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Fully-automated estimation of
upper cervical cord
cross-sectional area using
pontomedaullary junction
referencing in multiple sclerosis
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Nicola Pinna?, Daniela Distefano?!, Emanuele Pravata®#,
Giulia Mallucci?, Alessandro Cianfoni'*, Claudio Gobbi?3,
Chiara Zecca?®' and Giulio Disanto?**!

!Department of Neuroradiology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale,
Lugano, Switzerland, *Multiple Sclerosis Center, Neurocenter of Southern Switzerland, Ente
Ospedaliero Cantonale, Lugano, Switzerland, *Faculty of Biomedical Sciences, Universita della
Svizzera ltaliana, Lugano, Switzerland, “Department of Neuroscience, Imaging and Clinical Sciences,
Universita degli studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy

Background: Spinal cord cross-sectional area (CSA) is a biomarker of disability in
multiple sclerosis (MS). Vertebral-based CSA suffers from anatomical variability
and positional bias.

Objectives: To evaluate a fully automated PMJ-referenced approach, as
implemented in the open-source Spinal Cord Toolbox, to assess cervical cord
CSA at a fixed distance from the pontomedullary junction (PMJ) in MS.
Methods: Retrospective study performed at the MS center of Lugano
(Switzerland). Inclusion criteria were treatment with natalizumab or ocrelizumab
and absence of clinical/radiological disease activity over >2 years. CSA at 64 mm
caudal to the PMJ (CSA PMJ) and at C2-C3 vertebral level (CSA C2-C3) were
calculated using the Spinal Cord Toolbox.

Results: Seventy-five MS patients [females = 44 (58.7%), age = 45.1 (36.7-53.8)
years, natalizumab = 36 (48%), ocrelizumab = 39 (52%)] were included. Median
CSA PMJ and CSA C2-C3 were 57.7 (53.1-62.1) and 58.1 (53.2-62.6) mm?,
respectively. The two measures were highly correlated (rho = 0.95, p < 0.001),
with some exceptions related to errors in vertebral labelling in CSA C2-C3
assessments. PMJ was correctly identified in all subjects. CSA PMJ measures
were negatively associated with disability (f = —0.08, p = 0.002), independent
of age and sex.

Conclusion: Automated measurement of spinal cord CSA at fixed distance from
the PMJ is applicable in MS, performs better than vertebral-based CSA, and
correlates with neurological disability.

KEYWORDS

spinal cord, cross-sectional area, deep-learning, pontomedullary junction, multiple
sclerosis
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Introduction

Spinal cord atrophy is a well-established imaging biomarker of
neurodegeneration in multiple sclerosis (MS), and is strongly
associated with neurological disability (Losseff et al., 1996; Rocca
etal, 2011). Among several metrics, the cross-sectional area (CSA) of
the upper cervical cord typically measured at the C2-C3 intervertebral
disc level has emerged as a reproducible, sensitive indicator of spinal
cord damage (Lukas et al., 2021). However, vertebral-based referencing
is sensitive to neck flexion/extension, varying slice angulation, and
labelling variability, limiting inter-subject comparability and
longitudinal precision (Cohen-Adad et al., 2021; Valo$ek and Cohen-
Adad, 2024). In addition, the variable correspondence between
vertebral levels and spinal cord segmental levels further increases
inter-subject variability (Cadotte et al., 2015).

Methodological advances have shifted attention toward intrinsic
anatomical landmarks, notably the pontomedullary junction (PM]) to
provide a more robust spatial referencing for CSA measurements
(Bédard et al., 2023). Bédard and Cohen-Adad (2022) have introduced
a framework for computing CSA at a fixed distance caudal to the PM],
reducing sensitivity to variable cord curvature. Automated spinal cord
segmentation and vertebral labelling have also matured substantially
with the introduction of deep learning methods and robust template-
based approaches (Bédard and Cohen-Adad, 2022; Gros et al., 2019;
Keegan et al., 2024). These have been recently integrated into the
open-source Spinal Cord Toolbox (SCT), which allows scalable and
reproducible CSA quantification at both C2-C3 and at a fixed distance
from the PMJ, requiring minimal user input and supporting large
cohort analyses (Bédard and Cohen-Adad, 2022).

