tasks, 
suggesting applicability to clinical EEG analysis (Hartmann et al., 
2018). Despite these achievements, such unimodal strategies overlook 
the full spectrum of ASD biomarkers.

Integrating multimodal data—combining neuroimaging, 
electrophysiology, genetic variants, and behavioral assessments—can 
exploit complementary information and boost diagnostic accuracy. 
Recent reviews confirm that attention-based fusion of fMRI and EEG 
consistently outperforms single-modality models (Dcouto and 
Pradeepkandhasamy, 2024). Large public resources, including ABIDE 
(≈2,200 subjects across 17 sites), NDAR (≈1,100 high-density EEG 
recordings paired with behavioral scales), and SSC (≈2,600 simplex 
families with whole-exome sequencing and ADOS/ADI-R measures), 
provide rich multimodal datasets but face challenges of limited cohort 
sizes, inter-site variability, and stringent privacy constraints (Di 
Martino et al., 2017; Payakachat et al., 2016; Levy et al., 2011).

To address data scarcity and privacy concerns, differentially 
private generative models have been proposed. DP-CGAN introduced 
per-sample gradient clipping and Rényi differential privacy accounting 
to limit privacy leakage while generating synthetic tabular medical 
records (Torkzadehmahani et al., 2019), and DP-CTGAN extended 
this approach to a federated setting by conditioning on feature subsets 
(Fang et al., 2022). More recently, GARL combined InfoGAN with 
deep Q-learning to iteratively refine synthetic neuroimaging samples, 
reporting significant classification gains on ABIDE data (Zhou et al., 
2024a). However, these approaches typically target a single modality 
and do not enforce consistency across modalities, limiting their utility 
for downstream multimodal systems.

On the predictive front, ensemble learning offers a framework for 
integrating heterogeneous feature representations. Static 

ensembles—such as simple averaging or majority voting—provide 
modest gains but fail to adapt weights based on sample-specific 
modality relevance. Mixture-of-experts architectures, featuring 
learnable gating networks that dynamically weight model outputs, 
have shown success in other domains; however, their application to 
privacy-preserving, multimodal ASD data remains largely unexplored.

In this study, AutismSynthGen, an end-to-end framework that 
addresses multimodal data scarcity and privacy while delivering 
robust ASD prediction, is proposed. The key contributions are 
as follows:

	 1	 Multimodal Data Synthesis (MADSN): A conditional GAN 
with transformer-based encoders (6 layers, eight heads, hidden 
size 512) and cross-modal attention to jointly model structural 
MRI, EEG time series, behavioral feature vectors, and 
calibrated severity scores. Rigorous differential privacy 
(DP-SGD with clipping norm 1.0 and noise multiplier 1.2) 
guarantees ε ≤ 1.0 at δ = 10−5.

	 2	 Adaptive Ensemble Learning (AMEL): A mixture-of-experts 
classifier integrating five heterogeneous models—a 3D-CNN, 
a 1D-CNN, an MLP, a cross-modal transformer, and a graph 
neural network—whose logits are adaptively weighted by a 
two-layer gating MLP (hidden 128, ReLU) with entropy 
regularization (λ = 0.01).

	 3	 Comprehensive Evaluation: Demonstration on ABIDE, 
NDAR, and SSC datasets, where MADSN-augmented training 
raises the validation AUC by ≥ 0.04 over strong uni- and 
multimodal baselines.

	 4	 Statistical and Privacy Analysis: Conducted extensive 
ablations on cross-modal consistency and DP parameters, as 
well as bootstrap confidence intervals and paired Wilcoxon 
tests, to confirm both the efficacy and stability of 
AutismSynthGen under ε ≤ 1.0 privacy constraints.

By unifying transformer-driven multimodal synthesis, formal 
privacy guarantees, and adaptive ensemble prediction, 
AutismSynthGen advances the state of the art in reliable, privacy-
compliant ASD detection.

2 Related research

2.1 Unimodal MRI-based ASD detection

Structural and functional MRI have been extensively studied 
using deep learning classifiers. Early CNN-based pipelines applied to 
ABIDE data (Di Martino et al., 2017) achieved promising results: 
Moridian et al. reported up to 78% accuracy but highlighted sensitivity 
to inter-site variability and limited cohort sizes (Moridian et al., 2022), 
while ASD-DiagNet combined a convolutional autoencoder and 
perceptual loss to reach ≈ 80% accuracy on fMRI scans, albeit with 
coarse anatomical synthesis (Eslami et al., 2019). Subsequent research 
has addressed generalization and richer feature extraction: Liu et al. 
surveyed advanced neuroimaging models, concluding that hybrid 
3D-CNN and attention mechanisms yield stronger embeddings (Liu 
et al., 2021); Heinsfeld et al. (2018) demonstrated end-to-end deep 
models with site-adaptation layers to improve cross-validation 
performance; Singh et al. (2023) introduced transfer learning across 
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ABIDE splits to mitigate dataset bias; and Okada et  al. (2025) 
employed RNN-attention networks on volumetric MRI, capturing 
sequential spatial patterns. Multi-view frameworks, such as MultiView, 
have further fused different MRI contrasts to enhance detection 
robustness (Song et  al., 2024). Additionally, adversarial domain 
adaptation has been utilized to align feature distributions across sites 
(Gupta et al., 2025). More recently, self-supervised pretraining on 
resting-state fMRI has been shown to improve downstream ASD 
classification (Zhou et al., 2024a).

2.2 Unimodal EEG and behavioral models

High-density EEG offers complementary temporal biomarkers. 
EEG-GAN pioneered GAN-driven EEG augmentation, improving 
downstream classification in BCI contexts, although it has not yet been 
applied to ASD (Hartmann et al., 2018). Aslam et al. reviewed multi-
channel EEG feature engineering for ASD, advocating spectral and 
connectivity features (Aslam et  al., 2022). Behavioral assessments—
standardized scales for social communication and repetitive behaviors—
have also been modeled directly. Rubio-Martín et al. combined SVM, 
random forests, and an MLP on clinical vectors, achieving an AUC of 
approximately 0.75 on NDAR behavioral data (Rubio-Martín et  al., 
2024). Gamified assessment data, processed via signal-processing 
pipelines and ML classifiers, further underscored the utility of interactive 
behavioral measures (Bernabeu, 2022; Borodin et al., 2021).

2.3 Genetic and clinical score-based 
approaches

Genomic studies on simplex families have largely focused on risk-
locus discovery rather than classification (Li et al., 2024). Levy et al. 
(2011) analyzed de novo and transmitted CNVs in SSC data to identify 
ASD-associated variants. Automated pipelines have since applied 
shallow architectures to SNP embeddings, yet without integrating 
clinical scales. Avasthi et al. (2025) utilized transformer-based NLP to 
extract clinical text for ASD indicators, and graph convolutional 
networks have been leveraged to model correlations among behavioral 
domains (Washington et al., 2022). Joint classification and severity 
prediction via multi-task learning have also been explored (Wang 
et al., 2017).

2.4 Privacy-preserving generative models

Differential privacy (DP) has been integrated into GANs for the 
synthesis of sensitive medical data. DP-CGAN enforced per-sample 
clipping and Rényi DP accounting (ε ≤ 1.0) on tabular EHRs 
(Torkzadehmahani et  al., 2019), while DP-CTGAN extended 
conditional GANs to federated settings, balancing utility and privacy 
for mixed datasets (Fang et al., 2022). Zhang et al. (2021) introduced 
a DP-federated GAN for continuous medical imaging features, and 
Wang et al. (2024) applied DP-SGM to neuroimaging data (DP-SNM), 
achieving strong privacy with minimal quality loss. The GARL 
framework combined InfoGAN with deep Q-learning to iteratively 
refine MRI synthesis under privacy constraints, although it was 
limited to imaging alone (Zhou et al., 2024a). Broader surveys of 
privacy-utility trade-offs in medical GANs have mapped parameter 

impacts on sample fidelity and privacy leakage (Viswalingam and 
Kumar, 2025; Nanayakkara et al., 2022).

2.5 Multimodal fusion techniques / 
privacy-preserving frameworks

Attention-based fusion of heterogeneous modalities has 
demonstrated superior performance compared to unimodal baselines. 
Dcouto and Pradeepkandhasamy (2024) surveyed recent multimodal 
deep learning in ASD, highlighting gains from fMRI–EEG attention 
fusion but noting a lack of end-to-end models with formal consistency 
constraints. Baltrušaitis et al. (2018) provided a taxonomy of early, late, 
and hybrid fusion strategies, identifying cross-modal transformers as 
particularly promising for capturing intermodal correlations. Tools 
such as MultiView have operationalized early fusion in autism research 
(Song et al., 2024); federated multimodal learning has been proposed 
to preserve privacy across sites (Lakhan et al., 2023), and contrastive 
self-supervised methods have been introduced for joint embedding of 
multimodal ASD data (Qu et al., 2025; Vimbi et al., 2025).

Recent advances also integrate explainable federated learning for 
ASD prediction, combining privacy preservation with interpretability 
(Alshammari et al., 2024). Such approaches align with our emphasis 
on privacy and transparency, although they do not generate synthetic 
data or enforce cross-modal consistency as in AutismSynthGen.

2.6 Ensemble and mixture-of-experts 
methods

Adaptive ensemble strategies offer robustness by weighting 
diverse experts per sample. Sparsely gated mixture-of-experts (MoE) 
layers have demonstrated scalable adaptive weighting in language 
models (Shazeer et al., 2017); in medical contexts, ensemble deep 
learning has been applied to multimodal ASD screening, yielding 
improved sensitivity but without sample-specific gating (Taiyeb 
Khosroshahi et al., 2025). Rubio-Martín et al. (2024) demonstrated 
the benefits of simple averaging of heterogeneous classifiers on 
behavioral data, while Nguyen et  al. (2023) proposed MoE with 
gating regularization for noisy medical inputs. Recent studies have 
applied attention-based MoE to healthcare data, underscoring the 
importance of entropy penalties in avoiding expert collapse (Han 
et al., 2024).

2.7 Privacy-utility trade-off analyses

Comprehensive investigations into privacy-utility trade-offs have 
quantified the impact of DP parameters on the performance of 
generative models (Schielen et al., 2024). Nanayakkara et al. evaluated 
differentially private GANs across imaging benchmarks, mapping ε 
values to downstream classification accuracy (Nanayakkara et  al., 
2022). Table 1 compares the existing ASD detection frameworks.

