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using LV-PSO and Fuzzy
Inference Xception Convolution
Neural Network on
phonocardiogram signals
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Sathyamangalam, Tamil Nadu, India, ?Department of Information Technology, Bannari Amman
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Introduction: Heart disease is one of the leading causes of mortality worldwide,
and early detection is crucial for effective treatment. Phonocardiogram (PCG)
signals have shown potential in diagnosing cardiovascular conditions. However,
accurate classification of PCG signals remains challenging due to high
dimensional features, leading to misclassification and reduced performance in
conventional systems.

Methods: To address these challenges, we propose a Linear Vectored Particle
Swarm Optimization (LV-PSO) integrated with a Fuzzy Inference Xception
Convolutional Neural Network (XCNN) for early heart risk prediction. PC G
signals are analyzed to extract variations such as delta, theta, diastolic, and
systolic differences. A Support Scalar Cardiac Impact Rate (S2CIR) is employed to
capture disease specific scalar variations and behavioral impacts. LV-PSO is used
to reduce feature dimensionality, and the optimized features are subsequently
trained using the Fuzzy Inference XCNN model to classify disease types.
Results: Experimental evaluation demonstrates that the proposed system
achieves superior predictive performance compared to existing models. The
method attained a precision of 95.6%, recall of 93.1%, and an overall prediction
accuracy of 95.8% across multiple disease categories.

Discussion: The integration of LV-PSO with Fuzzy Inference XCNN enhances
feature selection aPSO with Fuzzy Inference XCNN enhances feature selection
and nd classification accuracy, significantly improving the diagnostic capabilities
of PCG-classification accuracy, significantly improving the diagnostic capabilities
of PCG-based systems. These results highlight the potential of the proposed
framework as a based systems. These results highlight the potential of the
proposed framework as a reliable tool for early heart disease prediction and
clinical decision support.reliable tool for early heart disease prediction and
clinical decision support.

KEYWORDS

heart disease, phonocardiogram signals, feature dimensions, swarm optimization, fuzzy
inference, Xception CNN, diastolic and systolic differences, non-linear scaling

1 Introduction

One of the leading causes of death globally is heart disease, impacting human life due
to clinical identification errors resulting in increased fatalities. Early prediction and data
analysis are essential in reducing the risk of patient outcomes and efficiently analyzing data
(Bourouhou et al., 2019; Vahanian et al., 2021). Most existing techniques must concentrate
on the disease properties and feature dimension in the intake data analysis structure (Er,
2021). So, increasing variations in feature analysis takes more dimension to produce poor
accuracy in the sense of low precision, recall rate, and F1 measure on various parameters.
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By considering the problematic issues, the optimization must
improve the feature selection and classification for extraordinary
outcomes (Schmidt et al., 2010; Deng et al., 2020). Cardiovascular
disease is the leading cause of death worldwide, affecting millions
of people annually with a variety of heart conditions. Patients must
receive timely and efficient treatment for heart disease if early
detection and correct diagnosis are to be achieved. Furthermore,
Machine Learning (ML) algorithms provide significant assurance
in clinical diagnosis, specifically in heart sound classification for
diagnosing cardiac diseases (Shuvo et al., 2021).

Furthermore, many abnormalities, such as heart murmurs and
artifacts associated with cardiovascular disease, can affect the heart
rate, which is the most common cause of death. Thus, they offer a
new method for early detection of heart disease (Shuvo et al., 2023;
Dhiyanesh et al., 2024). Afterward, feature vectors can be generated
by extracting features from the inputs acquired directly from the
heart sounds using a Deep Neural Network (DNN) algorithm.
Moreover, the efficacy of the suggested approach can be evaluated
in a real-world setting (Springer et al., 2015).

A promising method for classifying heart sounds involves
analyzing recordings of sounds created by the heart during each
cardiac cycle using PCG signals. Figure 1 describes the Working
Principle of PCG Signal Observation and Processing. These signals
contain valuable information about heart function and can be
analyzed using DL techniques to identify patterns associated
with different heart states (Waaler et al., 2023). In this paper,
we present future work to improve the classification of heart
diseases by utilizing a combination of Linear Vector Particle
Swarm Optimization (LVPSO) and Xception Convolutional Neural
Networks (XCNN). In the first step, the PCG signal can be pre-
processed using the proposed methods to extract the relevant
features for classification. This includes techniques such as signal
elimination, segmentation, and feature extraction to improve data
quality and reduce noise and artifacts that can interfere with
classification. Once the data is pre-processed, it can be input into
the LVPSO algorithm. The LVPSO algorithm is a variation of
the traditional particle swarm optimization algorithm designed for
linear vector optimization problems.

The LVPSO algorithm works by repeatedly updating the
number of candidate solution particles based on the fitness
values of the sound signal, which are determined by a linear
vector objective function. This enables the algorithm to search
the solution space efficiently and find the optimal parameters
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for the classification task. Using LVPSO, hyperparameters of
Xception CNN, such as learning rate, block size, and number
of layers, can be effectively modified to increase the accuracy of
the classification model. Xception CNN, a DL framework, has
demonstrated outstanding performance in classification tasks and
has recently been utilized in clinical signal analysis with optimistic
results. By combining Xception CNN with LVPSO, we aim to
leverage the strengths of both algorithms to improve the accuracy
and robustness of cardiovascular disease classification models. This
collaborative approach, where the Xception CNN will be trained
on the pre-processed PCG signals to understand the underlying
patterns associated with different heart states and the LVPSO will
optimize the CNN, invites all of us to be part of this exciting
journey toward better understanding and classifying cardiovascular
diseases hyperparameters.

The proposed acoustic classification of cardiac disease using
LVPSO and exception CNN has the potential to significantly
enhance the accuracy and efficiency of cardiac disease diagnosis.
By leveraging the power of ML algorithms and DL frameworks,
a robust and reliable classification model can be developed to
assist healthcare professionals in the early detection and treatment
of cardiac disorders. However, it is crucial to note that further
research and experiments are essential to validate the efficacy of
this approach. The initial results are promising, suggesting that
this approach could have a significant impact on the field of
heart disease.

The paper is structured into several sections to outline the
cardiac sound classification research process. Section 1 provides
an introduction to the research; Section 2 reviews the principles of
existing methods along with their pros and cons; Section 3 explains
the proposed method; Section 4 presents method comparisons;
and Section 5 concludes with a discussion and final remarks,
highlighting the performance of the proposed work and suggesting
future developments.

2 Related work

A 2020)
comprehensively summarizes current research on using PCG

recent literature review (Krishnan et al,

signals in predicting cardiac diseases through ML and DL
methods. The potential of advanced technologies like ML and
artificial intelligence to significantly enhance the precision and

PCG
Phonocardiograph with 5 Filters
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FIGURE 1
Working principle PCG signal observation and processing.
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effectiveness of cardiac disease prediction is gaining momentum.
Cardiovascular disease, a leading global cause of mortality,
underscores the importance of timely identification for successful
intervention and prevention. Recent analyses through various
signal transformations have highlighted the importance of
predicting heart disease by audio signals (Kiranyaz et al., 2020).
Analyzing heart sounds with a phonocardiograph allows for
recording heart sounds, which can be further explored with
computational algorithms.

Early identification of abnormal heart sounds is a significant
challenge in predicting heart disease. Conventional diagnostic
methods for heart disease, like Electrocardiograms (ECG), are
usually invasive and require specialized approaches. However,
the use of non-invasive tools like stethoscopes to gather sound
signals offers a convenient and promising approach to predicting
heart disease.
enabled  the
characterization of DL heart disease based on PCG signals
(Dhiyanesh et al.,, 2025). Modern DL methods, such as CNNs
and Recurrent Neural Networks (RNNs), have successfully

Recent  technological advances have

identified inconsistencies in PCG data. The potential of
these advanced methods to revolutionize early detection and
diagnosis of heart disease, reduce the burden on healthcare
facilities, and improve patient outcomes is significant. However,
a substantial problem with PCG signal processing is the
different limitations on feature selection. The dimensionality
of breeding features often leads to incorrect feature selection and
poor accuracy.

The novel proposed that the prediction accuracy of heart failure
can be improved by combining neural networks and Particle Swarm
Optimization (PSO) techniques. However, cardiovascular disease
continues to be a significant issue globally, with its mortality rate
on the rise (Mahalakshmi and Rout, 2023).

Moreover, the enhanced PSO algorithm identifies the optimal
features and feature subsets. The optimal feature subset is carefully
selected and fed into an ensemble classifier to determine the
likelihood of heart disease accurately (Yuliandari et al., 2024). A
new approach to a Neural Fuzzy Inference System (NFIS) for
representing training data can be created using n-dimensional
functions. NFIS optimizes learning algorithms by calibrating them
with an error calculation module (Jha et al, 2022). The new
approach aimed to detect cardiac disorders using health metrics

TABLE 1 Heart disease detection based on deep learning (DL) technique.

