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Pilot mental workload is a critical factor influencing flight safety, particularly
during dynamic flight phases with high cognitive demands such as takeoff
and landing. This study evaluates pilot workload across different flight phases
(takeoff, climb, cruise, descent, and landing) using HRV (heart rate variability)
features and machine learning methods. Heart rate data were collected through
simulated A320 traffic pattern flight missions, combined with multidimensional
task assessments, to obtain flight performance scores. Selected HRV features,
Min_HR (minimum heart rate), SDNN (standard deviation of normal-to-normal
intervals), SD2 (long-term variability index in Poincare Plot), Modified_csi
(modified cardiac sympathetic index), were identified and used to train classifiers
(RF, KNN, GBDT, XGBoost) for pilot mental workload level classification. The
XGBoost model demonstrated optimal performance after feature selection,
with accuracy increasing from 50.09% to 66.67% (a 16.58% improvement) and
F1-score rising from 37.63% to 58.33% (a 20.70% improvement) compared
with all HRV feature. The findings revealed selected HRV suppression during
high-workload phases (landing) with the lowest performance scores, whereas
HRV recovery and peak performance scores were observed in low-workload
phases (cruise). This research establishes a reliable framework for real-time
pilot mental workload monitoring and provides predictive insights into cognitive
overload risks during critical flight operations.
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1 Introduction

With the rapid advancement of aviation technology and the continuous
implementation of novel aeronautical systems, human-machine interface systems in
aircraft operations have grown increasingly complex, leading to a steady escalation in
pilot mental workload (Wang P. et al., 2024). Statistical data indicate that approximately
70%~80% of civil aviation accidents and incidents are closely associated with human
factors during flight (Kharoufah et al., 2018). Under high-intensity flight task loads, pilot
frequently exhibit adverse physiological and psychological responses (Borghini et al.,
2014) including cognitive latency, emotional irritability, operational distortion, and motor
coordination impairment, all of which pose significant threats to aviation safety.

The A320 traffic pattern (a continuous task flow covering takeoff, climb, cruise, descent,
and landing) differs from existing flight research that mostly focuses on single phases
(Dussault et al., 2005). As a mainstream civil aircraft, the A320 has representative cockpit
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operation logic and task allocation, and analyzing workload in its
traffic pattern is more in line with real flight scenarios where pilots
continuously adapt to changing task loads, thus providing more
practical guidance for improving civil aviation safety.

The inherently intangible concept of mental workload
is typically assessed through multidimensional approaches
encompassing subjective perception, flight performance, and
physiological parameters (Young et al, 2014). Pilot provide
self-reported ratings via scales or questionnaires to reflect
subjective experiences (Mansikka et al., 2019). Performance-based
evaluations, on the other hand, indirectly assess workload through
analyses of operational proficiency, decision-making capability,
and crisis response competence (Whitehurst, 2013) Physiological
parameter assessments objectively infer workload through
biological indicators, such as PPG (photoplethysmography) and
EEG (electroencephalogram) signals (Young et al., 2014). The
PPG signal detection demonstrates significant advantages in terms
of stability, accessibility, and clinical relevance (Allen, 2007).
A validation study of the Polar reported high agreement with
ECG (Electrocardiogram) across activity intensities and wearing
positions, with reduced motion artifacts when positioned on the
arm (Coste et al., 2025). HRV features derived from PPG have
shown significant correlations with task workload in VR flight
simulations (Vallés-Catala and Guerrero, 2025) and retained
acceptable reliability under motion in field studies. An elevated
workload is typically characterized as increased heart rate and a
decrease HRV (Hebbar et al., 2021).

