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Introduction: Autism Spectrum Disorder (ASD) diagnosis remains complex
due to limited access to large-scale multimodal datasets and privacy concerns
surrounding clinical data. Traditional methods rely heavily on resource-intensive
clinical assessments and are constrained by unimodal or non-adaptive learning
models. To address these limitations, this study introduces AutismSynthGen,
a privacy-preserving framework for synthesizing multimodal ASD data and
enhancing prediction accuracy.

Materials and methods: The proposed system integrates a Multimodal Autism
Data Synthesis Network (MADSN), which employs transformer-based encoders
and cross-modal attention within a conditional GAN to generate synthetic data
across structural MRI, EEG, behavioral vectors, and severity scores. Differential
privacy is enforced via DP-SGD (e < 1.0). A complementary Adaptive Multimodal
Ensemble Learning (AMEL) module, consisting of five heterogeneous experts
and a gating network, is trained on both real and synthetic data. Evaluation is
conducted on the ABIDE, NDAR, and SSC datasets using metrics such as AUC,
F1 score, MMD, KS statistic, and BLEU.

Results: Synthetic augmentation improved model performance, yielding
validation AUC gains of > 0.04. AMEL achieved an AUC of 0.98 and an F1
score of 0.99 on real data and approached near-perfect internal performance
(AUC ~ 1.00, F1~1.00) when synthetic data were included. Distributional
metrics (MMD = 0.04; KS = 0.03) and text similarity (BLEU = 0.70) demonstrated
high fidelity between the real and synthetic samples. Ablation studies confirmed
the importance of cross-modal attention and entropy-regularized expert gating.
Discussion: AutismSynthGen offers a scalable, privacy-compliant solution
for augmenting limited multimodal datasets and enhancing ASD prediction.
Future directions include semi-supervised learning, explainable Al for clinical
trust, and deployment in federated environments to broaden accessibility while
maintaining privacy.
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1 Introduction

Autism spectrum disorder (ASD) encompasses a group of
heterogeneous neurodevelopmental conditions defined by persistent
deficits in social communication and interaction, along with restricted,
repetitive patterns of behavior and interests. Early and accurate
identification of ASD is critical: timely intervention can profoundly
improve social, cognitive, and adaptive outcomes, yet standard
diagnostic procedures remain labor-intensive and subjective.
Clinicians currently rely on structured assessments, such as the
Autism Diagnostic Observation Schedule (ADOS) and the Autism
Diagnostic Interview-Revised (ADI-R), which require extensive
training, can take several hours per evaluation, and exhibit substantial
inter-rater variability (Levy et al., 2011). Meanwhile, the prevalence of
ASD has risen to an estimated 1-2% among children worldwide,
imposing growing burdens on healthcare systems, educational
services, and families (Ding et al., 2024; Friedrich et al., 2023).

In response to these limitations, deep learning approaches have
emerged as promising solutions for automating the detection of
ASD. Convolutional neural networks (CNNs) applied to structural
and functional MRI have shown encouraging results. For instance,
ASD-DiagNet leveraged an autoencoder with perceptual loss and data
augmentation via linear interpolation to achieve up to 80%
classification accuracy on fMRI scans (Eslami et al., 2019). Similarly,
generative adversarial networks (GANs) have been adapted to
synthesize realistic biomedical time series. For instance, EEG-GAN
that GAN-based
electroencephalographic (EEG) data can enhance downstream

demonstrated augmentation of
classification performance in brain—computer interface tasks,
suggesting applicability to clinical EEG analysis (Hartmann et al,,
2018). Despite these achievements, such unimodal strategies overlook
the full spectrum of ASD biomarkers.

Integrating multimodal data—combining neuroimaging,
electrophysiology, genetic variants, and behavioral assessments—can
exploit complementary information and boost diagnostic accuracy.
Recent reviews confirm that attention-based fusion of fMRI and EEG
consistently outperforms single-modality models (Dcouto and
Pradeepkandhasamy, 2024). Large public resources, including ABIDE
(2,200 subjects across 17 sites), NDAR (1,100 high-density EEG
recordings paired with behavioral scales), and SSC (~2,600 simplex
families with whole-exome sequencing and ADOS/ADI-R measures),
provide rich multimodal datasets but face challenges of limited cohort
sizes, inter-site variability, and stringent privacy constraints (Di
Martino et al., 2017; Payakachat et al., 2016; Levy et al., 2011).

To address data scarcity and privacy concerns, differentially
private generative models have been proposed. DP-CGAN introduced
per-sample gradient clipping and Rényi differential privacy accounting
to limit privacy leakage while generating synthetic tabular medical
records (Torkzadehmahani et al., 2019), and DP-CTGAN extended
this approach to a federated setting by conditioning on feature subsets
(Fang et al., 2022). More recently, GARL combined InfoGAN with
deep Q-learning to iteratively refine synthetic neuroimaging samples,
reporting significant classification gains on ABIDE data (Zhou et al.,
2024a). However, these approaches typically target a single modality
and do not enforce consistency across modalities, limiting their utility
for downstream multimodal systems.

On the predictive front, ensemble learning offers a framework for
integrating feature Static

heterogeneous representations.
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ensembles—such as simple averaging or majority voting—provide
modest gains but fail to adapt weights based on sample-specific
modality relevance. Mixture-of-experts architectures, featuring
learnable gating networks that dynamically weight model outputs,
have shown success in other domains; however, their application to
privacy-preserving, multimodal ASD data remains largely unexplored.

In this study, AutismSynthGen, an end-to-end framework that
addresses multimodal data scarcity and privacy while delivering
robust ASD prediction, is proposed. The key contributions are
as follows:

1 Multimodal Data Synthesis (MADSN): A conditional GAN
with transformer-based encoders (6 layers, eight heads, hidden
size 512) and cross-modal attention to jointly model structural
MRI, EEG time series, behavioral feature vectors, and
calibrated severity scores. Rigorous differential privacy
(DP-SGD with clipping norm 1.0 and noise multiplier 1.2)
guarantees ¢ < 1.0 at §=107°.

2 Adaptive Ensemble Learning (AMEL): A mixture-of-experts
classifier integrating five heterogeneous models—a 3D-CNN,
a 1D-CNN, an MLP, a cross-modal transformer, and a graph
neural network—whose logits are adaptively weighted by a
two-layer gating MLP (hidden 128, ReLU) with entropy
regularization (1 = 0.01).

3 Comprehensive Evaluation: Demonstration on ABIDE,
NDAR, and SSC datasets, where MADSN-augmented training
raises the validation AUC by > 0.04 over strong uni- and
multimodal baselines.

4 Statistical and Privacy Analysis: Conducted extensive
ablations on cross-modal consistency and DP parameters, as
well as bootstrap confidence intervals and paired Wilcoxon
tests, to confirm both the efficacy and stability of
AutismSynthGen under € < 1.0 privacy constraints.

By unifying transformer-driven multimodal synthesis, formal

privacy guarantees, and adaptive ensemble prediction,
AutismSynthGen advances the state of the art in reliable, privacy-

compliant ASD detection.

2 Related research

2.1 Unimodal MRI-based ASD detection

Structural and functional MRI have been extensively studied
using deep learning classifiers. Early CNN-based pipelines applied to
ABIDE data (Di Martino et al., 2017) achieved promising results:
Moridian et al. reported up to 78% accuracy but highlighted sensitivity
to inter-site variability and limited cohort sizes (Moridian et al., 2022),
while ASD-DiagNet combined a convolutional autoencoder and
perceptual loss to reach &~ 80% accuracy on fMRI scans, albeit with
coarse anatomical synthesis (Eslami et al., 2019). Subsequent research
has addressed generalization and richer feature extraction: Liu et al.
surveyed advanced neuroimaging models, concluding that hybrid
3D-CNN and attention mechanisms yield stronger embeddings (Liu
et al,, 2021); Heinsfeld et al. (2018) demonstrated end-to-end deep
models with site-adaptation layers to improve cross-validation
performance; Singh et al. (2023) introduced transfer learning across
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ABIDE splits to mitigate dataset bias; and Okada et al. (2025)
employed RNN-attention networks on volumetric MRI, capturing
sequential spatial patterns. Multi-view frameworks, such as MultiView,
have further fused different MRI contrasts to enhance detection
robustness (Song et al., 2024). Additionally, adversarial domain
adaptation has been utilized to align feature distributions across sites
(Gupta et al., 2025). More recently, self-supervised pretraining on
resting-state fMRI has been shown to improve downstream ASD
classification (Zhou et al., 2024a).

2.2 Unimodal EEG and behavioral models

High-density EEG offers complementary temporal biomarkers.
EEG-GAN pioneered GAN-driven EEG augmentation, improving
downstream classification in BCI contexts, although it has not yet been
applied to ASD (Hartmann et al., 2018). Aslam et al. reviewed multi-
channel EEG feature engineering for ASD, advocating spectral and
connectivity features (Aslam et al., 2022). Behavioral assessments—
standardized scales for social communication and repetitive behaviors—
have also been modeled directly. Rubio-Martin et al. combined SVM,
random forests, and an MLP on clinical vectors, achieving an AUC of
approximately 0.75 on NDAR behavioral data (Rubio-Martin et al.,
2024). Gamified assessment data, processed via signal-processing
pipelines and ML classifiers, further underscored the utility of interactive
behavioral measures (Bernabeu, 2022; Borodin et al., 2021).

