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Kernel Canonical Correlation Analysis (KCCA) is an effective method for globally
detecting brain activation with reduced computational complexity. However,
the current KCCA is limited to linear kernels, and the performance of more
general types of kernels remains uncertain. This study aims to expand the current
KCCA method to arbitrary nonlinear kernels. Our contributions are twofold:
First, we propose an inverse mapping algorithm that works for general types of
nonlinear kernels. Second, we demonstrate that nonlinear kernels yield improved
performance, particularly when the true neural activation deviates from the
hypothesized hemodynamic response function due to the complex nature of
neural responses. Our results, based on a simulated fMRI dataset and two task-
based fMRI datasets, indicate that nonlinear kernels outperform linear kernels
and effectively reduce activation in undesired regions.

KEYWORDS

data analysis, fMRI, task fMRI, activation, nonlinear kernel, CCA, KCCA

1 Introduction

In typical fMRI pipelines, univariate general linear models (GLMs) are often applied
to spatially smoothed data to improve the signal-to-noise ratio and satisfy the assumptions
required for random field theory (Worsley, 1995; Poline et al., 1997; Friman et al., 2003).
While this method efficiently reduces noise, it also causes increased spatial blurring. Local
canonical correlation analysis (CCA) offers an alternative technique for detecting brain
activation and is applicable to a broader range of smoothing filters (Friman et al., 2001;
Cordes et al.,, 2012; Zhuang et al.,, 2017). Both GLM with Gaussian smoothing and local
CCA are categorized as local methods, as they require correlation computation in each
local neighborhood around a voxel of interest. In contrast, kernel canonical correlation
analysis (KCCA) is a global method that can identify activation in the entire brain in
a single step (Hardoon et al., 2004). Previous studies demonstrate that linear KCCA
significantly mitigates the effects of spatial blurring (Yang et al., 2018).

Traditional local CCA and linear KCCA approaches typically assume a linear
relationship between the target signal and fMRI data, where the target signal is obtained by
convolving the task design with a fixed hemodynamic response function (HRF). However,
HRF variability across different subjects has been observed in previous work (Glover,
1999; Lindquist et al., 2009) and is a key consideration when generating simulated
data (Erhardt et al.,, 2012). This variability arises from the complex nature of neuronal
responses, making the linear assumption insufficient. Consequently, nonlinear models are
necessary to capture the broader range of possible relationships between neural activity
and the target signal. Nonlinear relationships can be addressed by transforming data
into a nonlinear space prior to applying linear correlation methods (Lai and Fyfe, 2000).
Figure 1 provides an overview of all correlation-based activation detection methods, along
with their input data sizes and whether they are linear or nonlinear. For example, by
imposing constraints, local CCA can learn a variety of relationships between central voxels
and their surrounding areas (Zhuang et al., 2017, 2020). Since constrained local CCA
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cannot be solved analytically, voxel-wise optimization is required
to determine activation, which reduces computational efficiency.
This limitation highlights the advantages of global methods, such
as nonlinear KCCA, for these tasks.

The application of a nonlinear kernel in the KCCA framework
is not a novel concept, as kernel methods map the original inputs
into the kernel space, which can naturally have high or even infinite
dimensionality (Lai and Fyfe, 2000; Melzer et al., 2001; Akaho,
2006). In image-based problems, KCCA has been successfully
employed for tasks such as cross-modality retrieval (Hardoon et al.,
2004) and identifying relationships between the left and right halves
of images (Lopez-Paz et al., 2014; Uurtio et al., 2019). Previous
fMRI studies have employed nonlinear kernel-based methods,
including support vector machines for classification (Zhang et al.,
2014), detecting connectivity (Karanikolas et al, 2016), and
predicting fMRI patterns (Ni et al,, 2008; Langs et al., 2011).
Nonetheless, to the best of our knowledge, nonlinear KCCA has not
yet been investigated for fMRI activation analysis.

The primary objective of this study is to extend the current
KCCA-based fMRI detection to incorporate nonlinear kernels,
thereby enabling the identification of generalized relationships
while maintaining computational efficiency. Because the inverse
mapping from nonlinear kernels cannot be directly defined (Yang
et al., 2018), a key question arises: if a correlation is identified
in the kernel space, how can it be back-mapped to obtain the
corresponding activation pattern in voxel space? In computer
vision, the concept of a heat map is commonly used to measure
the importance of each pixel to the final output. Mathematically,
this importance is represented by the derivative of the output
with respect to the input. However, the derivatives computed
from highly nonlinear convolutional neural networks can be noisy,
prompting several modifications for specific tasks. For example,
Class Activation Maps (CAM) are employed to compute class-
discriminative features (Zhou et al., 2016; Selvaraju et al., 2017),
while similar techniques, such as sensitivity maps (Smilkov et al.,
2017) and saliency maps (Simonyan et al., 2013), evaluate the
importance of each pixel for a given problem. These approaches
have also been adapted for fMRI studies. In classification-based
problems, sensitivity maps are defined as the derivatives of the
output with respect to the data, applicable to linear, Gaussian, and
parabolic kernels (Rasmussen et al., 2011). In this study, we extend
this concept to nonlinear KCCA by computing the derivative from
the kernel space to the original space. We demonstrate that this new
approach is robust and effective across various kernels and datasets.
The proposed nonlinear KCCA method involves several key steps.
Following data preprocessing, the fMRI data are mapped to the
kernel space using either a linear or nonlinear function. We then
derive voxel-defined activation patterns using back-reconstruction
algorithms. Finally, we employ different criteria to evaluate the
overall performance of the method.

The second question we address is under what conditions
nonlinear kernels outperform linear kernels in fMRI activation
detection. Although nonlinear kernels and sensitivity maps have
been applied in classification-based fMRI studies (Rasmussen
et al, 2011), a detailed discussion of their advantages remains
absent. An intuitive explanation is that neuronal responses are
inherently complex and may not align precisely with the effective
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FIGURE 1
Comparison of different correlation-based activation detection
methods, with the horizontal axis representing model complexity
and the vertical axis representing data size. While complex models
with large data sizes increase the ability to detect signals, they also
raise the risk of overfitting. Our work demonstrates an approach that
can detect activation globally using nonlinear mapping.

design signal. To investigate this, we conducted a control variable
analysis on a two-dimensional (2D) model, revealing that the
deviation between the added signal and the effective design signal
is the primary factor contributing to performance differences. In
contrast, signal strength and noise type were found to be less
significant. To further evaluate the accuracy of the nonlinear KCCA
method, we tested it on three distinct tasks: simulated fMRI data
and two real fMRI datasets. For each task, we present group-
level accuracy based on specific metrics. Our results indicate that
commonly used kernels, such as Gaussian or parabolic kernels, do
not significantly improve kernel-based fMRI activation detection.
In contrast, bounded kernels, such as the hyperbolic tangent
kernel, demonstrate superior performance, providing valuable
insights into the potential advantages of nonlinear approaches for
fMRI analysis.

This article is organized as follows. In Section 2, we outline
the detailed steps and data processing pipeline for the proposed
nonlinear KCCA method. Section 3 discusses the results obtained
from two simulated datasets. In Section 4, we present the results
for two real fMRI datasets. Finally, we address the questions raised
earlier and conclude the article.

2 Methods
2.1 fMRI dataset

2.1.1 HCP

Structural and functional MRI data were obtained from the
Human Connectome Project (HCP) database (Van Essen et al,
2012), which includes 3T MRI data. We focus on the working
memory task fMRI study. A total of 87 males aged 26-30 years were
selected. The fMRI data were acquired over 405 timeframes using
a multiband factor of 8, TR/TE = 720/33.1 ms; FA = 52 degrees; 72
slices; spatial resolution = 2 mm x 2 mm X 2 mm and in-plane
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size = 104 x 90. The first 15 timeframes were removed to avoid an
unsaturated T1 signal.