HRV refers to the variability of time intervals between
consecutive heartbeats (NN intervals) and is a key physiological
indicator reflecting the function of the autonomic nervous system
(ANS). It quantifies fluctuations in heart rhythm to assess the
balance between the sympathetic and parasympathetic nervous
systems (Shaffer and Ginsberg, 2017). In this study, HRV data were
extracted from PPG signals—PPG indirectly reflects the cardiac
cycle by detecting changes in blood volume; after preprocessing,
its signals can be converted into NN interval sequences, from
which HRV features are further calculated (Schweizer and Gilgen-
Ammann, 2025). This method has been validated as an effective
alternative to traditional ECG chest straps in aviation scenarios.
The ANS consists of the sympathetic and parasympathetic nervous
systems, which collaboratively regulate cardiovascular activity:
sympathetic activation increases heart rate and decreases HRV,
while parasympathetic activation decreases heart rate and increases
HRV (Billman, 2011, 2013). Common HRV features can be
categorized into time-domain, frequency-domain, and non-linear
indices (Malik et al.,, 1996). Among them, SDNN (a core time-
domain index) has been confirmed to decrease with sympathetic
activation during high-load phases such as takeoff and landing (Cao
etal, 2019); SD2 (a long-term variability index in Poincare Plot) is
positively correlated with pilots’ autonomic regulatory capacity in
continuous multi-phase tasks (Alaimo et al., 2022); Modified_csi
(modified cardiac sympathetic index) quantifies sympathetic tone,
and its decrease indicates excessive sympathetic activation, which
is common in high-cognitive-load landing phases. Specifically, LF
(0.04-0.15Hz) is associated with sympathetic activity, and HF
(0.15-0.4 Hz) with parasympathetic activity; an increase in LF/HF
often indicates sympathetic dominance (e.g., high workload)
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(Meyer etal., 2019). A decrease in RMSSD reflects parasympathetic
inhibition, which is associated with high load from complex
decision-making tasks (Castaldo et al., 2015). A decrease in SD2
indicates impaired autonomic regulation, which is common in
acute stress phases such as landing.

The traffic pattern plays a crucial role in pilot training by
simulating a continuous multi-phase task flow that forces pilots
to switch operational priorities (e.g., from thrust adjustment
in the climb phase to altitude control in the descent phase),
thereby enhancing situational awareness and emergency response
capabilities. Additionally, significant differences in task complexity
and time pressure exist across phases (e.g., landing requires
simultaneous monitoring of glideslope and heading signals, while
cruise only requires maintaining altitude and speed), providing
a natural experimental setting for analyzing HRV changes under
different workloads. During takeoff, a high workload has been
shown to cause a decrease in SDNN (standard deviation of normal-
to-normal intervals), which is significantly correlated with the
airspeed error rate. During long-term cruises, reduced TP reflects
fatigue accumulation (Soares et al., 2024). The high-precision
operational demands during the approach reduce the RMSSD of
the baseline values.

Existing HRV-based mental workload assessments have
demonstrated efficacy in aviation, though most studies focus
on single phases (e.g., cruise or emergencies); while some
studies involve multi-phases (Alaimo et al., 2022), they do not
systematically explore the impact of continuous workload changes
across phases in the A320 traffic pattern on HRV features. The
present study develops a multi-parameter assessment framework to
capture pilot HRV dynamics and operational performance across
traffic patterns. In this framework, standardized HRV features are
combined with multidimensional flight performance indicators to
construct a comprehensive feature vector, which serves as the input
for a machine learning classifier to predict workload levels.

2 Materials and methods

2.1 Participants

A study was conducted in which 20 healthy Chinese male pilot
cadets (aged between 21 and 26 years) from the Flight Technology
College of the Civil Aviation Flight University of China participated
in flight simulation missions. All participants had prior experience
with the A320 aircraft, and the total simulated flight time they
had completed (not the duration of this experiment) was 245
£ 32h. The Edinburgh Handedness Inventory revealed that all
participants were right-handed. They had normal or corrected-to-
normal vision and hearing. The experiment was conducted between
9a.m. and 5 p.m. Prior to the commencement of the experiment,
the use of any drug, alcohol, or caffeine was prohibited. Prior to
participation, all subjects provided written informed consent, and
financial compensation was provided for their time. The study was
conducted in accordance with the principles of the Declaration of
Helsinki and received approval from the Ethical Review Board of
Civil Aviation Flight University of China (No. 2024-7).

frontiersin.org


https://doi.org/10.3389/fnrgo.2025.1672492
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org

Yuan et al.