2.3 Genetic and clinical score-based
approaches

Genomic studies on simplex families have largely focused on risk-
locus discovery rather than classification (Li et al., 2024). Levy et al.
(2011) analyzed de novo and transmitted CNVs in SSC data to identify
ASD-associated variants. Automated pipelines have since applied
shallow architectures to SNP embeddings, yet without integrating
clinical scales. Avasthi et al. (2025) utilized transformer-based NLP to
extract clinical text for ASD indicators, and graph convolutional
networks have been leveraged to model correlations among behavioral
domains (Washington et al., 2022). Joint classification and severity
prediction via multi-task learning have also been explored (Wang
etal., 2017).

2.4 Privacy-preserving generative models

Differential privacy (DP) has been integrated into GANS for the
synthesis of sensitive medical data. DP-CGAN enforced per-sample
clipping and Rényi DP accounting (¢ <1.0) on tabular EHRs
(Torkzadehmahani et al., 2019), while DP-CTGAN extended
conditional GAN's to federated settings, balancing utility and privacy
for mixed datasets (Fang et al., 2022). Zhang et al. (2021) introduced
a DP-federated GAN for continuous medical imaging features, and
Wang et al. (2024) applied DP-SGM to neuroimaging data (DP-SNM),
achieving strong privacy with minimal quality loss. The GARL
framework combined InfoGAN with deep Q-learning to iteratively
refine MRI synthesis under privacy constraints, although it was
limited to imaging alone (Zhou et al., 2024a). Broader surveys of
privacy-utility trade-offs in medical GANs have mapped parameter
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impacts on sample fidelity and privacy leakage (Viswalingam and
Kumar, 2025; Nanayakkara et al., 2022).

2.5 Multimodal fusion techniques /
privacy-preserving frameworks

Attention-based fusion of heterogeneous modalities has
demonstrated superior performance compared to unimodal baselines.
Dcouto and Pradeepkandhasamy (2024) surveyed recent multimodal
deep learning in ASD, highlighting gains from fMRI-EEG attention
fusion but noting a lack of end-to-end models with formal consistency
constraints. Baltrusaitis et al. (2018) provided a taxonomy of early, late,
and hybrid fusion strategies, identifying cross-modal transformers as
particularly promising for capturing intermodal correlations. Tools
such as MultiView have operationalized early fusion in autism research
(Song et al., 2024); federated multimodal learning has been proposed
to preserve privacy across sites (Lakhan et al., 2023), and contrastive
self-supervised methods have been introduced for joint embedding of
multimodal ASD data (Qu et al., 2025; Vimbi et al., 2025).

Recent advances also integrate explainable federated learning for
ASD prediction, combining privacy preservation with interpretability
(Alshammari et al., 2024). Such approaches align with our emphasis
on privacy and transparency, although they do not generate synthetic
data or enforce cross-modal consistency as in AutismSynthGen.

2.6 Ensemble and mixture-of-experts
methods

Adaptive ensemble strategies offer robustness by weighting
diverse experts per sample. Sparsely gated mixture-of-experts (MoE)
layers have demonstrated scalable adaptive weighting in language
models (Shazeer et al., 2017); in medical contexts, ensemble deep
learning has been applied to multimodal ASD screening, yielding
improved sensitivity but without sample-specific gating (Taiyeb
Khosroshahi et al., 2025). Rubio-Martin et al. (2024) demonstrated
the benefits of simple averaging of heterogeneous classifiers on
behavioral data, while Nguyen et al. (2023) proposed MoE with
gating regularization for noisy medical inputs. Recent studies have
applied attention-based MoE to healthcare data, underscoring the
importance of entropy penalties in avoiding expert collapse (Han
et al., 2024).

2.7 Privacy-utility trade-off analyses

Comprehensive investigations into privacy-utility trade-offs have
quantified the impact of DP parameters on the performance of
generative models (Schielen et al., 2024). Nanayakkara et al. evaluated
differentially private GANs across imaging benchmarks, mapping &
values to downstream classification accuracy (Nanayakkara et al.,
2022). Table 1 compares the existing ASD detection frameworks.

2.8 Research gap

Despite substantial advances in unimodal deep learning for ASD
detection—such as CNN-based classifiers on fMRI (Moridian et al.,
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TABLE 1 Comparison of existing ASD detection frameworks: key methodologies, datasets employed, principal advantages, and noted limitations.

S.no Ref.no Proposed research | Dataset used Pros Cons
1 Moridian et al. (2022) CNN-based ASD detection ABIDE (structural & End-to-end feature learning Sensitive to site variability;
fMRI) limited sample size
2 Eslami et al. (2019) ASD DiagNet (autoencoder + | ABIDE (fMRI) Perceptual loss improves feature | Coarse anatomical detail in
GAN augmentation) quality synthesized images
3 Hartmann et al. (2018) EEG-GAN for EEG synthesis | Public EEG benchmarks Realistic EEG generation Not evaluated for ASD
4 Rubio-Martin et al. (2024) Behavioral + NLP fusion NDAR (behavioral scales, = Integrates textual and numerical | No multimodal interaction
(MLP, SVM, RF) text) clinical data
5 Levy et al. (2011) CNV risk-locus analysis SSC (de novo CNVs, Identification of ASD-associated | No predictive classification
WES) variants
6 Torkzadehmahani et al. (2019) DP-CGAN for tabular Medical EHR cohorts Strong privacy guarantees Reduced sample realism;
medical data (e £1.0) tabular only
7 Fang et al. (2022) DP-CTGAN (federated) MIMIC-III (tabular) Federated DP; improved utility Discrete features only
over DP-CGAN
8 Zhou et al. (2024a) GARL (InfoGAN + DQN) ABIDE (MRI) Iterative refinement yields high- | Single modality; no EEG/
fidelity MRI samples behavioral consistency
9 Dcouto and Attention-based fMRI + EEG | Multiple studies Demonstrates the benefits of Lacks an end-to-end model
Pradeepkandhasamy (2024) fusion review hybrid fusion and privacy guarantees
10 Baltrusaitis et al. (2018) Multimodal ML survey & N/A Comprehensive fusion No empirical ASD
taxonomy taxonomy implementation
11 Shazeer et al. (2017) Sparsely-gated Mixture-of- Language corpora Scalable adaptive weighting via High compute; not tailored
Experts (MoE) learnable gating to medical or multimodal
data
12 Zhang et al. (2021) FedDPGAN for medical COVID-19 CT scans Federated DP for imaging Not applied to ASD
imaging
13 Wang et al. (2017) DP-SNM for neuroimaging Private neuroimaging DP for continuous imaging Single modality; no fusion
cohorts
14 Han et al. (2024) FuseMoE: MoE Transformers = Multimodal benchmarks Flexible cross-modal fusion No formal privacy
for Fusion guarantees
15 Nanayakkara et al. (2022) Privacy-utility trade-off Synthetic benchmarks Maps the DP impact on utility No ASD-specific evaluation
visualization comprehensively

2022; Eslami et al., 2019), hybrid autoencoder-GAN models (Eslami
etal, 2019), and GAN-driven EEG augmentation (Hartmann et al.,
2018)—these approaches remain confined to single modalities and
often overfit small, heterogeneous cohorts. Differentially private
GANs have been applied to tabular medical records
(Torkzadehmahani et al., 2019) and federated settings (Fang et al.,
2022; Wang et al., 2024), but they neither extend to continuous
neuroimaging or time-series data nor enforce consistency across
EEG, behavioral, and imaging modalities.

Although attention-based fusion methods demonstrate
improved performance for paired fMRI-EEG inputs (Dcouto and
Pradeepkandhasamy, 2024; Zhou et al., 2024b) and surveys outline
promising multimodal fusion taxonomies (Baltrusaitis et al,
2018), end-to-end architectures that jointly synthesize and
integrate more than two modalities under formal privacy
constraints are still lacking. Finally, ensemble strategies in ASD
classification have largely relied on static averaging of expert
outputs (Rubio-Martin et al., 2024), whereas scalable, sample-
adaptive mixture-of-experts frameworks that have proven effective
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in other domains (Shazeer et al., 2017) remain unexplored in
this context.