2.1.2 In-house scan

This dataset includes 16 subjects, consisting of eight subjects
diagnosed with amnestic mild cognitive impairment (aMCI) and
eight cognitively normal controls (NC). Data acquisition was
conducted with Institutional Review Board approval using a 3T
GE HDx MRI scanner equipped with an 8-channel head coil (Jin
et al,, 2012). The subjects in both groups were matched for age,
education, and right-handedness. The acquisition parameters for
the echo-planar imaging (EPI) sequence were: TR/TE = 2,000
ms/30 ms, parallel imaging factor = 2, slices = 25 (coronal
oblique, perpendicular to the long axis of the hippocampus), slice
thickness/gap= 4.0 mm/1.0 mm, 288 time frames (total scan
duration 9.6 min), in-plane resolution 96 x 96 interpolated to
128 x 128, yielding a voxel size of 1.72 x 1.72 x 5 mm?>. The first 10's
(five timeframes) were removed to avoid an unsaturated T1 signal.
High-resolution structural images were also acquired including a
standard T1-weighted image (0.43 x 0.43 x 1 mm?) and a coplanar
standard T2-weighted image (0.43 x 0.43 x 2.5 mm?).

2.1.3 fMRI preprocessing

The fMRI data, including both resting state and task
fMRI, were minimally preprocessed SPM12
package (Ashburner, 2009), slice-
timing correction, coregistration, and normalization to the
MNI atlas (Glasser et al., 2013). A high-pass filter with a cutoff
frequency of 1/120 Hz was then applied to remove temporal drift,

using  the

including  realignment,

as recommended by fMRI preprocessing software such as SPM or
fMRIPrep (Frackowiak et al., 2004; Esteban et al., 2019). Although
realignment (which internally performs motion correction) was
applied, motion parameters were not used as regressor (Behzadi
et al, 2007), because the physical constraint (head padding)
resulted in a maximum head translation and rotation of <0.7 mm
at the cortex, and we aimed to avoid introducing high-frequency
artifacts (Chen J. E. et al., 2017; Yakupov et al., 2017). No spatial
smoothing was performed. Finally, the data were normalized to
have a temporal mean of 0 and a variance of 1. We represent the
preprocessed task fMRI data as Y € R7*Q, where T denotes the
length of time and Q represents the number of voxels.

2.1.4 Effective design signal

The HCP working memory task includes three different event
types: targets, non-targets, and lures. Each is encoded as a binary
time series, which is then convolved with a canonical hemodynamic
response function (HRF) to generate a design signal represented
as X € M¥9%3, For in-house scans, the stimuli consist of four
different events: instruction, control, encoding, and recognition.
After applying the same HRF convolution to model these four
events, the resulting vector is represented as X € 332834,

For a specific contrast C, the effective design signal Xg is
generated according to the method described in Cordes et al. (2012)

X = X(XTX)"lC [CT(XTX)*C]_I. (1)
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Next, we map X into the linear kernel space using the
equation Kx = Xeffngf. Subsequently, we will focus on the effective
design signal.

2.1.5 Steerable filters

To reduce spatial blurring, we use Steerable Filters (SF) for all
the kernel-related problems. The number of SF used depends on the
dimension of the data. For the 2D problem, we use four filters (see
Figure 2a). The equally weighted summation of these four filters is
equivalent to a single full-width at-half-maximum (FWHM) equal
to a 2 pixel Gaussian filter. For the 3D problem, we use seven SF
generated from a Gaussian kernel with FWHM 4 mm (Yang et al.,
2018) (see Figure 2b). The equally weighted summation of these
seven filters is equivalent to a single FWHM = 4 mm Gaussian
filter. A detailed description of the SF is provided in Appendix 7.1.

The flow map for the fMRI signal is shown in Figure 3. To
process the fMRI signal, we first perform a linear mapping of the
data from Y to the feature space Y using the equation Y = YA €
RT*P where A € MP is the spatial transformation matrix, T
is the number of time points, Q is the number of voxels, and P
is the number of voxels after spatial transformation. For example,
standard Gaussian Smoothing (GS) can be performed using a single
isotropic Gaussian filter function, resulting in P = Q (Friman et al.,
2003). More recent studies use 7 3D SFs, such that P = 7Q (Yang
et al,, 2018). After smoothing, Y is fed into six different kernels, as
shown in Table 1, to map the data from the original space to the
kernel space.

2.1.6 GLM with Gaussian smoothing

We use the general linear model (GLM) with Gaussian
smoothing as the baseline model for all kernel methods. The
Gaussian filter is selected to achieve the same level of smoothing as
SF. In matrix form, A € RYP and P = Q. The correlation is then
evaluated between the smoothed fMRI data and X,g. Subsequently,
we will abbreviate this method as GLM.

2.2 Nonlinear kernel canonical correlation
analysis

2.2.1 Choice of kernel

Table 1 lists the six kernels used in this study. The traditional
linear, Gaussian, and parabolic kernels are based on prior
work (Rasmussen et al., 2011). Additionally, we include a kernel
from the radial basis function family, known as the inverse square
root kernel or inverse multiquadric (Fasshauer, 2007; Salazar et al.,
2024). The hyperbolic tangent kernel, abbreviated as Tanh, is
commonly used as an activation function in machine learning
and is also referred to as the sigmoid kernel. Inspired by mixed
kernel analysis (Zhu et al,, 2012), we introduced a mixed kernel
that combines the traditional linear term with the radial basis
function through a linear combination. This kernel, referred to as
Mixed Tanh throughout the article, leverages both linear and radial
components to improve performance. In the following, we will refer
to the radial basis function as quadratic.
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FIGURE 2
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(a) Four 7 x 7 Steerable Filters (SF) used for 2D. The equal weight sum equals a single Gaussian filter with FWHM = 2 pixels. (b) Seven 7 x 7 x 7 SF are
used for 3D fMRI data. The equal weight sum equals a single Gaussian smoothing filter with FWHM = 4mm.
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FIGURE 3

Flow chart for nonlinear kernel-based fMRI activation detection: The fMRI data (upper row) are mapped into kernel space using the kernels listed in
Table 1. The design signal (lower row) is mapped into kernel space using a linear kernel. Correlation is computed using KCCA. Once the relationship
is established in the kernel space, back-reconstruction algorithms, as defined in Section 2.3, are used to extract the activation pattern.

As noted in Table 1, all the kernels can be generated using
linear and quadratic functions. For the linear and quadratic kernels,
the data are normalized to their mean absolute values to ensure
consistent data ranges. A detailed formula for this normalization
is provided in Appendix 7.3. After nonlinear mapping, the matrix
value range can vary, especially for the parabolic or hyperbolic
tangent kernels when b is small. We perform an additional
normalization to maintain consistent data ranges, which improves
numerical stability when calculating correlations in the kernel
space. Compared to the centralized kernel method (Bengio
et al, 2004; Chen B. et al, 2017), tracking derivatives with

Frontiersin Neuroimaging

such normalization is much easier. After normalization, we can
demonstrate that the hyperbolic tangent kernel can approximate
the linear kernel when b is small and ¢ = 0, and the mixed
hyperbolic tangent kernel can approximate the linear kernel when
by issmall and by, = ¢ = 0.

2.2.2 Computing correlation in kernel space
Using KCCA, the eigenvectors vx and vy are determined to
maximize the canonical correlation r = corr(Kxvy, Kyvy) in the
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TABLE 1 Summary of six kernels.

Kernels Expression

Linear Ky(Y;,Y) = Yx'?]T

Parabolic Ky(Y,Y)) = (Y] + )

Gaussian Ky(Y;,Y)) = exp (—[IY; — Y;1*/0?)

Inverse Ky(Yi,Yj) =1//IIYi — Y]'II2 + b?

Tanh Ky(Y;, Y)) = tanh(bY, Y] + ¢)

Mixed Tanh Ky(Y:,Y)) = tanh(by Y, Y] + b [|Y; — Y5112 + )

feature space where

T
Vi Kx Ky Vs
r= X XYY . @)

V(G + y Kxovx [V (G + y Ky )vy

In this equation, y 1is a regularization parameter to

avoid overfitting.

2.3 Back-reconstruction methods

KCCA maximizes the correlation in the kernel space; however,
our goal is to obtain the activation in the original voxel space,
represented as & € %!, Based on the linear kernel result without
smoothing, o Y vy (Hardoon et al., 2004; Yang et al., 2022; Han
et al., 2024), we assume that YT in the above formula reflects the
importance of each voxel in mapping from the original space to the
kernel space. This allows us to extend the formula to more general
types of nonlinear kernels.