2.8 Research gap

Despite substantial advances in unimodal deep learning for ASD 
detection—such as CNN-based classifiers on fMRI (Moridian et al., 
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2022; Eslami et al., 2019), hybrid autoencoder–GAN models (Eslami 
et al., 2019), and GAN-driven EEG augmentation (Hartmann et al., 
2018)—these approaches remain confined to single modalities and 
often overfit small, heterogeneous cohorts. Differentially private 
GANs have been applied to tabular medical records 
(Torkzadehmahani et al., 2019) and federated settings (Fang et al., 
2022; Wang et  al., 2024), but they neither extend to continuous 
neuroimaging or time-series data nor enforce consistency across 
EEG, behavioral, and imaging modalities.

Although attention-based fusion methods demonstrate 
improved performance for paired fMRI–EEG inputs (Dcouto and 
Pradeepkandhasamy, 2024; Zhou et al., 2024b) and surveys outline 
promising multimodal fusion taxonomies (Baltrušaitis et  al., 
2018), end-to-end architectures that jointly synthesize and 
integrate more than two modalities under formal privacy 
constraints are still lacking. Finally, ensemble strategies in ASD 
classification have largely relied on static averaging of expert 
outputs (Rubio-Martín et  al., 2024), whereas scalable, sample-
adaptive mixture-of-experts frameworks that have proven effective 

in other domains (Shazeer et  al., 2017) remain unexplored in 
this context.

The proposed framework addresses these gaps through two key 
innovations. First, a transformer-based conditional GAN incorporates 
cross-modal attention to generate coherent synthetic MRI, EEG, 
behavioral, and severity data, while differential privacy via DP-SGD 
(clipping norm 1.0, noise multiplier 1.2) guarantees ε ≤ 1.0 leakage 
bounds (Fang et al., 2022; Torkzadehmahani et al., 2019). Second, a 
mixture-of-experts ensemble employs five heterogeneous models—
3D-CNN, 1D-CNN, MLP, cross-modal transformer, and GNN—
whose logits are dynamically weighted by an entropy-regularized 
gating network, enabling sample-specific emphasis on the most 
informative modalities (Shazeer et al., 2017; Han et al., 2024). Rigorous 
evaluation on ABIDE (Di Martino et al., 2017), NDAR (Payakachat 
et  al., 2016), and SSC (Levy et  al., 2011) demonstrates statistically 
significant AUC improvements (≥ 0.04) over strong unimodal, static 
ensemble, and non-private baselines, thus bridging the identified 
research gaps in privacy-compliant multimodal synthesis and adaptive 
ASD prediction.

TABLE 1  Comparison of existing ASD detection frameworks: key methodologies, datasets employed, principal advantages, and noted limitations.

S. no Ref. no Proposed research Dataset used Pros Cons

1 Moridian et al. (2022) CNN-based ASD detection ABIDE (structural & 

fMRI)

End-to-end feature learning Sensitive to site variability; 

limited sample size

2 Eslami et al. (2019) ASD DiagNet (autoencoder + 

GAN augmentation)

ABIDE (fMRI) Perceptual loss improves feature 

quality

Coarse anatomical detail in 

synthesized images

3 Hartmann et al. (2018) EEG-GAN for EEG synthesis Public EEG benchmarks Realistic EEG generation Not evaluated for ASD

4 Rubio-Martín et al. (2024) Behavioral + NLP fusion 

(MLP, SVM, RF)

NDAR (behavioral scales, 

text)

Integrates textual and numerical 

clinical data

No multimodal interaction

5 Levy et al. (2011) CNV risk-locus analysis SSC (de novo CNVs, 

WES)

Identification of ASD-associated 

variants

No predictive classification

6 Torkzadehmahani et al. (2019) DP-CGAN for tabular 

medical data

Medical EHR cohorts Strong privacy guarantees 

(ε ≤ 1.0)

Reduced sample realism; 

tabular only

7 Fang et al. (2022) DP-CTGAN (federated) MIMIC-III (tabular) Federated DP; improved utility 

over DP-CGAN

Discrete features only

8 Zhou et al. (2024a) GARL (InfoGAN + DQN) ABIDE (MRI) Iterative refinement yields high-

fidelity MRI samples

Single modality; no EEG/

behavioral consistency

9 Dcouto and 

Pradeepkandhasamy (2024)

Attention-based fMRI + EEG 

fusion review

Multiple studies Demonstrates the benefits of 

hybrid fusion

Lacks an end-to-end model 

and privacy guarantees

10 Baltrušaitis et al. (2018) Multimodal ML survey & 

taxonomy

N/A Comprehensive fusion 

taxonomy

No empirical ASD 

implementation

11 Shazeer et al. (2017) Sparsely-gated Mixture-of-

Experts (MoE)

Language corpora Scalable adaptive weighting via 

learnable gating

High compute; not tailored 

to medical or multimodal 

data

12 Zhang et al. (2021) FedDPGAN for medical 

imaging

COVID-19 CT scans Federated DP for imaging Not applied to ASD

13 Wang et al. (2017) DP-SNM for neuroimaging Private neuroimaging 

cohorts

DP for continuous imaging Single modality; no fusion

14 Han et al. (2024) FuseMoE: MoE Transformers 

for Fusion

Multimodal benchmarks Flexible cross-modal fusion No formal privacy 

guarantees

15 Nanayakkara et al. (2022) Privacy-utility trade-off 

visualization

Synthetic benchmarks Maps the DP impact on utility 

comprehensively

No ASD-specific evaluation
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3 Proposed methodology

The AutismSynthGen framework jointly learns to synthesize 
multimodal autism data and to analyze it via an ensemble of predictive 
models. In our approach, a Multimodal Autism Data Synthesis 
Network (MADSN) uses transformer-based encoders and a 
conditional GAN to generate realistic multimodal data (e.g., 
neuroimaging, demographic vectors, behavioral). A complementary 
Adaptive Multimodal Ensemble Learning (AMEL) module trains a 
mixture-of-experts classifier on the synthesized (and real) data, 
assigning weights to each expert based on its performance and 
modality. This combined pipeline enables robust autism prediction and 
data augmentation while incorporating cross-modal consistency and 
differential privacy constraints for sensitive data. The overall flow is 
illustrated in Figure 1.

3.1 Dataset description

The model is trained and validated on three publicly 
available datasets:

	•	 ABIDE (Autism Brain Imaging Data Exchange): A multi-site 
neuroimaging dataset. ABIDE-I/II together include structural 
MRI (T1-weighted), resting-state functional MRI, and diffusion 
MRI from hundreds of ASD individuals and controls. Phenotypic 
assessments (age, IQ, diagnosis) accompany the imaging (Di 
Martino et al., 2017).

	•	 NDAR (National Database for Autism Research): Aggregates 
multimodal data, including behavioral assessments and EEG 
(Payakachat et al., 2016).

	•	 SSC (SimonsSimplex Collection): Includes genetic and behavioral 
data from families with autistic children (Levy et al., 2011).

First, sourced neuroimaging data from ABIDE I  and II, 
comprising 2,200 subjects (ASD and neurotypical controls) across 17 
sites. Second, incorporated 1,100 high-density EEG recordings from 
the National Database for Autism Research (NDAR), sampled at 
250 Hz alongside standardized behavioral assessments. Third, 
we included genetic and behavioral data for 2,600 simplex families 
from the Simons Simplex Collection (SSC), with whole-exome 
sequencing variants paired with ADOS/ADI-R measures. All data 
were split into train/validation/test sets in a 70/15/15% ratio, stratified 
by diagnosis, age, and site to preserve class balance. Experiments were 
repeated with three distinct random seeds (42, 123, 2025), and results 
are reported as the mean ± SD. It is important to note that evaluation 
was performed on stratified splits within ABIDE, NDAR, and 
SSC. No completely external dataset was available for validation. 
Hence, generalizability beyond these datasets remains to 
be established. The dataset details are mentioned in Appendix A.

3.2 Data preprocessing

Raw magnetic resonance images underwent skull-stripping, 
affine registration to MNI space, and voxel-wise intensity 
normalization to zero mean and unit variance. EEG signals were 

band-pass filtered between 1 and 40 Hz, notched at 50 Hz, and epochs 
exceeding ±100 μV were rejected; remaining segments were z-score 
normalized on an epoch-wise basis. Continuous features across 
modalities were imputed to their mean values, while categorical 
features employed one-hot encoding augmented by an explicit 
“unknown” flag. All continuous features (e.g., voxel intensities, age, 
and genomic variant counts) are normalized to have a mean of zero 
and a variance of one to stabilize training. For a feature ix , we compute 
as in Equation 1:

	
µ

σ
′ −
= i

i
xx

	
(1)

where µ  and σ  are the training set’s mean and standard deviation, 
respectively. This z-score normalization ensures each feature is on a 
comparable scale.

Categorical variables (e.g., gender, site, diagnostic codes) are 
transformed into one-hot encoded vectors. For a categorical feature 
with K  classes, a sample { }∈ 1.. ,c K is mapped to a binary vector 

{ }∈ 0,1 Kh such that =1jh  if and only if =c j. Missing values—common 
in multi-site clinical datasets—are imputed using simple statistical 
approaches. For numerical features, missing entries are replaced with 
the mean value µx computed from the observed data as represented 
in Equation 2:

	


µ
= 


,  ,
,  

i i
i

x i

x if x is observed
x

if x is missing 	
(2)

For categorical variables, an additional “unknown” category is 
added to handle missing values. More advanced methods (e.g., k-NN 
imputation or model-based approaches) are available but are not used 
here for simplicity and consistency. All preprocessing parameters 
(µ σ, , and encoding schemes) are learned from the training data and 
consistently applied to the validation, test, and synthetic datasets. Not 
all subjects had complete multimodal data. Missing features were 
imputed using mean (continuous) or ‘unknown’ category (categorical) 
values. While pragmatic, this may bias results and motivate the use of 
advanced missing-modality learning in the future. Behavioral 
narrative text fields from NDAR/SSC were anonymized, tokenized, 
and embedded using a pre-trained biomedical language model 
(BioBERT). The resulting 768-dimensional embeddings were reduced 
to 128 dimensions using PCA and used as input to MADSN. Synthetic 
text vectors (“text_projected”) generated by MADSN thus represent 
latent embeddings of behavioral descriptions rather than raw text.

3.3 MADSN architecture

Our Multimodal Autism Data Synthesis Network (MADSN) 
generates coherent synthetic triplets ( ,MRI EEGx x ,SNPx ) by fusing 
transformer-based embeddings and enforcing cross-modal consistency. 
Each modality is first encoded via a six-layer transformer (eight heads, 
hidden size 512), using positional encodings for EEG and learned 
embeddings for genetic variants and imaging patches. These modality-
specific outputs interact with one another through cross-modal attention, 
producing fused embeddings that are concatenated and projected into a 
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256-dimensional latent input for the generator. The generator ( ),G z y  is 
implemented as a four-layer MLP with LeakyReLU activations, while the 
discriminator ( ),D x y  features a shared three-layer MLP trunk branching 
into modality-specific heads.