2.2 Experimental equipment

The simulator employed in the experiments was an
A320 flight training device (FTD; Aviation Flight Simulation
Research Centre Co., Ltd.), as illustrated in Figure 1. The A320
FID is a high-quality and cost-effective simulation hardware
equipment solution, with a 1:1 scale simulation of each functional
component. Pilot HRV was monitored using the Polar Verity
Sense, a device that enables contact-free HRV monitoring,
offering a robust alternative to ECG chest straps, as illustrated
in Figure 1.

2.3 Experimental procedures

Before experiment, participants are required to sign an
informed consent form and complete a personal information
form to collect their basic information and flight experience.
Furthermore, a 15-min familiarization period with the FTD was
allocated, during which the subjects were fitted with a Polar Verity
Sense. This was followed by a 5-min rest period.

The formal experiment is described as follows: The selected
traffic pattern comprised runway 02L at Chengdu Shuangliu
International Airport, and the additional information comprised
A320, lightweight, calm or light wind, ceiling and visibility
okay, visibility greater than 10km, dry runway, and no autopilot
throughout the experiment. The flight procedure (illustrated in
Figure 2) for the subjects is as follows:

1) The subjects were required to take off from the Shuangliu 02 L
runway at a heading of 024°, with a target altitude of 4,900 ft.

2) Subsequent to climbing to 2,000 ft, a left turn was to be
executed at a bank of 30° to a downwind heading of 204°.

3) The downwind leg was intercepted, the altitude was
maintained at 4,900 ft, with a track of 204°, and flaps were
set to position 1 at a suitable speed.

4) The initiation of timing was initiated at 45 seconds when
aligned with the runway entrance, and flaps were set to
position 2 at 35 seconds into the timing.

5) Third turn was initiated after 45 seconds, with the descent
rate being controlled at 400 feet per minute.

6) The aircraft should be aligned with the base leg, the base
heading should be set to 294°, the landing gear should be set
to the down position, the flap should be set to position 3, and
then the flap should be set to full.

7) A base turn should be executed when the localizer signal is
one dot, and a turn toward the final approach should be made
with a 30° bank.

8) The aircrafts position on the normal glidepath should
be verified through reference to the glideslope and flight
director, with the objective of ensuring the successful
execution of the landing.

Concurrently, the evaluator documented the instances at
which the participant successfully completed each flight phase,
employing a flight performance scale (see Section 2.4) to record
their performance.
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Takeoff requires precise throttle adjustment to avoid exceeding
engine parameters, while monitoring the aircrafts movement
trends and takeoff decision conditions, resulting in high workload
(Zhang et al., 2019); landing requires simultaneous adjustment of
the descent rate, monitoring of glideslope and heading signals, and
preparation for go-around, making it the phase with the highest
information processing demand and workload. This stage demands
meticulous monitoring of numerous parameters, ensuring both the
safe climb of the aircraft and the clearance of any obstacles. This is
a particularly arduous task for the pilot. It is during this phase that
the highest levels of workload are experienced by the pilot.

During the climb phase, the pilot must increase thrust to
prevent engine damage from prolonged high-power operation and
complete configuration retraction. The pilot must also judge the
timing for the aircraft to level off and ensure that it does not exceed
a pre-selected altitude. The number of parameters requiring focus
is reduced, and the amount of manipulation is decreased, resulting
in a lower workload.

The pilot’s workload is minimal during the cruise phase, with
only the need to maintain the aircraft’s altitude and green-dot speed
and to time the deployment of flaps after passing the landing area.
The aircraft’s state is stable, and the number of parameters to be
monitored is minimal. This phase is characterized by minimal effort
expended by the pilot and minimal workload perception.

The descent phase entails the pilot manipulating the aircraft
and adjusting the throttle to descend at an appropriate rate. It
is required to focus on the aircrafts status parameters, such as
heading, speed, altitude, and N1 RPM, as well as the height-to-
distance ratio, instruments to determine the timing for turns, and
the establishment of the landing configuration. It is imperative
that the pilot ensures the aircraft is on the correct descent path
and descending along a normal gradient. In comparison to the
takeoff and landing phases, the amount of manipulation is reduced;
however, continuous attention to aircraft parameters is imperative.
The workload is moderately reduced.