Specifically, let Y, denote the fMRI data at time ¢, and (Ky)y,s,
denotes the matrix elements indexed by #; and t,. We define « as

follows:
a(KY)tltz
= _— N 3
a=sy oy, (Ve (3)
t1ty
where s = sign[corr(Xes, Kyvy)] measures the sign of the

correlation between X and the fMRI signal in kernel space. The
whole pipeline is listed in Figure 3.

We offer several comments on this method: First, consider the
special case of the linear kernel. As proven in the Appendix 7.3,
this method is consistent with a previously published result (up
to a constant), regardless of the smoothing filter, specifically @ o
AATYTVY (Hardoon et al., 2004; Yang et al., 2022; Han et al,
2024). Second, this method preserves the sign of the activation.
This means that « obtained from the BC algorithm can be
regarded as the effective correlation by the kernel method, making
it generally suitable for a wide range of tasks with activated
or deactivated regions. This equivalence is further supported by
the similarity of activation patterns observed in later studies,
which also validates this algorithm. Third, regarding computational
speed, this method can be expressed as a matrix operation with
a given vy, as shown in Appendix 7.4, with a time complexity
of O(TQ). Fourth, we note that a similar idea was used to
obtain the activation pattern for classification-based problems.
For example, this includes CAM (Zhou et al.,, 2016; Selvaraju
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et al,, 2017), sensitivity maps (Smilkov et al., 2017), and saliency
maps (Simonyan et al., 2013).

2.4 Model validation

We propose two different metrics to evaluate the performance
of various kernels. For simulated data with known ground truth,
we use Metric 1. For real fMRI data with unknown ground truth,
we use Metric 2.

2.4.1 Metric 1: ground truth

For the simulated data described in Section 3, where the
active voxels are known, we generate a Receiver Operating
Characteristic (ROC) curve by setting different thresholds for |«|.
The performance is evaluated using the Area Under the Curve
(AUC).

In fMRI data analysis, minimizing false positives is crucial.
Previous studies commonly used an area for the False Positives Rate
(FPR) of < 0.1 (Skudlarski et al., 1999). We define the final accuracy
as the ratio between the AUC of the kernel method and GLM:

AUC(kernel)ppr<o.1

. 4)
AUC(GLM)gpr<0.1

I'Truth =

This ratio, r1u¢h, was evaluated for both the 2D toy model and
the simulated HCP dataset. A value of rr .y > 1 indicates that the
kernel method outperforms GLM, whereas ., < 1 reflects worse
performance. The ratio is independent of the number of voxels
selected for activation.

2.4.2 Metric 2: activation in gray matter vs.
non-gray matter

Real brain activation is more likely to occur in gray matter than
in other brain tissues (CSF and white matter) (Gawryluk et al.,
2014; Schilling et al., 2023). Following the same idea in Metric 1,
we define true positive (activation in gray matter) and false positive
(activation not in gray matter) to generate the ROC curve. Gray
matter is generated from the SPM package’s segmentation with a
probability threshold set to >0.5. Note that the number of voxels
in GM is significantly larger than the number of activated voxels,
which results in the AUC being close to 0.5.

Similarly, we aim to minimize false positives and reduce
activation in non-gray matter, particularly in voxels that the
method strongly predicts as active. We define the objective ratio
for gray matter activation overlay as follows:

AUC(kernel)gprg.1
AUC(GLM)gpr—g1

TGray = (5)

This ratio, rGray, is evaluated for HCP and in-house scans. A
larger ratio indicates that the activation is more concentrated in
gray matter than in other areas. While this ratio is independent
of activation threshold, it is influenced by the threshold for
gray matter (GM). We examined the output probabilities from
segmentation using the SPM package, which are predominantly
concentrated around 1 or 0, resulting in very few voxels within
the margin.
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2.5 Hyperparameter optimization and null
distribution

To optimize the hyperparameters in the kernel method, as
listed in Table 1, we implement the voxel shuffling algorithm
to shuffle the voxels’ locations while maintaining their spatial
relationships (Zhuang et al., 2017). The optimal hyperparameters
are chosen based on the activation that shows the greatest
robustness to these data augmentations. The shuffling method is
described below:

1. Choose a specific kernel as listed in Table 1, the fMRI data Y, and
the effective design signal with the given contrast C.

2. Starting from a set of hyperparameters, compute the activation
map o using the back-reconstruction algorithm proposed in
Section 2.3.

3. Rankall voxels based on their a values. Assume that the top 10%
of voxels with the highest & (or |a|) values are activated, and the
rest are non-activated. Let the number of activated voxels be Q,
and the number of non-activated voxels be Qnon.

4. Among the non-activated voxels, rank them by & and choose Q;
voxels close to the decision boundary. Similarly, for the activated
voxels, select Q, voxels near the decision boundary.

5. Reverse the voxel order within Q; and Q, based on their a value.
For example, within Qy, switch the location of the voxel with the
largest o and the smallest &, then the second largest and second
smallest, and so on. Repeat this process for Q,.

6. Let the fMRI data after shuffling be denoted as Y'. Using the
same kernel and hyperparameters, compute the activation o’

7. Compute the similarity between o and a’. The similarity is
defined as follows: treat the top 10% of voxels in & as the
ground truth, then apply varying thresholds to & to compute the
following: true positives—activated voxels that remain activated
after shuffling; and false positives—non-activated voxels that
become activated after shuftling. A similar AUC curve, called the
apparent AUC curve, was proposed in Zhuang et al. (2017). The
AUC with FPR < 0.1 is defined as the similarity.

8. In practice, we perform two shuffling procedures and average
their results. In the first, set Q; = Q, = 0.5Qy; in the second,
set Q1 = Qnon and Q; = Q. The results are combined with
equal weights.

9. Repeat steps 2-8 until the hyperparameters with the greatest
robustness to voxel shuffling are identified.

The rule is generally applied to all simulated and real fMRI
datasets and works for both 2D and 3D simulations.

Since activation values are continuous, we need criteria to
determine the activation threshold. A common approach is to
resample resting-state data, calculate the correlation, and use this
correlation as the null distribution to define FPR (Bullmore et al.,
2001; Laird et al., 2004; Nandy and Cordes, 2003).

However, due to kernel mapping, tracking the exact values
during the computation pipeline is challenging, especially when
the method involves several normalization steps. In this study,
we compute the null distribution by shuftling vy. Specifically, we
apply random time shuffling to (vy)n,n and then use the randomly
shuffled (vy),u as a constant to compute o,. The threshold is
then gradually decreased until the false activation rate reaches 0.05,
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analogous to the commonly used p value in previous publications.
For GLM, we randomly shuffle X to compute o,;-

Compared to the previous studies, this study exhibits a
relatively high FPR, because we have not changed the spatial
domain, with shuffling performed only in the kernel dimension.
Consequently, the computed &, may yield relatively high values,
necessitating a higher FPR. We will further discuss this in the
Discussion section. Nevertheless, the specific threshold value does
not affect the accuracy.

2.6 Data summary

Table 2 lists the four datasets and corresponding methods for
activation detection and evaluation. Section 3.1 describes a two-
dimensional example in which we aim to study the effect of signal
strength, noise type, and signal shift. We repeat this process 200
times and compute the statistical average for each setting. Using
normalized units, we establish a GLM with FWHM = 2 pixels as
the baseline. Finally, we take the absolute value of o and evaluate
the final results using the ground truth.

Section 3.2 presents a simulated dataset using the HCP dataset,
which includes 20 subjects. Resampled resting states are treated
as noise, and effective design signals are added to specific brain
regions based on segmentation. For three-dimensional data, we
utilize seven SFs, with a GLM of FWHM = 4 mm serving as a
reference. Performance is evaluated by taking the absolute value of
o and comparing it to the ground truth. A similar simulation was
performed in Yang et al. (2020).

The dataset discussed in Section 4.1 includes 87 subjects from
the HCP dataset, where activation is calculated based on a single
contrast. The sign of a is retained, and performance is evaluated
based on activation overlaying the gray matter.

In Section 4.2, the kernel method is applied to another real
fMRI dataset that includes 16 subjects performing two different
tasks with two different contrasts, resulting in 64 realizations.
Performance is again evaluated based on activation overlaying in
gray matter.

