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Background: Spinal cord cross-sectional area (CSA) is a biomarker of disability in 
multiple sclerosis (MS). Vertebral-based CSA suffers from anatomical variability 
and positional bias.
Objectives: To evaluate a fully automated PMJ-referenced approach, as 
implemented in the open-source Spinal Cord Toolbox, to assess cervical cord 
CSA at a fixed distance from the pontomedullary junction (PMJ) in MS.
Methods: Retrospective study performed at the MS center of Lugano 
(Switzerland). Inclusion criteria were treatment with natalizumab or ocrelizumab 
and absence of clinical/radiological disease activity over ≥2 years. CSA at 64 mm 
caudal to the PMJ (CSA PMJ) and at C2–C3 vertebral level (CSA C2–C3) were 
calculated using the Spinal Cord Toolbox.
Results: Seventy-five MS patients [females = 44 (58.7%), age = 45.1 (36.7–53.8) 
years, natalizumab = 36 (48%), ocrelizumab = 39 (52%)] were included. Median 
CSA PMJ and CSA C2–C3 were 57.7 (53.1–62.1) and 58.1 (53.2–62.6) mm2, 
respectively. The two measures were highly correlated (rho = 0.95, p < 0.001), 
with some exceptions related to errors in vertebral labelling in CSA C2–C3 
assessments. PMJ was correctly identified in all subjects. CSA PMJ measures 
were negatively associated with disability (β = −0.08, p = 0.002), independent 
of age and sex.
Conclusion: Automated measurement of spinal cord CSA at fixed distance from 
the PMJ is applicable in MS, performs better than vertebral-based CSA, and 
correlates with neurological disability.
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Introduction

Spinal cord atrophy is a well-established imaging biomarker of 
neurodegeneration in multiple sclerosis (MS), and is strongly 
associated with neurological disability (Losseff et  al., 1996; Rocca 
et al., 2011). Among several metrics, the cross-sectional area (CSA) of 
the upper cervical cord typically measured at the C2–C3 intervertebral 
disc level has emerged as a reproducible, sensitive indicator of spinal 
cord damage (Lukas et al., 2021). However, vertebral-based referencing 
is sensitive to neck flexion/extension, varying slice angulation, and 
labelling variability, limiting inter-subject comparability and 
longitudinal precision (Cohen-Adad et al., 2021; Valošek and Cohen-
Adad, 2024). In addition, the variable correspondence between 
vertebral levels and spinal cord segmental levels further increases 
inter-subject variability (Cadotte et al., 2015).

Methodological advances have shifted attention toward intrinsic 
anatomical landmarks, notably the pontomedullary junction (PMJ) to 
provide a more robust spatial referencing for CSA measurements 
(Bédard et al., 2023). Bédard and Cohen-Adad (2022) have introduced 
a framework for computing CSA at a fixed distance caudal to the PMJ, 
reducing sensitivity to variable cord curvature. Automated spinal cord 
segmentation and vertebral labelling have also matured substantially 
with the introduction of deep learning methods and robust template-
based approaches (Bédard and Cohen-Adad, 2022; Gros et al., 2019; 
Keegan et al., 2024). These have been recently integrated into the 
open-source Spinal Cord Toolbox (SCT), which allows scalable and 
reproducible CSA quantification at both C2–C3 and at a fixed distance 
from the PMJ, requiring minimal user input and supporting large 
cohort analyses (Bédard and Cohen-Adad, 2022).

As an additional source of variability, there is no universal 
agreement regarding how CSA measurements should be normalized, 
if by brain volume, intracranial volume and/or spinal canal area as 
potential alternatives (Keegan et al., 2024). The SCT currently provides 
a normalization method that is based on sex and brain volume 
measures, collected from a large cohort of individuals without a 
history of neurological diseases (Bédard and Cohen-Adad, 2022). 
However, this may be  problematic in patients suffering from 
neurological conditions which also cause brain atrophy, as this would 
bias normalized CSA estimates (Bédard and Cohen-Adad, 2022; 
Keegan et al., 2024).