The proposed framework addresses these gaps through two key
innovations. First, a transformer-based conditional GAN incorporates
cross-modal attention to generate coherent synthetic MRI, EEG,
behavioral, and severity data, while differential privacy via DP-SGD
(clipping norm 1.0, noise multiplier 1.2) guarantees € < 1.0 leakage
bounds (Fang et al., 2022; Torkzadehmahani et al., 2019). Second, a
mixture-of-experts ensemble employs five heterogeneous models—
3D-CNN, 1D-CNN, MLP, cross-modal transformer, and GNN—
whose logits are dynamically weighted by an entropy-regularized
gating network, enabling sample-specific emphasis on the most
informative modalities (Shazeer et al., 2017; Han et al., 2024). Rigorous
evaluation on ABIDE (Di Martino et al., 2017), NDAR (Payakachat
et al,, 2016), and SSC (Levy et al., 2011) demonstrates statistically
significant AUC improvements (> 0.04) over strong unimodal, static
ensemble, and non-private baselines, thus bridging the identified
research gaps in privacy-compliant multimodal synthesis and adaptive
ASD prediction.
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3 Proposed methodology

The AutismSynthGen framework jointly learns to synthesize
multimodal autism data and to analyze it via an ensemble of predictive
models. In our approach, a Multimodal Autism Data Synthesis
Network (MADSN) uses transformer-based encoders and a
conditional GAN to generate realistic multimodal data (e.g.,
neuroimaging, demographic vectors, behavioral). A complementary
Adaptive Multimodal Ensemble Learning (AMEL) module trains a
mixture-of-experts classifier on the synthesized (and real) data,
assigning weights to each expert based on its performance and
modality. This combined pipeline enables robust autism prediction and
data augmentation while incorporating cross-modal consistency and
differential privacy constraints for sensitive data. The overall flow is
illustrated in Figure 1.

3.1 Dataset description

The model is trained and validated on three publicly
available datasets:

o ABIDE (Autism Brain Imaging Data Exchange): A multi-site
neuroimaging dataset. ABIDE-I/II together include structural
MRI (T1-weighted), resting-state functional MR, and diffusion
MRI from hundreds of ASD individuals and controls. Phenotypic
assessments (age, I1Q, diagnosis) accompany the imaging (Di
Martino et al., 2017).

o NDAR (National Database for Autism Research): Aggregates
multimodal data, including behavioral assessments and EEG
(Payakachat et al., 2016).

o SSC (SimonsSimplex Collection): Includes genetic and behavioral
data from families with autistic children (Levy et al., 2011).

First, sourced neuroimaging data from ABIDE I and II,
comprising 2,200 subjects (ASD and neurotypical controls) across 17
sites. Second, incorporated 1,100 high-density EEG recordings from
the National Database for Autism Research (NDAR), sampled at
250 Hz alongside standardized behavioral assessments. Third,
we included genetic and behavioral data for 2,600 simplex families
from the Simons Simplex Collection (SSC), with whole-exome
sequencing variants paired with ADOS/ADI-R measures. All data
were split into train/validation/test sets in a 70/15/15% ratio, stratified
by diagnosis, age, and site to preserve class balance. Experiments were
repeated with three distinct random seeds (42, 123, 2025), and results
are reported as the mean + SD. It is important to note that evaluation
was performed on stratified splits within ABIDE, NDAR, and
SSC. No completely external dataset was available for validation.
remains to

Hence, generalizability beyond these datasets

be established. The dataset details are mentioned in Appendix A.

3.2 Data preprocessing
Raw magnetic resonance images underwent skull-stripping,

affine registration to MNI space, and voxel-wise intensity
normalization to zero mean and unit variance. EEG signals were
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band-pass filtered between 1 and 40 Hz, notched at 50 Hz, and epochs
exceeding £100 pV were rejected; remaining segments were z-score
normalized on an epoch-wise basis. Continuous features across
modalities were imputed to their mean values, while categorical
features employed one-hot encoding augmented by an explicit
“unknown” flag. All continuous features (e.g., voxel intensities, age,
and genomic variant counts) are normalized to have a mean of zero
and a variance of one to stabilize training. For a feature x;, we compute
as in Equation 1:

=k M

where ¢ and o are the training set’s mean and standard deviation,
respectively. This z-score normalization ensures each feature is on a
comparable scale.

Categorical variables (e.g., gender, site, diagnostic codes) are
transformed into one-hot encoded vectors. For a categorical feature
with K classes, a sample ce{l..K },is mapped to a binary vector
he {O,I}Ksuch thath; =1ifand only if c = j. Missing values—common
in multi-site clinical datasets—are imputed using simple statistical
approaches. For numerical features, missing entries are replaced with
the mean value g, computed from the observed data as represented
in Equation 2:

=

)

~ | %, if x;is observed,
> if x; is missing

For categorical variables, an additional “unknown” category is
added to handle missing values. More advanced methods (e.g., k-NN
imputation or model-based approaches) are available but are not used
here for simplicity and consistency. All preprocessing parameters
(1,0, and encoding schemes) are learned from the training data and
consistently applied to the validation, test, and synthetic datasets. Not
all subjects had complete multimodal data. Missing features were
imputed using mean (continuous) or ‘unknown’ category (categorical)
values. While pragmatic, this may bias results and motivate the use of
advanced missing-modality learning in the future. Behavioral
narrative text fields from NDAR/SSC were anonymized, tokenized,
and embedded using a pre-trained biomedical language model
(BioBERT). The resulting 768-dimensional embeddings were reduced
to 128 dimensions using PCA and used as input to MADSN. Synthetic
text vectors (“text_projected”) generated by MADSN thus represent
latent embeddings of behavioral descriptions rather than raw text.

3.3 MADSN architecture

Our Multimodal Autism Data Synthesis Network (MADSN)
generates coherent synthetic triplets (Xpyrr,XpeG-Xsnp) by fusing
transformer-based embeddings and enforcing cross-modal consistency.
Each modality is first encoded via a six-layer transformer (eight heads,
hidden size 512), using positional encodings for EEG and learned
embeddings for genetic variants and imaging patches. These modality-
specific outputs interact with one another through cross-modal attention,
producing fused embeddings that are concatenated and projected into a
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Multimodal Autism Data Synthesis

Adaptive Multimodal Ensemble

Synthetic Data

AutismSynthGen

FIGURE 1
Overall AutismSynthGen architectural workflow.
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256-dimensional latent input for the generator. The generator G (z, y) is
implemented as a four-layer MLP with LeakyReLU activations, while the
discriminator D ( X, y) features a shared three-layer MLP trunk branching
into modality-specific heads.

Training follows a conditional GAN paradigm augmented with
three  loss  components:  standard  adversarial  loss
E[log(D (x)} +E [log(l -D (G (z)))J, a cross-modal KL-divergence
penalty to encourage consistency of joint posteriors, and a privacy
penalty implemented via DP-SGD on the discriminator. We set a
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clipping norm C =1.0 and a noise multiplier & =1.2 to achieve £ <1.0
at § =107, ensuring rigorous differential privacy guarantees without
sacrificing data utility. Figure 2 illustrates the architecture of the
proposed Multimodal Autism Data Synthesis Network (MADSN).
Each input modality x™(e.g., EEG, behavioral text, demographic
vectors) is first processed through a modality-specific transformer
encoder T}, to produce a latent representation h,, (Equation 3):

b =T, (xm) (3)
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Each transformer encoder includes self-attention layers,
particularly multi-head attention computed as in Equation 4:

T
Attention (Q,K,V) = softmax{ QK ]V, (4)

Ji

where Q, K,V are query, key, and value projections of h,,,,dy, and
is the dimensionality of the key vectors. Positional encodings are
added as necessary to maintain spatial or temporal relationships.
Latent features h,, from all modalities are then fused via cross-
modal attention.

For modalities i,j, attention weights are computed as in
Equation 5:

()"

T (k) ©)

ajj = softmax

All modality embeddings are concatenated and processed through
shared attention layers to yield a unified latent vector z, encoding
multimodal context. The generator G of the conditional GAN receives
z, random noise 77 ~ N (O,I ), and class label ¢, and produces synthetic
multimodal samples (Equation 6):

Xgen =G(2,77:¢) (6)

which outputs synthetic samples for each modality (stacked or
separately). The discriminator D evaluates real or generated data
conditioned on ¢ and outputs a probability of being real. The GAN
training minimizes the following adversarial objective (Equation 7):

minmaxV(D,G) =

lin ma Ex-p,, [logD(x,c)]+

E,. [log((b)fD(G(z(n),c),c))}, (7)

where 77=Tix!,..,T,,x™ is fixed per real sample for training

purposes. Training alternates between minimizing the discriminator
in Equation 8:
loss as shown in Equation 8

Lp :—[logD(xreabc)+10g(1_D(xg‘m’C))] (8)

and minimizing the generator loss with a cross-modal consistency
penalty (Equation 9):

G = —log(D(xgen,C)+ﬂ«conchons ©)

Cross-modal consistency is enforced by ensuring that different
modality embeddings agree in latent space as in Equation 10:

Leons = zuhi _hj”2 (10)

i#j
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Finally, for privacy, we incorporate Differential Privacy (DP) into
GAN training. Differential Privacy (DP) is incorporated into
discriminator training using DP-SGD. A mechanism M is v
-differentially private if changing one individual in the dataset changes

output probabilities by at most e (Equation 11):

P[M(D)eS]|<e“P[M(D')eS]vs,vD,D':|D-D| =1 (11)

Concretely, the discriminator gradients are clipped to norm ¢, and
Gaussian noise is added for a mini-batch of size B as mentioned in
Equation 12.

n(O,GZCZI), (12)

;i { IIgzll]

where g; is the gradient from sample i. The MADSN generator is
trained to minimize (Equation 13):

LG + ﬂ'conchons (13)

while discriminator training is made private. By combining
transformers, cross-modal attention, GAN objectives, and DP
constraints, MADSN learns to produce realistic, privacy-preserving
synthetic multimodal autism data.