As an additional source of variability, there is no universal
agreement regarding how CSA measurements should be normalized,
if by brain volume, intracranial volume and/or spinal canal area as
potential alternatives (Keegan et al., 2024). The SCT currently provides
a normalization method that is based on sex and brain volume
measures, collected from a large cohort of individuals without a
history of neurological diseases (Bédard and Cohen-Adad, 2022).
However, this may be problematic in patients suffering from
neurological conditions which also cause brain atrophy, as this would
bias normalized CSA estimates (Bédard and Cohen-Adad, 2022;
Keegan et al., 2024).

In this study, we evaluated the benefits of a fully automated
pipeline for upper cervical cord CSA calculation in patients with MS
using PM]J referencing, in terms of applicability, relation to C2-
C3-based CSA measurements, and association with disability scores.
We also aimed to compare raw CSA measurements to those
normalized based on brain and intracranial volumes in terms of
association with disability scores.

Materials and methods
Patient population and setting of the study

This was a single center retrospective study conducted at the MS
center of the Neurocenter of Southern Switzerland (Lugano,
Switzerland). All patients at our center are routinely followed-up every
approximately 3 months, with neurological examinations and expanded
disability status scale (EDSS) estimations performed by certified raters
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(Kurtzke, 1983). Brain and upper spinal cord MRIs are performed in all
patients at least once a year and in case of suspected relapses.

From the overall population of MS patients, those fulfilling the
following inclusion criteria were consecutively recruited: (1) A
diagnosis of relapsing-remitting (RR), secondary progressive (SP) or
primary progressive (PP) MS by the 2017 revision of McDonald
criteria (Thompson et al., 2018); (2) Age above 18 years; (3) Being
treated with either natalizumab (NTZ) or ocrelizumab (OCR) for
>2 years; (4) Absence of new clinical relapses and absence of new T2
demyelinating lesions on brain and spinal MRI over the last 2 years of
treatment; (5) Having performed a high-quality brain and upper cord
MRI (see below). Exclusion criteria were: (1) Pregnancy; (2) Inability
to follow procedures or insufficient knowledge of project language; (3)
Inability to provide consent.

MRI studies and image processing

After inclusion in the study, the last MRI performed by the patients
was retrospectively selected for analysis. All MRIs were performed using
a Siemens Skyra 3T scanner with a standardized acquisition protocol
based on the recommendations from Cohen-Adad et al. (2021) for
quantitative spinal cord MRI. A 3D TI-weighted magnetization
prepared rapid acquisition (MPRAGE) sequence, ensuring appropriate
coverage of the brainstem and upper cervical spinal cord down to the C4
level, was employed. The sequence was acquired with the following
parameters: voxel size = 1 x 1 x 1 mm?, TR = 2,300 ms, TE = 2.98 ms,
TI = 900 ms, and Field of View = 256 x 256 mm.

Images were processed using the SCT, version 6.5, an open-source
software specifically developed for spinal cord MRI analysis (De Leener
et al, 2017). Segmentation of the spinal cord was carried out
automatically using the deep learning-based algorithm sct_deepseg_sc,
which has demonstrated robust accuracy across multiple contrasts and
clinical populations (Gros et al, 2019). The PM] was identified
automatically using the sct_detect_pmj function, and the CSA was
calculated at a fixed distance of 64 mm caudal to this landmark
computed along the spinal cord centerline (geodesic distance) and then
averaged on a 20 mm extent (CSA PM]J). The CSA computation was
performed in each participant’s native space, using orthogonal slices
with respect to the cord centerline, in order to account for its curvature
as previously proposed (Bédard and Cohen-Adad, 2022; Gros et al.,
2019). CSA was also measured at the conventional C2-C3 intervertebral
disc level (CSA C2-C3), with vertebral labelling performed using the
SCT command sct_label_vertebrae (Ullmann et al., 2014).