10.3389/fninf.2025.1655003

gathered from wearable sensors integrated with a Fuzzy Logic
Inference System (FLIS) (Kadu et al., 2022).

Furthermore, CNNs are extensively employed to predict
heart disease in various domains, including computer vision and
image identification. CNNs can accurately assist in analyzing and
predicting heart disease. Furthermore, CNNs can automatically
learn hierarchical representations of data (Alzubaidi et al., 2021).

PSO-based methods can be applied to optimize the parameters
of stacked sparse autoencoders. Furthermore, PSO optimization
permits enhancing the performance of feature learning and
classification (Mienye and Sun, 2021).

Table 1 presents DL techniques, datasets, and methods derived
from previous approaches for heart disease detection, outlining the
constraints and accuracy of performance evaluation achieved in
predicting heart diseases.

The proposed method utilizes SMOTE to manage imbalanced
data in datasets effectively. Besides, these permit accurate
classification of a given dataset and ensure maximum accuracy in
performance evaluation results (Wagqar et al., 2021). Cardiac signals
can be automatically detected by decomposing them into discrete
model functions utilizing the Complete Ensemble Empirical Mode
Decomposition (CEEMD) method (Manuel Centeno-Bautista
et al.,, 2023). Moreover, the signal-to-noise ratio model parts can
be approximated to extract time and frequency details of the
decaying mode through the EEMD analysis method (Zhao et al.,
2023). Hence, the Least Mean Square (LMS) algorithm offers
an optimal adaptive filter system for accurately estimating noisy
signals. Likewise, a noisy signal can be processed in series with
multiple adaptive filter stages (Hannah Pauline and Dhanalakshmi,
2022).

Furthermore, DL techniques have analyzed the ability to
predict heart disease from sound signals. For example, Raza
et al. (2019) developed a CNN-based model that detects heart
murmurs from acoustic signals with up to 90% accuracy. Similarly
Jones et al. (2019), used RNN to predict the onset of atrial
fibrillation with an accuracy of 85%. Furthermore, DL techniques
such as CNN and RNN have indicated accurate results in
analyzing sound signals to predict heart disease. While RNNs are
more effective at collecting temporal correlations in data, CNNs
are better at extracting spatial features from sound recordings.
By combining the two techniques, researchers achieved greater
accuracy in predicting various heart diseases. However, feature

References  Classification method Dataset Limitation Performance
evaluation

Naveenkumar CNN-based Xception Network Heart sound The number of deaths caused by CVD is Accuracy, precision 94.52%
etal. (2022) (CNN-XN) on the rise across the globe.
Nwonye et al. CNN Coronary heart Inactivity and unhealthy fitness can also Sensitivity, accuracy 85.79%
(2021) disease increase the risk of CVD
Fu et al. (2020) Multi-Scale CNN with Attention Benchmark datasets | The blood vessels exhibit changes in their Specificity, F1-score 0.83%

Mechanisms (MSCNN-AM) shape and show reduced variability.
Gérate-Escamila Chi-square- principal component UCI ML repository However, the classification of CVD can Matthews correlation 85.67%
et al. (2020) analysis often be unbalanced. coefficient
Yang and Guan Synthetic Minority Overestimation Heart disease CVD reduces the accuracy and False positive rate, 92.44%
(2022) Technique (SMOTE) effectiveness of clinical diagnostic data. true positive rate
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dimensionality creates worst-case scenarios during classification,
as threshold changes in feature ranges can lead to lower precision
and recall.

In addition to CNNs and RNNs, auto-encoders and Generative
Adversarial Networks (GANs) are other DL techniques studied to
predict cardiac disease in sound signals. For example Ramkumar
etal. (2024), proposed a GAN-based model for generating artificial
heart sounds to improve the training data and prediction accuracy.
However, the parametric performance reduces the accuracy and
results in a high error rate due to high time complexity and
uncorrelated feature analysis.

The literature on predicting cardiac disease using DL
techniques on sound signals still needs to be improved.
Furthermore, these models focus more on large-scale analysis
of populations in real-world clinical settings to ensure their
effectiveness. In Amiriparian’s et al. (2019) study, the authors
proposed a DL model to classify heart sounds into different
categories, including standard and abnormal. The model achieved
high accuracy in differentiating various types of heart sounds
and demonstrated the potential of DL in analyzing sound signals
for heart disease prediction. Another study by Li H. et al. (2020)
focused on using DL for early detection of heart murmurs. The
authors have developed a DNN that can accurately classify heart
murmurs based on acoustic signals, showing promising results for
early diagnosis of heart disease.

In a review by Wang J. et al. (2018), the authors discussed the
various DL techniques used in heart disease prediction, including
CNNs and RNNs. The review highlighted the crucial role of
sound signals in improving the accuracy of prediction models,
ensuring the audience is well-informed about the key factors in
heart disease detection.

Among the seminal works in the field (Yang et al, 2021)
proposed a DL model for cardiac disease prediction using acoustic
signals conducted. The results demonstrate a capable accuracy in
diagnosing heart disease and highlight the potential of the DL
technique. Based on sound signals, a DL model for the prediction
of cardiac disease was established by another critical analysis (Li
Y. et al., 2020). The author combined a CNN with a Long Short-
Term Memory (LSTM) algorithm to accurately predict cardiac
illness by analyzing auditory data. Furthermore, they demonstrate
the effectiveness of combining different DL frameworks to improve
forecasting performance. In addition to these studies, several
research papers have investigated using DL techniques for heart
disease prediction using audio signals. For example, Wang H.
et al. (2018) proposed an RNN-based DL model for heart disease
prediction, and Gomathi et al. (2024) used a hybrid DL model
combining CNN and SVM for the same objective.

Furthermore, researchers have analyzed using transfer learning
in heart disease prediction with sound signals. For example,
Hettiarachchi et al. (2017) applied knowledge from pre-trained
DL models to enhance heart disease prediction performance,
showcasing the potential of transfer learning in this area. Bentley
et al. (2011) assembled a PASCAL dataset of heart sounds from
patients with and without heart disease and used a CNN for sound
signal classification. The University of Michigan Health System
presents the Murmur Database (MHSTP), comprising 23 heartbeat
recordings computing 1496.8 s. In the CEEMD, murmurs in heart
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sound signals are detected. CEEMD is University of Michigan
Health System (2015) more advanced than EMD as it solves the
mode mixing issue present in EMD. Extraction of the murmur
and heart sounds using composting methods such as EMD has
been performed (Oliveira et al., 2021; Dhiyanesh et al., 2024). In
general, Ali et al. (2023) using DL methods to examine sound
signals for predicting cardiac diseases shows significant potential in
enhancing early detection and treatment results, thereby improving
patient outcomes. By employing artificial intelligence capabilities,
researchers can create more precise and effective predictive models
to support healthcare providers in delivering improved care to
individuals with heart diseases.

Table 2 shows the proposed method derived from previous
studies, describing its limitations and limitations. Furthermore,
they can be tested in feature selection methods for predicting heart
disease. The techniques listed in the table provide a systematic
approach to selecting relevant features important for accurate heart
disease prediction.

Some effective models can classify PCG signals using Attention-
Based Bidirectional LSTM (A-BLSTM) techniques (Prabhakar and
Won, 2023). Another study used (Sivakami and Prabhu, 2023)
Cuckoo Search Bio-inspired Algorithm (CSBA) with DBN method
for heart disease prediction. Similarly, the novel Muthulakshmi and
Parveen (2023) developed a Z-score normalization, African Buffalo
Optimization (ABO) methods for effective disease prediction.
Study Taylan et al. (2023) concentrated on classification of
cardiovascular disease with the help of support vector regression
(SVR) and ANFIS algorithm. Similarly, the article Thakkar and
Agrawal (2023) used a deep CNN and min-max normalization
method. The novel Yusuf Ilu and Prasad (2023) introduced an
autoregressive integrated moving average (ARIMA) and K-means
Clustering methods for disease identification. The literature review
indicates a rising interest in applying DL techniques for predicting
cardiac disease based on audio signals. Various studies reviewed
in this research have demonstrated the efficiency of DL models
such as CNN, LSTM, and RNN in accurately predicting cardiac
disease from audio signals. Besides, investigating transfer learning
and hybrid models exhibits potential for further advancement
in this field. In conclusion, exploring heart disease predictions
through DL techniques using sound signals holds great promise in
improving early detection. Through employing the capabilities of
DL, researchers can create precise and effective predictive models
that have the potential to save lives.