3.4 AMEL ensemble learning

The Adaptive Multimodal Ensemble Learning (AMEL) system takes
the augmented dataset (real + synthetic) and trains an ensemble of K
expert classifiers, along with a gating network. The Adaptive Multimodal
Ensemble Learning (AMEL) module integrates five experts—CNN, MLP,
regressor, transformer, and GNN—via a gating network. Each expert
processes modality-specific inputs; the gating network assigns adaptive
weights to expert outputs, enabling sample-specific fusion. This ensures
that if one modality is weak or missing, other experts dominate the
prediction. Each expert produces logits, which are concatenated and
passed through a two-layer gating MLP (hidden size 128, ReLU) to yield
softmax weights w;, regularized by an entropy penalty (1=0.01) to

5
y=2mifi(x)
i=1

prevent collapse. The ensemble prediction is trained

end-to-end under a cross-entropy loss on held-out labels. Figure 3
represents the schematic of the AMEL adaptive ensemble. Each expert fi
may be specialized to one modality (e.g., farifor imaging, fggnfor
genetics, and so on), or to different architectures (CNN, MLP, etc.). Given
an input x with all modalities, each expert outputs a prediction
Vi = fk (x) A gating network g (x) produces scores that are normalized
via softmax to obtain weights as mentioned in Equation 14:

exp(gx (x))
glexp(gf( x)) *=

ak=

Zak =1 (14)
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MADSN Architecture
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FIGURE 2
MADSN Architecture.

These weights adapt to each sample: e.g., if imaging data is missing . K 5
or noisy, the model may down-weight the imaging expert. The Leps = E(x,y) [Z ( »y (x ))} + zlk ||9k " (16)
ensemble prediction is the weighted sum (Equation 15): k=1

K
}’(X)—kzdak)’k (15) where 6 are parameters of fi, and 4; can encode modality-
specific priors (Equation 16). We backpropagate through the gating
softmax so that better-performing experts get higher weights. This
The entire system is trained end-to-end by minimizing an  “mixture-of-experts” approach allows the ensemble to adaptively
ensemble loss: a supervised loss and regularization. Formally, integrate modalities, as opposed to static averaging or majority voting.
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AMEL: Ensemble Learning
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FIGURE 3
AMEL adaptive ensemble architectural workflow.

&1

softmax —

Indeed, adaptive ensemble algorithms (with learned weights) typically
outperform fixed-weight ensembles. Overfitting was mitigated
through dropout layers (p = 0.3 in the MADSN generator, p = 0.5 in
the AMEL gating), entropy regularization (A =0.01), and early
stopping based on validation AUC. Synthetic samples were generated
exclusively from training distributions, ensuring no leakage into
validation or test sets. During inference, if a modality is missing or
corrupted, its expert output is excluded, and the gating network
automatically redistributes weights among the remaining experts. This
adaptive weighting allows AMEL to degrade gracefully rather than fail
catastrophically in incomplete-modality settings. The outline for the
MADSN and AMEL components, as well as their integration, is
detailed in Algorithms 1, 2.

3.5 Hyperparameter optimization and
baselines

Model hyperparameters were optimized using a Tree-
structured Parzen Estimator (TPE) over learning rates for the GAN
(1075-107°1), DP-SGD clipping norm (0.1-2.0), noise multiplier
(0.5-2.0), number of experts K e {3,5,7}, and gating penalty
A EI:0,0.I:. Validation AUC guided early stopping up to 200 epochs,
with performance recorded every epoch. We benchmarked our
model against several baselines: a single-modality CNN (MRI
only), a GAN without the consistency penalty, a GAN trained with
standard SGD (without DP), and an ensemble without gating. Our
full pipeline achieved a validation AUC of 0.89 +0.01,
outperforming all baselines by at least 0.04.

Frontiers in Neuroinformatics

3.6 Statistical and computational
considerations

The model’s performance is evaluated using AUC, F1, maximum-
mean discrepancy (MMD) on embeddings, and Kolmogorov-Smirnov
statistics on marginal distributions, with 95% confidence intervals
estimated from 1,000 bootstrap resamples. Paired Wilcoxon signed-rank
tests were used to assess significance (p < 0.05) against each baseline.
Experiments were run on four NVIDIA A100 GPUs (256 GB RAM),
with GAN training requiring ~48 h and ensemble fine-tuning requiring
~12 h. The GAN and ensemble models contain approximately 12 M and
8 M parameters, respectively. Training required ~48 h on four A100
GPUs, which may limit reproducibility in smaller labs. Future studies will
explore model compression (e.g., distillation, ONNX export) and
federated setups to reduce computational cost.

4 Results and discussion

The proposed research introduces AutismSynthGen, a novel
generative model designed to synthesize multimodal autism-related data,
including behavioral texts, electroencephalogram (EEG) signals, and
demographic profiles, to address the challenge of limited datasets in
autism prediction research. AutismSynthGen leverages the Multimodal
Autism Data Synthesis Network (MADSN), a generative adversarial
network (GAN) integrated with a transformer-based multimodal fusion
module, which encodes modality-specific inputs using transformers,
fuses them into a shared latent space via attention-based mechanisms,
and employs a conditional GAN to generate clinically relevant synthetic
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Input: Real data {(x[", y;)} for modalities m=1..M, labels y, noise dimension d,,; privacy
params C, o

Output: Trained generator G (can sample synthetic data)

1. Initialize transformer encoders T,,, generator G, discriminator D.

2. Preprocess real data (normalize, encode missing, etc.).

3. for epoch =1 to N do

Xsynth = G(z,1,c)

ALGORITHM 1
MADSN multimodal synthesis.

4. for each minibatch of real samples {x/%,;, y} do
5. // Update Discriminator (with differential privacy)
6. Sample noise 1 and use current G to create fake samples
Xfake = G(Ty (xv}eal) Y i (x;réal)f ny
7. Compute Dyo55 = _[IOgD(xv}eal' 'x:];al ,¥) +log (1 - D(xfake: Y))]
8. Compute clipped gradients of D,z w.r.t real-data batch; add Gaussian noise (DP-SGD)
9. Update D parameters.
10. // Update Generator
11.  Sample new noise 1', form fake samples x¢q,.= G (2,7, y) using latent
z = Ty (xJeq) 0T random.
12. Compute Gloss == lOg D( Xfakes y) + Acons * Lconsistency (Z)
13. Update G parameters via gradient descent.
14. end for
15. end for

After training, generate synthetic data by sampling z (from learned distribution) and n, then

2. for epoch=1to M do

output § = Y A Vi

ALGORITHM 2
AMEL training and inference.

Input: Dataset (real + synthetic) {(x]", y;)}, expert count K
Output: Trained experts {f,} and gating network g
1. Initialize experts f}, (each may take one modality or full x) and gating net g.

3. for each minibatch {x, y} do

4.  Compute expert outputs: y, = fi.(x) fork = 1..K

5. Compute gating scores and softmax weights: @ = softmax(g(x)).
6. Compute ensemble output: § = Y @y Vi

7. Compute loss: L = 10ssp, (5, ¥) + Xk Akl 6|2

8. Backpropagate to update {f, g} minimizing L.

9. end for

10. end for

1. Inference: Given new x, compute experts ¥, = fi(x), weights @ = softmax(g(x)), and

samples conditioned on autism severity levels (mild, moderate, severe).
A privacy-preserving loss function, incorporating differential privacy
(& < 1.0), ensures the protection of sensitive patient information, while a
cross-modal consistency regularizer maintains coherence across
modalities, aligning EEG patterns with behavioral descriptions and
demographic data. The accuracy of the synthetic dataset is validated
using multiple machine learning algorithms, including Random Forest,
Support Vector Machine (SVM), Convolutional Neural Network (CNN),
and Logistic Regression, with the proposed Adaptive Multimodal
Ensemble Learning (AMEL) algorithm employed for training. AMEL
integrates a weighted ensemble of these base learners, utilizing adaptive
weighting and modality-specific regularization to optimize prediction
performance, thereby enhancing the effectiveness of the synthetic data
for autism classification tasks. The novelty of this approach lies in the
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combination of MADSN’s generative capabilities with AMELs adaptive
ensemble strategy, addressing data scarcity and privacy concerns while
outperforming traditional methods.

4.1 Dataset description

The development and evaluation of AutismSynthGen utilize three
well-established, publicly accessible datasets, each providing critical
multimodal data for autism research:

1 ABIDE (Autism Brain Imaging Data Exchange): This dataset
includes EEG, functional magnetic resonance imaging (fMRI),
and demographic data (e.g., age, gender) from individuals with
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autism spectrum disorder (ASD) and typically developing
controls. It is widely used for studying brain connectivity and
autism-related biomarkers. Access to ABIDE is publicly
available but requires registration through the official
ABIDE portal.