All scripts and parameters files used for the SCT workflow are
available on GitHub,' and also in the SCT website.? We checked the
results of the SC segmentations and of the PMJ and vertebral labelling
using SCT’s quality report (sct_qc).

In order to minimize inter-subject variability due to anatomical
differences, spinal cord CSA values were normalized using a
regression-based method, i.e., the -normalize function in SCT, by both
brain and intracranial volumetric data. Total brain volume (BV) was
computed from 3D T1-weighted images using SIENAX (part of FSL)

1 https://github.com/sct-pipeline

2 https://spinalcordtoolbox.com
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TABLE 1 Baseline demographic and clinical characteristics of patients
included in the study.

Variable Median/ IQR (%) Range
count
Age at MRI (years) 45.1 36.7-53.8 18.2-74.0
F 44 58.7
Sex
M 31 41.3
NTZ 36 48
DMT
OCR 39 52
Disease RRMS 73 97.3
course PMS 2 2.7
Time between MRI and
0.1 —0.1to0 0.4 —1tol
EDSS (years)
EDSS 2.5 1.5-3.5 0-7

EDSS, expanded disability status scale; IQR, interquartile range; MRI, magnetic resonance
imaging; NTZ, natalizumab; OCR, ocrelizumab; PMS, progressive MS; RRMS, relapsing-
remitting multiple sclerosis.

(Smith et al., 2004; Puonti et al., 2016). Intracranial volume (IV, i.e.,
total volume inside the skull, including brain tissue and cerebrospinal
fluid) was independently estimated using SAMSEG (Sequence
Adaptive Multimodal SEGmentation) from FreeSurfer v. 8.0.0°
(Puonti et al., 2016).

Statistical analyses

Categorical variables were described by counts and percentages,
continuous and ordinal variables by median, interquartile range (IQR)
and range. Pairwise correlations were tested after assessment of
normality (by histograms and Shapiro-Wilk test) using the Pearson’s
correlation coeflicient. Multivariate linear regression models were used
to test CSA measures for association with disability scores (EDSS),
adjusted by age and sex. Linear assumptions were checked using
residuals vs. predicted plots and qqplots. The performance of different
regression models was compared using R-squared estimates (i.e., the
proportion of variance in the dependent variable that can be explained
by the independent variables) and Akaike Information Criterion (AIC,
mathematical estimate of how well a model fits the data, based on
number of independent variables and maximum likelihood estimate of
the model). All statistical analyses were conducted using R (version
4.4.2) and the R packages “DHARMa” and “AICcmodavg”

Results

A total of 75 MS patients were included in the study (Table 1). The
median age at the time of MRI acquisition was 45.1 (36.7-53.8) years,
and 44 patients were female (58.7%). Thirty-six (48%) patients were
on treatment with NTZ, 39 (52%) with OCR. Only two patients had
progressive MS. Median EDSS was 2.5 (1.5-3.5), with scores ranging
between 0 and 7.

3 https://surfer.nmr.mgh.harvard.edu
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Raw CSA PMJ vs. CSA C2-C3

We first estimated the raw (i.e., not normalized) CSA PMJ and CSA
C2-C3 measures, and how these correlated to each other. The median
CSA PMJ was 57.7 (IQR =53.1-62.1, range = 39.5-75.9) mm® The
median CSA C2-C3 was 58.1 (IQR = 53.2-62.6, range = 39.9-77.5)
mm?. There was a strong overall correlation between the two measures
(Pearsons rho = 0.95, 95% CI = 0.92-0.97, p < 0.001, see Figure 1a).

Despite the observed strong correlation, some notable
discrepancies emerged in a subset of patients. Upon visual inspection
of the segmentations and vertebral labelling, we identified that the
PMJ was consistently and accurately detected across all subjects
(75/75, 100%), while the vertebral labelling algorithm misidentified
the C2-C3 disc level in 24/75 (32%) subjects. Figure 2 shows examples
of vertebral labelling that are, respectively, incorrect, partially
inaccurate, and anatomically correct at the C2-C3 level, and how this
affected CSA C2-C3 measures. In contrast, the PM]J was accurately
and automatically identified in all patients.