2.1 Problem identification factors and
consideration

From the literature, we found the complex nature of heart
disease prediction based on sound signals having difficulties.

e One of the critical issues in PCG signal processing is the

potential for improper feature selection due to identical
This
the accuracy of the results, leading to poor outcomes.

feature dimensions. can significantly undermine

Feature dimensionality creates worst-case scenarios during
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TABLE 2 The research gap in the feature selection method used for predicting heart disease.

References

Research gap

Methodology

Feature used

10.3389/fninf.2025.1655003

Problems

Dewangan et al. (2008)

Only covers time depends on the feature,
not the actual limits of the feature

Discrete Wavelet
Transform (DWT)

Time series DWT

ECG recordings are insufficient to reveal
valve health information.

Schanze (2017)

ML and DL concepts for feature
evaluation generate errors

Singular Value
Decomposition (SVD)

SVD, mean filters

Transformation methods eliminate
unwanted signal components

Othman and Khaleel
(2017)

Time feature limits discover the coefficient
dependencies of feature limits.

Fast Fourier Transform
(FFT)

Shanon energy, DWT

Discovering the most efficient approach
will require a significant amount of time.

Martinek et al. (2017)

Non-real feature limits cannot take the
acoustic values

LMS

Adaptive mean filters
and statistical features

A standard channel is necessary for fiber
optic interferometry.

Rao (2019)

All feature limits and dimension forums

Finite Impulse Response
(FIR)

Bimedical signal peak
signal tupe features

However, measuring digital signals as
discrete signal phases, such as time or
amplitude, is necessary.

Sh-Hussain et al. (2016)

Statistcal part of frequencies are missing
absolute values

Mel-Frequency Ceptrum
Coefhicients (MFCCs)

Alpha feature limits

CVD is one of the most severe illnesses
that can lead to death.

VenkataHari Prasad PCG signals are not supported DWT Time domain features | An ECG recording alone cannot provide
and Rajesh Kumar information regarding the health of the
(2015) valves.
Pan et al. (2015) Real-time dataset series are not supported. Backpropagation Wavelet features Low-level data on the determination
Unconsistent margins are taken, and Algorithm (BPA)
actual values are uncovered.
Lubaib and Ahammed Least level margins of signals only support K Nearest Neighbor Subset carinal features | Interpreting a PCG typically necessitates
Muneer (2016) (KNN) a proficient and seasoned practitioner.

Zubair (2021)

Utilizing the publicly available
PhysioNet/Cinc Challenge 2016 database.

Multi-Layer Perceptron
(MLP)

Mel frequency Computational complexity rises when
Cepstral Coeflicients heart sounds are classified as normal or
(MFCCQC) abnormal.

classification because the range variation in feature ranges
causes low precision and recall rates.

e The previous methods” simulation parameters degraded the
performance accuracy, so it has a higher false rate due to non-
relation feature analyses, more time complexity, and higher
error rates.

2.2 Research gap

e A significant research gap exists in the understanding of
complex features extracted from phonocardiogram (PCG)
signals that can be used to predict cardiac disease.

e Including only time depends on the feature, not the actual
limits of ML and DL concepts for feature estimation.

e The previous algorithms are insuufficiently focus herat disease
early stage prediction and One of the reaserch gap in
cardiovascular disease diagnosis is the quality of the analytical
data. ECG and PCG signals are sensitive to noise and artifacts.
The amount of data generated can be enormous, making it
difficult to effectively manage this data for signal processing
and interpretation, and researchers are continuously working
to develop powerful techniques to reduce noise and improve
signal quality.

e Missing data values will result in errors; Valueless data is
fuzzy because it can be either true or false. Decision-making
ability depends on the quality of data. Small improvements in
data dimension can lead to large improvements in decision-
making information.

Frontiersin Neuroinformatics

3 Proposed methodology

Toward developing a Linear Vectored-Particle Swarm
Optimization based on Fuzzy Inference Xception Convolution
Neural Network for early heart risk prediction. The first step
in this approach is to utilize the Pascal dataset, which contains
valuable information in the form of PCG representation. PCG
signal format is used to convert sound waves into data, allowing
for the identification of critical features such as Delta, Theta,
diastolic, and systolic differences present in the dataset. These
factors significantly influence the risk of heart disease. The model
accuracy is improved by applying preprocessing techniques such
as SMOTE and EDAMEF to cardiac clinical data. These techniques
help normalize the data and address balances or inconsistencies
present in the dataset, ultimately improving the overall model’s
overall performance.

To identify the scalar differences based on disease properties
and assess the behavioral impact, a Support Scalar Cardiac
Impact Rate (S2CIR) is utilized. This metric helps understand
the disease’s severity and impact on the individual, providing
valuable insights for early detection and intervention. Figure 2
shows the Proposed LVPSO-FIXCNN Workflow Architecture
Diagram. Notably, the Multivariate disease impact rate is used to
determine the non-linearity scaling values, a crucial step in our
research. These values are then processed using Linear Vectored—
Particle Swarm Optimization (LV-PSO) for feature selection and
dimensionality reduction, enhancing the model’s performance
and ensuring that only the most pertinent features are utilized
for predictions.

frontiersin.org
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FIGURE 2
Proposed LVPSO-FIXCNN workflow architecture diagram.
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Finally, the selected features are trained using a Fuzzy Inference
Xception Convolution Neural Network (FIXCNN) to categorize the
type of heart disease and provide accurate predictions. FIXCNN
models utilize the capabilities of DL and fuzzy logic to examine
intricate patterns in data and generate well-informed decisions,
resulting in enhanced precision and dependability of predictions.

The heart PCG signals consist of several frequency components
corresponding to different cardiac cycle physiological events, as
indicated in Figure 3. The frequency range of cardiac sound
waves is displayed in Table 3. The closure of the tricuspid and

Frontiersin Neuroinformatics
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mitral valves produces the first heart sound (S1), which has low-
frequency features. The closure of the aortic and pulmonary
valves results in the second heart sound (S2), which has a higher
frequency component.

Two additional heart sounds, S3 and S4, may indicate abnormal
heart activity. The timing and intensity of cardiac PCG signals
provide valuable information on the cardiac cycle. The heart
sounds S1 to S2 are called the systolic interval, indicating the
ventricular contraction and ejection length. The intensity of heart
sounds may fluctuate due to factors like ventricular contraction and
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TABLE 3 Levels of heart sound signal frequency limits.

10.3389/fninf.2025.1655003

Frequency of sound signal levels

Frequency limits in Hz
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valve abnormalities. Changes in timing and intensity can indicate
conditions such as heart failure or valvular stenosis.

3.1 Synthetic Minority Oversampling
Technique (SMOTE)

In this section, a training dataset is developed using SMOTE
to predict heart disease. Furthermore, leveraging the SMOTE
technique can find extensive applications in the healthcare sector
for managing class-imbalanced data. Then, by utilizing Euclidean
distance to create synthetic generated random data of minority
classes from nearby neighbors, the number of data instances
can be enhanced. Moreover, new samples are generated by
leveraging the top features from the original data. The SMOTE
technique can produce optimal values of the application, thereby
introducing additional noise. By oversampling minority classes,
synthetic samples are created by adding line segments from
the k nearest neighbors of the minority class to each sample.
Neighbors can be selected randomly from the k nearest neighbors
based on oversampling as required. A synthetic model is also
created to predict the differences between the analyzed feature
vector model and its nearest neighbors. Moreover, the feature
vectors are evaluated with 0 and 1, multiplying their variances by
random numbers.

Creating synthetic data from minority classes of random
number data can be achieved by calculating population functions.
Furthermore, nearest neighbors provide new index array
features for different samples, as detailed in Algorithm 1. Lets
assume the ig-number of the synthetic sample, Z-Minority
instance, K-nearest neighbor, x- integral sample, d“—number
of the attribute, W-sample, g—populate, W,,—synthetic sample,
Dj—nearest neighbor, dy—new index, x,—attribute index,
a—random number.

Table 4 compares the performance of different variation
methods like Support Vector Regression (SVR) and Autoregressive
Integrated Moving Average (ARIMA). The proposed method
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attains 80.98%, 84.09%, and 90.21% for Pascal, Circor and Physico-
cardnet, respectively.

3.2 Enhanced empirical mode
decomposition adaptive filter

In this section, advanced empirical methods enable the
analysis of time-domain or one-dimensional signals through an
adaptive filter technique. The EEMDAF method is also known for
decomposing a one-dimensional signal into different Eigenmode
functions and frequency bands using frequency information. Also,
the number and intensity of zero crossings in the 1D signal in the
intrinsic mode functions must be different or equal. The estimated
mean value will be zero when using symmetrical lower and upper
envelopes. The process is repeated until all accurate Eigenmode
functions are computed using the analytical EEMDAF method.