In this study, we  evaluated the benefits of a fully automated 
pipeline for upper cervical cord CSA calculation in patients with MS 
using PMJ referencing, in terms of applicability, relation to C2–
C3-based CSA measurements, and association with disability scores. 
We  also aimed to compare raw CSA measurements to those 
normalized based on brain and intracranial volumes in terms of 
association with disability scores.

Materials and methods

Patient population and setting of the study

This was a single center retrospective study conducted at the MS 
center of the Neurocenter of Southern Switzerland (Lugano, 
Switzerland). All patients at our center are routinely followed-up every 
approximately 3 months, with neurological examinations and expanded 
disability status scale (EDSS) estimations performed by certified raters 

(Kurtzke, 1983). Brain and upper spinal cord MRIs are performed in all 
patients at least once a year and in case of suspected relapses.

From the overall population of MS patients, those fulfilling the 
following inclusion criteria were consecutively recruited: (1) A 
diagnosis of relapsing–remitting (RR), secondary progressive (SP) or 
primary progressive (PP) MS by the 2017 revision of McDonald 
criteria (Thompson et al., 2018); (2) Age above 18 years; (3) Being 
treated with either natalizumab (NTZ) or ocrelizumab (OCR) for 
≥2 years; (4) Absence of new clinical relapses and absence of new T2 
demyelinating lesions on brain and spinal MRI over the last 2 years of 
treatment; (5) Having performed a high-quality brain and upper cord 
MRI (see below). Exclusion criteria were: (1) Pregnancy; (2) Inability 
to follow procedures or insufficient knowledge of project language; (3) 
Inability to provide consent.

MRI studies and image processing

After inclusion in the study, the last MRI performed by the patients 
was retrospectively selected for analysis. All MRIs were performed using 
a Siemens Skyra 3T scanner with a standardized acquisition protocol 
based on the recommendations from Cohen-Adad et al. (2021) for 
quantitative spinal cord MRI. A 3D T1-weighted magnetization 
prepared rapid acquisition (MPRAGE) sequence, ensuring appropriate 
coverage of the brainstem and upper cervical spinal cord down to the C4 
level, was employed. The sequence was acquired with the following 
parameters: voxel size = 1 × 1 × 1 mm3, TR = 2,300 ms, TE = 2.98 ms, 
TI = 900 ms, and Field of View = 256 × 256 mm.

Images were processed using the SCT, version 6.5, an open-source 
software specifically developed for spinal cord MRI analysis (De Leener 
et  al., 2017). Segmentation of the spinal cord was carried out 
automatically using the deep learning-based algorithm sct_deepseg_sc, 
which has demonstrated robust accuracy across multiple contrasts and 
clinical populations (Gros et  al., 2019). The PMJ was identified 
automatically using the sct_detect_pmj function, and the CSA was 
calculated at a fixed distance of 64 mm caudal to this landmark 
computed along the spinal cord centerline (geodesic distance) and then 
averaged on a 20 mm extent (CSA PMJ). The CSA computation was 
performed in each participant’s native space, using orthogonal slices 
with respect to the cord centerline, in order to account for its curvature 
as previously proposed (Bédard and Cohen-Adad, 2022; Gros et al., 
2019). CSA was also measured at the conventional C2–C3 intervertebral 
disc level (CSA C2–C3), with vertebral labelling performed using the 
SCT command sct_label_vertebrae (Ullmann et al., 2014).

All scripts and parameters files used for the SCT workflow are 
available on GitHub,1 and also in the SCT website.2 We checked the 
results of the SC segmentations and of the PMJ and vertebral labelling 
using SCT’s quality report (sct_qc).

In order to minimize inter-subject variability due to anatomical 
differences, spinal cord CSA values were normalized using a 
regression-based method, i.e., the -normalize function in SCT, by both 
brain and intracranial volumetric data. Total brain volume (BV) was 
computed from 3D T1-weighted images using SIENAX (part of FSL) 

1  https://github.com/sct-pipeline

2  https://spinalcordtoolbox.com
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(Smith et al., 2004; Puonti et al., 2016). Intracranial volume (IV, i.e., 
total volume inside the skull, including brain tissue and cerebrospinal 
fluid) was independently estimated using SAMSEG (Sequence 
Adaptive Multimodal SEGmentation) from FreeSurfer v. 8.0.03 
(Puonti et al., 2016).