The landing phase is characterized by the necessity for the
pilot to regulate the aircrafts descent at the optimal rate, whilst
concurrently maintaining vigilant oversight of the aircrafts height-
to-distance ratio, and effecting requisite adjustments. They must
also observe the heading and glideslope signals, adjust the flight
path as required, listen to the tower frequency, and prepare for
a possible go-around at any time. The landing phase necessitates
the management of the aircraft's landing while concurrently
considering the relevant flight parameters and the aircraft’s actual
trajectory. This phase necessitates the most extensive information
processing and effort from the pilot, consequently rendering it the
most demanding in terms of workload.

2.4 Flight performance scale

This experiment focused on the dimensions of flight capabilities
that pilots should possess, as outlined in the literature. It
incorporates the opinions of senior flight instructors from airline
companies and flight training units and refers to the pilot training
syllabus. The indicators for evaluating the flight performance
were determined based on the features of the simulated flight
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Polar Verify Sense

FIGURE 1
Flight simulator and polar verity sense sensor.
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FIGURE 2
Flight procedure of A320 traffic pattern.
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experiment, as shown in Table 1. The evaluation of the programme’s
performance was conducted using a 100-point scale, ranging from
0 to 100 points. Scoring was conducted by a flight evaluator with
rich experience and impartial attitude following the completion of

Frontiersin Neuroergonomics

each phase of the flight phase, and higher the score means better the
flight performance.

The choice of flight performance scores as a workload
assessment indicator is based on the following reasons: (1)
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TABLE 1 Flight performance scale.

10.3389/fnrgo.2025.1672492

Communication Decision

Program Phase

Flight control Navigation

Take off

Climb

Cruise

Descent

Landing

In aviation scenarios, pilot workload is ultimately reflected in
operational performance; flight performance scores (e.g., flight
control accuracy, navigation precision) directly reflect the impact of
workload on task execution, whereas subjective scales like NASA-
TLX are susceptible to individual subjective biases (e.g., differences
in workload tolerance). (2) Existing studies have shown that in
simulated flight tasks, the correlation between flight performance
scores and HRV indices is significantly higher than that between
subjective scales and HRYV;, verifying the indicator’s effectiveness. (3)
The flight performance scale in this study integrates the experience
of senior airline instructors and training syllabi, covering multiple
dimensions of flight control, navigation, communication, and
decision-making (Li et al., 2018), enabling comprehensive capture
of performance differences across different workload phases.

3 Data analysis

3.1 Analysis of the flight performance scale

An analysis of participants’ flight performance scores during
traffic pattern revealed that the characteristics of flight phases, such
as mental workload intensity, operational complexity, and time
pressure, significantly impact pilot performance across a range of
dimensions, including flight control, navigation, communication,
and decision-making (see Table 2 for details). Table 2 presents
the mean =+ standard deviation of flight performance scores
for the participants across each flight phase. Pearson correlation
analysis was used to verify the correlation between workload
and performance, revealing a significant negative correlation
(r = —0.73, p < 0.01) between workload (comprehensively
assessed based on HRV features) and total performance scores,
confirming that high workload significantly impairs operational
performance. This finding serves to validate the hypothesis
that an elevated mental workload has a detrimental effect on
operational effectiveness.

Operational complexity exerts a predominant influence on
flight control scores, with phases characterized by higher dynamic
operational demands (e.g., takeoff and landing) demonstrating
reduced flight control performance. Standardization of tasks
has been shown to enhance navigation and communication
efficiency (e.g., climb and cruise phases) by mitigating human
error risks, resulting in higher scores. The correlation between
decision-making pressure and cognitive resource allocation is also
demonstrated; multitasking scenarios in high-workload phases
result in degraded decision quality, whereas low-workload phases
demonstrate superior decision-making performance.