Moreover, filter integration approximates the input-output
relationship of the EEMDAF method. By considering only current
and past observations, the weighting of adaptive filters can produce
statistically better estimates of the following observations.

Furthermore, the EEMDAF technique removes reference signal
interference from the cross-correlation matrix and ensures vector
independence. Noise estimation also includes estimating signals
from the power supply and other known noise sources. Unlike
frequency-selective filters, adaptive filters use an autocorrelation
matrix instead of a crucial input to normalize the most and least
significant engine values.

Lower and upper envelopes are estimated using cubic splines
connecting the determined local maximum and minimum points,
as described in Equation 1. Lets assume the ki —new 1D signal,
the i;—minimum and maximum point of the 1D signal, and the
¢ —mean of both envelopes.

K =iz — &) (1)

Equation 2 approximates the new 1D signal’s local maximum
and minimum points. Compute the residual signal subtracted from

frontiersin.org



https://doi.org/10.3389/fninf.2025.1655003
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Prabha Devi and Palanisamy

Input: PCG Data Logs

Output: Sample class of synthetic minority iy
Begin

Step 1. Calculate the synthetic sample size for the

random percentage of samples in the minority class.
For eachiy (K) <100, then
Randomize minority instances of class
samples<« Z
7 =(ig/100) * Z
ig=100
End for each
Step 2. Calculate the number of synthetic samples
in multiples of the SMOTE size integration.
ig =x(iq/100)
Step 3. Estimate the number of nearest
neighbors<« k
Step 4. Estimate the number of features <« d
Step 5. Compute the array of the original minority
class samples<« [W]
Step 6. Estimate the number of synthetic samples
generated <« dy
Step 7. Compute the k nearest neighbors for only
samples in each minority class.
For each x <1 to w
Evaluate the nearest neighbors of K and save
their indices in an array.
q = dif}, () + D§*
End for each
Step 8. Compute population functions to generate
synthetic samples.
While d# @
Estimate the nearest neighbors by choosing
a random number from 1 to K <« x
If U< 1 to dy
Calculate the nearest neighbor array of
different sample
Dif =w[03”ay]u7w[xu}
Calculate new index attributes for
synthetic samples
ig=ir+a x &'
End if
For < dy+ +

ig =ig-1
End for
End While
Return <« 1ig4

End

Algorithm 1. SMOTE.

the 1D signal and evaluate the Eigen mode function as shown
in Equation 3. Where ef—residual signal, IMF) —intrinsic mode
functions, m$ —condition signal.

mi =k = IMF @)
Wi = i, — IMF, 3)

Frontiersin Neuroinformatics

10.3389/fninf.2025.1655003

TABLE 4 Comparison performance for variations methods.

Methods/datasets N ARIMA SMOTE
Pascal 67.15 74.09 80.38
Circor 73.62 78.10 84.09
Physico- cardnet 79.35 80.54 90.21

Calculate the final residual signal of the Eigen mode function
derived from the initial 1D signal, as indicated in Equation 4.

. d
2 = Zx:l

Compute a new 1D signal from the Gaussian white noise

IMF; + € (4)

sequence shown in Equation 5. Where c-trials, d, (z) —Gaussian
noise series, iy (z) —initial 1D signal.

iy (2) =iy +dy (2) forx =1,2,3,.,¢ (5)

Evaluate the Eigen mode function of the frequency band as

described in Equation 6. Let’s assume EEMp—ensemble empirical

mode decomposition, x, y-identified by frequency band. M-
complete ensemble.

1 c
EEN (y) = B Zx:l

The adaptive filter used for filtering is calculated at
the beginning of the procedure described in Equation?7.
Where i[d] —uncorrelated with a reference signal, D-Noise,
Pcg —Phonocardiogram.

My (2) (6)

i[d] = yPcg + D 7)

Adaptive filters are standard and have a straightforward cost
function. They generate a quadratic cost function with a global
minimum for noise filtering. Calculate the noise in the reference
signals between the auto-correlation matrix and cross-correlation
vectors, as shown in Equation 8. Lets assume the pz —filter
coeflicient, N-noise filter, w=cross correlation matrix, M;,—global
minimum, y—cost function, and e-auto correlation matrix.

{rz[_]} (n[d] = [d])* — Min

R{P[d]} = R {22 (0]} — 20%W+p+Pie,

As demonstrated in Equation 9, the filter coeflicients were

Y = (8)

computed for every iteration. Where y, (d) —maximal amplitude

P(d+1)=p @)+ p (d) *ig ©)

The upper bound is calculated as shown in Equation 10. As
presented in Equation 11, the reference signal’s mean power and
step size can be estimated. Where C-measure the miss-adjustment,

— size, poy —pOwer.
2
=— 10
HD = S DMy, ()2 (10)
M .
D= 7 * Dpoyy (i) (11)
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Compute the convergence time as shown in Equations 12, 13.
Where o— normalized step-size, ¢—time, H (E) — eigenvalue,

mg—condition number, A (Myy), X (M;,) —minimum, and
maximum normalized value,
1
¢~ — xH(E) (12)
4o
A (M,
F (&) = 2 Ma) my (13)
A (Min)

To achieve maximum probability estimation, the largest and
smallest eigenvalues of the residual signal can be normalized by
estimating the original one-dimensional signal across its frequency
band or Eigen mode function. Through integrated empirical
methods, it becomes possible to assess the frequency band of the
distortion accurately.

Table 5 compares the performance of various pre-processing
methods with diverse PCG datasets such as Pascal, Circor, and
Physico- cardnet. The proposed EMDAMF method achieved
80.10% for Pascal, 85.34% for Circor, and 90.35% for the
Physico-cardnet dataset. In contrast, existing filters failed to achieve
high performance compared to the proposed method.

TABLE 5 Comparison performance of pre-processing methods.

Met atasets  Z-score Min-Max EMDAMF
scaling

Pascal 68.33 71.08 80.10

Circor 72.01 77.47 85.34

Physico- cardnet 78.19 81.35 90.35

TABLE 6 Heart sound signal frequency limits.

Sound signal Frequency margins Error
modulation in Hz adjustment
Murmur agonizes Actual Actual
VELETES min max

range range
Aortic AR 65>, ++ 395<, — +10.5,0.5
regurgitation
Tricuspid TR 90>, ++ 400 <, —— +16.5,0.1
regurgitation
Pulmonary PR 90>, ++ 150 <, —— +15.7,0.9
regurgitation;
Patent ductus PDA 90>, ++ 140 <, —— +20.9,0.4
arteriosus;
Mitral valve MVP 45>, ++ 90 <, —— +7.5,0.5
prolapse;
Mitral stenosis MS 40>, ++ 95 <, —— +6.7,0.7
Mitral MR 45>, ++ 160 <, —— +9.0,0.5
regurgitation
Atrial septal ASD 60>, ++ 200 <, —- +25.5,0.5
defect
Aortic stenosis AS 100>, ++ 450 <, —— +35.4,0.3
Pulmonary PS 150>, ++ 380 <, — +27.1,0.7
stenosis
Normal heart NHF 100>, ++ 180<, — +20.5,0.2
frequency

Frontiersin Neuroinformatics

09

10.3389/fninf.2025.1655003

3.3 Support Scalar Cardiac Impact Rate
(S2CIR)

An infinite number of hyperplanes in the dataset can be
detected by measuring the support vector using heart disease data
for efficient classification. Furthermore, an optimal hyperplane can
be evaluated using a quadratic kernel function and predicted heart
disease data utilizing the maximum shadow width. The optimal
hyperplane is found by dividing the data into two types. Regardless
of their proximity to each group of objects, the support vector
scalar optimal classifier can identify similar optimal generalization
hyperplanes. A hyperplane can optimally partition the coordinate
input set if the maximum distance between neighboring elements
and the support vector impact rate is accurately split. In the binary
classification of cardiovascular diseases, the bias and its weight
vector can be estimated by computing the hyperplane through
the class labels of the S2CIR technique, a process that is crucial
for the SVM model’s operations. The SVM model’s hyperplane
classification maximizes the margin during impact rates. The
impact rate is calculated as the sum of distances to the nearest
positive or negative event. Besides, the SVM model can estimate
and predict the scalar vector impact rate by classifying heart
disease data.