3 Simulation

We begin with the simulated data to validate our models
performance. The data was generated using

Yimulated = Ynoise + stignal)

Xaq4> forg e M (6)
(Ysignal) q =
0, forg ¢ M
where (Ysignal)q e M1 s equal to the added signal X,qq if
location g is activated. Ynoise is the noise considered independent to
X, and M is a mask that contains all activated voxels. p is the signal
strength. Numerically, Yyoise and X,4q are normalized in time with
a mean of 0 and a variance of 1.
In Equation 6, the choices for Yyoise, 0 and M are task-specific.
A consistent feature across all simulations is that M includes
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TABLE 2 List of different datasets, smoothing methods and evaluation metrics.

2D simulation 200 GLM 1GS Yes Ground truth
Kernel 4SFs

Simulated fMRI 20 GLM 1GS Yes Ground truth
Kernel 7SFs

HCP 87 GLM 1GS No Gray matter
Kernel 7SFs

In-house scan 16 x 2 x 2 GLM 1GS No Gray matter
Kernel 7SFs

~10% of the total number of voxels. Additionally, this study
considers scenarios where X,4q and X.q are not necessarily equal.
In practice, the effective design signal often incorporates several
hyperparameters and may not precisely match the true activation
signal in the fMRI data. To evaluate model performance more
comprehensively, the added signal X, 44 is typically designed to have
a slight deviation from X.g (Yang et al., 2020). We also address this
issue in the study and compare the differences between linear and
nonlinear kernels.

3.1 2D toy model

We begin with a two-dimensional, dimensionless grid of
size 100 x 400 to evaluate the model’s performance. The main
components of this simulation are outlined below.

1. Mask: the mask is applied to form the English word “kernel,” as
illustrated in Figure 4a.

2. Noise: uncorrelated Gaussian white noise with mean 0 and
variance 1.

3. Effective design signal: the effective design signal from the HCP
working memory task is used with the contrast C = [1, —1, O]T.
As shown in Figure 4b with a bold line.

4. Added signal: the design signal from the working memory task
is linearly added to each masked voxel with a fixed contrast
and additional noise: [1,—1,0]7 + SA(0,1), where A{0,1)
denotes a Gaussian distribution with mean 0 and variance 1. The
parameter § controls the magnitude of the deviation between
the added signal and the effective design signal. In practice,
a larger § corresponds to greater inter-subject variability in
neural activation. For this simulation, we vary § € [0, 0.5]. Two
examples with § = 0.1 and § = 0.4 are shown in Figure 4b, c,
respectively. In previous studies, § was chosen to be 0.1 (Yang
etal., 2020).

5. Signal strength: for the normalized added signal, the signal
strength p = 0.03 is used to balance the noise and the
added signal. In previous studies, p was chosen such that GLM
produced an AUC with FPR< 0.1 between 0.035 and 0.05 (Yang
et al., 2020), which in our cases correspond to p € (0.025 and
0.035).

6. Spatial smoothing: for two-dimensional problems, four spatially
oriented filters are defined in Appendix 7.1. The smoothing filter
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is set to a full width at half maximum (FWHM) equal to 2 pixels,
normalized to the pixel size, as shown in Figure 2a. The equally
weighted summation of these filters is equivalent to a single
FWHM = 2 pixels Gaussian filter, ensuring consistent levels of
smoothing for both GLM and kernel methods.

Once the ground truth is defined and Ymylated and Xeg are
generated, we can run the nonlinear KCCA algorithm to obtain
the activation pattern o, with the hyperparameters in the kernel
mapping are chosen to maximize robustness against shuffling. For
the simulated data, we will take the absolute value of the final
results. The final activation pattern is then compared with the
ground truth, and AUCppr<( is computed for each subject. GLM
with a single Gaussian smoothing filter with FWHM = 2 pixels is
used for comparison.

In Figure 4, we present results using Gaussian noise and a
fixed signal strength s = 0.03, while varying the deviation
between X,qq and X.q. In Figure 4b, the bold line represents the
effective design signal X, and the light brown lines represent
Xadd for selected subjects with difference § = 0.1. The differences
are relatively small. In Figure 4c we display the same large
difference with § = 0.4. There are noticeable variations in
detailed fluctuation strength between X,qq and X, which are
used to simulate the complexity and heterogeneity of neuronal
responses. Figure 4d shows the AUC with an FPR smaller than
0.1. A larger § corresponds to a greater deviation between
Xadd and X In general, as deviation increases, nonlinear
kernels consistently outperform linear kernels, with improvements
exceeding 2%.

We make a few comments on this simulation. First, this
simulation is highly simplified and does not incorporate
many realistic brain structures. The primary purpose is
to conduct controlled variable analysis to isolate specific
effects. Similar simulations have been performed previously
on 2D grids to test spatial constraints (Cordes et al, 2012;
Yang et al, 2018). While we will compare more complex
3D simulations next, it is important to note that realistic
simulations often reduce interpretability. Moreover, although
this is a simplified simulation, the observed improvement—while
modest—is statistically significant, as reflected in the effect
of .

Second, we also examined other factors using controlled
variables in this 2D simulation. Detailed comparisons are included
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FIGURE 4
Illustration of the 2D simulation. (a) Activation pattern displayed on a 100 x 400 grid. The activated voxels, highlighted in white, form a specific
pattern called the "kernel.” (b) Comparison of the added signal (thin line) and the effective design signal (thick line) under a small perturbation § = 0.1.
(c) Same as (b), but with a larger deviation § = 0.4. (d) Normalized accuracy differences across various § values. The nonlinear kernel more accurately
captures complex relationships and benefits more as § increases.
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in the ablation study in Section 5. Among various factors such as
signal strength and noise type, we found that the deviation between
Xa4d and Xeg produced the most significant differences between
linear and nonlinear kernels.

In summary, we find that the deviation between X 44 and X, is
the primary factor influencing normalized accuracy. For real fMRI
data, where the signal strength may fall within a typical range, but
the actual signal deviates slightly from the design model, nonlinear
kernels are expected to yield significant improvements.

3.2 fMRI simulation

In this section, we generate another simulated dataset that more
closely resembles the real task fMRI. The key components of the
simulation are as follows:

1. Mask: the activation mask is selected for specific brain regions.
We focus on 6 bilateral AAL regions (Tzourio-Mazoyer et al.,
2002), including the anterior cingulate cortex, precentral gyrus,
inferior frontal gyrus, insula, middle frontal gyrus, and middle
temporal gyrus, which are treated as active. In total, ~10%
of voxels in the brain (or around 19% of voxels in the gray

R1*Q be the mask which

equals 1 for voxels belonging to chosen AAL regions and 0

matter) are activated. Let M €

otherwise (Tzourio-Mazoyer et al., 2002). An example of the
activation is shown in Figure 5a.

2. Noise: the resampled resting-state is considered noise because
it does not contain task-related information. Since the time
dimension for the resting state in the HCP dataset is longer than
that for the working memory task, we select the time frames
between 301 and 690 to match the time dimension.

3. Effective design signal: Given three different event types: targets,
non-targets, and lures contrasts. We use the contrast targets
minus non-targets C = [1, — 1, O]T to generate the effective
design signal.

4. Added signal: the working memory-related signals are added to
certain regions linearly. Similar to the previous 2D simulation,
X.dd is generated using a fixed contrast plus some random shift
[1,—-1,0]" 4 0.1M(0, 1).

5. Signal strength: along with the noise, activation mask, added
signal, and effective design signal, the simulated data and ground
truth are generated using Equation 6. The signal strength p is
computed using Algorithm 1. Specifically, starting from p = 0.1
the algorithm will evaluate the performance from GLM method
and compute the ROC curve. The value of p is adjusted—either
increased or decreased—such that the AUC for FPR < 0.1 falls
within the range of 0.035 to 0.05. This algorithm ensures that
the signal strength is neither too high or not too low. Similar
methods have been adopted in Yang et al. (2020).