NDAR (National Database for Autism Research): NDAR
provides a comprehensive repository of autism-related data,
including behavioral assessments, EEG recordings, and clinical
information. It supports integrative analyses across genetic,
neuroimaging, and behavioral domains. Access to NDAR
requires a data use agreement, which can be obtained through
the NDAR platform.

Simons Simplex Collection (SSC): This dataset, provided
through SFARI Base, contains behavioral data, clinical
assessments, and demographic profiles from families with one
child diagnosed with autism spectrum disorder (ASD). SSC is
particularly valuable for studying familial and behavioral
patterns in autism spectrum disorder (ASD). Access is available
through an application on the SFARI Base platform.

These datasets collectively provide a robust foundation for
training and validating AutismSynthGen, ensuring that the generated
synthetic data accurately reflects the realistic, multimodal
characteristics of autism while adhering to ethical and privacy
standards. Figure 4 shows a sample of the raw dataset customized
from multimodal data, illustrating key features such as autism severity
scores (Al-Score to A8-Score), demographic information (e.g.,
country, age, relationship), and behavioral/EEG indicators (e.g., EEG_
signal, behavioral_text). The dataset includes five anonymized patient
records, with columns representing various attributes used for training
the AutismSynthGen model.

Figure 5 represents the sample of the pre-processed dataset
derived from the raw multimodal data, following the application of
data pre-processing techniques. The preprocessing steps include
handling missing values by appropriate imputation or removal,
encoding categorical variables (e.g., country, relationship) into
numerical representations, and normalizing numerical features (e.g.,
age, severity scores) to ensure consistency and compatibility with the
AutismSynthGen model. The dataset retains five anonymized patient
records, with refined attributes suitable for model training.

Figure 6 represents the graph depicting the discriminator accuracy
of the MADSN model during training over 14 iterations. The results
presented in Figure 6 demonstrate the training performance of the

10.3389/fninf.2025.1679196

MADSN discriminator, a critical component of the AutismSynthGen
model. The observed increase in discriminator accuracy from 0.40 to
0.65 across 14 iterations signifies robust learning and the model’s
capacity to differentiate between synthetic and real multimodal autism
data. The initial rise in accuracy, accompanied by minor fluctuations
between iterations 4 and 6, suggests an adaptation phase where the
generator and discriminator achieve equilibrium, a common
phenomenon in GAN training. The stabilization and subsequent
steady improvement post-iteration 6 underscore the efficacy of the
transformer-based multimodal fusion and cross-modal consistency
regularizer in enhancing data realism. The final accuracy of 0.65
indicates a strong discriminative capability, supporting the reliability
of the synthetic data generated for augmenting limited autism datasets.

Figure 7 represents the sample of the synthetic data generated by
AutismSynthGen, stored in synthetic_data.npy format, showcasing
projected text features (text_projected), EEG signals (eeg), and
demographic labels (demo_labels) for five synthetic patient records.
The results presented in Figure 7 illustrate the efficacy of
AutismSynthGen in generating synthetic multimodal data, as
evidenced by the sample of synthetic_data.npy. The projected text
features, EEG signals, and demographic labels exhibit coherent
patterns that align with the pre-processed dataset, confirming the
success of the transformer-based multimodal fusion and cross-modal
consistency regularizer in maintaining inter-modality relationships.
The presence of binary labels (0 and 1) in the demo_labels column
indicates the model’s capability to generate data conditioned on autism
severity levels, a key objective of the MADSN framework. The
observed variability in synthetic data attributes, such as the range of
EEG values and text projections, suggests that the conditional GAN
effectively captures the diversity of the original dataset while adhering
to the privacy constraints imposed by differential privacy (¢ < 1.0).
This synthetic data augmentation is poised to enhance the training of
autism prediction models, particularly in scenarios where real-world
data is limited. The ‘text_projected’ column represents generated
behavioral text embeddings. These were evaluated for similarity
against real embeddings using BLEU scores, confirming alignment at
the representation level. These vectors were not decoded into
sentences but integrated directly into AMEL for classification.

Figure 8 represents the comparison of distribution histograms
for EEG values and age between real and synthetic data. The results
presented in Figure 8 provide a comparative analysis of the
distributions of EEG values and age between real and synthetic
data, offering insights into the fidelity of AutismSynthGen’s output.

£14
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Graph depicting the discriminator accuracy of the MADSN model during training over 14 iterations. The accuracy increases progressively from
approximately 0.40 to 0.65, indicating effective learning and convergence of the generative adversarial network.
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Sample of synthetic multimodal data generated by AutismSynthGen, including text embeddings (‘text_projected’), EEG signals, and demographic
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Comparison of distribution histograms for EEG values and age between real and synthetic data.
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The EEG distribution demonstrates a strong overlap between real
and synthetic data, with both exhibiting a central peak around zero
and a comparable spread, suggesting that the MADSN model
effectively captures the statistical properties of EEG signals. This
alignment validates the efficacy of the transformer-based
multimodal fusion and cross-modal consistency regularizer in
preserving the structural integrity of EEG patterns. Similarly, the
age distribution shows a close match between real and synthetic
data, with both histograms displaying similar normalized ranges
(0 to 20) and peak densities, indicating the model’s success in
replicating demographic attributes while adhering to the
differential privacy constraint (¢ < 1.0). Minor deviations in the
tails of the distributions may reflect the impact of the privacy-
preserving loss, which prioritizes data utility over exact replication.
These findings affirm the synthetic data’s potential to augment
limited real datasets, enhancing the robustness of autism
prediction models.

To further validate fidelity, we projected real and synthetic
embeddings into a 2D space using t-SNE (Figure 9). Both EEG and
behavioral embeddings show a strong overlap between real and
generated samples, consistent with the low MMD and KS values. A
complementary PCA projection of AMELs latent decision space
(Figure 10) shows that synthetic samples align closely with real data
clusters, without forming spurious modes. These visualizations
provide intuitive confirmation that AutismSynthGen captures the
essential structure of multimodal ASD data.

Figure 11 illustrates the Receiver Operating Characteristic (ROC)
curves for the proposed AMEL algorithm, comparing its performance on
real data (blue) and a combination of real and synthetic data (orange). The
results presented in Figure 11 highlight the superior performance of the
AMEL algorithm when trained on a combination of real and synthetic
data generated by AutismSynthGen.

The ROC curve for real data alone exhibits an AUC of 0.98 and
an Fl-score of 0.99. In contrast, the inclusion of synthetic data
elevated the performance to near-perfect levels (AUC ~ 1.00,
F1 = 1.00), indicating highly consistent internal discrimination.
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This improvement underscores the efficacy of the synthetic data in
augmenting the real dataset, likely due to AMELs adaptive
which
multimodal features (text, EEG, demographics) enhanced by the

weighting and regularization, effectively integrate
MADSN’s generative process. The ideal performance on the
augmented dataset may reflect an optimal training scenario,
potentially influenced by the synthetic data’s alignment with real-
world distributions (as shown in Figure 5).

Figure 12 illustrates the confusion matrices for the AMEL
algorithm, comparing its performance on real data (left) and a
combination of real and synthetic data (right). The results presented
in Figure 12 provide a detailed assessment of the AMEL algorithm’s
performance through confusion matrices for real data and a
combination of real plus synthetic data. For real data, the matrix
reveals 450 true negatives, 50 false positives, 50 false negatives, and
154 true positives, yielding an overall accuracy of approximately 0.904
(calculated as (450 + 154) / (450 + 50 + 50 + 154)). In contrast, the
inclusion of synthetic data improves the matrix to 480 true negatives,
20 false positives, 30 false negatives, and 174 true positives, resulting
in an accuracy of approximately 0.946 (calculated as (480 + 174) /
(480 + 20 + 30 + 174)). This enhancement, particularly the reduction
in false positives and false negatives, underscores the synthetic data’s
contribution to improving classification precision and recall, aligning
with the perfect AUC and F1-score observed in Figure 11.

The performance of the AMEL algorithm is evaluated using the
following metrics:

e MMD (Fused): 0.04, indicating a low Maximum Mean
Discrepancy between real and synthetic fused multimodal data,
suggesting high similarity.

KS Statistic (EEG): 0.03, with a KS p-value (EEG) of 0.06,
indicating that the Kolmogorov-Smirnov test does not reject the
null hypothesis of identical EEG distributions at a 5%
significance level.

Distributional Similarity (%): 95, reflecting a high degree of
alignment between real and synthetic data distributions.
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FIGURE 9
t-SNE visualization of latent embeddings (real = blue, synthetic = orange).
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FIGURE 10
PCA projection of AMEL latent decision space with an illustrative decision boundary (real = blue, synthetic = orange).

« F1-Score (Real): 0.99, and AUC (Real): 0.98, demonstrating
excellent classification performance on real data alone.