Statistical analyses

Categorical variables were described by counts and percentages, 
continuous and ordinal variables by median, interquartile range (IQR) 
and range. Pairwise correlations were tested after assessment of 
normality (by histograms and Shapiro–Wilk test) using the Pearson’s 
correlation coefficient. Multivariate linear regression models were used 
to test CSA measures for association with disability scores (EDSS), 
adjusted by age and sex. Linear assumptions were checked using 
residuals vs. predicted plots and qqplots. The performance of different 
regression models was compared using R-squared estimates (i.e., the 
proportion of variance in the dependent variable that can be explained 
by the independent variables) and Akaike Information Criterion (AIC, 
mathematical estimate of how well a model fits the data, based on 
number of independent variables and maximum likelihood estimate of 
the model). All statistical analyses were conducted using R (version 
4.4.2) and the R packages “DHARMa” and “AICcmodavg.”

Results

A total of 75 MS patients were included in the study (Table 1). The 
median age at the time of MRI acquisition was 45.1 (36.7–53.8) years, 
and 44 patients were female (58.7%). Thirty-six (48%) patients were 
on treatment with NTZ, 39 (52%) with OCR. Only two patients had 
progressive MS. Median EDSS was 2.5 (1.5–3.5), with scores ranging 
between 0 and 7.

3  https://surfer.nmr.mgh.harvard.edu

Raw CSA PMJ vs. CSA C2–C3

We first estimated the raw (i.e., not normalized) CSA PMJ and CSA 
C2–C3 measures, and how these correlated to each other. The median 
CSA PMJ was 57.7 (IQR = 53.1–62.1, range = 39.5–75.9) mm2. The 
median CSA C2–C3 was 58.1 (IQR = 53.2–62.6, range = 39.9–77.5) 
mm2. There was a strong overall correlation between the two measures 
(Pearson’s rho = 0.95, 95% CI = 0.92–0.97, p < 0.001, see Figure 1a).

Despite the observed strong correlation, some notable 
discrepancies emerged in a subset of patients. Upon visual inspection 
of the segmentations and vertebral labelling, we identified that the 
PMJ was consistently and accurately detected across all subjects 
(75/75, 100%), while the vertebral labelling algorithm misidentified 
the C2–C3 disc level in 24/75 (32%) subjects. Figure 2 shows examples 
of vertebral labelling that are, respectively, incorrect, partially 
inaccurate, and anatomically correct at the C2–C3 level, and how this 
affected CSA C2–C3 measures. In contrast, the PMJ was accurately 
and automatically identified in all patients.

Effect of normalization methods on CSA 
PMJ

To understand how normalization affects CSA PMJ 
measurements, we calculated the raw BV and IV for each subject. The 
median BV and IV were 1,045 (980.8–1,112.6) and 1,485 (1,386–
1,590) cm3, respectively (Supplementary Figure S1; Supplementary  
Table S1). As expected, IV was always larger than BV [median delta 
448.7 (368.6–510.7) cm3], with a strong correlation between these two 
measures (Pearson’s rho = 0.79, 95% CI = 0.68–0.86, p < 0.001; 
Figure 1b).

Both normalization methods produced CSA PMJ measurements 
that were highly correlated with raw CSA PMJ (normalized by BV: 
Pearson’s rho = 0.91, 95% CI = 0.86–0.94, p < 0.001; normalized by IV: 
Pearson’s rho = 0.64, 95% CI = 0.48–0.75, p < 0.001; Figure  3). 
However, normalization of CSA PMJ had a substantial impact on both 
the magnitude and distribution of the measurements, especially when 
normalized by IV (Figure 4). As compared to raw CSA PMJ, the CSA 
PMJ normalized by BV was increased by a median of 3.2 (1.9–4.7) 
mm2, whereas the CSA PMJ normalized by IV was decreased by a 
median of −8.4 (−14.4 to −5.4) mm2 (Supplementary Table S1).