6. Spatial smoothing: for GLM, a Gaussian smoothing filter with
fixed FWHM =
correlation is computed between Xeg and Ygmulated after the

4 mm is applied to the Ygmulated- The

smoothing. We ignore the sign for the correlation coeflicient
and normalize it by its maximum absolute value. For the kernel
method, 7 SFs generated from FWHM = 4 mm are applied to
the dataset. Detailed information about the smoothing kernels
is provided in Appendix 7.1 and Figure 2b.
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Generate Ysignal, Ynoise and Xerr. Start with p =
0.1.
while True do
Compute AUC based on GLM
if AUCgpr.g. 1 < ©0.035 then
p=p+0.005
else if AUCgpr.g 1 > 0.05 then
p=p—0.005
else
break
end if
end while

Algorithm 1. Algorithm to determine the signal strength p in the simulated
data.

For this simulated data, the final result is evaluated based on |e|.
The activation obtained from each kernel is then evaluated against
the ground truth using the ROC curve. As a reference, the linear
model with GLM is calculated with a single Gaussian smoothing
with FWHM = 4 mm.

In Figure 5, we present an example from the simulated HCP
data alongside the T1 image at the corresponding location.
Figure 5a consists of two stacked images: the top image shows both
the precentral gyrus (upper portion) and the mid-temporal region
(lower portion), while the bottom image displays the GLM result,
which reveals activation only in the mid-temporal region. Similar
to GLM, Figure 5b shows that the parabolic, Gaussian, and inverse
kernels also fail to capture activation in the precentral gyrus. In
contrast, both structures are clearly detected using the hyperbolic
tangent and mixed hyperbolic tangent kernels.

Figures 6a, b display the ROC curves for each kernel alongside
the GLM. The AUC for FPR < 0.1 is 0.0528 for the linear
kernel, 0.0510 for the parabolic kernel, 0.0531 for the Gaussian
kernel, and 0.0530 for the inverse kernel. In comparison, both
the hyperbolic tangent and mixed hyperbolic tangent kernels have
AUC values of 0.0573, while the GLM, indicated by the gray shaded
area, reaches only 0.0470. Therefore, for this specific subject, the
accuracy normalized to GLM increases by ~22%.

The average performance for these 20 subjects is presented
in Table 3, with the first column showing results normalized
by GLM outcomes, focusing solely on the improvement rates.
Parabolic, Gaussian, and inverse kernels do not perform well in
this case, providing only a 5%-6% increase in accuracy. In contrast,
the mixed hyperbolic tangent kernel demonstrates the maximum
accuracy improvement, with a rate of 26.03%.

We also compared the total AUC using the similar
normalization techniques proposed in Equation 4. On average, the
linear kernel and the mixed hyperbolic tangent kernel achieved
accuracy improvements of 6.67 and 9.98%, respectively. Typically,
this overall AUC gain is smaller than the gains observed at
FPR< 0.1.

Additionally, we conducted the same simulations without
taking the absolute value, and the results were nearly identical
to those obtained with the absolute value. This suggests that the
observed performance improvement is not attributable to the use
of absolute value in this task.
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Ground Tewthime.

Linear

Inverse

FIGURE 5

Ground truth and activation maps with p < 0.05 for one selected subject from the simulated fMRI. (@) Upper part: The ground truth, with the activation
area highlighted in orange, along with the T1 image at the corresponding location for reference. (a) Lower part: The result from GLM, where the
color indicates voxels with p < 0.05, and brighter colors represent larger |«| values. (b) Activation patterns for six different kernels using KCCA.
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FIGURE 6
ROC curve for the selected subject from simulated fMRI data, with
the activation pattern shown in Figure 5. (a) ROC curve for different
kernels. The gray shading area indicates the AUC obtained from the
GLM. (b) A focused view of (a) for FPR < 0.1. The mixed hyperbolic
tangent kernel demonstrates the highest performance, achieving
the largest AUC.

4 Real fMRI data
4.1 HCP

For real fMRI data lacking a ground truth, we use the gray
matter as a reference to evaluate final performance. We begin with
the HCP dataset, from which the first 15 volumes of fMRI data are
removed to prevent an unsaturated T1 signal. The computation
method adheres to the procedures outlined in Section 2. The
effective design signal generated by the contrast targets minus non-
targets, denoted C = [1, — 1, O]T, is applied across all subjects.
Similar to the analysis of simulated data, we assess the correlation
coefficient between X g and Y after smoothing for each voxel,
establishing this as the baseline model. We retain the sign of a or
the correlation coefficient computed from GLM.

Figure 7 presents a selected example, with the upper part of
Figure 7a showing that the gray matter serves as the reference. The
results from the GLM are shown in the lower part of Figure 7a.
For the kernel methods, both the fMRI data and the effective
design signal are input into the nonlinear kernel method. Results
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TABLE 3 Comparison of performance improvements among kernels
across three different tasks.

Kernel name fMRI simulation HCP In-house scan
Linear 21.24% 10.03% 20.10%
Parabolic 6.18% 10.01% 20.32%
Gaussian 5.61% 12.68% 22.14%
Inverse 5.33% 10.12% 22.35%
Tanh 19.94% 11.27% 23.41%
Mixed Tanh 26.03% 24.27% 31.14%

For the fMRI simulation, the ratio is defined as ry — 1, while for the HCP and in-house
scans, the ratio is defined as "Gray — 1. For each task, the highest-performing method is shown
in bold, and the second-best method is underlined.

for the six kernels from the back-reconstruction algorithms are
displayed in Figure 7b. The activation maps derived from all six
kernels generally show similar patterns to those observed in the
GLM, although some subtle differences are noted. In the specific
region marked by the red circle, most voxels belong to the white
matter. The GLM, along with the linear, parabolic, Gaussian, and
inverse kernels, reveals activation clusters within the circle, while
the hyperbolic and mixed hyperbolic tangent kernels do not show
this activation. However, the hyperbolic tangent kernel produces
numerous small clusters in the white matter, which is not an ideal
activation pattern. Conversely, the mixed hyperbolic tangent avoids
activations in both undesired regions.

Figures 8a, b display ROC curves for the different kernels, using
the gray matter as the ground truth. Since most voxels in the gray
matter are inactive, the AUC is close to 0.5. When compared to
the GLM, indicated by the gray shaded area, the mixed hyperbolic
tangent kernel demonstrated the highest AUC and increased the
number of activated voxels in the gray matter. In contrast, the
hyperbolic tangent kernel shows less overlap with the gray matter,
with portions of its curves falling within the gray shading area.
Specifically, the AUC values with FPR< 0.1 for the six different
kernels—linear, parabolic, Gaussian, inverse, hyperbolic tangent,
and mixed hyperbolic tangent—are 6.55 x 1073, 6.57 x 1073,
6.70x 1073, 6.66 x 1073, 5.72 x 1073, and 7.56 x 1073, respectively,
whereas the GLM yields an AUC of 5.95 x 107>, The mixed
hyperbolic tangent kernel shows an increase of ~27%.

In Figure 9, we present a swarm plot for each method applied to
87 subjects. Here, rGray measures the relative gray matter overlap of
activation using GLM as a reference. The exact values are provided
in the second column in Table 3. On average, the mixed hyperbolic
tangent method outperforms the others, demonstrating a 24.27%
increase compared to GLM. In contrast, the linear kernel exhibits a
10.03% increase. Moreover, the total AUC increase for activation
within gray matter using the linear and the mixed hyperbolic
tangent kernel is 0.55% and 5.34%, respectively. These results
indicate that our nonlinear kernels can effectively avoid activations
in undesired regions when compared to traditional methods.