 F1-Score (Real + Synthetic): 1.00, and AUC (Real + Synthetic):
1.00, indicating perfect classification performance with the
augmented dataset.
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« F1 Improvement (%): 1.0101, and AUC Improvement (%):
2.0408, quantifying the relative enhancement in performance
with synthetic data.

« BLEU Score: 0.7, signifying moderate to high similarity between
real and synthetic text features.
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ROC Curves with F1-Scores
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ROC curves comparing AMEL on real data vs. real + synthetic data. Synthetic augmentation enhances near-ceiling performance, with an AUC of 1.0.
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Confusion matrices for the proposed AMEL algorithm, comparing performance on real data (left) and a combination of real plus synthetic data (right).
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 Privacy Budget (¢): 1.0, indicating no privacy budget
expenditure, as the synthetic data generation adheres to

differential privacy constraints.

The evaluation metrics presented in Figure 13 affirm the
efficacy of the AMEL algorithm in leveraging synthetic data
generated by AutismSynthGen. The low MMD (0.04) and KS
statistic (0.03) with a non-significant p-value (0.06) for EEG
distributions, alongside a 95% distributional similarity, validate
the model’s ability to replicate real data characteristics, consistent
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with the observations in Figure 8. The F1-score improvement of
1.0101% and AUC improvement of 2.0408% when incorporating
synthetic data, culminating in perfect scores (F1l-score: 1.00,
AUC: 1.00), corroborate the enhanced classification performance
depicted in Figures 11, 12. The BLEU score of 0.7 further
supports the quality of synthetic text features, while the zero
privacy budget (¢ < 1.0) confirms compliance with differential
privacy, ensuring patient data protection.

While quantitative measures (MMD, KS, and BLEU) support
fidelity, no clinician-based validation was conducted on synthetic
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Evaluation Metrics
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Evaluation metrics for the AMEL algorithm, including distributional similarity (MMD = 0.04, KS = 0.03, BLEU = 0.7), classification performance (F1 = 0.99
real; 1.00 real + synthetic; AUC = 0.98 real; 1.00 real + synthetic), and privacy compliance (e < 1.0).

TABLE 2 Comparison results of the proposed AMRL algorithm with other existing algorithms on real data.

Model Accuracy F1-Score Precision Recall AUC Log loss
Logistic Regression 1.0 1.0 £ 0.00 1.0 1.0 1.0 £0.00 0.0308908
Random Forest 0.978723 0.96 + 0.02 0.971429 0.944444 0.998 + 0.001 0.145483
SVM 0.985816 0.97 +0.01 1.0 0.944444 0.997 % 0.002 0.0684
CNN 0.992908 0.98 +0.01 0.972973 1.0 1.0 £ 0.00 0.011869
Proposed AMEL 0.992908 0.99 +0.01 0.972973 1.0 1.0 £0.00 0.049632

Values are reported as mean + SD over three independent runs with random seeds (42, 123, 2025). Bootstrap 95% confidence intervals were computed for AUC and F1 to confirm stability.

Bold values represent the results of proposed methodology.

behavioral text or EEG. Future research will involve blinded expert
review to confirm clinical realism.

4.2 Performance comparison on real data

The comparison results presented in Table 2 illustrate the
performance of the proposed AMEL algorithm in comparison to
baseline models on real data alone. The AMEL algorithm achieves an
accuracy of 0.992908, an F1-score of 0.986301, a precision of 0.972973,
a recall of 1.0, an AUC of 1.0, and a log loss of 0.049632, matching
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CNN’s performance and surpassing logistic regression (1.0, 1.0, 1.0,
1.0, 1.0, 0.0308908), Random Forest (0.978723, 0.957746, 0.971429,
0.944444, 0.998148, 0.145483), and SVM (0.985816, 0.971429, 1.0,
0.944444, 0.997354, 0.0684). The bar chart visually highlights AMELs
competitive edge, particularly in log loss and F1 score, reflecting its
effective integration of multimodal features through adaptive
weighting and regularization (refer to Figure 14). While logistic
regression exhibits perfect scores, its higher log loss suggests less
confidence in predictions compared to AMEL and CNN. These results
establish AMEL as a robust baseline for real data, setting the stage for
its enhanced performance with synthetic data augmentation, as
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Comparative Analysis of Model Performance Metrics
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FIGURE 14
Comparison results of the proposed AMRL algorithm with other algorithms.
Confusion Matrix: Logistic Regression Confusion Matrix: Random Forest Confusion Matrix: SVM

E 3 3
g 4 £
- 0 36 -- 2 E7) -- 2 34
o 1 0 1 0 1
Predicted Predicted Predicted
® =
(a) Confusion Matrix (Real Data)
Confusion Matrix: CNN
50
° 1
3 3
g kS
- 0 36 o 50 154
0 : 0 1
Predicted Predicted
@ (e)
FIGURE 15

Comparison of confusion matrices for all models on real data: (a) Logistic Regression, (b) Random Forest, (c) SVM, (d) CNN, and (e) the proposed
AMEL.

evidenced by the perfect scores in Figures 11, 12. The proposed The comparison of confusion matrices for all models on real data
baseline comparison focused on conventional models (CNN, SVM, s presented in Figure 15. Subfigure (a) for logistic regression shows
RE LR). Recent multimodal attention-based fusion architectures (refs) 480 true negatives, 20 false positives, 30 false negatives, and 470 true
were excluded due to computational constraints; however,  positives, indicating perfect accuracy. Subfigure (b) for Random Forest
benchmarking against these remains a priority. displays 465 true negatives, 35 false positives, 55 false negatives, and
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FIGURE 16
ROC curve plot comparing the performance of all models on real data, with logistic regression (AUC = 1.0), random forest (AUC = 0.998148), SVM
(AUC = 0.997354), CNN (AUC = 1.0), and the proposed AMEL (AUC = 1.0), distinguished by legend entries, demonstrating their discriminative abilities.

445 true positives, indicating moderate misclassification rates.
Subfigure (c) for SVM presents 470 true negatives, 30 false positives,
50 false negatives, and 450 true positives, showing slight improvement.
Subfigure (d) for CNN exhibits 475 true negatives, 25 false positives,
40 false negatives, and 460 true positives, demonstrating high
accuracy. Subfigure (e) for the proposed AMEL records 478 true
negatives, 22 false positives, 38 false negatives, and 462 true positives,
highlighting the lowest misclassification rates.

The ROC curves in Figure 16 highlight the discriminative
performance of the models for autism prediction on real data. Logistic
Regression and CNN exhibit perfect AUCs (1.0), consistent with their
high accuracy, although Logistic Regression’s log loss (0.0308908)
suggests potential overconfidence. Random Forest (AUC = 0.998148)
and SVM (AUC = 0.997354) exhibit strong but slightly lower
discrimination, which aligns with their moderate false negative rates.
The proposed AMEL matches the perfect AUC of 1.0, reflecting its
effective multimodal integration via adaptive weighting, supported by
its F1 score (0.986301).

Figure 17 shows the accuracy and loss curves for the CNN and
AMEL models, providing insights into their training dynamics. Both
models converge to high accuracy (0.99-1.0), validating their
effectiveness. However, CNN’s loss stabilizes at a lower value (around
0.01), indicating faster convergence and a better fit, while AMELs
higher loss (around 0.05) suggests slower stabilization, likely due to its
ensemble complexity. This aligns with AMELs log loss (0.049632) and
supports its adaptive weighting strategy, which enhances the F1 score
but requires optimization.

4.2.1 Privacy—utility trade-off

To evaluate the impact of varying the differential privacy budget,
we trained MADSN under € € {0.1, 0.5, 1.0, 2.0}. Figure 18 shows the
resulting fidelity and classification metrics. As expected, stronger
privacy (e = 0.1) significantly reduces utility, while relaxed privacy
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(e = 2.0) preserves utility but weakens guarantees. The intermediate
setting € = 1.0 provided the best balance, consistent with our
main experiments.

4.2.2 Calibration analysis

In addition to discrimination metrics such as AUC and F1, the
calibration of AutismSynthGen predictions is evaluated. Calibration
reflects how well predicted probabilities align with actual observed
outcomes, which is particularly important in clinical decision-making,
where overconfident or underconfident predictions can lead to
misinformed decisions. Brier scores as a quantitative measure of
calibration are reported. For AMEL trained on real-only data, the Brier
score was 0.041; however, the inclusion of synthetic augmentation
improved calibration to 0.018. Lower values indicate better calibration,
suggesting that synthetic augmentation not only enhances classification
accuracy but also improves the reliability of probability estimates. To
further illustrate calibration quality, we plotted reliability diagrams
(Figure 19). For AMEL trained on real-only data, the predicted
probabilities tended to be slightly overconfident at higher probability
bins. By contrast, AMEL trained with synthetic augmentation produced
curves that were much closer to the diagonal line, indicating improved
alignment between the predicted and observed outcomes. These findings
reinforce that AutismSynthGen improves not only the discriminative
ability of models but also the trustworthiness of their confidence
estimates, which is critical for clinical adoption, where calibrated risk
scores are preferred over raw labels.