Association between CSA PMJ and 
disability scores

We next assessed the relationship between CSA PMJ and clinical 
disability using a series of linear regression models adjusted for age 
and sex (Table 2). As expected, age was positively associated with 
EDSS scores in all models (Figure 5a; Table 2). Raw CSA PMJ also 
showed a significant inverse association with EDSS (β = −0.08, 
p = 0.002) and this was independent of age and sex (Figure  5b; 
Table 2). When comparing different normalization strategies, all CSA 
PMJ normalized measures showed significant associations with EDSS, 
but this appeared stronger for CSA PMJ normalized by IV than by 
BV. The model including CSA PMJ normalized by IV was the one 
showing the greatest R-squared and smallest AIC (indicating better 
performance in explaining EDSS), followed by raw CSA PMJ and then 

TABLE 1  Baseline demographic and clinical characteristics of patients 
included in the study.

Variable Median/
count

IQR (%) Range

Age at MRI (years) 45.1 36.7–53.8 18.2–74.0

Sex
F 44 58.7

M 31 41.3

DMT
NTZ 36 48

OCR 39 52

Disease 

course

RRMS 73 97.3

PMS 2 2.7

Time between MRI and 

EDSS (years)
0.1 −0.1 to 0.4 −1 to 1

EDSS 2.5 1.5–3.5 0–7

EDSS, expanded disability status scale; IQR, interquartile range; MRI, magnetic resonance 
imaging; NTZ, natalizumab; OCR, ocrelizumab; PMS, progressive MS; RRMS, relapsing-
remitting multiple sclerosis.
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by BV (Table  2). Raw CSA PMJ remained associated with EDSS 
(β = −0.06 p = 0.029), also when BV was included as an additional 
covariate in the regression model.

Discussion

We investigated the applicability of a fully automated pipeline for 
measuring spinal cord CSA at a fixed distance caudal to the PMJ in 
patients with MS. To the best of our knowledge, this is the first study to 
apply this PMJ-referenced approach combined with deep learning 
segmentation and volumetric normalization in a clinical MS cohort. Our 
findings demonstrate the CSA PMJ not only outperforms the 
conventional vertebral-based CSA estimation at C2–C3 level, but also 
shows robust associations with neurological disability. Notably, the CSA 
PMJ of our patients was on average smaller than that of the general 
population measured in the original publication implementing this 
method (mean CSA = 66.2 mm2 ± 6.7, range 51.9–95.6) (Bédard and 
Cohen-Adad, 2022). Despite the differences in settings and population, 
this may be at least in part related to the extent of spinal atrophy in MS.

One of the key strengths of the PMJ-referenced method was its 
anatomical consistency. Unlike vertebral-level labelling, which is 
susceptible to variability due to neck position, image angulation, and 
inter-individual anatomical differences, the PMJ landmark was 
reliably and automatically identified across patients. Visual inspection 
confirmed that while vertebral labelling errors were present in several 
cases leading to over- or under-estimation of CSA, automated PMJ 
identification remained accurate. Compared with vertebral-level 
referencing, PMJ-referenced sampling therefore yielded more accurate 
anatomical localization, and required fewer manual interventions. 
This robustness supports its use as a reliable reference point for spinal 
cord morphometry, particularly in the settings of multicenter studies 
in which standardized analyses may be needed to be applied to a large 
number of individuals. This and other similar automated methods also 
have the potential to provide support to radiologists and neurologists 
in clinical settings, particularly in the monitoring of atrophy rates over 
time (Collorone et al., 2024).