Assuming binary classification, heart disease is classified using
the linear separation rule of training samples in Equation 13.
Let’s assume w-training sample, i-design matrix, j-binary class
scalar vector,

w = {# (i1 1) > (25 f2) » o Citr i) } (13)

Calculate the coordinate vector of the hyperplane using the

binary classes, as indicated in Equation 14. Where r-function

vector, t, i, and f— coordination of the hyperplane.

r (i) = witi + B} (14)

Calculate the weight vector and bias between each hyperplane

as shown in Equation 15. Let’s assume p-weight vector, v-bias,
x-class label.

Si+v=0 (15)

As demonstrated in Equations 16, 17 hyperplanes are employed

to categorize the training and testing heart disease data and

approximate the prior function’s kernel function. Where D-number

of the training sample, h-kernel function, iy—input training sample,

jx—matching class label, o, —coefficient.

N ()
N @)

sin (S.i 4+ V)
D
sin) " o h (i 0) +0)

(16)
(17)

Calculate the feature space coefficients from the input vector
numbers of training samples as shown in Equation 18.

Zle axj, =0

Estimating the contribution of heart disease data by

(18)

introducing a set of slack variables is illustrated in Equations 19,
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TABLE 7 Classified PCG sound signal disease labels.

10.3389/fninf.2025.1655003

‘ Label name PCG frequency difference Disease type
AS g Aortic stenosis
T 100>, ++ 450=, —-
4 -
-
MR s - - - - - - Mitral regurgitation
452, ++ 160<, —-
b
=
5
R P ... e
MS Mitral stenosis
40=, ++ 95<, —
- Tireue - -
MVP Mitral valve prolapse
| | ’ 45>, ++ 0=, —
i
d - a.‘.;o - ST —
NHF Normal heart frequency
. 100>, ++ 180<, ——
T T

20. Lets assume Igr—impact rate, 1—loss, &—slack variable, m-
parameter, x-instance, L-normalization, S-weight vector, v-bias,
h—dataset instance, W-sum of distance, z-vector.

1 h
mtézz lIsll5 + mzle & <« IrorL (19)

S5V,

Vi (8, (p+0) > 1 =&,

& >0 X=1,.....,h (20)

w.z (Ir)

Therefore, Tables 6, 7 optimal features can be achieved by
selecting different feature subsets, estimating the impact rate of
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cardiovascular disease, and introducing a set of slack variables to
assess heart disease data.

3.4 Linear vectorised particle swarm
optimization
In this section, the linear vector particle swarm optimization

method can be enhanced for classifying heart diseases and
estimating their weights. This method provides a systematic
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approach to optimize the classification process, leading to more
accurate and efficient results. The distance can also be selected
by weighing the information provided by the attributes in linear
vectors. After that, the attribute information is processed using
linear vector distance calculation. The optimal particle processing
time can be estimated by selecting the information attribute and
multiplying the information gain using convergence behavior.

Similarly, linear vector performance can be improved by
choosing values in categories related to heart disease. A search-
based particle swarm optimization technique is employed to classify
heart disease by comparing populations within the selected linear
vector. The current optimal particle evaluation space is a possible
solution within the linear vector PSO method. Furthermore,
particle weights can be calculated to maintain cardiovascular data’s
homogeneity and heterogeneity effects. Moreover, greater inertial
weights enhance global search efficiencies, whereas lesser ones
enhance local ones. Similarly, the LV-PSO algorithm efficiently
analyses the search space by adjusting the inertial weight with
the acceleration factor. Consequently, the proposed LV-PSO
method categorizes heart diseases based on the number of
particles that regulate the parameters and ensure their balance in
each iteration.

Equation 21 plays a crucial role in our method. It calculates the
class labels by finding the number of class labels and choosing a
weight vector corresponding to the unit value of each vector of
the linear function. This step is significant as it forms the basis
for the classification process, ensuring accurate and reliable results.
Let’s assume the K —linear function, g-value, z-weight vector, and
ag—training vector.

Kdg = (IR) < 2] kdg + Zy (21)

Equation 22 illustrates that the weight vector’s difference
between each data output units actual and predicted heart
disease output values is computed. Furthermore, the error in
each vector is estimated as described in Equation 23. Lets
assumeDI; (g) —difference function, h-output unit, b-output value,
q-error vector.

(22)

(b —6.) = (b~ KEQ?
1
p > bl

Calculate the new weight unit by choosing the maximum

DI, (a)

H

(23)

number of iterations with the lowest learning rate starting from
the alpha value shown in Equation 24. Lets assume R- -training
vector, e-class, h-output unit, z,—weight of winning unit, and
a—learning rate.

_)ifR =epthen z, =z, (OLy) + a [a — z;, (OLy)] (24)
ifR ey then 35 = Zp; (ol ) + o [a—31 (0Ly)]
Compute the Euclidean distance of the information

gain as shown in Equation25. Lets assume a,— training
vector class, C- Euclidean distance, G;—information gain,
and g-class.

C(gh) = (ag = 21)" + Gi (g) (25)
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Equations 26, 27 below calculate particle size analysis by
iterating particle velocities. Let’s assume F—dimensional space, m-
particle size, o—velocity, z-interval weight, ¢, —local accelerations,
¢>— Global accelerations, m{,—position of the particle, p-best
position, K, (p) and i (p) —local and global best position,

F =, ()A€ {momima... . My},fe{0,1,..f)
(26)
o (p) = Zoh =1 + 61 (Ku (o) = mh (p — 1) i ()
- vl (p—1)) (27)

The control parameters are automatically chosen at each
iteration depending on the swarm particle count. Equations 28,
29 below illustrate that random numbers between 0 and 2 can be
computed to determine acceleration factors for local and global
acceleration values. Where E-coefficient, E; and E,—acceleration
coefficient, %—particle generates a q/8 random number selection
among acceleration coefficients, ¢—accelerartion, gq-number of
swarm particles, T} and T, —randiom number,

mq
E; = §&,E2, ¢}, ,E;°  Where0 < E; <2
mq

E = g (28)
E, = E}, 63,E3,.,&,°  Where0 <&, <2
™mq
=35 6.7
6= o1 2%71 171 (29)

$r = Zle E,. T,

As shown in Equation 30, particles can be classified into three
classes (i.e., low, medium, and high) based on estimating local and
global acceleration values.

L =if (0 <ep,ep <0.8)

G, =1 = 8[deif (0.9) <ep,e3, <12 (30)

H =else (1.3 <8,E, <2)

For the inertia weight values, select three values between 0.4 and
0.9 and categorize them as low, medium, and high. Furthermore,
low approximates 0.4, and high approximates 0.9 by averaging
the other two values. At each iteration, the weight values are
determined based on Equation 31. Let’s assume o -value, #, —high
value, 171,—medium value, -£, —low value.

(1 &poe ) then w = ¢,
(¢1 &poe m) then w =11,
(¢1 &pa€ fi) thenw = L,

(31)

Iy

As shown in Equation 32, the positions of the particles are
computed by randomly choosing the number of acceleration factors
for each particle position.

mh (p) = ml, (p—1) + Of () (32)

Calculate a random number of particle-level fitness functions
between the current fitness function and the selection coefficient
estimate. Then, choose and update the optimal fitness function
based on minimization or maximization, as in Equation 33.
Let’s assume ﬂ(ay—local fitness value, Jp—global position,

frontiersin.org


https://doi.org/10.3389/fninf.2025.1655003
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Prabha Devi and Palanisamy

10.3389/fninf.2025.1655003

Find the number of
the class label

l

Select Weight Vector

[ A
: }

Calculate the Generate a
maximum new weight
number number

Evaluate Information Gain

» C eParticle size

!

.3

Evaluate the
Random Number

Calculate the thr ee-class value

ifi0 = e, e
Efsel (0.9) < ¢
efseil3 =&,

Compute the Particle Position

!

Calculate the min and max
function
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FIGURE 4
The LVPSO workflow.

»{ Stop I

mi,—minimum value, ma;—maximum value, ¥ (1, (p)) —current
fitness function,

Ko (P) = mq (pi) % (ma (pr) = ﬁ* (ma (1))
HKay (9) = Kay (pg) : ¥ (mq (pg)) = —qx (kay (p))
(33)

Q
|
I

The random number at the particle level within the current
fitness function can be approximated by analyzing the variance
in each weight vector across the predicted output values for heart
disease in each dataset.

A linear vector particle swarm optimization flow chart can
classify particles into three categories based on selecting control
parameters and estimating local and global acceleration values at
each iteration. Furthermore, the best fitness function can be chosen
based on minimum or maximum, and the best features can be
selected and updated, as depicted in Figure 4.

Table 8 compares the performance of different feature selection
methods and various PCG datasets. The proposed LV-PSO
method yield is 81.24%, 86.085%, and 92.11% for Pascal, Circor
and Physico-cardnet datasets, respectively. Similarly, the existing

Frontiersin Neuroinformatics

TABLE 8 Comparison performance of pre-processing methods.