Effect of normalization methods on CSA
PMJ

To wunderstand how normalization affects CSA PM]
measurements, we calculated the raw BV and IV for each subject. The
median BV and IV were 1,045 (980.8-1,112.6) and 1,485 (1,386-
1,590) cm?, respectively (Supplementary Figure S1; Supplementary
Table S1). As expected, IV was always larger than BV [median delta
448.7 (368.6-510.7) cm’], with a strong correlation between these two
measures (Pearson’s rho=0.79, 95% CI=0.68-0.86, p <0.001;
Figure 1b).

Both normalization methods produced CSA PM] measurements
that were highly correlated with raw CSA PMJ (normalized by BV:
Pearson’s rho = 0.91, 95% CI = 0.86-0.94, p < 0.001; normalized by IV:
Pearson’s rho =0.64, 95% CI=0.48-0.75, p<0.001; Figure 3).
However, normalization of CSA PM]J had a substantial impact on both
the magnitude and distribution of the measurements, especially when
normalized by IV (Figure 4). As compared to raw CSA PM], the CSA
PMJ normalized by BV was increased by a median of 3.2 (1.9-4.7)
mm?, whereas the CSA PMJ normalized by IV was decreased by a
median of —8.4 (—14.4 to —5.4) mm? (Supplementary Table S1).

Association between CSA PMJ and
disability scores

We next assessed the relationship between CSA PM]J and clinical
disability using a series of linear regression models adjusted for age
and sex (Table 2). As expected, age was positively associated with
EDSS scores in all models (Figure 5a; Table 2). Raw CSA PM]J also
showed a significant inverse association with EDSS (f = —0.08,
p=0.002) and this was independent of age and sex (Figure 5b;
Table 2). When comparing different normalization strategies, all CSA
PM]J normalized measures showed significant associations with EDSS,
but this appeared stronger for CSA PMJ normalized by IV than by
BV. The model including CSA PM]J normalized by IV was the one
showing the greatest R-squared and smallest AIC (indicating better
performance in explaining EDSS), followed by raw CSA PM] and then
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(a) Strict correlation between CSA measures estimated at C2—C3 vertebral level (x axis) and using the PMJ referenced method (y axis). (b) Correlation
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by BV (Table 2). Raw CSA PM]J remained associated with EDSS
(f =—0.06 p =0.029), also when BV was included as an additional
covariate in the regression model.

Discussion

We investigated the applicability of a fully automated pipeline for
measuring spinal cord CSA at a fixed distance caudal to the PM]J in
patients with MS. To the best of our knowledge, this is the first study to
apply this PMJ-referenced approach combined with deep learning
segmentation and volumetric normalization in a clinical MS cohort. Our
findings demonstrate the CSA PMJ not only outperforms the
conventional vertebral-based CSA estimation at C2-C3 level, but also
shows robust associations with neurological disability. Notably, the CSA
PM]J of our patients was on average smaller than that of the general
population measured in the original publication implementing this
method (mean CSA = 66.2 mm?® * 6.7, range 51.9-95.6) (Bédard and
Cohen-Adad, 2022). Despite the differences in settings and population,
this may be at least in part related to the extent of spinal atrophy in MS.