Frontiersin Neuroergonomics

3.2 Pre-processing of PPl data

Preprocessing raw PPI (pulse-to-pulse interval) data acquired
from POLAR sensors is critical for ensuring the accuracy of
the physiological analysis. The workflow commences with the
cleansing of the data via the implementation of threshold-
based filtering and the detection of statistical outliers, with the
objective of the elimination of physiologically implausible data
points. The temporal continuity of the signal is then ensured
by correcting transient signal losses or artifacts using linear
interpolation (Benchekroun et al., 2022). The presence of high-
frequency noise, attributable to either motion artifacts or sensor
instability, is addressed through the implementation of moving
average filters or Butterworth low-pass filters. The non-uniform
PPI time series was resampled at fixed frequencies to generate
uniformly spaced signals for the purpose of standardized HRV
analysis. Data segments contaminated by intense physical activity
were further excluded based on synchronized accelerometer
thresholds or user-annotated activity logs. All preprocessing steps
were implemented using Python open-source libraries, specifically
including pandas (for data cleaning and management), numpy
(for numerical computation and interpolation), scipy.signal (for
Butterworth low-pass filtering), and hrv-analysis (for PPI data
conversion) (Champseix et al., 2021), ensuring reproducibility.

3.3 HRYV features extraction and selection

After preprocessing the PPI data, HRV features were extracted
using the Hrv-analysis package in the Python environment. A
time window of 30 s was selected, with a 40% overlap between the
adjacent time windows. After processing, a total of 30 HRV features
were extracted, including SDNN, Mean_NNI, STD_HR, Min_HR,
and LF/HE, as shown in Table 3.

Due to the limited number of participants (less than 50)
available for consideration, following the implementation of the
Shapiro-Wilk test (Razali and Wah, 2011), it was determined that
these features did not adhere to a normal distribution. The Kruskal-
Wallis test only determines whether features exhibit statistical
differences across flight phases (p < 0.05), but cannot evaluate
their contribution to workload classification tasks. Consequently,
the random forest algorithm employed to rank the importance
of these HRV features. The specific implementation parameters
of the RF feature importance ranking are as follows: number
of decision trees (n_estimators) = 100, maximum tree depth
(max_depth) = 5, feature sampling method (max_features)
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TABLE 2 Scores of flight performance scale.

10.3389/fnrgo.2025.1672492

Program phase Flight control Navigation Communication Decision-making Average
Take off 84.1£10.2 889+79 852186 855+6.4 854182
Climb 88.7+£9.8 91.2£9.6 89.1£72 91.8 £6.2 90.5£7.6
Cruise 9254+9.4 93.4410.2 93.8+6.5 952442 929+84
Descent 86.9+9.7 89.1 £8.5 873183 88.4 1 8.0 87.9+73
Landing 8124+ 104 88.6 7.2 83.1+09.1 82.7+9.1 82.9+6.9
TABLE 3 HRV features.
‘ Features Definition Features Definition
Mean_NNI Mean value of heartbeat intervals Std_hr Standard deviation of heart rate
SDNN Standard deviation of NN intervals LF Low frequency power
SDSD Standard deviation between adjacent NN intervals HF High frequency power
PNNI_20 NN interval greater than 20 milliseconds per cent LF/HF Ratio of low frequency power to high frequency
power
PNNI_50 Percentage of NN intervals greater than 20 milliseconds LENU Normalized low frequency power
NNI_20 Number of times adjacent NN intervals differ by more than 20 HFNU Normalized high frequency power
milliseconds
NNI_50 Number of times adjacent NN intervals differ by more than 50 TP Total energy of the spectrum
milliseconds
RMSSD Root mean square difference between adjacent NN intervals VLF Energy of the power spectrum
Median_NNT Median of NN intervals SD1 Standard Deviation 1 in Poincare Plot
Range_NNI Range of NN intervals SD2 Standard deviation 2 in Poincare Plot
CVSD Coefficient of variation for continuous differences SD2/SD1 Ratio of standard deviation 2 to standard
deviation 1
CVNNI Coefficient of variation of NN intervals CSI Cardiac sympathetic index
Mean_HR Mean heart rate CVI Cardiac vagal index
Max_HR Maximum heart rate Modified_csi Modified cardiac sympathetic index
Min_HR Minimum heart rate Triangular_index Trigonometric index
= “sqrt} random seed (random_state) = 42; “node impurity 3.4 Machine learning algorithms