4.2 In-house scan
We utilized in-house scans as an additional real fMRI dataset
to evaluate the performance of nonlinear kernel methods. This

dataset contains 16 subjects, including eight with amnestic mild
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FIGURE 7
(b) Activation pattern for 6 different kernels using KCCA.
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Gray matter and activation map with p < 0.05 for one selected subject from the real fMRI (HCP dataset). (a) The gray matter using segmentation
probability larger than 0.5 (upper) and the result from GLM (lower). The color indicates voxels with p < 0.05, with a brighter color for larger & values.
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Across the different kernels, Figure 10b indicates that their
b performance is similar, as further supported by Figure 1la.
CURE S Notably, the performance of the mixed hyperbolic tangent kernel
ROC curve for the selected subject from real fMRI data (HCP appears to be highest. The exact AUC values with FPR<
dataset), with the activation pattern shown in Figure 7. (a) ROC 0.1 for linear, parabolic, Gaussian, inverse, hyperbolic tangent
curves for different kernels, with the gray shaded area representing . . _3
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mixed hyperb.om tangent kemel.demo.ns.trates optimal 579 x 1073, Notably, for this dataset, the kernel methods
performance in detecting activation within gray matter.
demonstrate greater accuracy compared to GLM. For example,

cognitive impairment (aMCI) and eight normal controls. Trained
professionals diagnosed aMCI based on Petersen Criteria (Petersen
et al., 2001). Each subject completed an episodic memory task
using images selected from human faces or various pictures (Jin
et al., 2012). The tasks included four different events: instruction,
control, encoding, and recognition, resulting in a contrast vector
X e RT*4 After normalization to MNI, the fMRI data had
dimensions 91 x 109 x 91 with T = 288. The first 10
seconds of data were removed to avoid an unsaturated T1 signal.
For each subject and each task, we employed two different
contrasts: encoding minus control (E-C) with contrast vector C =
[0,—1,1,0]T and recognition minus control (R-C) with C =
[0,—1,0,1]7. Therefore, combining two tasks and two contrasts,
results in an effective total of 64 subjects (16 subjects x 2 tasks
X 2 contrasts).

The nonlinear kernels and GLM methods used in this analysis
are the same as those described for the HCP dataset in Section 4.1.
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the current subject shows an ~41% increase in accuracy for
the mixed hyperbolic tangent kernel, normalized against GLM
results.

Figure 12 presents the group-level analysis for all 16 subjects
across two tasks and two contrasts. In Figure 12, we display
a swarm plot for all cases, along with the mean and variance
for each kernel method. The specific improvement ratio for
AUC with FPR < 0.1 shown in Table 3, and the total AUC
increase for the linear and the mixed hyperbolic tangent kernel
is 4.47 and 2.93%, respectively. One notable observation is that
in some instances, the kernels demonstrate more significant
improvements in gray matter overlapping activation compared
to the HCP dataset. Upon analyzing the cases with a high
enhancement rate, we find that this is usually due to these
cases having relatively large head movement or the correlation
coeficient from GLM being concentrated in the negative regions.
Despite these factors, the group-level analysis confirms that the
mixed hyperbolic tangent kernel consistently outperforms the
other kernels.
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FIGURE 10
Gray matter and activation map with p < 0.05 for one selected subject from real fMRI (in-house dataset). (a) upper portion: The gray matter was
obtained using segmentation probabilities > 0.5. (a) lower portion: Results from GLM, where the color indicates voxels with p < 0.05, with brighter
colors representing larger values of a. (b) Activation pattern for 6 different kernels using KCCA
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FIGURE 11
ROC curve for the selected subject from real fMRI data (in-house dataset), with the activation pattern shown in Figure 10. (A) ROC curves for different
kernels, with the gray shaded area representing the AUC obtained from GLM. (B) A focused view of (A) for FPR < 0.1. The hyperbolic tangent kernel
shows poor performance, as indicated by scattered activations and its corresponding ROC curve. In contrast, the mixed hyperbolic tangent kernel
demonstrates optimal performance in detecting activation within gray matter.

5 Ablation study

To further validate the differences between linear and nonlinear
kernels, we use the same activation mask as in Figure 4a and
perform control variable analysis across the three tasks listed
below:

Task 1. Signal Strength Effect: Gaussian white noise is used, with
no deviation between the added signal and the design signal
(6 = 0). The signal strength is varied with p € [0.02,0.05].

Task 2. Autoregressive Noise (AR1) Effect: With § = 0 and
p = 0.03, the added noise follows an autoregressive model:

Frontiersin Neuroimaging

(Ynoise)t = ¢ (Ynoise);—1 + MN(0,1). In previous studies
involving 3T fMRI data, the autocorrelation parameter ¢ is
typically chosen between 0.1 and 0.4 (Cordes and Nandy, 2007;
Li, 2014). In our study, we vary ¢ from 0 to 0.4.

Task 3. Nonlinear Effect: When ¢ = 0, p = 0.03, and § €
[0,0.5], this task is the same as the simulation setup shown
in Figure 4.

Figure 13 summarizes the results from the three tasks,
including both original and normalized AUC values. In Figures 13a,
b, we present results for Task 1, which examines the effect of
signal strength. Figure 13a shows the AUC (with FPR < 0.1)
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FIGURE 12
Swarm plot illustrating the AUC ratio for gray matter computed using different kernels in the in-house scans dataset, with a total of 64 dots for each
method derived from 16 subjects, two tasks and two contrasts per subject. The rectangle represents the mean and variance for each method, and
the black dashed line at rgray = 1 serves as the reference result from GLM.

for three methods: GLM, linear kernel, and nonlinear kernel.
For the nonlinear kernel, the mixed hyperbolic tangent is used
as the representative method. Each dot represents the average
performance over 200 simulations. Across all methods, the AUC
increases with signal strength, indicating a positive correlation
between signal strength and detection accuracy.

Figure 13b shows the normalized accuracy difference between
the nonlinear and linear kernels, with GLM used for normalization.
The improvement from nonlinear kernels decreases as signal
strength increases. This trend is expected, as higher signal
strength corresponds to an easier detection problem, where linear
methods are sufficient. In conclusion, while nonlinear kernels offer
statistically significant improvements at low signal strengths, the
magnitude of the improvement is modest, ~1%.

For Task 2, Figures13c, d show the effects of varying
noise correlation strength. Previous studies have reported typical
autocorrelation values between 0.1 and 0.4 for 3T fMRI
data (Cordes and Nandy, 2007; Li, 2014). In Figure 13c, we observe
that for a fixed signal strength and added signal type, the AUC
decreases with increasing noise correlation for all methods (GLM,
linear kernel, and nonlinear kernel). For GLM, this decline is likely
due to its assumption of independent Gaussian noise being violated.
Figure 13d shows the normalized accuracy difference between the
nonlinear and linear kernels. Unlike Task 1, there is no clear pattern
between noise correlation and performance difference, suggesting
that the benefit of nonlinear kernels is not strongly influenced by
temporal autocorrelation in the noise.

For Task 3, Figures13e, f present results with Gaussian
0.03), and
increasing deviation between the added signal X,4q and the

noise (¢ 0), fixed signal strength (p
effective design signal X.g. Figure 13e shows that AUC generally
decreases as the deviation increases. Despite this, nonlinear
kernels consistently outperform linear kernels. Figure 13f shows
the normalized accuracy difference, which increases with larger

deviations. In this case, the improvement exceeds 2%, highlighting
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the robustness of nonlinear kernels when modeling more
complex relationships.

In summary, among the three factors—signal strength, noise
correlation, and deviation between X,4q and X.g—the deviation
appears to be the primary determinant of normalized accuracy
improvement. For real fMRI data, where signal strength may fall
within a reasonable range but the actual neural response may differ
slightly from the design model, nonlinear kernels are expected to
offer significant performance gains.

6 Discussion

6.1 Nonlinear kernel

6.1.1 The advantage of nonlinear kernels

Traditional linear regression relies on two primary
assumptions: the existence of a strictly linear relationship
and the presence of independent Gaussian noise. When these
assumptions are violated, the validity of the linear model is
compromised, necessitating the use of nonlinear methods.

In fMRI correlation analysis, linear models assume that the
activation signal aligns with the effective design signal, which is
produced using a fixed hypothetical neural response. However,
this assumption may not hold true due to the complicated HRF
response in real brain activation (Glover, 1999; Lindquist et al.,
2009). Consequently, a sole focus on linear relationships may
be insufficient for detecting activation. To illustrate this point,
we conducted a simulation by controlling variables in a 2D
toy model. Our findings reveal that even slight modifications to
the temporal pattern, as depicted in Figures 13e, f, resulted in
significant differences in normalized accuracy between linear and
nonlinear methods.