Normalization of spinal cord CSA estimates are particularly 
relevant for cross-sectional studies. Currently, there is no uniform 
agreement on how CSA measures should be normalized (Keegan 
et al., 2024; Papinutto et al., 2020). Brain volume, intracranial volume 
and spinal canal area have all been proposed as potential 
normalization parameters (Papinutto et al., 2020; Kesenheimer et al., 
2021; Nigri et al., 2023). In MS studies, the volumetric scale factor 
estimated by SIENAX has also been often used to normalize spinal 
cord CSA, as an indirect measure of intracranial volume (Rocca 
et al., 2023; Bischof et al., 2022; Fein et al., 2004). Notably, the SCT 
method developed by Bédard and Cohen-Adad (2022) was designed 
to normalize spinal cord CSA by sex and brain volume (or 
alternatively thalamic volume). As stated in their original publication, 
applying this method to individuals affected by a condition that is 
also causing brain/thalamic volume loss, as in the case of MS, can 
generate biased CSA estimates. Indeed, any CSA measure should 
be theoretically normalized using a pre-morbid BV measure. This is 
often problematic in MS patients, who typically show higher rates of 
brain atrophy compared to the general population since the initial 
stages of disease (Fein et  al., 2004; Rojas et  al., 2015; Azevedo 
et al., 2015).

Having said this, the association between CSA PMJ and EDSS 
was of weaker magnitude when CSA measures were normalized by 
BV, as compared to raw CSA PMJ. We  interpret this as a 
consequence of the extent of BV loss in this sample of patients, 
which limits the use of BV as a normalization parameter. Therefore, 
while normalization of CSA measures for BV may be useful for 
reducing inter-subject anatomical variability, this may introduce a 
relevant bias in CSA estimates in the specific setting of MS. We next 
tested whether normalizing the CSA PMJ by IV could represent an 
option, since this would not be  affected by pathological brain 
volume loss. To do this, we directly calculated the IV rather than 
using the SIENAX scaling factor as an indirect measure of this. 
Interestingly, the regression model testing IV-normalized CSA 
PMJ measures for association with EDSS had the best predictive 
performance. There is a known relation between IV and BV in the 
general population, as also seen in our own cohort (Wang et al., 

FIGURE 1

(a) Strict correlation between CSA measures estimated at C2–C3 vertebral level (x axis) and using the PMJ referenced method (y axis). (b) Correlation 
between intracranial volume (on the x axis) and raw brain volume (on the y axis).
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2024). While this may suggest the possibility to apply the same 
normalization procedure based on BV to IV, it is important to 
remember that the method developed by Bédard and Cohen-Adad 

(2022) was not built on IV, and further studies would be needed to 
develop a normalization procedure that is based on IV. We did not 
normalize CSA by spinal canal metrics because dedicated axial 
acquisitions for reliable canal area estimation were not available 
for all subjects, and also for the lack of a reliable automatic 
estimation of the spinal canal segmentation. Canal-based 
normalization can reduce inter-subject anatomical variance and 
may be advantageous when brain measures are influenced by the 
disease, and incorporating robust canal metrics could improve 
future studies.

This study has several strengths. First, this is the first report 
investigating automated AI-based measurement of CSA PMJ in 
MS. Second, we investigated a relatively homogenous sample of MS 
patients, all on treatment with high efficacy therapies, and no 
inflammatory clinical or radiological activity at the time of the study. 
This reduces the potential risk of confounding by different therapies 
and concurrent inflammatory disease activity. Third, all patients 
performed standardized neurological examinations and MRI 
protocols on identical 3T MRI scans. Last, we were able to integrate 
brain and intracranial volume metrics in the normalization process of 
spinal cord CSA.

There are also several limitations. CSA inherently depends on 
the accuracy of cord segmentation. Small boundary errors (under-/
over-segmentation or partial inclusion of nerve rootlets) can 
propagate to area estimates and inflate within-subject variability, 
particularly at levels affected by motion or cerebrospinal fluid 
pulsation. The software computed CSA on slices orthogonal to the 
local centerline and averaged across contiguous slices to reduce local 
noise. Nevertheless, residual segmentation errors may persist and 
would affect both PMJ-referenced and vertebral-referenced 
measures. Future work should incorporate automated QC metrics 
(e.g., outlier detection on perimeter/area and centerline 
smoothness), uncertainty estimates from the segmentation model, 
and formal scan–rescan experiments to quantify segmentation-
driven variance.