Methods/datasets CSBA PSO LV-PSO
Pascal 70.08 74.13 81.24
Circor 73.61 77.24 86.08
Physico-cardnet 79.35 81.16 92.11

methods are Cuckoo Search Bio-inspired Algorithm (CSBA)
and Particle Swarm Optimization (PSO) obtained less outcome
performance than the proposed system.

3.5 Fuzzy inference system (FIS)

In this section, fuzzy inference system methods use predefined
fuzzy rules based on input maps and their related outputs.
Moreover, accuracy can be evaluated for heart disease using rules
defining relationships between fuzzy input and output sets. The
input is fuzzy because it requires fuzzy values, and the output of the
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inference system is defuzzied to understand the user’s production.
Furthermore, the prediction and analysis of heart disease can
be accomplished by utilizing a fuzzy model. Subsequently, its
classification in each dimension can be segmented into rectangular
subspaces by employing a predefined number of membership
functions through the axis-parallel partitioning technique of the
FIS method.

Fuzzy rules are “if-then” rules used in fuzzy logic systems
to infer outputs based on the input variables. During forward
propagation, the parameters obtained during training can be
estimated by finding the least squares error. Similarly, gradient
descent is utilized to analyse the parameters before training in
the backward propagation process. After that, parameters for heart
disease analysis are determined in forward and backward iterations.

As shown in Equation 34, fuzzy computers can predict heart
disease as a function of a linear parameter using two rules: input
and output. Let’s assume i and j-input, uy, v and Uy, V,—fuzzy set,
g1 and g-fuzzy set, o + B + ! —linear parameters.

i(w) AY (vy) thenf; = (xi + ,B{ + !

if=d .
if = 9o i (u2) AY (01) thenfs = ab + B} + y?

(34)

Calculates input values and establishes membership function
as a fuzzy layer. Equations 35, 36 demonstrate that fuzzification
can be achieved using a Gaussian membership function. Where
i and j-input, x-node, my, ox—parameter set, ©—output layer,
my, —center of the curve, ¢, —gaussian member function,

OFf = uU' () x=1,2 (35)
(ix—n;x)z
Of = pUr ()=e # (36)

When the degree of fuzzy set membership equals zero, the
trigonometric membership function is calculated as indicated in
Equation 37. Let us assume w, 1, and e —membership function, s-
lower bound function, r-upper bound function, and e-center of the
place degree of membership.

0 ifi <w

LUty = | T Fwsise
T ifR<ic<e

0 if i >e

(37)

Calculate the appropriate bell-shaped membership function for
the non-linear system defined by Equation 38. Furthermore, its
membership function can be Gaussian or Bell-shaped. Where i and
j-input variables, u*, v*, m*—bell membership function, u-width, v-
slope, m-center of the bell. The learning mechanism of the training
process determined these parameters.

1

. 2v.
i—my [“7X
T

1+

w (UAVY* (inf) = (38)

i—=my 2Vx

ux

1+

The input signal is amplified, and the output is sent via a
straightforward amplifier with a set production. The output can be
assessed by building the firing output of the product layer rule given
in Equation 39. Let’s assume the p, — weight of the fuzzy rule.

O3 = pupUx () uVy (j) = Of x O x=1,2 (39)
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Asillustrated in Equations 40-42, the firing strengths calculated
in the previous layer are evaluated and normalized at the fixed
nodes. It multiplies the normalized values of the last layer and
represents the first-order polynomial as a fuzzy representation.
Calculate the maximum sum output of all input signals. Let us
assume L-layer.

of = Prge =1 (W* (i), R* (j) + qx)

o 2xPrbe
Ox = = P[’ = i
578 ZX & >xbx

X =1,2 (40)
x=12 (41)

(42)

Let’s assume P;—normalized weight, w*, ", ef—consequent
first-order polynomial parameter, and f-final output model.

As shown in Equation 43, the output can be determined using
the centroid defuzzification method.

g= w — @91 4 ﬁgz (43)

pt+g
Equation 44 demonstrates that the calculation of heart

disease can be represented as a linear combination of
parameters in the fuzzy inference system’s final output. Where
w1, 11, €1 and wa, 12, ezlinear combination of the parameters.
Plljrlﬂ’zgl + ﬁgz

3 P +pPg?
ET)Y Pwmith+n()+ea)+P (W) +u () +e)

(@a) wy <p1j) 1 -+ Ple; + (P2i> Wy (F]) )+ P2

(44)

The parameters in the forward step in the fuzzy inference
system can be determined using least-squares estimation. In
backpropagation, each node’s square signal error output can
be propagated backward from the output layer to the input
layer. Heart disease prediction can also be achieved through
a fuzzy inference system by representing a linear combination
of parameters.

The FIS uses a five-layer structure to forecast the maximum
output, as presented in Figure 5. This includes L-layer, i and j as
inputs, Uy, U,, Us, and Uy as fuzzy subsets, IT as normalized nodes
in layer 2, N as fixed nodes in layer 3, p; as normalized weight and
weight of the fuzzy rule, I,—input, and G;- fuzzy rule.

3.6. Xception Convolutional Neural
Network

In this section, the proposed Xception Convolutional Neural
Network method can be utilized to predict cardiovascular diseases.
They use a feed-forward network on heart disease data for a
CNN approach to data processing. CNN techniques incorporate
feed-forward networks to enhance data processing systems’
overall performance and dependability. Input data represented in
dimensional scales can be combined with these filters to produce
output feature maps. The XCNN approach preserves essential
information at each process stage while reducing large feature maps
to analyse heart disease.
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FIGURE 5
Fuzzy inference system.

The fuzzy logic structure in the proposed model is used
to handle uncertainty in phonocardiogram (PCG) features by
transforming the fuzzy inputs using membership functions. A
set of fuzzy IF-THEN rules is then generated and trained by
optimizing the membership function parameters integrated with
XCNN (Explanatory Convolutional Neural Network), based on
the number of convolutional layers, kernel sizes, and number of
pooling layers. A typical XCNN architecture includes two to three
transformable layers (e.g., 32 and 64 layers with kernel sizes of 5
and 3, respectively), followed by max-pooling, block normalization,
ReLU implementation, a fully connected layer, and dropout before
the final softmax or sigmoid output layer. Training is typically
done using binary cross-entropy loss, Adam optimizer, learning
rate 0.001, and about 50-100 epochs. The main missing component
is a clear description of how the fuzzy system interfaces with the
XCNN. This integration of the fuzzy inference system can act as a
preprocessor, converting the extracted PCG features into high-level
fuzzy risk scores, which are then combined with the CNN feature
maps or provided as additional input to the fully connected layers
of the XCNN.

Furthermore, it supports layers of important information or
activities at each process stage. Input-output mapping is an essential
feature of the activation functions in all neural networks.

Furthermore, the weighted sum of the neuron’s inputs and
dependencies can be used to evaluate the input values. The fully
connected layer receives input from the final convolutional and
pooling layer. Moreover, using the output layer to represent the
preceding input layer, XCNN can identify and predict data related
to heart diseases. The loss function in the output layer of the XCNN
model considers the prediction error brought on by the training
samples. After the fully connected layer, all vectors can be predicted
utilizing binary classification in the SoftMax function to analyse
heart disease data.

The results in Figure 6 demonstrate the effectiveness of using
the Xception processing for heart sound prediction. This exception
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module approach accurately predicts cardiac data using input and
convolutional layers combined with adaptive mean pooling layers.
The dot product between the input weights is computed using the
non-linear activation function of the convolutional layer output,
as described in Equation 45. Where Kh —feature map, f-feature,
ph —weight, V-bias.

h(g) =g (Ph s (45)

The sigmoid function in Equations 46, 47 evaluates input values
of the processing function between 0 and 1. It also computes
the output for the input of error backpropagation, an actual
number between —1 and 1, as demonstrated in Equation. R-back
propagation, s-sigmoid function.

1
g(l)s = 1+ R_i (46)
=t
g (i)tanh = I + — (47)

Converting all input values to positive numbers is a standard
feature in the CNN context. As shown in Equation 48, the main
advantage of ReLU is its lower computational burden. When
the gradient is passed to the ReLU function, it can improve the
regulation of neuron activation. Where Relu—rectified linear unit.

g Drerw = Max (0,%) (48)

Instead of disconnecting the ReLU negative input, this
activation function is used to resolve the Dying ReLU problem.
Utilize the ReLU to calculate the leakage coefficient value described
in Equation 49. Let’s assume the m-leakage factor, L-leakage.

i, ift >0

49
C; i<o0 (49)

F (X)LRelu =
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Equations 50, 51 show that the noisy ReLU function converts
ReLU into a noisy function by incorporating Gaussian distribution.
Moreover, the leakage factor model in this procedure can be refined
through training and assessed using parametric linear units. Let
us assume D-noisy, c-max value, parametric linear, u-learnable
weighted, j-Gaussian output distributed.