reduction” (Gini coefficient reduction) was used as the metric
for feature importance. After ranking the importance of 30
HRV features, the top 5 features that also passed the Kruskal-
Wallis test (p < 0.05) were selected, ultimately identifying
Min_HR, SDNN, SD2, and Modified_csi as key features, as see
in Table 4.

The significance threshold was set at p<0.05, and it was
found that only Min_HR, SD2, SDNN, and Modified_csi met this
threshold. The reason only a limited number of HRV features
showed significant differences may be: (1) Other HRV features
are susceptible to transient interference during phase transitions,
leading to increased variability and reduced statistical significance;
(2) The traffic pattern in this study is characterized by continuous
dynamic workload changes, and indices like Min_HR and SDNN
better reflect long-term (30s time window) autonomic regulation
trends, making them more compatible with the workload changes
of continuous tasks. Thus, these four were selected as the chosen
indicators to reflect the intensity differences across different
flight phases.

Frontiersin Neuroergonomics

3.4.1 Random forest

RF is an ensemble learning method that is based on bagging
(bootstrap aggregation) (Breiman, 2001). It constructs multiple
decision trees and combines their predictions (majority voting
for classification tasks and averaging for regression tasks) to
improve the generalization ability. Its core principles include
sample randomness (each tree is trained using bootstrap sampling)
and feature randomness (each tree randomly selects a subset of
features during the splitting). RF is suitable for high-dimensional
data, robust to noise, but relatively less interpretable, making it
ideal for multi-stage workload classification tasks using pilot HRV
features. The prediction formula for RF is:

y = mode({T (x), T2(x), ..., Tp(x)}) (1)

In the context of pilot workload classification, y denotes the
predicted class label (workload level), x represents the input
HRYV feature vector (e.g., SDNN, LF/HE, RMSSD), T (x) is the
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TABLE 4 Importance and significance of HRV features.

10.3389/fnrgo.2025.1672492

Features Significance Importance Features Significance Importance
Mean_NNI 0.080 0.04064 Std_hr 0.075 0.04197
SDNN 0.044 0.03369 LF 0.178 0.02978
SDSD 0.117 0.02922 HF 0.397 0.03598
PNNI_20 0.655 0.02645 LF_HEF_ratio 0.151 0.02946
PNNIL_50 0.067 0.01789 LFNU 0.151 0.02934
NNI_20 0.779 0.02591 HFNU 0.151 0.02942
NNI_50 0.083 0.01797 Tota.l_power 0.286 0.03157
RMSSD 0.113 0.02943 VLE 0.152 0.03179
Median_NNI 0.091 0.05242 SD1 0.116 0.02944
Range_NNI 0.056 0.03614 SD2 0.046 0.03467
CVSD 0.116 0.03949 Ratio_SD2_$D1 0.111 0.02903
CVNNI 0.055 0.03618 csI 0.111 0.02853
Mean_HR 0.163 0.04406 CvI 0.070 0.03738
Max_HR 0.244 0.05581 Modified_csi 0.026 0.03250
Min_HR 0.017 0.04573 Triangular_index 0.198 0.01798

Bold values indicate HRV features selected by Kruskal-Wallis test (p < 0.05) and random forest feature importance ranking, which are used as key features for subsequent workload classification.

prediction of the b-th tree in the ensemble, B is the total number
of trees.

3.4.2 K-nearest neighbors

KNN is a non-parametric lazy learning algorithm that performs
classification or regression by measuring the similarity between
samples (Halder et al, 2024). The core assumption is that
adjacent samples in the feature space share similar physiological
response patterns. KNN is suitable for small-scale incremental
datasets; however, high-dimensional data (e.g., HRV features) may
suffer from the curse of dimensionality, requiring PCA (principal
component analysis)-based dimensionality reduction to enhance
robustness. Owing to its high computational complexity and poor
real-time performance, KNN is best suited for the short-term
dynamic analysis of pilot workloads, such as detecting transient
stress states during critical flight phases.

j/: mode({y1,y2,...,yk}) (2)

In the equation, y; denotes the workload label of the i-th neighbor
of sample x.