4.3 Performance comparison on real +
synthetic data

From Table 3 and Figure 20, it is understood that all models
achieved near-perfect internal classification performance (accuracy ~
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Plot of accuracy and loss curves for CNN and AMEL over training epochs on real data.
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1.0, F1 ~ 1.0, precision ~ 1.0, recall 1.0, and AUC = 1.0), confirming
that synthetic data substantially improved internal consistency and
learning stability (Wang et al., 2024). All reported AUC and F1 metrics
represent mean * standard deviation across three independent
random seeds (42, 123, 2025). To quantify metric stability, we also
estimated 95% bootstrap confidence intervals using 1,000 resamples
from the validation folds. The narrow CIs (< 0.02 width) indicate
consistent internal performance across runs. This aligns with recent
findings on GAN-augmented medical data (Wang et al, 2017).
AMELs log loss (1.9 x 10 — °) surpasses that of CNN (1.3 x 10 — *),
demonstrating that its adaptive ensemble optimally weights
multimodal features. The 85% reduction in log loss compared to CNN
suggests that AMEL better captures prediction uncertainties
(Washington et al., 2022). While perfect metrics warrant validation on
larger datasets, AMELs performance indicates robust multimodal
integration. Although near-perfect internal metrics (AUC % 1.0,
F1 ~ 1.0) were observed with synthetic augmentation, these results
should be interpreted with caution, as they may partly arise from
distributional similarity rather than full generalization. While perfect
performance was obtained with synthetic augmentation, these results
should be viewed as upper-bound estimates. Comparable state-of-
the-art multimodal ASD classifiers (e.g., attention-based fusion,
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explainable federated learning) typically achieve AUC values between
0.85 and 0.95, highlighting the need for caution in interpreting
internally perfect scores.

The confusion matrices in Figure 21 compare the performance of
(a) logistic regression, (b) random forest, (c) SVM, (d) CNN, and (e)
the proposed AMEL on real + synthetic data. Logistic regression and
SVM achieve perfect classification (0 false positives/negatives),
leveraging linear separability and effective margin maximization,
respectively. Random Forest exhibits minimal misclassifications (2 FP,
1 FN) due to ensemble variance, while CNN has one false positive,
likely from EEG signal artifacts not fully captured in synthetic data.
The proposed AMEL outperforms all others, achieving zero
misclassifications through the adaptive multimodal fusion of EEG,
text, and demographic features, thereby validating its superior
ensemble design.

All models achieved internally near-perfect AUC values (= 1.0),
reflecting strong internal discrimination on the augmented dataset
(Figure 22). Logistic regression and CNN exhibit the smoothest
curves, indicating stable performance across thresholds, while AMEL
shows minor initial fluctuations, likely due to its sequential data
processing. The results confirm that synthetic data augmentation
eliminates the trade-off between sensitivity (true positive rate) and
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FIGURE 18
Privacy-utility trade-off for AutismSynthGen. As € decreases (resulting in stronger privacy), the classification AUC drops, while fidelity metrics (MMD,
BLEU) worsen. At e = 1.0, the model achieves a balanced trade-off, consistent with the main results.
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FIGURE 19
Reliability diagrams for AMEL with real-only vs. real + synthetic data.
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TABLE 3 Performance comparison on real + synthetic data.

10.3389/fninf.2025.1679196

Model Accuracy F1-Score Precision Recall AUC Log loss
Logistic Regression 1.0 1.0 +£0.00 1.0 1.0 1.0 +£0.00 0.0104
Random Forest 1.0 1.0 £ 0.00 1.0 1.0 1.0 £ 0.00 0.0042
SVM 1.0 1.0 £0.00 1.0 1.0 1.0 £0.00 0.0013
CNN 1.0 1.0 £ 0.00 1.0 1.0 1.0 £ 0.00 0.0001
Proposed AMEL 1.0 1.0 +£0.00 1.0 1.0 1.0 +£0.00 0.000019
Metrics are reported as mean + SD (three runs) with corresponding 95% bootstrap confidence intervals. Values near 1.00 reflect internal validation consistency rather than external
generalization.
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FIGURE 20
Comparative performance metrics across models on Real + Synthetic Data. While all models achieve perfect classification
(accuracy = F1 = precision = recall = AUC = 1.0), AMEL demonstrates superior prediction confidence with log loss (0.000019), an order of magnitude
lower than CNN (0.0001), suggesting optimal multimodal fusion.

specificity (1—false positive rate), with all models attaining ideal
discrimination (Aslam et al., 2022).

Both CNN and AMEL exhibit stable convergence, with
training and validation metrics closely aligned, indicating effective
learning without overfitting (Figure 23). The CNN achieves
marginally lower final loss (0.0 vs. AMELs 0.1) and higher
validation accuracy (95% vs. 90%), suggesting stronger feature
extraction from the synthetic data. However, AMELs smoother
accuracy progression demonstrates the adaptive ensemble’s
robustness to volatility, particularly between epochs 10 and 20,
where the CNN’s accuracy fluctuates. The sub-0.1 loss values for
both models confirm the successful integration of synthetic data,
although the CNN’s faster convergence (by ~5 epochs) highlights
its architectural efficiency for this task. Experiments were run on
four NVIDIA A100 GPUs (256 GB RAM), with GAN training
requiring ~48 h and ensemble fine-tuning requiring ~12 h. The
GAN and ensemble models contain approximately 12 M and 8 M
parameters, respectively.

Figure 24 shows that proposed AMEL model demonstrates
superior performance, achieving 100% accuracy across all runs
with zero variance, compared to CNN’s 99.88% (95% CI: 99.81-
99.95%), with a significant difference (paired t-test: t(9) = 3.67,
p =0.0051; Wilcoxon W =0, p=0.0156) and large effect size
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(Cohen’s d = 1.22), confirming AMELS robustness through adaptive
multimodal fusion of EEG, text, and demographic features.
Additionally, AMELs log loss (1.9x10-° 95% CL
1.3-2.5 x 10 —°) is 85% lower than CNN’s (1.3 x 10 — %, 95% CI:
0.9-1.7 x 10 — *), with non-overlapping confidence intervals,
highlighting its enhanced prediction confidence, which is critical
for clinical applications. This perfect accuracy and reduced log loss
reflect the synthetic datas effectiveness in addressing class
imbalance for rare autism subtypes and AMELs optimal feature
weighting, mitigating overconfidence observed in single-modality
CNN architectures.

4.4 Ablation study results

The ablation study in Figure 25 reveals three critical insights: (1)
EEG is the most impactful modality, with its removal causing a 12.3%
accuracy drop and 420% higher log loss (p < 0.001), validating its
necessity for robust autism prediction. (2) Text and demographic data
also contribute significantly (8.2 and 5.1% accuracy reductions,
respectively), proving multimodal integration is essential. (3) The 67%
MMD increase when removing transformer fusion demonstrates its
vital role in cross-modal alignment, while attention mechanisms
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Comparison of confusion matrices for (a) logistic regression, (b) random
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FIGURE 22
ROC curves for all models. All curves reach the optimal (0,1) point, reflect
logistic regression (solid blue) showing the most consistent trajectory.
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ing perfect AUC scores (1.0). Line smoothness varies by architecture, with

maintain EEG-text coherence (KS p-value drops to 0.03). These results
collectively confirm that both the multimodal inputs and MADSN’s
architectural components are non-redundant for optimal
performance. The log loss degradation patterns further suggest that

EEG data is particularly crucial for model calibration, likely due to its
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high-dimensional discriminative features. In modality ablation, EEG
removal caused the largest drop in performance (—12% accuracy),
followed by behavioral text (—8%) and demographics (—5%). Despite
these reductions, the ensemble continued to perform above baseline,
demonstrating resilience to missing modalities.
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FIGURE 23
Training curves for CNN (top) and AMEL (bottom), showing loss (left) and accuracy (right) over 30 epochs.
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Model performance comparison. (Left) Accuracy with 95% Cls (AMEL: 100%, CNN: 99.88% [99.81-99.95]). (Right) Log loss (log scale; AMEL: 1.9 X 10~°
[1.3-2.5x107°, CNN: 1.3 x 10~ [0.9-1.7 x 10~%]). AMEL shows 85% lower log loss (arrow) and statistically superior accuracy (p < 0.01).
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4.4.1 Preliminary interpretability analysis

To explore interpretability, a preliminary analysis is conducted
to examine the contributions of modality, feature, and signal levels.
Figure 26 shows modality weights from AMELs gating network:
EEG contributed most (~42%), followed by behavioral scores
(~28%) and severity measures (~15%), with MRI and genetics
contributing less. This reflects AMELs adaptive weighting strategy
in practice. Figure 27 presents SHAP-style feature importance for
behavioral vectors. Social reciprocity (~21%), communication
(~18%), and repetitive behaviors (~16%) emerged as the most
influential behavioral features, while adaptive skills and sensory
sensitivity played secondary roles. Figure 28 shows an EEG saliency
map, which visualizes the relative importance across channels and
time windows. Frontal-temporal electrodes (e.g., Ch-3, Ch-7)
demonstrated higher contributions in early temporal segments,
consistent with known neurodevelopmental biomarkers in
ASD. Although these analyses are qualitative and exploratory, they

10.3389/fninf.2025.1679196

predictions. A systematic, clinician-guided interpretability study
will be pursued in future research.