9 (DNpg, = Mm@ +2), y~1(0,0 (X)) (50)
. i, ifd>0
9w = {ui ISO} (51)

The cross-entropy or Softmax loss function is commonly
utilized in multiclass classification as an alternative to the
Softmax and core error loss functions. The output is derived
from the probability distribution function using the Softmax
implementation in the output layer. The output class probability
can be calculated as shown in Equation52. Lets assume
pi— preceding layer, N- number of neuronss, and r**—non-
normalized output.

rUx

Wi=p
Zh:lrg

(52)

Using Equation 53, compute the cross-entropy loss function.
Where K-Hinge Loss Function.

k(wj) ==Y j.log(ws)  xe[LD] (53)

Frontiersin Neuroinformatics

Below, Equation 54 presents the mathematical expression used
to estimate the mean error Euclidean loss, commonly used in
regression problems.

D
L
K(wi) = o5 > (wx =) (54)
x=1

Equation 55 calculates the hinge loss function for binary and
maximal edge-based classification to maximize the edge around the
binary target class. Where J-desired output, c-margin dual objective
class, wy—denote predicted output.

. D .
K (wj) = szl maz (0,¢ — (2j — 1) 1) (55)
Multi-classification with the ReLu function can predict vectors
and analyse cardiac data. Utilizing ReLu in the output layer can also
yield the probability distribution functions.

4 Evaluation and performance metrics

The results are tested under various categories in different
datasets and feature limits accordingly; the PACAL database
contains 656 heart sound recordings from de-identified patients by
implementing the Pascal Challenge database. This dataset gathered
from https://istethoscope.peterjbentley.com/heartchallenge/index.
html. Furthermore, PCG signals were recorded at a sample rate
of 4,000 Hz and ranged in duration from 1 to 30s. After that,
cardiac sounds can be captured in clinical and non-clinical contexts
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and categorized as heart sounds, standard sounds, murmurs, and
artifacts. Similarly, static tones, noise, and premature seizures are
characterized by implementing the Pascal challenge database. In
addition, clinicians manually entered baseline heart sound levels
into the Pascal Challenge database.

The Similar Physic Net dataset comprises 3,126 simultaneous
recordings of PCG and ECG between 10 and 60s. The dataset
utilized in the Physio Net challenge included 2,435 cardiac
recordings from 1,297 patients and was divided into training and
testing sets. The PCG signal duration ranges from 8 to 312.5s.
Due to varying devices and sampling rates during data collection,
each PCG signal was down-sampled to 2,000 Hz. Sounds from
four sites (pulmonary artery, tricuspid valve, and mitral valve)
were analyzed in healthy individuals and those with valvular heart
conditions. An unbalanced data set is produced when the number
of records in the training and test sets is much more than the
number of anomalous records. In addition, the HSCT-11 database
is the largest echocardiographic database in the field. In addition,
it has heart sounds obtained from 206 individuals, which means
that 157 individuals can be classified as male and 49 as female.
After collecting data from each person, it can be predicted that
the average queue length is 455, with a minimum of 20s and a
maximum of 70 s.

The Circor Digi Scope database, the largest publicly
available heart sound dataset (https://www.kaggle.com/datasets/
bjoernjostein/the-circor-digiscope-phonocardiogram-dataset-v2),
is a comprehensive resource for detailed analysis. It contains 5,282
recordings from various auscultation sites on the body, with most
heart sounds divided into 200,464 recordings. The quality of these
recordings was assessed by cardiac physiologists, leading to a
thorough murmur characterization and classification. This detailed
analysis examines the timing, grading, shape, quality, and location
of auscultation, providing a wealth of information for researchers
and clinicians.

The Heart Sound Shenzhen dataset, containing 845 PCG signal
recordings from 170 individuals, is a comprehensive resource
covering a wide range of heart diseases, including coronary artery
disease, valvular disease, and congenital heart disease. The diversity
of the HSS dataset significantly contributes to understanding the
acoustic properties associated with various cardiac diseases. The
PCG recordings in the HSS dataset were sampled at 4 kHz to ensure
accuracy in the heart sound modeling.

A filter enables the PCG signal’s decibel ratio based on heart
sound variation for feature estimation as shown in Table 9. The
empirical methods of signal analysis, using different dB levels to
indicate signal types in PCG heart sounds, estimate the optimal
accuracy of EMDAMEF for disease type approximation. Various
methods were employed to assess the accuracy prediction in
analyzing AS heart sound variability within the PCG signal. The
thorough evaluation included the SNR of de-noising heart signal
wavelet rate —7.21, CEMD + median —9.43, and CEEMD —10.22.
The AS heart disease category achieves an accuracy signal-to-noise
ratio estimate of 11.54 in the EMDAMEF approach. Similarly, heart
diseases like MR, MS, MVP, and NHF did not yield precise ratios
using the methods above. However, the EMDAMEF model indicated
higher accuracy ratios of 13.16, 15.22, 14.32, and 16.25 for heart
conditions such as MR, MS, MVP, and NHE respectively. This
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TABLE 9 SNR heart signal de-noising feature limits.

Heart
sound
variation
0dB

AS 7.21 ‘ 9.43

De-noising heart signals in dB SNR rate.

Wavelet CEMD -+ CEEMD Optimized

median EMDAMF

11.54

‘ 10.22 ‘

Noise ratio £0 fo 4.5 difference £1.5 variation

MR 8.11 13.16

10.21 ‘ 11.8

Noise ratio 0 fo 5.5 difference =+ 2.0 variation

MS 9.87 11.43 13.86 15.22

Noise ratio £0 fo 5.5 difference £3.0 variation

MVP 8.46 12.41 ‘ 13.26 14.32

Noise ratio +0 fo 6.0 difference +2.7 variation

NHF 10.98 13.28 16.25

‘ 14.76

Noise ratio £0 fo 6.5 difference £2.5 variation

suggests the potential efficacy of the EMDAMF model in diagnosing
specific heart sounds.

By dividing the dataset into “k” subsets (or folds), the model
is trained on k-1 folds and validated on the remaining folds. This
process is repeated “k” times, each fold serving as a validation set,
and the results averaged to provide a more robust estimate of the
model’s accuracy.

As shown in Figure 7, K5-fold cross-validation is a resampling
technique that assesses classification algorithms on limited data
samples. The results obtained from K5-fold cross-validation are
considered less biased or unreliable compared to other methods
like train/test separation. Moreover, K represents the number of
folds divided into approximately equal-sized subsamples. Utilizing
the proposed XCNN method within K5-fold Cross-Validation
showcases a notable enhancement, with a remarkable 92.36%
increase in folds employed for a random distribution aimed at
accuracy prediction. This substantial increase is a testament to the
XCNN method’s impressive performance. Despite the significant
improvement, the error rate-7 associated with the XCNN method
is low.

As shown in Figure 8, compared to other methods such as
train-test splitting, the results of 10-fold cross-validation indicate
that the number of folds is divided into approximately equal-sized
sub-samples. Additionally, the accuracy of 10-fold cross-validation
is significantly improved to 93.6% in randomly distributed
folds used for prediction, thereby substantially enhancing the
performance of the proposed XCNN method in fold cross-
validation. A 10-fold cross-validation was used to determine
the optimal value, thereby improving the reliability of the
model results.

As illustrated in Table 10, using datasets like PASCAL, Circor
Digi scope, Physio Net Challenge, HSS, and HSCT dataset, sourced
from various datasets, can yield precise estimations. Additionally,
the total count of recordings of these sounds within each dataset
is delineated, for instance, PASCAL-656, Circor Digi scope-5282,
Physio Net Challenge-3126, HSS-845, MVP-206, and so forth.
Furthermore, cardiac recordings can be used to identify features

frontiersin.org


https://doi.org/10.3389/fninf.2025.1655003
https://www.kaggle.com/datasets/bjoernjostein/the-circor-digiscope-phonocardiogram-dataset-v2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Prabha Devi and Palanisamy

10.3389/fninf.2025.1655003

Model Accuracy Model Loss
10
—— train
5 — val
039
4
08
g 07 § 3
bt
06 2
0s 1
—— train
04 - 0
0 20 40 ) & 100 0 20 ) &@ 2 100
Epoch Epoch
FIGURE 7
Testing accuracy and loss rate.
Model Accuracy Model Loss
1.10 5
* o o o o o o
08 %
4
0.6
0.5 3
- - -
g e e o 2
z 04 =
E # Training
03 f * Testing . ~&— Val
| ity Training
02e
0 v v - -
0
0 10 30 40 80 200 0 20 30 40 60 200
Epoch
Epoch
FIGURE 8
Ten fold cross validation.
TABLE 10 Multi label dataset description.
Dataset Total NHF AS MR MS MVP Error
PASCAL 656 256 129 89 92 81 9
Circor Digi scope 5,282 2,347 1,788 850 196 91 10
PhysioNet challenge 3,126 1,753 879 273 128 87 6
Heart Sounds Shenzhen (HSS) 845 404 213 91 76 53 8
Hematopoietic stem cell transplantation (HSCT) 206 56 49 39 37 18 7

such as NHE, AS, MR, MS, MVP, and errors, which can be used
to predict the overall accuracy of the dataset.