Training follows a conditional GAN paradigm augmented with 
three loss components: standard adversarial loss 

( )( ( )( )( )  + −  [log log 1E D x E D G z , a cross-modal KL-divergence 
penalty to encourage consistency of joint posteriors, and a privacy 
penalty implemented via DP-SGD on the discriminator. We  set a 

clipping norm =1.0C  and a noise multiplier σ =1.2 to achieve ε ≤1.0 
at δ −= 510 , ensuring rigorous differential privacy guarantees without 
sacrificing data utility. Figure  2 illustrates the architecture of the 
proposed Multimodal Autism Data Synthesis Network (MADSN). 
Each input modality mx (e.g., EEG, behavioral text, demographic 
vectors) is first processed through a modality-specific transformer 
encoder mT  to produce a latent representation mh  (Equation 3):

	 ( )=m m mh T x 	 (3)

FIGURE 1

Overall AutismSynthGen architectural workflow.
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Each transformer encoder includes self-attention layers, 
particularly multi-head attention computed as in Equation 4:

	
( )

 
=   

 
, , ,

T

k

QKAttention Q K V softmax V
d 	

(4)

where , ,Q K V are query, key, and value projections of ,m kh d , and 
is the dimensionality of the key vectors. Positional encodings are 
added as necessary to maintain spatial or temporal relationships. 
Latent features mh from all modalities are then fused via cross-
modal attention.

For modalities ,i j, attention weights are computed as in 
Equation 5:

	

( )( ) ( )
 
 =   
 

T
q i k j

ij v j
W h W h

a softmax W h
d

	

(5)

All modality embeddings are concatenated and processed through 
shared attention layers to yield a unified latent vector z, encoding 
multimodal context. The generator G of the conditional GAN receives 
z, random noise ( )η ~ 0,N I , and class label c, and produces synthetic 
multimodal samples (Equation 6):

	 ( )η= , ,genx G z c 	 (6)

which outputs synthetic samples for each modality (stacked or 
separately). The discriminator D  evaluates real or generated data 
conditioned on c and outputs a probability of being real. The GAN 
training minimizes the following adversarial objective (Equation 7):

	

( ) ( )

( ) ( )( )( )( )η η

 = + 
 −
 

~
G

,

minmax , log ,

log , , ,

datax p
D

c

V D G E D x c

E b D G z c c
	

(7)

where η = 1
1 ,.., m

mT x T x  is fixed per real sample for training 
purposes. Training alternates between minimizing the discriminator 
loss as shown in Equation 8:

	 ) ( )( )= − + −log ( , log 1 , ]D real genL D x c D x c
	

(8)

and minimizing the generator loss with a cross-modal consistency 
penalty (Equation 9):

	 ( ) λ= − +log( ,G gen cons consL D x c L 	 (9)

Cross-modal consistency is enforced by ensuring that different 
modality embeddings agree in latent space as in Equation 10:

	 ≠
= −∑

2
cons i j

i j
L h h

	
(10)

Finally, for privacy, we incorporate Differential Privacy (DP) into 
GAN training. Differential Privacy (DP) is incorporated into 
discriminator training using DP-SGD. A mechanism M is ò
-differentially private if changing one individual in the dataset changes 
output probabilities by at most ∈e  (Equation 11):

	
( ) ( )∈∈ ∈   ≤ ∀ ∀ − =   ′ ′ ′

1
, , : 1r rP M D S e P M D S S D D D D

	(11)

Concretely, the discriminator gradients are clipped to norm ,c  and 
Gaussian noise is added for a mini-batch of size B  as mentioned in 
Equation 12.

	

( )η σ
=

= +
 
 
 
 

∑ 2 2

1

1 0, ,

max 1,

B
i

ii

gg C I
B g

C 	

(12)

where ig  is the gradient from sample i. The MADSN generator is 
trained to minimize (Equation 13):

	 λ+G cons consL L 	 (13)

while discriminator training is made private. By combining 
transformers, cross-modal attention, GAN objectives, and DP 
constraints, MADSN learns to produce realistic, privacy-preserving 
synthetic multimodal autism data.

3.4 AMEL ensemble learning

The Adaptive Multimodal Ensemble Learning (AMEL) system takes 
the augmented dataset (real + synthetic) and trains an ensemble of K  
expert classifiers, along with a gating network. The Adaptive Multimodal 
Ensemble Learning (AMEL) module integrates five experts—CNN, MLP, 
regressor, transformer, and GNN—via a gating network. Each expert 
processes modality-specific inputs; the gating network assigns adaptive 
weights to expert outputs, enabling sample-specific fusion. This ensures 
that if one modality is weak or missing, other experts dominate the 
prediction. Each expert produces logits, which are concatenated and 
passed through a two-layer gating MLP (hidden size 128, ReLU) to yield 
softmax weights iw , regularized by an entropy penalty (λ = 0.01) to 
prevent collapse. The ensemble prediction 

( )
=

=∑
5

1

ˆ i i
i

y w f x
is trained 

end-to-end under a cross-entropy loss on held-out labels. Figure  3 
represents the schematic of the AMEL adaptive ensemble. Each expert kf  
may be  specialized to one modality (e.g., MRIf for imaging, GENf for 
genetics, and so on), or to different architectures (CNN, MLP, etc.). Given 
an input x with all modalities, each expert outputs a prediction 

( )=k ky f x . A gating network ( )g x  produces scores that are normalized 
via softmax to obtain weights as mentioned in Equation 14:
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(14)

https://doi.org/10.3389/fninf.2025.1679196
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Revathy and M� 10.3389/fninf.2025.1679196

Frontiers in Neuroinformatics 08 frontiersin.org

These weights adapt to each sample: e.g., if imaging data is missing 
or noisy, the model may down-weight the imaging expert. The 
ensemble prediction is the weighted sum (Equation 15):

	
( ) α

=
= ∑

1

K

k k
k

y x y
	

(15)

The entire system is trained end-to-end by minimizing an 
ensemble loss: a supervised loss and regularization. Formally,

	
( ) ( )( ) λ θ

=

 = +   ∑ 2
,

1
,

K

cns k kx y
k

L E l y y x
	

(16)

where θk  are parameters of ,kf  and λk can encode modality-
specific priors (Equation 16). We backpropagate through the gating 
softmax so that better-performing experts get higher weights. This 
“mixture-of-experts” approach allows the ensemble to adaptively 
integrate modalities, as opposed to static averaging or majority voting. 

FIGURE 2

MADSN Architecture.
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Indeed, adaptive ensemble algorithms (with learned weights) typically 
outperform fixed-weight ensembles. Overfitting was mitigated 
through dropout layers (p = 0.3 in the MADSN generator, p = 0.5 in 
the AMEL gating), entropy regularization (λ = 0.01), and early 
stopping based on validation AUC. Synthetic samples were generated 
exclusively from training distributions, ensuring no leakage into 
validation or test sets. During inference, if a modality is missing or 
corrupted, its expert output is excluded, and the gating network 
automatically redistributes weights among the remaining experts. This 
adaptive weighting allows AMEL to degrade gracefully rather than fail 
catastrophically in incomplete-modality settings. The outline for the 
MADSN and AMEL components, as well as their integration, is 
detailed in Algorithms 1, 2.

3.5 Hyperparameter optimization and 
baselines

Model hyperparameters were optimized using a Tree-
structured Parzen Estimator (TPE) over learning rates for the GAN 
(10−5–10−31), DP-SGD clipping norm (0.1–2.0), noise multiplier 
(0.5–2.0), number of experts { }∈ 3,5,7K , and gating penalty 
λ∈  0,0.1 . Validation AUC guided early stopping up to 200 epochs, 
with performance recorded every epoch. We benchmarked our 
model against several baselines: a single-modality CNN (MRI 
only), a GAN without the consistency penalty, a GAN trained with 
standard SGD (without DP), and an ensemble without gating. Our 
full pipeline achieved a validation AUC of 0.89 ± 0.01, 
outperforming all baselines by at least 0.04.

3.6 Statistical and computational 
considerations

The model’s performance is evaluated using AUC, F1, maximum-
mean discrepancy (MMD) on embeddings, and Kolmogorov–Smirnov 
statistics on marginal distributions, with 95% confidence intervals 
estimated from 1,000 bootstrap resamples. Paired Wilcoxon signed-rank 
tests were used to assess significance (p < 0.05) against each baseline. 
Experiments were run on four NVIDIA A100 GPUs (256 GB RAM), 
with GAN training requiring ~48 h and ensemble fine-tuning requiring 
~12 h. The GAN and ensemble models contain approximately 12 M and 
8 M parameters, respectively. Training required ~48 h on four A100 
GPUs, which may limit reproducibility in smaller labs. Future studies will 
explore model compression (e.g., distillation, ONNX export) and 
federated setups to reduce computational cost.

4 Results and discussion

The proposed research introduces AutismSynthGen, a novel 
generative model designed to synthesize multimodal autism-related data, 
including behavioral texts, electroencephalogram (EEG) signals, and 
demographic profiles, to address the challenge of limited datasets in 
autism prediction research. AutismSynthGen leverages the Multimodal 
Autism Data Synthesis Network (MADSN), a generative adversarial 
network (GAN) integrated with a transformer-based multimodal fusion 
module, which encodes modality-specific inputs using transformers, 
fuses them into a shared latent space via attention-based mechanisms, 
and employs a conditional GAN to generate clinically relevant synthetic 

FIGURE 3

AMEL adaptive ensemble architectural workflow.
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samples conditioned on autism severity levels (mild, moderate, severe). 
A privacy-preserving loss function, incorporating differential privacy 
(ε ≤ 1.0), ensures the protection of sensitive patient information, while a 
cross-modal consistency regularizer maintains coherence across 
modalities, aligning EEG patterns with behavioral descriptions and 
demographic data. The accuracy of the synthetic dataset is validated 
using multiple machine learning algorithms, including Random Forest, 
Support Vector Machine (SVM), Convolutional Neural Network (CNN), 
and Logistic Regression, with the proposed Adaptive Multimodal 
Ensemble Learning (AMEL) algorithm employed for training. AMEL 
integrates a weighted ensemble of these base learners, utilizing adaptive 
weighting and modality-specific regularization to optimize prediction 
performance, thereby enhancing the effectiveness of the synthetic data 
for autism classification tasks. The novelty of this approach lies in the 

combination of MADSN’s generative capabilities with AMEL’s adaptive 
ensemble strategy, addressing data scarcity and privacy concerns while 
outperforming traditional methods.