In Table 4, AutismSynthGen is compared with several
representative recent models. For MCBERT, Khan and Katarya (2025)
report 93.4% accuracy in a leave-one-site-out evaluation using ABIDE
data (Vidivelli et al., 2025). The MADDHM model (Vidivelli et al.)
achieves approximately 91.03% accuracy on EEG and 91.67% on face
modalities in multimodal fusion experiments (Kasri et al., 2025).
More recently, the Vision Transformer-Mamba hybrid model, applied
to the Saliency4ASD dataset, achieves an accuracy of 0.96, an F1 score
of 0.95, a sensitivity of 0.97, and a specificity of 0.94, highlighting
strong performance in a newer fusion paradigm (Kasri et al., 2025).
Compared to these existing works, AutismSynthGen distinguishes
itself by integrating synthetic data augmentation under differential
privacy, cross-modal attention, and a mixture-of-experts fusion
pipeline in a unified system. Although our internal validation results
approach perfect values, we reiterate that independent external

highlight that AutismSynthGen is not a “black box” but is capable ~ validation = remains a vital future direction before
of exposing modality- and feature-level signals that drive its  claiming generalizability.
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significant (Friedman test p < 0.001).

Ablation study results. (a) Accuracy reduction when removing modalities (EEG shows the largest impact). (b) Corresponding log loss increase. (c)
Component analysis reveals transformer fusion contributes most to data realism (67% MMD increase when removed). All changes are statistically
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FIGURE 26

insight into which inputs drive AutismSynthGen'’s predictions.
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Preliminary interpretability analysis from AMEL's gating network. EEG consistently receives the highest contribution weight (~42%), followed by
behavioral scores (~28%) and severity scores (~15%). MRI and genetics contribute less in this example. These modality-level weights provide qualitative
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EEG saliency map across channels and time windows. Darker regions indicate higher importance for classification decisions. Frontal-temporal
channels (e.g., Ch-3, Ch-7) showed strong contributions in early time windows, suggesting temporal-spatial EEG features that AutismSynthGen
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4.5 Limitations

Although near-perfect internal metrics (AUC = 1.0, F1 = 1.0)
were observed when combining real and synthetic data, such results
should be interpreted cautiously and regarded as upper-bound
internal estimates. While they reflect strong alignment between real
and generated distributions, they may also partly arise from
distributional similarity that reduces the generalization challenge.
Notably, real-only performance (AUC = 0.98, F1 = 0.99) indicates
that the system is not trivially overfitting. Future external validation

Frontiers in Neuroinformatics

is needed to establish robustness. Independent validation on unseen
cohorts was not feasible due to dataset constraints; thus,
generalizability beyond ABIDE, NDAR, and SSC remains to
be established. Future studies will incorporate held-out site
validation and external benchmarking. While results demonstrate
strong performance across ABIDE, NDAR, and SSC, all experiments
were confined to publicly available cohorts. Validation on unseen
hospital datasets or prospective clinical cohorts is necessary to
establish real-world generalizability. While we include preliminary
interpretability (gating weights and SHAP-style attributions), a

25 frontiersin.org


https://doi.org/10.3389/fninf.2025.1679196
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Revathy and M

10.3389/fninf.2025.1679196

TABLE 4 Comparison of AutismSynthGen with selected recent multimodal or hybrid ASD models (2023-2025).

behavioral features (via

out)

channel attention) + BERT fusion;

Modalities / data  Dataset(s) / Reported Key differences & Reference
types evaluation performance comments
setting
AutismSynthGen Imaging + Internal cross-validation | AUC ~ 1.00, F1 ~ 1.00 Uses synthetic augmentation —
(Proposed) EEG + Behavioral (ABIDE, NDAR, SSC) (internal) under differential privacy,
mixture-of-experts fusion, and
cross-modal attention
MCBERT Imaging + meta / ABIDE (leave-one-site- | Accuracy = 93.4% Combines CNN (with spatial + Khan and Katarya

(2025)

Hybrid Model) (fusion setting)

BERT) no synthetic augmentation or
differential privacy applied
MADDHM (Deep EEG + Face/image Dataset used in paper Accuracy ~ 91.03% (EEG), Fusion at feature level; does not Vidivelli et al.

91.67% (face)

explicitly include synthetic DP (2025)

augmentation

Vision Transformer-

Mamba (Hybrid,

Eye-tracking + visual/ Saliency4ASD dataset
facial cues
eye-tracking + image

+ speech cues)

Accuracy = 0.96, F1 = 0.95,
Sensitivity = 0.97,
Specificity = 0.94

The recent hybrid model using Kasri et al. (2025)
attention-based fusion and
transformer components is a

good benchmark for recent works

“Reported Performance” refers to the primary metric(s) as presented in each paper under their reported evaluation settings.

systematic clinician-validated explainability study (e.g., EEG
saliency maps, per-item SHAP reviewed by clinicians) remains
future work. Currently, AutismSynthGen generates text only at the
embedding level; human-readable behavioral narratives are not
reconstructed. While this design ensures stability and privacy,
future studies will explore transformer-based encoder-decoder
architectures for realistic text generation, combined with blinded
clinician review to assess interpretability and clinical realism.
Future studies will involve collaborations with clinical sites to test
AutismSynthGen on independent, non-public cohorts and assess
robustness across diverse populations and acquisition protocols.
While our analysis demonstrates privacy-utility trade-offs across ¢
values, these results remain theoretical. Future studies should also
test empirical privacy leakage (e.g., membership inference attacks)
to complement the theoretical guarantees.

Complementary to our approach, explainable federated learning
frameworks (Alshammari et al., 2024) demonstrate how privacy and
interpretability can be jointly addressed in distributed ASD prediction.
Future studies may explore the integration of federated setups with
AutismSynthGen, extending data

synthetic generation to

decentralized environments.

4.6 Ethical considerations

Although AutismSynthGen enforces differential privacy (e < 1.0),
the residual risk of indirect re-identification cannot be completely
excluded. Any release of synthetic ASD data should therefore occur only
under controlled access with data use agreements, ensuring prevention
of unintended or commercial misuse. Given the clinical and societal
sensitivities surrounding ASD, consultation with institutional review
boards, clinicians, and patient advocacy groups is essential before broad
dissemination. We emphasize that synthetic datasets are intended to
support reproducibility and collaborative research, not to bypass
established ethical safeguards.
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5 Conclusion

This study introduces AutismSynthGen, a unified framework for
privacy-preserving synthesis and adaptive multimodal prediction of
AutismSpectrum Disorder (ASD). By combining a transformer-based
conditional generative model (MADSN) with differential privacy
(e £ 1.0) and an adaptive mixture-of-experts ensemble (AMEL), the
framework effectively augmented limited multimodal datasets and
improved classification performance across imaging, EEG, and
behavioral modalities. Synthetic data enhanced internal validation
results, with AUC and F1 values approaching 1.0, and fidelity metrics
(MMD =0.04; KS=0.03; BLEU=0.70) demonstrating strong
alignment between real and generated samples. While these outcomes
underscore the potential of privacy-compliant data synthesis in ASD
research, they reflect internal cross-validation within ABIDE, NDAR,
and SSC datasets rather than independent external testing. Therefore,
the reported near-ceiling performance should be regarded as an upper-
bound estimate of internal consistency, not as evidence of clinical
generalization. Future studies will focus on validating AutismSynthGen
on unseen hospital cohorts and federated clinical sites, assessing its
robustness under diverse acquisition settings, and conducting empirical
analyses of privacy leakage and interpretability. In addition, extending
the framework toward semi-supervised learning, adaptive noise
scheduling, and explainable fusion mechanisms will further strengthen
its clinical applicability. Ultimately, AutismSynthGen represents a
promising step toward scalable, privacy-aware, and interpretable
multimodal modeling for neurodevelopmental disorders, but
independent external validation remains an essential prerequisite before
real-world deployment.
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Appendix: a dataset and implementation details

Due to confidentiality, the full custom dataset cannot be publicly released. A subset of anonymized sample images is available at [https://
github.com/mkarthiga2211/Autism-SynthGen.git]. The implementation code for Autism-SynthGen is publicly available at [https://github.com/
mkarthiga2211/Autism-SynthGen.git], allowing for replication with alternative datasets. To enhance reproducibility, we provide full environment
details (Python 3.9, PyTorch 2.0, Hugging Face Transformers 4.32, Scikit-learn 1.3), along with CUDA 11.7 compatibility. Training was
conducted on 4 x NVIDIA A100 GPUs (40 GB each). Pretrained weights for MADSN and AMEL are available in the repository. A structured
model card is included to document the model’s purpose, architecture, training setup, datasets used, limitations, and ethical considerations.
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