One of the key strengths of the PMJ-referenced method was its
anatomical consistency. Unlike vertebral-level labelling, which is
susceptible to variability due to neck position, image angulation, and
inter-individual anatomical differences, the PM]J landmark was
reliably and automatically identified across patients. Visual inspection
confirmed that while vertebral labelling errors were present in several
cases leading to over- or under-estimation of CSA, automated PMJ
identification remained accurate. Compared with vertebral-level
referencing, PMJ-referenced sampling therefore yielded more accurate
anatomical localization, and required fewer manual interventions.
This robustness supports its use as a reliable reference point for spinal
cord morphometry, particularly in the settings of multicenter studies
in which standardized analyses may be needed to be applied to a large
number of individuals. This and other similar automated methods also
have the potential to provide support to radiologists and neurologists
in clinical settings, particularly in the monitoring of atrophy rates over
time (Collorone et al., 2024).
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Normalization of spinal cord CSA estimates are particularly
relevant for cross-sectional studies. Currently, there is no uniform
agreement on how CSA measures should be normalized (Keegan
etal,, 2024; Papinutto et al., 2020). Brain volume, intracranial volume
and spinal canal area have all been proposed as potential
normalization parameters (Papinutto et al., 2020; Kesenheimer et al.,
2021; Nigri et al., 2023). In MS studies, the volumetric scale factor
estimated by SIENAX has also been often used to normalize spinal
cord CSA, as an indirect measure of intracranial volume (Rocca
et al,, 2023; Bischof et al., 2022; Fein et al., 2004). Notably, the SCT
method developed by Bédard and Cohen-Adad (2022) was designed
to normalize spinal cord CSA by sex and brain volume (or
alternatively thalamic volume). As stated in their original publication,
applying this method to individuals affected by a condition that is
also causing brain/thalamic volume loss, as in the case of MS, can
generate biased CSA estimates. Indeed, any CSA measure should
be theoretically normalized using a pre-morbid BV measure. This is
often problematic in MS patients, who typically show higher rates of
brain atrophy compared to the general population since the initial
stages of disease (Fein et al,, 2004; Rojas et al., 2015; Azevedo
etal., 2015).

Having said this, the association between CSA PMJ and EDSS
was of weaker magnitude when CSA measures were normalized by
BV, as compared to raw CSA PM]J. We interpret this as a
consequence of the extent of BV loss in this sample of patients,
which limits the use of BV as a normalization parameter. Therefore,
while normalization of CSA measures for BV may be useful for
reducing inter-subject anatomical variability, this may introduce a
relevant bias in CSA estimates in the specific setting of MS. We next
tested whether normalizing the CSA PM] by IV could represent an
option, since this would not be affected by pathological brain
volume loss. To do this, we directly calculated the IV rather than
using the SIENAX scaling factor as an indirect measure of this.
Interestingly, the regression model testing IV-normalized CSA
PM] measures for association with EDSS had the best predictive
performance. There is a known relation between IV and BV in the
general population, as also seen in our own cohort (Wang et al.,
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FIGURE 2
Examples of vertebral segmentation and labelling errors. (a,b) In this
patient the C1-C2 complex and C3 vertebras were incorrectly
labelled as C1 and C2, respectively, resulting in a downward shift of
all subsequent levels (a). As a consequence, the CSA measured at the
(misidentified) C2—-C3 level is underestimated (43.32 mm? vs.

55.99 mm? if vertebral labelling is manually corrected). The PMJ-
referenced segmentation method correctly detects the PMJ (b), and
the CSA measured at 64 mm caudal to the PMJ is more anatomically
accurate (57.09 mm?). (c,d) In this patient, part of the C2 vertebral
body was incorrectly labelled as C3 (c), leading to an overestimation
of CSA (7746 mm? vs. 71.68 mm? if vertebral labelling is manually
corrected). The PMJ identification is accurate (d), and the CSA
measured 64 mm caudal to the PMJ appears more reliable

(72.56 mm?). (ef) In this patient, the vertebral labelling is anatomically
correct (e) as well as the identification of the PMJ (f). CSA C2-C3
and CSA PMJ measures are therefore more comparable (55.33 mm?
and 55.05 mm?, respectively).

2024). While this may suggest the possibility to apply the same
normalization procedure based on BV to IV, it is important to
remember that the method developed by Bédard and Cohen-Adad
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(2022) was not built on IV, and further studies would be needed to
develop a normalization procedure that is based on IV. We did not
normalize CSA by spinal canal metrics because dedicated axial
acquisitions for reliable canal area estimation were not available
for all subjects, and also for the lack of a reliable automatic
estimation of the spinal canal segmentation. Canal-based
normalization can reduce inter-subject anatomical variance and
may be advantageous when brain measures are influenced by the
disease, and incorporating robust canal metrics could improve
future studies.