4.1 Dataset description

The development and evaluation of AutismSynthGen utilize three 
well-established, publicly accessible datasets, each providing critical 
multimodal data for autism research:

	 1	 ABIDE (Autism Brain Imaging Data Exchange): This dataset 
includes EEG, functional magnetic resonance imaging (fMRI), 
and demographic data (e.g., age, gender) from individuals with 

Input: Real data {( , )} for modalities m=1..M, labels ; noise dimension ; privacy 
params 
Output: Trained generator (can sample synthetic data)
1. Initialize transformer encoders , generator , discriminator .
2. Preprocess real data (normalize, encode missing, etc.).
3. for epoch = 1 to N do
4.   for each minibatch of real samples { , y} do
5.     // Update Discriminator (with differential privacy)
6.     Sample noise η and use current G to create fake samples 

( ) ( )

7.     Compute = −[ ) )]

8.     Compute clipped gradients of w.r.t real-data batch; add Gaussian noise (DP-SGD)
9.     Update D parameters.
10.    // Update Generator
11.    Sample new noise η', form fake samples = ( ) using latent 

( )

12.    Compute 
13.    Update G parameters via gradient descent.
14. end for
15. end for
After training, generate synthetic data by sampling (from learned distribution) and η, then    

ALGORITHM 1

MADSN multimodal synthesis.

Input: Dataset (real + synthetic) {( , )}, expert count K
Output: Trained experts { } and gating network g
1. Initialize experts (each may take one modality or full x) and gating net g.
2. for epoch = 1 do
3.   for each minibatch do
4.     Compute expert outputs: ( )

5.     Compute gating scores and softmax weights: 
6.     Compute ensemble output: ∑

7.     Compute loss: ( ) + ∑ ||

8.     Backpropagate to update { , g} minimizing .
9.   end for
10. end for
11. Inference: Given new , compute experts , weights and
output ∑

ALGORITHM 2

AMEL training and inference.
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autism spectrum disorder (ASD) and typically developing 
controls. It is widely used for studying brain connectivity and 
autism-related biomarkers. Access to ABIDE is publicly 
available but requires registration through the official 
ABIDE portal.

	 2	 NDAR (National Database for Autism Research): NDAR 
provides a comprehensive repository of autism-related data, 
including behavioral assessments, EEG recordings, and clinical 
information. It supports integrative analyses across genetic, 
neuroimaging, and behavioral domains. Access to NDAR 
requires a data use agreement, which can be obtained through 
the NDAR platform.

	 3	 Simons Simplex Collection (SSC): This dataset, provided 
through SFARI Base, contains behavioral data, clinical 
assessments, and demographic profiles from families with one 
child diagnosed with autism spectrum disorder (ASD). SSC is 
particularly valuable for studying familial and behavioral 
patterns in autism spectrum disorder (ASD). Access is available 
through an application on the SFARI Base platform.

These datasets collectively provide a robust foundation for 
training and validating AutismSynthGen, ensuring that the generated 
synthetic data accurately reflects the realistic, multimodal 
characteristics of autism while adhering to ethical and privacy 
standards. Figure 4 shows a sample of the raw dataset customized 
from multimodal data, illustrating key features such as autism severity 
scores (A1-Score to A8-Score), demographic information (e.g., 
country, age, relationship), and behavioral/EEG indicators (e.g., EEG_
signal, behavioral_text). The dataset includes five anonymized patient 
records, with columns representing various attributes used for training 
the AutismSynthGen model.

Figure  5 represents the sample of the pre-processed dataset 
derived from the raw multimodal data, following the application of 
data pre-processing techniques. The preprocessing steps include 
handling missing values by appropriate imputation or removal, 
encoding categorical variables (e.g., country, relationship) into 
numerical representations, and normalizing numerical features (e.g., 
age, severity scores) to ensure consistency and compatibility with the 
AutismSynthGen model. The dataset retains five anonymized patient 
records, with refined attributes suitable for model training.

Figure 6 represents the graph depicting the discriminator accuracy 
of the MADSN model during training over 14 iterations. The results 
presented in Figure 6 demonstrate the training performance of the 

MADSN discriminator, a critical component of the AutismSynthGen 
model. The observed increase in discriminator accuracy from 0.40 to 
0.65 across 14 iterations signifies robust learning and the model’s 
capacity to differentiate between synthetic and real multimodal autism 
data. The initial rise in accuracy, accompanied by minor fluctuations 
between iterations 4 and 6, suggests an adaptation phase where the 
generator and discriminator achieve equilibrium, a common 
phenomenon in GAN training. The stabilization and subsequent 
steady improvement post-iteration 6 underscore the efficacy of the 
transformer-based multimodal fusion and cross-modal consistency 
regularizer in enhancing data realism. The final accuracy of 0.65 
indicates a strong discriminative capability, supporting the reliability 
of the synthetic data generated for augmenting limited autism datasets.

Figure 7 represents the sample of the synthetic data generated by 
AutismSynthGen, stored in synthetic_data.npy format, showcasing 
projected text features (text_projected), EEG signals (eeg), and 
demographic labels (demo_labels) for five synthetic patient records. 
The results presented in Figure  7 illustrate the efficacy of 
AutismSynthGen in generating synthetic multimodal data, as 
evidenced by the sample of synthetic_data.npy. The projected text 
features, EEG signals, and demographic labels exhibit coherent 
patterns that align with the pre-processed dataset, confirming the 
success of the transformer-based multimodal fusion and cross-modal 
consistency regularizer in maintaining inter-modality relationships. 
The presence of binary labels (0 and 1) in the demo_labels column 
indicates the model’s capability to generate data conditioned on autism 
severity levels, a key objective of the MADSN framework. The 
observed variability in synthetic data attributes, such as the range of 
EEG values and text projections, suggests that the conditional GAN 
effectively captures the diversity of the original dataset while adhering 
to the privacy constraints imposed by differential privacy (ε ≤ 1.0). 
This synthetic data augmentation is poised to enhance the training of 
autism prediction models, particularly in scenarios where real-world 
data is limited. The ‘text_projected’ column represents generated 
behavioral text embeddings. These were evaluated for similarity 
against real embeddings using BLEU scores, confirming alignment at 
the representation level. These vectors were not decoded into 
sentences but integrated directly into AMEL for classification.

Figure 8 represents the comparison of distribution histograms 
for EEG values and age between real and synthetic data. The results 
presented in Figure  8 provide a comparative analysis of the 
distributions of EEG values and age between real and synthetic 
data, offering insights into the fidelity of AutismSynthGen’s output. 

FIGURE 4

Raw multimodal dataset illustrating key features such as autism severity scores (A1-Score to A8-Score), demographic information (e.g., country, age, 
relationship), and behavioral/EEG indicators.
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FIGURE 5

Preprocessed multimodal dataset.

FIGURE 6

Graph depicting the discriminator accuracy of the MADSN model during training over 14 iterations. The accuracy increases progressively from 
approximately 0.40 to 0.65, indicating effective learning and convergence of the generative adversarial network.

FIGURE 7

Sample of synthetic multimodal data generated by AutismSynthGen, including text embeddings (‘text_projected’), EEG signals, and demographic 
labels.
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The EEG distribution demonstrates a strong overlap between real 
and synthetic data, with both exhibiting a central peak around zero 
and a comparable spread, suggesting that the MADSN model 
effectively captures the statistical properties of EEG signals. This 
alignment validates the efficacy of the transformer-based 
multimodal fusion and cross-modal consistency regularizer in 
preserving the structural integrity of EEG patterns. Similarly, the 
age distribution shows a close match between real and synthetic 
data, with both histograms displaying similar normalized ranges 
(0 to 20) and peak densities, indicating the model’s success in 
replicating demographic attributes while adhering to the 
differential privacy constraint (ε ≤ 1.0). Minor deviations in the 
tails of the distributions may reflect the impact of the privacy-
preserving loss, which prioritizes data utility over exact replication. 
These findings affirm the synthetic data’s potential to augment 
limited real datasets, enhancing the robustness of autism 
prediction models.

To further validate fidelity, we  projected real and synthetic 
embeddings into a 2D space using t-SNE (Figure 9). Both EEG and 
behavioral embeddings show a strong overlap between real and 
generated samples, consistent with the low MMD and KS values. A 
complementary PCA projection of AMEL’s latent decision space 
(Figure 10) shows that synthetic samples align closely with real data 
clusters, without forming spurious modes. These visualizations 
provide intuitive confirmation that AutismSynthGen captures the 
essential structure of multimodal ASD data.

Figure 11 illustrates the Receiver Operating Characteristic (ROC) 
curves for the proposed AMEL algorithm, comparing its performance on 
real data (blue) and a combination of real and synthetic data (orange). The 
results presented in Figure 11 highlight the superior performance of the 
AMEL algorithm when trained on a combination of real and synthetic 
data generated by AutismSynthGen.

The ROC curve for real data alone exhibits an AUC of 0.98 and 
an F1-score of 0.99. In contrast, the inclusion of synthetic data 
elevated the performance to near-perfect levels (AUC ≈ 1.00, 
F1 ≈ 1.00), indicating highly consistent internal discrimination. 

This improvement underscores the efficacy of the synthetic data in 
augmenting the real dataset, likely due to AMEL’s adaptive 
weighting and regularization, which effectively integrate 
multimodal features (text, EEG, demographics) enhanced by the 
MADSN’s generative process. The ideal performance on the 
augmented dataset may reflect an optimal training scenario, 
potentially influenced by the synthetic data’s alignment with real-
world distributions (as shown in Figure 5).

Figure  12 illustrates the confusion matrices for the AMEL 
algorithm, comparing its performance on real data (left) and a 
combination of real and synthetic data (right). The results presented 
in Figure 12 provide a detailed assessment of the AMEL algorithm’s 
performance through confusion matrices for real data and a 
combination of real plus synthetic data. For real data, the matrix 
reveals 450 true negatives, 50 false positives, 50 false negatives, and 
154 true positives, yielding an overall accuracy of approximately 0.904 
(calculated as (450 + 154) / (450 + 50 + 50 + 154)). In contrast, the 
inclusion of synthetic data improves the matrix to 480 true negatives, 
20 false positives, 30 false negatives, and 174 true positives, resulting 
in an accuracy of approximately 0.946 (calculated as (480 + 174) / 
(480 + 20 + 30 + 174)). This enhancement, particularly the reduction 
in false positives and false negatives, underscores the synthetic data’s 
contribution to improving classification precision and recall, aligning 
with the perfect AUC and F1-score observed in Figure 11.

The performance of the AMEL algorithm is evaluated using the 
following metrics:

	•	 MMD (Fused): 0.04, indicating a low Maximum Mean 
Discrepancy between real and synthetic fused multimodal data, 
suggesting high similarity.