Moreover, real fMRI data often exhibit noise that is more

complex than independent Gaussian noise. One noise model
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FIGURE 13

Group-level analysis of the 2D toy model across three different
conditions. (a, b) Original and normalized AUC values vs. signal
strength. (c, d) Original and normalized AUC values vs. noise
correlation. (e, f) Original and normalized AUC values vs. signal
deviation. Control variable analysis reveals that only signal deviation
produces significant improvement in performance for the nonlinear
kernel.
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adopted in previous studies is autoregressive noise (Cordes and
Nandy, 2007; Li, 2014). Using the same 2D toy model as a reference,
we observed that, under constant signal strength, the accuracy of
the linear model (measured by the AUC with FPR< 0.1) decreases
as noise correlation increases, which aligns with expectations. In
this scenario, we did not observe any performance improvements
for nonlinear models, as shown in Figures 13¢c, d. Conversely,
low-frequency noise, stemming from hardware instabilities or
residual movement effects, has also been considered in prior
analyses (Lund et al., 2006). Introducing low-frequency noise into
the data effectively modifies the true activation signal, as in our first
scenario, suggesting that nonlinear models may be more broadly
applicable under these noise conditions.

Spatial smoothing and kernel mapping can slightly alter the
results. For example, in a linear simulation with ¢ = 0and § = 0
as shown in Figures 13a, b, the normalized accuracy indicates that
the nonlinear kernel outperforms the linear model when the signal
strength is low. However, this improvement is relatively minor
(<1%), particularly when compared to the significant performance
variations observed across different signal strengths.

Two factors are not addressed in our results. First, instead
of simulating multiple regions with distinct HRFs to generate
varying effective design signals (Glover, 1999; Lindquist et al., 2009;
Yang et al., 2020), we use the same effective design signals for
each subject, which may not precisely match the added signal.
While this approach sacrifices some spatial heterogeneity, it avoids
artifacts introduced by smoothing filters that span multiple regions
with different added signals. Moreover, our method more clearly
demonstrates the advantages of nonlinear models. We also tested
the same setup using various contrasts, specifically applying six
different contrasts (as proposed in Yang et al., 2020) in Figure 4a
while using a single contrast for testing. Under these conditions, we
again observed improved performance with nonlinear kernels.

Second, rather than modifying the HRF (Glover, 1999
Lindquist et al., 2009; Yang et al., 2020), which involves multiple
hyperparameters, we opted to adjust only the contrasts for
simplicity. As illustrated in Figures 4b, ¢, this approach effectively
modifies the temporal pattern.

6.1.2 Kernel selection

Using different datasets, we observed that the mixed hyperbolic
tangent kernel outperforms the linear kernel and provides better
performance compared to commonly used kernels such as
parabolic or Gaussian. While a rigorous mathematical explanation
is difficult, our empirical understanding is as follows: (1) the mixed
hyperbolic tangent kernel can reduce to a linear kernel in special
cases, offering flexibility for both linear and nonlinear problems;
(2) previous studies have shown that mixed kernels—combining
multiple components—can yield better performance (Zhu et al,
2012); and (3) bounded kernels tend to be more resilient to noise
than unbounded ones (Alam, 2014).

6.1.3 Other nonlinear methods in fMRI analysis
One example is the Support Vector Machine (SVM),
which typically appears in classification problems. A similar
inverse mapping algorithm is used to obtain the sensitivity
map (Rasmussen et al., 2011). To the best of our knowledge, this
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method has not been applied to activation analysis in task fMRI.
The second example is Deep CCA (Yang et al., 2025), which has
recently been adopted for nonlinear analysis in task fMRI. Similar
to CCA with constraints, Deep CCA remains within the local
family (Zhuang et al., 2017, 2020), while our method is part of the
global family, enabling activation detection across the entire brain
in a single step.

Another approach involves using deep learning-based models.
One example is deep learning-based denoising for task fMRI (Yang
et al., 2020). The main idea is that the correlation in gray
matter exceeds that in white matter, which automatically bypasses
the white matter activation issue. Another model gaining recent
attention is the transformer, which integrates spatial and temporal
convolutions (Kim et al., 2023). This technique usually requires
many datasets and complex techniques, such as self-supervised
learning, to avoid overfitting. However, our model remains useful
for capturing nonlinear relationships from single subjects.

6.2 Back-reconstruction algorithm

Previous publications have highlighted the

associated with defining back-reconstruction algorithms that

challenges

utilize nonlinear kernels (Yang et al., 2018). For linear kernels,
(Ytl’ Yo oo, YtP)>
which does not mix different voxels, allowing for a direct

the feature map is defined as <p(]~(t) =

definition of activation. In contrast, nonlinear kernels can lead
to feature maps that evolve with a mixture of terms or an
infinite number of components. For example, the parabolic

kernel when b = 0 reduces to (Ky)j = (Yo, ¥Yi¥i)?
with P2 terms, the corresponding feature map is defined as
‘P(Yt) = (YL»21)Y[22)' t ’YtZP’ YnYn, YnYis, - - )Ytpl Ytpza" )

with P square terms and P(P — 1) cross terms. To address this
issue, we draw on concepts from computer vision to compute
voxel importance. Several equivalent terms have been proposed,
including CAM (Zhou et al., 2016; Selvaraju et al., 2017), sensitivity
maps (Smilkov et al., 2017), and saliency maps (Simonyan et al.,
2013). This concept was adopted as an expansion of the nonlinear
kernel mapping as an effective way to extend the current algorithm
to general types of nonlinear mappings.

Compared to previously published methods, our back-
reconstruction algorithm also involves calculating the derivative
from the kernel space to the original space. Both approaches include
smoothing techniques—for example, the Gaussian smoothing used
in CAM (Zhou et al., 2016; Selvaraju et al., 2017). The key difference
is that, in our method, the derivative is computed solely from the
kernel matrix Ky, without taking the derivative with respect to vy.
Excluding vy is necessary to maintain consistency with the original
mapping from kernel space to voxel space in the special case of a
linear kernel.

6.3 Additional comments on methods
6.3.1 Comparison between SF and Gaussian filter

Univariate analyses, such as GLM, typically utilize a single filter,
whereas kernel methods can accommodate more complex filters,
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such as the SFs proposed in this study. Previous studies employing
SFs for linear KCCA have demonstrated advantages in reducing
spatial blurring (Yang et al., 2018). To fully leverage the capabilities
of KCCA, we applied SFs across all kernel-based approaches.

6.3.2 Sign effect in activation analysis

A critical question is whether to retain the sign of & during
activation analysis. In previous GLM studies (Friman et al., 2003),
the sign is preserved to indicate that only signals positively
correlated with the effective design signal are selected. Conversely,
earlier local CCA studies (Zhuang et al., 2017) adjusted weights to
ensure positive correlation, resulting in activation patterns that may
include both positive and negative components.

In this study, & is treated as the temporal average of the
changing rate between each voxel and the time series in the kernel
space. Because the kernel-space signal can have both positive and
negative components, determining whether to retain the sign is
not straightforward. To address this issue, we consider the unique
properties of the linear kernel and treat the sign as an extension of
local correlation.

For the simulated data, we conducted an additional test using
the signed equation without applying the absolute value. Similar
to Figure 4, we used independent Gaussian noise with § = 0,
¢ = 0,and p = 0.035. When applying the absolute value, the
average AUC over 200 subjects at FPR < 0.1 for the linear kernel
and the mixed hyperbolic tangent kernel is 0.0554 and 0.0561, with
average normalized improvements of 2.21 and 3.58%, respectively.
With the signed equation, the average AUC at FPR < 0.1 for the
linear kernel and the mixed hyperbolic tangent kernel is 0.0638
and 0.0642, with average normalized improvements of 1.09 and
1.84%, respectively. Although using the signed equation increases
the AUC, the difference between linear and nonlinear methods
remains nearly unchanged.

Generally, we find that when the problem is more linear, using
the signed equation improves the AUC. In these cases, kernel
mapping usually ensures that all active voxels are mapped to
the positive region, making additional absolute-value operations
unnecessary. Applying the absolute value is more beneficial when
there are large deviations between the added signal and the
design signal.

In real data analysis, we retain the sign of & due to the nature of
the BOLD signal. A negative correlation may indicate blood outflow
rather than inflow, which allows KCCA to revert to the original
linear KCCA formulation (Hardoon et al., 2004; Yang et al., 2018).