This study has several strengths. First, this is the first report
investigating automated Al-based measurement of CSA PM]J in
MS. Second, we investigated a relatively homogenous sample of MS
patients, all on treatment with high efficacy therapies, and no
inflammatory clinical or radiological activity at the time of the study.
This reduces the potential risk of confounding by different therapies
and concurrent inflammatory disease activity. Third, all patients
performed standardized neurological examinations and MRI
protocols on identical 3T MRI scans. Last, we were able to integrate
brain and intracranial volume metrics in the normalization process of
spinal cord CSA.

There are also several limitations. CSA inherently depends on
the accuracy of cord segmentation. Small boundary errors (under-/
over-segmentation or partial inclusion of nerve rootlets) can
propagate to area estimates and inflate within-subject variability,
particularly at levels affected by motion or cerebrospinal fluid
pulsation. The software computed CSA on slices orthogonal to the
local centerline and averaged across contiguous slices to reduce local
noise. Nevertheless, residual segmentation errors may persist and
would affect both PM]J-referenced and vertebral-referenced
measures. Future work should incorporate automated QC metrics
(e.g.,
smoothness), uncertainty estimates from the segmentation model,

outlier detection on perimeter/area and centerline

and formal scan-rescan experiments to quantify segmentation-
driven variance.

Sampling CSA at a fixed caudal distance from the PM]
assumes limited inter-individual variability in cervical cord
length, which represents an additional limitation. We did not have
a control sample of individuals to compare CSA PM] values
against those collected from MS patients, and the retrospective
single-center design may limit generalizability to other MS
populations. It would be important to confirm these results in
larger independent samples of patients. We did not include scan-
rescan test-retest reproducibility. Prior PMJ-referenced work in
healthy participants reported low within-session variability across
neck positions, supporting short-term robustness to posture
changes. However, formal between-session test-retest especially
in MS cohorts remains to be established (Bédard et al., 2023).
Finally, the pipeline assumes availability of high-quality 3D
T1-weighted images, which may not be routinely acquired in all
clinical settings.

To conclude, our findings support the clinical validity of
PM]J-referenced spinal cord CSA as a biomarker in MS. The method
developed by SCT is fully automated, reproducible, and robust to
anatomical variability introduced by vertebral labelling. Raw CSA
PM] values were significantly associated with neurological disability.
Further work is needed to optimize normalization strategies that
take into account the potential degree of brain atrophy in MS, and
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FIGURE 3
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TABLE 2 Multivariate linear regression models testing the association between CSA PMJ (raw, normalized by BV and by IV) with EDSS scores.

Linear regression models predicting EDSS p p value R-squared AIC
F _ -
Sex
M 0.00 0.992
0.300 261.4
Age (per year) 0.04 0.001
Raw CSA PM]J (per mm?) —0.08 0.002
F _ _
Sex
M —0.11 0.729
0.268 264.74
Age (per year) 0.05 <0.001
CSA PM]J normalized by BV (per mm?) —0.07 0.010
F _ -
Sex
M -0.93 0.015
0.315 259.77
Age (per year) 0.04 <0.001
CSA PM]J normalized by IV (per mm?) —-0.09 <0.001

All models are adjusted by age and sex. Regression metrics (R-squared and AIC) are shown for each model on the right side of the table. AIC, akaike information criterion; BV, brain volume;

EDSS, expanded disability status scale; IV, intracranial volume.
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(a) Scatter plot showing the positive association between age (on the x axis) and EDSS (on y axis); (b) Scatter plot showing the negative association

between raw CSA PMJ (on the x axis) and EDSS (on y axis).

this is particularly relevant for cross-sectional applications. The
methodology appears instead already compatible with longitudinal
applications and could serve as a standardized approach for tracking
spinal cord atrophy over time. Given its precision and scalability, the
PM]J-based CSA measurement has the potential to become a
standardized tool in both clinical and research neuroimaging
settings in MS.
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