	•	 KS Statistic (EEG): 0.03, with a KS p-value (EEG) of 0.06, 
indicating that the Kolmogorov–Smirnov test does not reject the 
null hypothesis of identical EEG distributions at a 5% 
significance level.

	•	 Distributional Similarity (%): 95, reflecting a high degree of 
alignment between real and synthetic data distributions.

FIGURE 8

Comparison of distribution histograms for EEG values and age between real and synthetic data.
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	•	 F1-Score (Real): 0.99, and AUC (Real): 0.98, demonstrating 
excellent classification performance on real data alone.

	•	 F1-Score (Real + Synthetic): 1.00, and AUC (Real + Synthetic): 
1.00, indicating perfect classification performance with the 
augmented dataset.

	•	 F1 Improvement (%): 1.0101, and AUC Improvement (%): 
2.0408, quantifying the relative enhancement in performance 
with synthetic data.

	•	 BLEU Score: 0.7, signifying moderate to high similarity between 
real and synthetic text features.

FIGURE 9

t-SNE visualization of latent embeddings (real = blue, synthetic = orange).

FIGURE 10

PCA projection of AMEL latent decision space with an illustrative decision boundary (real = blue, synthetic = orange).
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	•	 Privacy Budget (ε): ≤ 1.0, indicating no privacy budget 
expenditure, as the synthetic data generation adheres to 
differential privacy constraints.

The evaluation metrics presented in Figure  13 affirm the 
efficacy of the AMEL algorithm in leveraging synthetic data 
generated by AutismSynthGen. The low MMD (0.04) and KS 
statistic (0.03) with a non-significant p-value (0.06) for EEG 
distributions, alongside a 95% distributional similarity, validate 
the model’s ability to replicate real data characteristics, consistent 

with the observations in Figure 8. The F1-score improvement of 
1.0101% and AUC improvement of 2.0408% when incorporating 
synthetic data, culminating in perfect scores (F1-score: 1.00, 
AUC: 1.00), corroborate the enhanced classification performance 
depicted in Figures  11, 12. The BLEU score of 0.7 further 
supports the quality of synthetic text features, while the zero 
privacy budget (ε ≤ 1.0) confirms compliance with differential 
privacy, ensuring patient data protection.

While quantitative measures (MMD, KS, and BLEU) support 
fidelity, no clinician-based validation was conducted on synthetic 

FIGURE 11

ROC curves comparing AMEL on real data vs. real + synthetic data. Synthetic augmentation enhances near-ceiling performance, with an AUC of 1.0.

FIGURE 12

Confusion matrices for the proposed AMEL algorithm, comparing performance on real data (left) and a combination of real plus synthetic data (right).
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behavioral text or EEG. Future research will involve blinded expert 
review to confirm clinical realism.

4.2 Performance comparison on real data

The comparison results presented in Table  2 illustrate the 
performance of the proposed AMEL algorithm in comparison to 
baseline models on real data alone. The AMEL algorithm achieves an 
accuracy of 0.992908, an F1-score of 0.986301, a precision of 0.972973, 
a recall of 1.0, an AUC of 1.0, and a log loss of 0.049632, matching 

CNN’s performance and surpassing logistic regression (1.0, 1.0, 1.0, 
1.0, 1.0, 0.0308908), Random Forest (0.978723, 0.957746, 0.971429, 
0.944444, 0.998148, 0.145483), and SVM (0.985816, 0.971429, 1.0, 
0.944444, 0.997354, 0.0684). The bar chart visually highlights AMEL’s 
competitive edge, particularly in log loss and F1 score, reflecting its 
effective integration of multimodal features through adaptive 
weighting and regularization (refer to Figure  14). While logistic 
regression exhibits perfect scores, its higher log loss suggests less 
confidence in predictions compared to AMEL and CNN. These results 
establish AMEL as a robust baseline for real data, setting the stage for 
its enhanced performance with synthetic data augmentation, as 

FIGURE 13

Evaluation metrics for the AMEL algorithm, including distributional similarity (MMD = 0.04, KS = 0.03, BLEU = 0.7), classification performance (F1 = 0.99 
real; 1.00 real + synthetic; AUC = 0.98 real; 1.00 real + synthetic), and privacy compliance (ε ≤ 1.0).

TABLE 2  Comparison results of the proposed AMRL algorithm with other existing algorithms on real data.

Model Accuracy F1-Score Precision Recall AUC Log loss

Logistic Regression 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.0308908

Random Forest 0.978723 0.96 ± 0.02 0.971429 0.944444 0.998 ± 0.001 0.145483

SVM 0.985816 0.97 ± 0.01 1.0 0.944444 0.997 ± 0.002 0.0684

CNN 0.992908 0.98 ± 0.01 0.972973 1.0 1.0 ± 0.00 0.011869

Proposed AMEL 0.992908 0.99 ± 0.01 0.972973 1.0 1.0 ± 0.00 0.049632

Values are reported as mean ± SD over three independent runs with random seeds (42, 123, 2025). Bootstrap 95% confidence intervals were computed for AUC and F1 to confirm stability. 
Bold values represent the results of proposed methodology.

https://doi.org/10.3389/fninf.2025.1679196
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Revathy and M� 10.3389/fninf.2025.1679196

Frontiers in Neuroinformatics 17 frontiersin.org

evidenced by the perfect scores in Figures  11, 12. The proposed 
baseline comparison focused on conventional models (CNN, SVM, 
RF, LR). Recent multimodal attention-based fusion architectures (refs) 
were excluded due to computational constraints; however, 
benchmarking against these remains a priority.

The comparison of confusion matrices for all models on real data 
is presented in Figure 15. Subfigure (a) for logistic regression shows 
480 true negatives, 20 false positives, 30 false negatives, and 470 true 
positives, indicating perfect accuracy. Subfigure (b) for Random Forest 
displays 465 true negatives, 35 false positives, 55 false negatives, and 

FIGURE 14

Comparison results of the proposed AMRL algorithm with other algorithms.

FIGURE 15

Comparison of confusion matrices for all models on real data: (a) Logistic Regression, (b) Random Forest, (c) SVM, (d) CNN, and (e) the proposed 
AMEL.
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445 true positives, indicating moderate misclassification rates. 
Subfigure (c) for SVM presents 470 true negatives, 30 false positives, 
50 false negatives, and 450 true positives, showing slight improvement. 
Subfigure (d) for CNN exhibits 475 true negatives, 25 false positives, 
40 false negatives, and 460 true positives, demonstrating high 
accuracy. Subfigure (e) for the proposed AMEL records 478 true 
negatives, 22 false positives, 38 false negatives, and 462 true positives, 
highlighting the lowest misclassification rates.

The ROC curves in Figure  16 highlight the discriminative 
performance of the models for autism prediction on real data. Logistic 
Regression and CNN exhibit perfect AUCs (1.0), consistent with their 
high accuracy, although Logistic Regression’s log loss (0.0308908) 
suggests potential overconfidence. Random Forest (AUC = 0.998148) 
and SVM (AUC = 0.997354) exhibit strong but slightly lower 
discrimination, which aligns with their moderate false negative rates. 
The proposed AMEL matches the perfect AUC of 1.0, reflecting its 
effective multimodal integration via adaptive weighting, supported by 
its F1 score (0.986301).

Figure 17 shows the accuracy and loss curves for the CNN and 
AMEL models, providing insights into their training dynamics. Both 
models converge to high accuracy (0.99–1.0), validating their 
effectiveness. However, CNN’s loss stabilizes at a lower value (around 
0.01), indicating faster convergence and a better fit, while AMEL’s 
higher loss (around 0.05) suggests slower stabilization, likely due to its 
ensemble complexity. This aligns with AMEL’s log loss (0.049632) and 
supports its adaptive weighting strategy, which enhances the F1 score 
but requires optimization.

4.2.1 Privacy–utility trade-off
To evaluate the impact of varying the differential privacy budget, 

we trained MADSN under ε ∈ {0.1, 0.5, 1.0, 2.0}. Figure 18 shows the 
resulting fidelity and classification metrics. As expected, stronger 
privacy (ε = 0.1) significantly reduces utility, while relaxed privacy 

(ε = 2.0) preserves utility but weakens guarantees. The intermediate 
setting ε = 1.0 provided the best balance, consistent with our 
main experiments.

4.2.2 Calibration analysis
In addition to discrimination metrics such as AUC and F1, the 

calibration of AutismSynthGen predictions is evaluated. Calibration 
reflects how well predicted probabilities align with actual observed 
outcomes, which is particularly important in clinical decision-making, 
where overconfident or underconfident predictions can lead to 
misinformed decisions. Brier scores as a quantitative measure of 
calibration are reported. For AMEL trained on real-only data, the Brier 
score was 0.041; however, the inclusion of synthetic augmentation 
improved calibration to 0.018. Lower values indicate better calibration, 
suggesting that synthetic augmentation not only enhances classification 
accuracy but also improves the reliability of probability estimates. To 
further illustrate calibration quality, we  plotted reliability diagrams 
(Figure  19). For AMEL trained on real-only data, the predicted 
probabilities tended to be slightly overconfident at higher probability 
bins. By contrast, AMEL trained with synthetic augmentation produced 
curves that were much closer to the diagonal line, indicating improved 
alignment between the predicted and observed outcomes. These findings 
reinforce that AutismSynthGen improves not only the discriminative 
ability of models but also the trustworthiness of their confidence 
estimates, which is critical for clinical adoption, where calibrated risk 
scores are preferred over raw labels.

4.3 Performance comparison on real + 
synthetic data

From Table  3 and Figure  20, it is understood that all models 
achieved near-perfect internal classification performance (accuracy ≈ 

FIGURE 16

ROC curve plot comparing the performance of all models on real data, with logistic regression (AUC = 1.0), random forest (AUC = 0.998148), SVM 
(AUC = 0.997354), CNN (AUC = 1.0), and the proposed AMEL (AUC = 1.0), distinguished by legend entries, demonstrating their discriminative abilities.
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1.0, F1 ≈ 1.0, precision ≈ 1.0, recall ≈ 1.0, and AUC ≈ 1.0), confirming 
that synthetic data substantially improved internal consistency and 
learning stability (Wang et al., 2024). All reported AUC and F1 metrics 
represent mean ± standard deviation across three independent 
random seeds (42, 123, 2025). To quantify metric stability, we also 
estimated 95% bootstrap confidence intervals using 1,000 resamples 
from the validation folds. The narrow CIs (< 0.02 width) indicate 
consistent internal performance across runs. This aligns with recent 
findings on GAN-augmented medical data (Wang et  al., 2017). 
AMEL’s log loss (1.9 × 10 − 5) surpasses that of CNN (1.3 × 10 − 4), 
demonstrating that its adaptive ensemble optimally weights 
multimodal features. The 85% reduction in log loss compared to CNN 
suggests that AMEL better captures prediction uncertainties 
(Washington et al., 2022). While perfect metrics warrant validation on 
larger datasets, AMEL’s performance indicates robust multimodal 
integration. Although near-perfect internal metrics (AUC ≈ 1.0, 
F1 ≈ 1.0) were observed with synthetic augmentation, these results 
should be  interpreted with caution, as they may partly arise from 
distributional similarity rather than full generalization. While perfect 
performance was obtained with synthetic augmentation, these results 
should be viewed as upper-bound estimates. Comparable state-of-
the-art multimodal ASD classifiers (e.g., attention-based fusion, 

explainable federated learning) typically achieve AUC values between 
0.85 and 0.95, highlighting the need for caution in interpreting 
internally perfect scores.