The training and testing scheme analysis, as depicted in
Table 11, implicates using the proposed method to analyse
data from sources such as Heart Sound PASCAL, Circor Digi
Range, Physio Net Challenge, HSS, and HSCT. Together, the
accuracy of training and test outcomes is anticipated through
the application of various technologies, including DNN, XGBoost,
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RNN, SMOTE, EMD, LMS, KNN, A-BLSTM, and MLP, all of
which are derived from the preceding method—subsequently,
the proposed method FIXCNN is employed for processing
the provided heart sound dataset and forecasting accuracy.
Furthermore, prior techniques analyzed DNN-81.6%, XGBoost-
83.4%, RNN-84.6%, SMOTE-82.63%, EMD-88.18%, LMS-85.4%,
KNN-89.2%, A-BLSTM-86.09%, and MLP-evaluates the accuracy
of such heart sounds as 87.56%, and the suggested XCNN approach
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has the highest accuracy potential of 95.23%. This approach
provides the ability to fully evaluate the predictive accuracy of the
selected technique in the context of heart sound analysis, instilling
confidence in the thoroughness of the evaluation process.

As indicated in Figure 9, the proposed XCNN method can
accurately predict the cardiac sound PCG signals using datasets
such as Circor Digi scope, Physico-Net Challenge, HSCT, HSS, and
PASCAL. Moreover, the PCG signal performance-based assessment
of precision, recall, F1 score, and precision can accurately predict
heart sound predictions. Then, Circor DigiScope-94.49%, Physico-
Net Challenge-94.85%, HSCT-94.91%, HSS-95.01, and PASCAL-
95.08% improved the accuracy of each performance measure on
the heart sound data. Thus, by assessing the PCG signal’s efficacy
on cardiac sounds, the accuracy of these has been improved.

Proposed System Different Dataset
100 1
80
S
£ B0 A
3
=4
©
E
2 40
@
o
20 A
0 -4
CcDs PhysioNet HSCT HSS PASCAL
Datasets
@ Precision @ Recall @ F1-Score @ Accuracy
FIGURE 9
Impact of proposed system in different dataset.
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FIGURE 10
Comparison of various methods in classification accuracy.
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Accuracy
952
94.1

95.6

F1 score
94.3
95.8

96.1

LVPSO-FIXCNN

Recall
92.5
93.1

93.1

Precision
91.6
923

91.4

Accuracy
86.1
85.4

87.1

F1 score
84.3
84.8

86.1

Recall
82.1
85.3

83.9

82.3
84.1

85.8

Accuracy Precision
80.1
82.8

83.1

F1 score
79.5
80.5

82.4

LSTM-RNN

Recall
86.2
83.2

81.2

Precision
78.3
81.4

79.5

Methods

Pascal
circor

TABLE 12 Comparison of performance accuracy attained.

Physio-cardnet
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The XCNN met hod demonstrates the capability to accurately
predict the performance of cardiac sound PCG signals using
datasets illustrated in Figure 10 and Table 12. This has significant
practical implications, as it outperforms previous methodologies
employing DNN, CN N, and XGBoost for heart sound accuracy
detection. The manipulated versions of DNN, CNN, and XGBoost
exhibited enhanced accuracies of 89.78%, 90.23%, and 93.69%,
respectively. However, the XCNN method achieved the highest
accuracy rate of 95.08%, establish ing itself as a promising method
for precise heart sound analysis and offering new possibilities for
healthcare technology.

Figure 11 compares time complexity performance with 106,
217, 359, 567, and 656 values. The proposed method attains
19.36 ms for 656 values; similarly, the existing method attained

Time complexity in ms

30 4

24 A

18

Time in ms
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-@- DNN - XGBoost A~ CNN 4 XCNN

FIGURE 11
Comparison of time complexity.
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27.17ms, 24.51ms, and 23.21ms for DNN, XGBoost, and
CNN, respectively.

Figure 12 shows the Polygon Area Metric (PAM) performance
using the proposed XCNN method. In the analysis, PAM is user
metrics are precision, recall, F1-score, accuracy, AUC and Jaccard
Index (JI). The proposed method attains better results using various
datasets like Pascal, circor and physio-cardnet.

Figure 13 describes the Kappa coefficient performance with
various datasets like pascal, circor and physio-cardnet. The kappa
coeflicient estimate the agreement among classification and truth
values in the dataset. The proposed method obtains the high kappa
coefficient performance than other methods.

4.1 Discussion

This study, which meticulously uses digital heart rate
recordings and state-of-the-art ML algorithms, is designed to
identify valvular heart disease (VHD) in the general population,
including instances with no symptoms and intermediate phases
of the disease. An RNN was trained to predict heart murmurs
using annotated recordings from a digital stethoscope at four
auscultation levels in 2,124 participants. The predicted sounds were
then utilized to predict VHD detected by ECG.

Our research has provided specific and informative data on
the accuracy of aortic stenosis (AS) detection. At the lower curve,
we observed a 90.9% accuracy, 94.5% specificity, and an AUC
value of 0.979 (CI: 0.963-0.995) for mild AS identification, with
an accuracy of 0.993 (CL 0.989-0.997). The AUC values for
moderate or high aortic arch and mitral regurgitation (AR and
MR) were 0.634 (CI: 0.565-703) and 0.549 (CIL: 0.506-0.593),
respectively, which increased to 0.677 and 0.766 with the inclusion
of the variable.

Variability measures such as standard deviation (eg, precision
= 91.2% =+ 2.3%) and 95% confidence interval [AUC = 0.85
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(0.83-0.91)] were frequently missing. These metrics are important
for assessing the model’s consistency and generalizability across
different cross-validation combinations or test sets. The AUC for
predicting symptomatic events was higher for AR and MR, 0.756
and 0.711, respectively. Incorporating screening for symptomatic
regurgitation or stenosis, the AUC was 0.86, with 97.7% of AS cases
(n = 44) and all 12 MS cases detected.

Figure 14 defined as, This matrix describes the performance
of the neural network model in terms of target class and output
class values. The Curve Analysis (CA) for the model revealed that
when the threshold probability of an individual was between 20%
and 95%, application of this model to predict the heart disease
prediction analyzing the AUC values of 0.856 [95% CI: 0.804,
0.908; P < 0.001]. The results showed that the test p = 0.098.
According to the maximum principle of the index, the optimal cut-
off value of AUC was 0.174, in which the accuracy was 77.3% and
the sensitivity was 78.5%, indicating that the model had a good
fit and a good fit with the data (Figure 13). After 2,000 recordings
resampling iterations, the AUC was 0.852, showing that the model
had good ability.
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5 Conclusions

To conclude, the proposed system achieves high performance
under various testing performances, proving that the proposed
system achieves higher detection accuracy than the existing
systems. This work uses the feature selection and classification
approach to extract the heart sound signal contaminated by noise
and murmur into a set of single-component signals to classify
the result effectively. Furthermore, the most appropriate Intrinsic
Mode Functions (IMF) can be selected to represent the undistorted
fundamental heart sound signal. After that, EMDAMEF can detect
the presence of murmurs in the heart sound signals utilizing the
PCG signal frequency limits for feature selection. Furthermore,
the EMDAMEF algorithm theoretically offers improved spectral
separation compared to the EMD method while also managing
the issue of mode combining present in the EMD method. In
conclusion, creating an LV-PSO based on FIXCNN for early
heart risk prediction signifies progress in healthcare technology.
Furthermore, the accuracy performance evaluation of previous
methods is presented: CNN—87.23%, XGBoost—90.17%, and
RNN—86.18%. The proposed method improves the precision
performance of the XCNN technique to 95.08%. This approach
could revolutionize the diagnosis and treatment of heart disease
by combining advanced ML techniques with innovative pre-
processing methods, saving lives and improving patient outcomes.
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