6.3.3 Shuffling method

In this study, we propose two shuffling methods. The first is an
extension of the shuffling technique used for local CCA (Zhuang
et al., 2017), with the goal of preserving the spatial structure. We
aim to ensure that there is no significant difference between voxels
before and after the shuffling algorithm. The second shuffling
method is designed to generate a null distribution. A similar
approach was previously proposed to maximize the difference
between task fMRI and resting-state fMRI (Yang et al., 2020).
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6.3.4 Volume-based and surface-based
activation analysis

The current manuscript focuses on a volume-based approach,
treating fMRI data as a 3D time series and applying smoothing
based on real spatial coordinates. We acknowledge the existence of
surface-based analysis, which incorporates structural information
(e.g., FreeSurfer) (Fischl, 2012) and reduces activation outside
the gray matter (Mejia et al., 2020; Brodoehl et al., 2020). Our
approach takes a different perspective: even without incorporating
anatomical constraints, the proposed method demonstrates an
ability to reduce activation in non-gray matter regions.

6.4 Evaluation

6.4.1 Metrics for real fMRI activation

For real fMRI data, where the ground truth is unknown, several
evaluation strategies have been proposed. For example, Nandy and
Cordes (2004) suggests a novel approach to generate ROC curves
without relying on ground truth. In this work, we assume that
BOLD activations occur primarily in gray matter (Logothetis and
Woandell, 2004). The rationale includes: first, it has been shown
that gray matter has three to four times the cerebral blood flow
and volume compared to white matter (Gawryluk et al., 2014).
Second, the BOLD signal in gray matter is three to six times larger
than in white matter, with the latter also showing time delays
or even negative correlations with stimulation (Schilling et al.,
2023). The standard choice for HRF may not be suitable for white
matter; as a result, this increases the rationale for treating white
matter as false activation. Third, unlike surface-based methods,
which require anatomical structures (Mejia et al., 2020; Brodoehl
et al., 2020), or task denoising methods (Yang et al., 2020), our
volume-based approach does not require such information, making
gray matter suitable for independent testing. Fourth, this metric
is consistent with earlier investigations that examined whether
identified activations align with detailed gray matter profiles (Yang
etal, 2018, 2025).

6.4.2 Reduction of false positives

Our algorithms primarily focus on the AUC when the FPR is
<0.1. Similar methods have been adopted in Yang et al. (2018).
Beyond this threshold, well-performing methods generally yield
better overall performance for the total AUC, although the total
AUC itself typically changes at a relatively small rate.

6.5 Limitations

6.5.1 Losses of local information

A key limitation of our methodology lies in the kernel mapping:
while it enables the extraction of global relationships in a single
step, it sacrifices local information, making it difficult to define
an exact activation threshold. For example, traditional methods
often involve resampling resting-state data to construct a null
distribution, based on the observation that locally measured
correlations can differ significantly between task fMRI and
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resampled resting-state data. However, nonlinear KCCA involves
several normalization steps, and large correlations can appear in the
kernel space regardless of the dataset, making it difficult to compute
the null distribution in the same manner. To address this, we use
reshuffling of vy to create an approximate null distribution. This
distribution may include large values for o, necessitating the use
of a higher p-value threshold.

6.5.2 Overfitting

Global methods such as KCCA determine the activation pattern
using more voxels than time points. As a result, KCCA will always
find a correlation regardless of the input data or the nonlinear
mapping. A traditional way to avoid overfitting is to add a
regularization parameter y during KCCA analysis (Hardoon et al.,
2004).

Determining a suitable y, as well as the nonlinear mapping,
is another challenge. We propose using voxel shuffling robustness
following Zhuang et al. (2017) to determine these hyperparameters.
The assumption is that activation patterns that are more robust to
voxel shuffling will have larger gray matter overlap. We also note
that this is only an assumption and could be violated. Moreover,
this shuftling could create a large computational burden, especially
for nonlinear kernels, as discussed in detail later.

From a performance perspective, our methodology
occasionally leads to unstable results with the nonlinear kernel
method. Although it generally enhances the likelihood of detecting
activation overlaying gray matter in most subjects, there are
instances where its performance drops below the baseline. These
instances often occur when the kernel produces activations
that are more resistant to voxel shuffling but do not align well
with gray matter. This is similar to traditional overfitting issues
observed in machine learning studies. Future research could
focus on developing more robust nonlinear methods to address

these limitations.

6.5.3 Computational speed

Another limitation of the nonlinear kernel is its increased
computational time. The back-reconstruction step takes O(TQ)
time, while the kernel mapping step requires O(T?Q). Linear
kernels involve one hyperparameter, whereas the mixed hyperbolic
tangent kernel involves four and requires mapping through two
kernels. As a result, the mixed hyperbolic tangent kernel is 200 x
2/15 ~27 times slower than the linear kernel when processing data
from each subject to the activation map.

The additional time consumption primarily comes from
determining the hyperparameter at the subject level. Without
anatomical information, one practical approach is to compute the
correlation difference between task and resting-state fMRI (Yang
et al,, 2018). This method avoids multiple mappings from the
original space to the kernel space. We tried this for the nonlinear
kernel; however, due to strong overfitting in the model, we found
that maximizing the difference was not sufficient to create a robust
activation pattern.
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6.6 Application

6.6.1 Importance of a general inverse mapping
method

The practical application of neuroscience is to build
interpretation models with anatomically defined patterns. As
a result, not only convolution from image to features but also the
inverse mapping is desired. Commonly used inverse mapping
algorithms in computer vision include CAM (Zhou et al., 2016;
Selvaraju et al., 2017), sensitivity maps (Smilkov et al., 2017), and
saliency maps (Simonyan et al., 2013); they are all, in some way,
based on computing the gradient from the output with respect to
the input image. Our method follows this approach, with some
revisions to make the model fit the linear kernel result. We also note
that this type of approach is not limited to KCCA or volume-based
fMRI data analysis and could have potential for other techniques,
such as kernel-based classification or surface-based approaches.

Apart from using the gradient, another way to define inverse
mapping is to use a model to directly predict the activation based
on a certain objective function. For example, KCCA can be used to
maximize the difference between task and resting state (Yang et al.,
2018), or deep learning can be used to maximize the difference
between gray matter and white matter (Yang et al., 2020). Similar
mathematical modeling appears in computer vision for adversarial
attacks to maximize the difference (Goodfellow et al., 2014).

6.6.2 Modulating data with HRF variability

One practical application of this method is its suitability
for datasets with substantial HRF variability. Previous
studies (Handwerker et al., 2004; West et al., 2019) have reported
significant differences in HRF across subjects; for example, in West
et al. (2019), some of the hyperparameters for HRF changed by
nearly half across different age groups, with clear HRF variations
across subjects. This suggests that a single HRF may not be suitable
for a heterogeneous group. Our proposed nonlinear KCCA method
has proven robust to these changes and produces better results
under the same signal-to-noise ratio, which may be ideal for
modeling HRF variability.

6.6.3 Integration with HRF estimation or
deconvolution

One possible extension of our framework is to integrate it with
existing HRF estimation or deconvolution methods. In practice,
HRF estimation aims to recover latent neural activity by modeling
and removing the variability of the hemodynamic response across
brain regions and subjects (Wu et al., 2021). This step could
be applied before our nonlinear KCCA analysis, providing input
time series that are already compensated for HRF variability.
Alternatively, our nonlinear kernel mapping could be embedded
into the HRF estimation pipeline itself, for example by applying
kernel-based correlation analysis to the deconvolved signals to
enhance sensitivity to subtle activations. Such integration may
improve robustness in heterogeneous populations, where HRF
shape differences are substantial, and could facilitate more accurate
comparisons across different subjects or brain regions. Potential
challenges include additional computational cost and the need to
avoid overfitting.
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7 Conclusion

In this study, we introduce a new methodology for detecting
fMRI activation using nonlinear kernels and canonical correlation
analysis. The main contributions of this study are twofold:

We introduce a novel back-reconstruction algorithm that maps
from the kernel space to the original space. Validation of this
method includes: (1) measuring the contribution of each voxel to
the kernel, (2) ensuring that, in the case of the linear kernel, it
aligns with previous publications, and (3) demonstrating improved
performance across different datasets.

We present a comparison between linear and nonlinear
methods under different conditions, with a particular focus
The
results show that nonlinear kernels outperform linear ones

on control variables in two-dimensional simulations.
when the added signal has a small variance relative to
the effective design signal. In real fMRI data, individual
differences in neural responses create a similar scenario,
further supporting the advantage of nonlinear kernels over

linear ones.
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