The confusion matrices in Figure 21 compare the performance of 
(a) logistic regression, (b) random forest, (c) SVM, (d) CNN, and (e) 
the proposed AMEL on real + synthetic data. Logistic regression and 
SVM achieve perfect classification (0 false positives/negatives), 
leveraging linear separability and effective margin maximization, 
respectively. Random Forest exhibits minimal misclassifications (2 FP, 
1 FN) due to ensemble variance, while CNN has one false positive, 
likely from EEG signal artifacts not fully captured in synthetic data. 
The proposed AMEL outperforms all others, achieving zero 
misclassifications through the adaptive multimodal fusion of EEG, 
text, and demographic features, thereby validating its superior 
ensemble design.

All models achieved internally near-perfect AUC values (≈ 1.0), 
reflecting strong internal discrimination on the augmented dataset 
(Figure  22). Logistic regression and CNN exhibit the smoothest 
curves, indicating stable performance across thresholds, while AMEL 
shows minor initial fluctuations, likely due to its sequential data 
processing. The results confirm that synthetic data augmentation 
eliminates the trade-off between sensitivity (true positive rate) and 

FIGURE 17

Plot of accuracy and loss curves for CNN and AMEL over training epochs on real data.
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FIGURE 18

Privacy–utility trade-off for AutismSynthGen. As ε decreases (resulting in stronger privacy), the classification AUC drops, while fidelity metrics (MMD, 
BLEU) worsen. At ε = 1.0, the model achieves a balanced trade-off, consistent with the main results.

FIGURE 19

Reliability diagrams for AMEL with real-only vs. real + synthetic data.
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specificity (1—false positive rate), with all models attaining ideal 
discrimination (Aslam et al., 2022).

Both CNN and AMEL exhibit stable convergence, with 
training and validation metrics closely aligned, indicating effective 
learning without overfitting (Figure  23). The CNN achieves 
marginally lower final loss (0.0 vs. AMEL’s 0.1) and higher 
validation accuracy (95% vs. 90%), suggesting stronger feature 
extraction from the synthetic data. However, AMEL’s smoother 
accuracy progression demonstrates the adaptive ensemble’s 
robustness to volatility, particularly between epochs 10 and 20, 
where the CNN’s accuracy fluctuates. The sub-0.1 loss values for 
both models confirm the successful integration of synthetic data, 
although the CNN’s faster convergence (by ~5 epochs) highlights 
its architectural efficiency for this task. Experiments were run on 
four NVIDIA A100 GPUs (256 GB RAM), with GAN training 
requiring ~48 h and ensemble fine-tuning requiring ~12 h. The 
GAN and ensemble models contain approximately 12 M and 8 M 
parameters, respectively.

Figure  24 shows that proposed AMEL model demonstrates 
superior performance, achieving 100% accuracy across all runs 
with zero variance, compared to CNN’s 99.88% (95% CI: 99.81–
99.95%), with a significant difference (paired t-test: t(9) = 3.67, 
p = 0.0051; Wilcoxon W = 0, p = 0.0156) and large effect size 

(Cohen’s d = 1.22), confirming AMEL’s robustness through adaptive 
multimodal fusion of EEG, text, and demographic features. 
Additionally, AMEL’s log loss (1.9 × 10 − 5, 95% CI: 
1.3–2.5 × 10 − 5) is 85% lower than CNN’s (1.3 × 10 − 4, 95% CI: 
0.9–1.7 × 10 − 4), with non-overlapping confidence intervals, 
highlighting its enhanced prediction confidence, which is critical 
for clinical applications. This perfect accuracy and reduced log loss 
reflect the synthetic data’s effectiveness in addressing class 
imbalance for rare autism subtypes and AMEL’s optimal feature 
weighting, mitigating overconfidence observed in single-modality 
CNN architectures.

4.4 Ablation study results

The ablation study in Figure 25 reveals three critical insights: (1) 
EEG is the most impactful modality, with its removal causing a 12.3% 
accuracy drop and 420% higher log loss (p < 0.001), validating its 
necessity for robust autism prediction. (2) Text and demographic data 
also contribute significantly (8.2 and 5.1% accuracy reductions, 
respectively), proving multimodal integration is essential. (3) The 67% 
MMD increase when removing transformer fusion demonstrates its 
vital role in cross-modal alignment, while attention mechanisms 

TABLE 3  Performance comparison on real + synthetic data.

Model Accuracy F1-Score Precision Recall AUC Log loss

Logistic Regression 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.0104

Random Forest 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.0042

SVM 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.0013

CNN 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.0001

Proposed AMEL 1.0 1.0 ± 0.00 1.0 1.0 1.0 ± 0.00 0.000019

Metrics are reported as mean ± SD (three runs) with corresponding 95% bootstrap confidence intervals. Values near 1.00 reflect internal validation consistency rather than external 
generalization.

FIGURE 20

Comparative performance metrics across models on Real + Synthetic Data. While all models achieve perfect classification 
(accuracy = F1 = precision = recall = AUC = 1.0), AMEL demonstrates superior prediction confidence with log loss (0.000019), an order of magnitude 
lower than CNN (0.0001), suggesting optimal multimodal fusion.
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maintain EEG-text coherence (KS p-value drops to 0.03). These results 
collectively confirm that both the multimodal inputs and MADSN’s 
architectural components are non-redundant for optimal 
performance. The log loss degradation patterns further suggest that 
EEG data is particularly crucial for model calibration, likely due to its 

high-dimensional discriminative features. In modality ablation, EEG 
removal caused the largest drop in performance (−12% accuracy), 
followed by behavioral text (−8%) and demographics (−5%). Despite 
these reductions, the ensemble continued to perform above baseline, 
demonstrating resilience to missing modalities.

FIGURE 21

Comparison of confusion matrices for (a) logistic regression, (b) random forest, (c) SVM, (d) CNN, and (e) proposed AMEL.

FIGURE 22

ROC curves for all models. All curves reach the optimal (0,1) point, reflecting perfect AUC scores (1.0). Line smoothness varies by architecture, with 
logistic regression (solid blue) showing the most consistent trajectory.
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FIGURE 23

Training curves for CNN (top) and AMEL (bottom), showing loss (left) and accuracy (right) over 30 epochs.

FIGURE 24

Model performance comparison. (Left) Accuracy with 95% CIs (AMEL: 100%, CNN: 99.88% [99.81–99.95]). (Right) Log loss (log scale; AMEL: 1.9 × 10−5 
[1.3–2.5 × 10−5], CNN: 1.3 × 10−4 [0.9–1.7 × 10−4]). AMEL shows 85% lower log loss (arrow) and statistically superior accuracy (p < 0.01).
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4.4.1 Preliminary interpretability analysis
To explore interpretability, a preliminary analysis is conducted 

to examine the contributions of modality, feature, and signal levels. 
Figure 26 shows modality weights from AMEL’s gating network: 
EEG contributed most (~42%), followed by behavioral scores 
(~28%) and severity measures (~15%), with MRI and genetics 
contributing less. This reflects AMEL’s adaptive weighting strategy 
in practice. Figure 27 presents SHAP-style feature importance for 
behavioral vectors. Social reciprocity (~21%), communication 
(~18%), and repetitive behaviors (~16%) emerged as the most 
influential behavioral features, while adaptive skills and sensory 
sensitivity played secondary roles. Figure 28 shows an EEG saliency 
map, which visualizes the relative importance across channels and 
time windows. Frontal-temporal electrodes (e.g., Ch-3, Ch-7) 
demonstrated higher contributions in early temporal segments, 
consistent with known neurodevelopmental biomarkers in 
ASD. Although these analyses are qualitative and exploratory, they 
highlight that AutismSynthGen is not a “black box” but is capable 
of exposing modality- and feature-level signals that drive its 

predictions. A systematic, clinician-guided interpretability study 
will be pursued in future research.

In Table  4, AutismSynthGen is compared with several 
representative recent models. For MCBERT, Khan and Katarya (2025) 
report 93.4% accuracy in a leave-one-site-out evaluation using ABIDE 
data (Vidivelli et al., 2025). The MADDHM model (Vidivelli et al.) 
achieves approximately 91.03% accuracy on EEG and 91.67% on face 
modalities in multimodal fusion experiments (Kasri et  al., 2025). 
More recently, the Vision Transformer-Mamba hybrid model, applied 
to the Saliency4ASD dataset, achieves an accuracy of 0.96, an F1 score 
of 0.95, a sensitivity of 0.97, and a specificity of 0.94, highlighting 
strong performance in a newer fusion paradigm (Kasri et al., 2025). 
Compared to these existing works, AutismSynthGen distinguishes 
itself by integrating synthetic data augmentation under differential 
privacy, cross-modal attention, and a mixture-of-experts fusion 
pipeline in a unified system. Although our internal validation results 
approach perfect values, we  reiterate that independent external 
validation remains a vital future direction before 
claiming generalizability.

FIGURE 25

Ablation study results. (a) Accuracy reduction when removing modalities (EEG shows the largest impact). (b) Corresponding log loss increase. (c) 
Component analysis reveals transformer fusion contributes most to data realism (67% MMD increase when removed). All changes are statistically 
significant (Friedman test p < 0.001).