Sampling CSA at a fixed caudal distance from the PMJ 
assumes limited inter-individual variability in cervical cord 
length, which represents an additional limitation. We did not have 
a control sample of individuals to compare CSA PMJ values 
against those collected from MS patients, and the retrospective 
single-center design may limit generalizability to other MS 
populations. It would be  important to confirm these results in 
larger independent samples of patients. We did not include scan–
rescan test–retest reproducibility. Prior PMJ-referenced work in 
healthy participants reported low within-session variability across 
neck positions, supporting short-term robustness to posture 
changes. However, formal between-session test–retest especially 
in MS cohorts remains to be  established (Bédard et  al., 2023). 
Finally, the pipeline assumes availability of high-quality 3D 
T1-weighted images, which may not be routinely acquired in all 
clinical settings.

To conclude, our findings support the clinical validity of 
PMJ-referenced spinal cord CSA as a biomarker in MS. The method 
developed by SCT is fully automated, reproducible, and robust to 
anatomical variability introduced by vertebral labelling. Raw CSA 
PMJ values were significantly associated with neurological disability. 
Further work is needed to optimize normalization strategies that 
take into account the potential degree of brain atrophy in MS, and 

FIGURE 2

Examples of vertebral segmentation and labelling errors. (a,b) In this 
patient the C1–C2 complex and C3 vertebras were incorrectly 
labelled as C1 and C2, respectively, resulting in a downward shift of 
all subsequent levels (a). As a consequence, the CSA measured at the 
(misidentified) C2–C3 level is underestimated (43.32 mm2 vs. 
55.99 mm2 if vertebral labelling is manually corrected). The PMJ-
referenced segmentation method correctly detects the PMJ (b), and 
the CSA measured at 64 mm caudal to the PMJ is more anatomically 
accurate (57.09 mm2). (c,d) In this patient, part of the C2 vertebral 
body was incorrectly labelled as C3 (c), leading to an overestimation 
of CSA (77.46 mm2 vs. 71.68 mm2 if vertebral labelling is manually 
corrected). The PMJ identification is accurate (d), and the CSA 
measured 64 mm caudal to the PMJ appears more reliable 
(72.56 mm2). (e,f) In this patient, the vertebral labelling is anatomically 
correct (e) as well as the identification of the PMJ (f). CSA C2–C3 
and CSA PMJ measures are therefore more comparable (55.33 mm2 
and 55.05 mm2, respectively).
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FIGURE 3

Scatter plots showing the correlation between raw CSA PMJ on the x axis and CSA PMJ measurements normalized by BV (a) and IV (b).

FIGURE 4

Violin plots showing the distribution of raw CSA PMJ value (on the left) and those normalized by BV and IV.

TABLE 2  Multivariate linear regression models testing the association between CSA PMJ (raw, normalized by BV and by IV) with EDSS scores.

Linear regression models predicting EDSS β p value R-squared AIC

Sex
F – –

0.300 261.4
M 0.00 0.992

Age (per year) 0.04 0.001

Raw CSA PMJ (per mm2) −0.08 0.002

Sex
F – –

0.268 264.74
M −0.11 0.729

Age (per year) 0.05 <0.001

CSA PMJ normalized by BV (per mm2) −0.07 0.010

Sex
F – –

0.315 259.77
M −0.93 0.015

Age (per year) 0.04 <0.001

CSA PMJ normalized by IV (per mm2) −0.09 <0.001

All models are adjusted by age and sex. Regression metrics (R-squared and AIC) are shown for each model on the right side of the table. AIC, akaike information criterion; BV, brain volume; 
EDSS, expanded disability status scale; IV, intracranial volume.
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this is particularly relevant for cross-sectional applications. The 
methodology appears instead already compatible with longitudinal 
applications and could serve as a standardized approach for tracking 
spinal cord atrophy over time. Given its precision and scalability, the 
PMJ-based CSA measurement has the potential to become a 
standardized tool in both clinical and research neuroimaging 
settings in MS.
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