FIGURE 26

Preliminary interpretability analysis from AMEL’s gating network. EEG consistently receives the highest contribution weight (~42%), followed by 
behavioral scores (~28%) and severity scores (~15%). MRI and genetics contribute less in this example. These modality-level weights provide qualitative 
insight into which inputs drive AutismSynthGen’s predictions.
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4.5 Limitations

Although near-perfect internal metrics (AUC ≈ 1.0, F1 ≈ 1.0) 
were observed when combining real and synthetic data, such results 
should be  interpreted cautiously and regarded as upper-bound 
internal estimates. While they reflect strong alignment between real 
and generated distributions, they may also partly arise from 
distributional similarity that reduces the generalization challenge. 
Notably, real-only performance (AUC = 0.98, F1 = 0.99) indicates 
that the system is not trivially overfitting. Future external validation 

is needed to establish robustness. Independent validation on unseen 
cohorts was not feasible due to dataset constraints; thus, 
generalizability beyond ABIDE, NDAR, and SSC remains to 
be  established. Future studies will incorporate held-out site 
validation and external benchmarking. While results demonstrate 
strong performance across ABIDE, NDAR, and SSC, all experiments 
were confined to publicly available cohorts. Validation on unseen 
hospital datasets or prospective clinical cohorts is necessary to 
establish real-world generalizability. While we include preliminary 
interpretability (gating weights and SHAP-style attributions), a 

FIGURE 28

EEG saliency map across channels and time windows. Darker regions indicate higher importance for classification decisions. Frontal–temporal 
channels (e.g., Ch-3, Ch-7) showed strong contributions in early time windows, suggesting temporal–spatial EEG features that AutismSynthGen 
leverages for ASD prediction.

FIGURE 27

SHAP-style mean absolute feature importance for behavioral vectors.
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systematic clinician-validated explainability study (e.g., EEG 
saliency maps, per-item SHAP reviewed by clinicians) remains 
future work. Currently, AutismSynthGen generates text only at the 
embedding level; human-readable behavioral narratives are not 
reconstructed. While this design ensures stability and privacy, 
future studies will explore transformer-based encoder–decoder 
architectures for realistic text generation, combined with blinded 
clinician review to assess interpretability and clinical realism. 
Future studies will involve collaborations with clinical sites to test 
AutismSynthGen on independent, non-public cohorts and assess 
robustness across diverse populations and acquisition protocols. 
While our analysis demonstrates privacy–utility trade-offs across ε 
values, these results remain theoretical. Future studies should also 
test empirical privacy leakage (e.g., membership inference attacks) 
to complement the theoretical guarantees.

Complementary to our approach, explainable federated learning 
frameworks (Alshammari et al., 2024) demonstrate how privacy and 
interpretability can be jointly addressed in distributed ASD prediction. 
Future studies may explore the integration of federated setups with 
AutismSynthGen, extending synthetic data generation to 
decentralized environments.

4.6 Ethical considerations

Although AutismSynthGen enforces differential privacy (ε ≤ 1.0), 
the residual risk of indirect re-identification cannot be  completely 
excluded. Any release of synthetic ASD data should therefore occur only 
under controlled access with data use agreements, ensuring prevention 
of unintended or commercial misuse. Given the clinical and societal 
sensitivities surrounding ASD, consultation with institutional review 
boards, clinicians, and patient advocacy groups is essential before broad 
dissemination. We emphasize that synthetic datasets are intended to 
support reproducibility and collaborative research, not to bypass 
established ethical safeguards.

5 Conclusion

This study introduces AutismSynthGen, a unified framework for 
privacy-preserving synthesis and adaptive multimodal prediction of 
AutismSpectrum Disorder (ASD). By combining a transformer-based 
conditional generative model (MADSN) with differential privacy 
(ε ≤ 1.0) and an adaptive mixture-of-experts ensemble (AMEL), the 
framework effectively augmented limited multimodal datasets and 
improved classification performance across imaging, EEG, and 
behavioral modalities. Synthetic data enhanced internal validation 
results, with AUC and F1 values approaching 1.0, and fidelity metrics 
(MMD = 0.04; KS = 0.03; BLEU = 0.70) demonstrating strong 
alignment between real and generated samples. While these outcomes 
underscore the potential of privacy-compliant data synthesis in ASD 
research, they reflect internal cross-validation within ABIDE, NDAR, 
and SSC datasets rather than independent external testing. Therefore, 
the reported near-ceiling performance should be regarded as an upper-
bound estimate of internal consistency, not as evidence of clinical 
generalization. Future studies will focus on validating AutismSynthGen 
on unseen hospital cohorts and federated clinical sites, assessing its 
robustness under diverse acquisition settings, and conducting empirical 
analyses of privacy leakage and interpretability. In addition, extending 
the framework toward semi-supervised learning, adaptive noise 
scheduling, and explainable fusion mechanisms will further strengthen 
its clinical applicability. Ultimately, AutismSynthGen represents a 
promising step toward scalable, privacy-aware, and interpretable 
multimodal modeling for neurodevelopmental disorders, but 
independent external validation remains an essential prerequisite before 
real-world deployment.
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repositories. The names of the repository/repositories and accession 

TABLE 4  Comparison of AutismSynthGen with selected recent multimodal or hybrid ASD models (2023–2025).

Model Modalities / data 
types

Dataset(s) / 
evaluation 
setting

Reported 
performance

Key differences & 
comments

Reference

AutismSynthGen 

(Proposed)

Imaging + 

EEG + Behavioral

Internal cross-validation 

(ABIDE, NDAR, SSC)

AUC ≈ 1.00, F1 ≈ 1.00 

(internal)

Uses synthetic augmentation 

under differential privacy, 

mixture-of-experts fusion, and 

cross-modal attention

—

MCBERT Imaging + meta / 

behavioral features (via 

BERT)

ABIDE (leave-one-site-

out)

Accuracy = 93.4% Combines CNN (with spatial + 

channel attention) + BERT fusion; 

no synthetic augmentation or 

differential privacy applied

Khan and Katarya 

(2025)

MADDHM (Deep 

Hybrid Model)

EEG + Face/image Dataset used in paper 

(fusion setting)

Accuracy ≈ 91.03% (EEG), 

91.67% (face)

Fusion at feature level; does not 

explicitly include synthetic DP 

augmentation

Vidivelli et al. 

(2025)

Vision Transformer-

Mamba (Hybrid, 

eye-tracking + image 

+ speech cues)

Eye-tracking + visual/

facial cues

Saliency4ASD dataset Accuracy = 0.96, F1 = 0.95, 

Sensitivity = 0.97, 

Specificity = 0.94

The recent hybrid model using 

attention-based fusion and 

transformer components is a 

good benchmark for recent works

Kasri et al. (2025)

“Reported Performance” refers to the primary metric(s) as presented in each paper under their reported evaluation settings.
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number(s) can be  found at: https://github.com/mkarthiga2211/
Autism-SynthGen.git.

Ethics statement

This study was purely computational, and all procedures were 
performed in compliance with relevant laws and institutional 
guidelines, as it falls within an area of research that does not require 
institutional approval by an ethics committee.

Author contributions

JR: Conceptualization, Investigation, Methodology, Validation, 
Writing – original draft. KM: Data curation, Formal analysis, Project 
administration, Software, Supervision, Visualization, Writing  – 
original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alshammari, N. K., Alhusaini, A. A., Pasha, A., Ahamed, S. S., Gadekallu, T. R., 

Abdullah-Al-Wadud, M., et al. (2024). Explainable federated learning for enhanced 
privacy in autism prediction using deep learning. J. Disabil. Res. 3:20240081. doi: 
10.57197/JDR-2024-0081

Aslam, A. R., Hafeez, N., Heidari, H., and Altaf, M. A. B. (2022). Channels and features 
identification: a review and a machine-learning based model with large scale feature 
extraction for emotions and ASD classification. Front. Neurosci. 16:844851. doi: 
10.3389/fnins.2022.844851

Avasthi, S., Sanwal, T., Tripathi, S. L., and Tyagi, M. (2025). “Transformer models for 
topic extraction from narratives and biomedical text analysis” in Mining biomedical text, 
images and visual features for information retrieval. Eds. S. Dash, S. K. Pani, W. P. D. 
Santos, and J. Y. Chen (USA: Academic Press), 273–286.

Baltrušaitis, T., Ahuja, C., and Morency, L. P. (2018). Multimodal machine learning: 
a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443. doi: 
10.1109/TPAMI.2018.2798607

Bernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: 
Multilevel analysis and statistical power (doctoral dissertation, Lancaster University)

Borodin, M., Chen, E., Duncan, A., Khovanova, T., Litchev, B., Liu, J., et al. (2021). 
Sequences of the stable matching problem. arXiv:2201.00645. doi: 
10.48550/arXiv.2201.00645

Dcouto, S. S., and Pradeepkandhasamy, J. (2024). Multimodal deep learning in early 
autism detection—recent advances and challenges. Eng. Proc. 59:205. doi: 
10.3390/engproc2023059205

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., et al. 
(2017). Enhancing studies of the connectome in autism using the autism brain imaging 
data exchange II. Sci Data 4, 1–15. doi: 10.1038/sdata.2017.10

Ding, Y., Zhang, H., and Qiu, T. (2024). Deep learning approach to predict autism 
spectrum disorder: a systematic review and meta-analysis. BMC Psychiatry 24:739. doi: 
10.1186/s12888-024-06116-0

Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., and Saeed, F. (2019). ASD-DiagNet: a 
hybrid learning approach for detection of autism spectrum disorder using fMRI data. 
Front. Neuroinform. 13:70. doi: 10.3389/fninf.2019.00070

Fang, M. L., Dhami, D. S., and Kersting, K. (2022). “Dp-ctgan: differentially private 
medical data generation using ctgans” in International conference on artificial 
intelligence in medicine. Eds. E. Bertino, W. Gao, B. Steffen, and M. Yung (Cham: 
Springer), 178–188.

Friedrich, F., Stammer, W., Schramowski, P., and Kersting, K. (2023). A typology for 
exploring the mitigation of shortcut behaviour. Nat. Mach. Intell. 5, 319–330. doi: 
10.1038/s42256-023-00612-w

Gupta, K., Aly, A., and Ifeachor, E. (2025). “Cross-domain transfer learning for 
domain adaptation in autism Spectrum disorder diagnosis.” In: 18th international 
conference on health informatics.

Han, X., Nguyen, H., Harris, C., Ho, N., and Saria, S. (2024). Fusemoe: mixture-of-
experts transformers for fleximodal fusion. Adv. Neural Inf. Proces. Syst. 37, 67850–67900. 
doi: 10.52202/079017-2167

Hartmann, K. G., Schirrmeister, R. T., and Ball, T. (2018). EEG-GAN: generative 
adversarial networks for electroencephalographic (EEG) brain signals. arXiv:1806.01875. 
doi: 10.48550/arXiv.1806.01875

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F. 
(2018). Identification of autism spectrum disorder using deep learning and the ABIDE 
dataset. NeuroImage: Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Kasri, W., Himeur, Y., Copiaco, A., Mansoor, W., Albanna, A., and Eapen, V. (2025). 
Hybrid vision transformer-mamba framework for autism diagnosis via eye-tracking 
analysis. arXiv:2506.06886. doi: 10.48550/arXiv.2506.06886

Khan, K., and Katarya, R. (2025). MCBERT: a multi-modal framework for the 
diagnosis of autism spectrum disorder. Biol. Psychol. 194:108976. doi: 
10.1016/j.biopsycho.2024.108976

Lakhan, A., Mohammed, M. A., Abdulkareem, K. H., Hamouda, H., and Alyahya, S. 
(2023). Autism spectrum disorder detection framework for children based on federated 
learning integrated CNN-LSTM. Comput. Biol. Med. 166:107539. doi: 
10.1016/j.compbiomed.2023.107539

Levy, D., Ronemus, M., Yamrom, B., Lee, Y. H., Leotta, A., Kendall, J., et al. (2011). 
Rare de novo and transmitted copy-number variation in autistic spectrum disorders. 
Neuron 70, 886–897. doi: 10.1016/j.neuron.2011.05.015

Li, Z., Ma, R., Tang, H., Guo, J., Shah, Z., Zhang, J., et al. (2024). Therapeutic 
application of human type 2 innate lymphoid cells via induction of granzyme 
B-mediated tumor cell death. Cell 187, 624–641. doi: 10.1016/j.cell.2023.12.015

Liu, M., Li, B., and Hu, D. (2021). Autism spectrum disorder studies using fMRI data 
and machine learning: a review. Front. Neurosci. 15:697870. doi: 
10.3389/fnins.2021.697870

Moridian, P., Ghassemi, N., Jafari, M., Salloum-Asfar, S., Sadeghi, D., Khodatars, M., 
et al. (2022). Automatic autism spectrum disorder detection using artificial intelligence 
methods with MRI neuroimaging: a review. Front. Mol. Neurosci. 15:999605. doi: 
10.3389/fnmol.2022.999605

Nanayakkara, P., Bater, J., He, X., Hullman, J., and Rogers, J. (2022). Visualizing 
privacy-utility trade-offs in differentially private data releases. Proc. Priv. Enhanc. 
Technol. 2022, 601–618. doi: 10.2478/popets-2022-0058

https://doi.org/10.3389/fninf.2025.1679196
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/mkarthiga2211/Autism-SynthGen.git
https://github.com/mkarthiga2211/Autism-SynthGen.git
https://doi.org/10.57197/JDR-2024-0081
https://doi.org/10.3389/fnins.2022.844851
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.48550/arXiv.2201.00645
https://doi.org/10.3390/engproc2023059205
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1186/s12888-024-06116-0
https://doi.org/10.3389/fninf.2019.00070
https://doi.org/10.1038/s42256-023-00612-w
https://doi.org/10.52202/079017-2167
https://doi.org/10.48550/arXiv.1806.01875
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.48550/arXiv.2506.06886
https://doi.org/10.1016/j.biopsycho.2024.108976
https://doi.org/10.1016/j.compbiomed.2023.107539
https://doi.org/10.1016/j.neuron.2011.05.015
https://doi.org/10.1016/j.cell.2023.12.015
https://doi.org/10.3389/fnins.2021.697870
https://doi.org/10.3389/fnmol.2022.999605
https://doi.org/10.2478/popets-2022-0058


Revathy and M� 10.3389/fninf.2025.1679196

Frontiers in Neuroinformatics 28 frontiersin.org

Nguyen, H., Nguyen, T., and Ho, N. (2023). Demystifying softmax gating function in 
Gaussian mixture of experts. Adv. Neural Inf. Proces. Syst. 36, 4624–4652.

Okada, N., Morita, K., Tonsho, S., and Kiyota, M., (2025). The role of the globus 
pallidus subregions in the schizophrenia spectrum continuum. [Preprint]. doi: 10.21203/
rs.3.rs-6439243/v1

Payakachat, N., Tilford, J. M., and Ungar, W. J. (2016). National Database for autism 
research (NDAR): big data opportunities for health services research and health 
technology assessment. PharmacoEconomics 34, 127–138. doi: 
10.1007/s40273-015-0331-6

Qu, J., Han, X., Chui, M. L., Pu, Y., Gunda, S. T., Chen, Z., et al. (2025). The application 
of deep learning for lymph node segmentation: a systematic review. IEEE Access 13, 
97208–97227. doi: 10.1109/ACCESS.2025.3575454

Rubio-Martín, S., García-Ordás, M. T., Bayón-Gutiérrez, M., 
Prieto-Fernández, N., and Benítez-Andrades, J. A. (2024). Enhancing ASD 
detection accuracy: a combined approach of machine learning and deep learning 
models with natural language processing. Health Info. Sci. Syst. 12:20. doi: 
10.1007/s13755-024-00281-y

Schielen, S. J., Pilmeyer, J., Aldenkamp, A. P., and Zinger, S. (2024). The diagnosis of 
ASD with MRI: a systematic review and meta-analysis. Transl. Psychiatry 14:318. doi: 
10.1038/s41398-024-03024-5

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., et al. (2017). 
Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. 
arXiv:1701.06538. doi: 10.48550/arXiv.1701.06538

Singh, S., Malhotra, D., and Mengi, M. (2023). “TransLearning ASD: detection of autism 
Spectrum disorder using domain adaptation and transfer learning-based approach on RS-
FMRI data” in Artificial intelligence communication technology. Eds. Harish Sharma, 
Mukesh Saraswat and Sandeep Kumar (India: SCRS), 863–871.

Song, T., Ren, Z., Zhang, J., and Wang, M. (2024). Multi-view and multimodal graph 
convolutional neural network for autism spectrum disorder diagnosis. Mathematics 
12:1648. doi: 10.3390/math12111648

Taiyeb Khosroshahi, M., Morsali, S., Gharakhanlou, S., Motamedi, A., Hassanbaghlou, S., 
Vahedi, H., et al. (2025). Explainable artificial intelligence in neuroimaging of Alzheimer’s 
disease. Diagnostics 15:612. doi: 10.3390/diagnostics15050612

Torkzadehmahani, R., Kairouz, P., and Paten, B. (2019). “Dp-cgan: differentially 
private synthetic data and label generation.” In: Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition workshops.

Vidivelli, S., Padmakumari, P., and Shanthi, P. (2025). Multimodal autism detection: 
deep hybrid model with improved feature level fusion. Comput. Methods Prog. Biomed. 
260:108492. doi: 10.1016/j.cmpb.2024.108492

Vimbi, V., Shaffi, N., Sadiq, M. A., Sirasanagandla, S. R., Aradhya, V. M., Kaiser, M. S., 
et al. (2025). Application of explainable artificial intelligence in autism spectrum 
disorder detection. Cogn. Comput. 17:104. doi: 10.1007/s12559-025-10462-w

Viswalingam, V., and Kumar, D. (2025). “Digital health solutions: enhancing 
medication adherence in COPD treatment” in Advanced drug delivery Systems in 
Management of chronic obstructive pulmonary disease. Eds. P. Prasher, M. Sharma, G. 
Liu, A. Chakraborty, and K. Dua (Florida, USA: CRC Press), 213–238.

Wang, H., Pang, S., Lu, Z., Rao, Y., and Zhou, Y. (2024). “Dp-promise: differentially 
private diffusion probabilistic models for image synthesis.” In: 33rd USENIX security 
symposium, pp.1063–1080.

Wang, J., Wang, Q., Peng, J., Nie, D., Zhao, F., Kim, M., et al. (2017). Multi-task 
diagnosis for autism spectrum disorders using multi-modality features: a multi-center 
study. Hum. Brain Mapp. 38, 3081–3097. doi: 10.1002/hbm.23575

Washington, P., Mutlu, C. O., Kline, A., Paskov, K., Stockham, N. T., Chrisman, B., et al. 
(2022). Challenges and opportunities for machine learning classification of behavior and 
mental state from images. arXiv:2201.11197. doi: 10.48550/arXiv.2201.11197

Zhang, L., Shen, B., Barnawi, A., Xi, S., Kumar, N., and Wu, Y. (2021). FedDPGAN: 
federated differentially private generative adversarial networks framework for the detection 
of COVID-19 pneumonia. Inf. Syst. Front. 23, 1403–1415. doi: 10.1007/s10796-021-10144-6

Zhou, Y., Duan, P., Du, Y., and Dvornek, N. C. (2024a). “Self-supervised pre-training tasks 
for an fMRI time-series transformer in autism detection” in International workshop on 
machine learning in clinical neuroimaging. Ed. P. L. Monaco (Cham: Springer Nature 
Switzerland), 145–154.

Zhou, Y., Jia, G., Ren, Y., Ren, Y., Xiao, Z., and Wang, Y. (2024b). Advancing ASD 
identification with neuroimaging: a novel GARL methodology integrating deep 
Q-learning and generative adversarial networks. BMC Med. Imaging 24:186. doi: 
10.1186/s12880-024-01360-y

https://doi.org/10.3389/fninf.2025.1679196
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.21203/rs.3.rs-6439243/v1
https://doi.org/10.21203/rs.3.rs-6439243/v1
https://doi.org/10.1007/s40273-015-0331-6
https://doi.org/10.1109/ACCESS.2025.3575454
https://doi.org/10.1007/s13755-024-00281-y
https://doi.org/10.1038/s41398-024-03024-5
https://doi.org/10.48550/arXiv.1701.06538
https://doi.org/10.3390/math12111648
https://doi.org/10.3390/diagnostics15050612
https://doi.org/10.1016/j.cmpb.2024.108492
https://doi.org/10.1007/s12559-025-10462-w
https://doi.org/10.1002/hbm.23575
https://doi.org/10.48550/arXiv.2201.11197
https://doi.org/10.1007/s10796-021-10144-6
https://doi.org/10.1186/s12880-024-01360-y


Revathy and M� 10.3389/fninf.2025.1679196

Frontiers in Neuroinformatics 29 frontiersin.org

Appendix: a dataset and implementation details

Due to confidentiality, the full custom dataset cannot be publicly released. A subset of anonymized sample images is available at [https://
github.com/mkarthiga2211/Autism-SynthGen.git]. The implementation code for Autism-SynthGen is publicly available at [https://github.com/
mkarthiga2211/Autism-SynthGen.git], allowing for replication with alternative datasets. To enhance reproducibility, we provide full environment 
details (Python 3.9, PyTorch 2.0, Hugging Face Transformers 4.32, Scikit-learn 1.3), along with CUDA 11.7 compatibility. Training was 
conducted on 4 × NVIDIA A100 GPUs (40 GB each). Pretrained weights for MADSN and AMEL are available in the repository. A structured 
model card is included to document the model’s purpose, architecture, training setup, datasets used, limitations, and ethical considerations.
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