3.4.3 Gradient boosting decision tree

Gradient boosting decision tree (GBDT) (Friedman, 2001)
incrementally constructs decision trees to iteratively correct
residuals (errors) from prior models through additive modeling, a
linear combination of weak learners (decision trees), and gradient
descent, which optimizes the loss function by following the negative
gradient direction. The GBDT excels at capturing cross-phase
cumulative workload effects in flight missions, such as prolonged
stress during flight tasks, but its slower computational speed
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and susceptibility to overfitting necessitate careful tuning of the
learning rate (shrinkage) to control update step sizes and ensure
robust generalization.

T
. -
pi=———y = filx) 3)
14+ei =1
Iy, y;) = —yilog(pi) — (1 — y;)log(1 — pi) (4)
W =y=p ®)

In the equation, p; denotes the predicted probability for the i-th

sample, y; represents the linear prediction value of the i-th sample.
T is the total number of decision trees, and f;(x;) stands for the
prediction output of the ¢-th decision tree for the i-th sample x;.

I(yi» y;) signifies the loss function for the i-th sample, with y; being
the true label of the i-th sample. r?t) indicates the residual of the
i-th sample at the ¢-th iteration, and pgt_l) refers to the predicted
probability of the i-th sample after the (+ — 1)-th iteration.

3.4.4 XGBoost(Extreme Gradient Boosting)
XGBoost, an optimized implementation of the GBDT,
significantly enhances generalization and computational efficiency
by incorporating regularization terms (L;/L, penalties) to control
model complexity and leveraging the second-order Taylor
expansion to refine the objective function (Wang D. et al., 2024).
Key advancements include second-derivative optimization, which
accelerates convergence by utilizing both first- and second-order
gradients of the loss function, and parallelized feature presorting
to expedite split-point selection during tree construction. These
innovations make XGBoost particularly effective for high-precision
dynamic workload prediction, such as the real-time monitoring of
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pilot HRV features to detect abrupt workload shifts during critical
flight phases (e.g., turbulence recovery or emergency maneuvers).

n C T
L= yilogpic)+ Y _ Qf) (6)
i=1 c=1 t=1
In the equation, p;, = dhe represents the class probability,
Y e

where C denotes the number of classes (5 levels in this study: high,
relatively high, medium, relatively low, and low). The predicted
value of a leaf node is given by

Zie], 8ic

3
Wie =~ 7)
te
D ier, Pic + 2
Here, gi, = 2L b, = 2L j ing A (regularizati
» 8ic = gg M = 7, INCIEASING regularization

3}’1‘,5
coefficient) helps prevent overfitting on small-sample pilot data.

3.5 Results

Feature selection was conducted in accordance with two
approaches: (1) Full feature input: using all 30 preprocessed HRV
features (not a feature selection process, only used as a baseline for
comparison); (2) Selected feature input: using 4 key HRV features
(Min_HR, SDNN, SD2, Modified_csi) selected via Kruskal-Wallis
test (p < 0.05) and RF feature importance ranking. The feature
data underwent label encoding and robust standardization (based
on the median and interquartile range) to enhance robustness
against outliers. The dataset was split into a 90% training set
and 10% test set using stratified sampling to maintain the class
distribution. This split ratio was chosen because: the total number
of samples (1,200 HRV feature samples across phases) was small;
a 90% training set ensured sufficient data for model learning,
while a 10% test set evaluated generalization without overfitting. In
order to address issues of dimensionality and class imbalance, the
input data underwent a reshaping process for model compatibility,
with categorical labels being converted to discrete workload
levels and SMOTE (synthetic minority over-sampling technique)
oversampling being applied to balance minority classes. The models
were trained and evaluated via five-fold cross-validation, with mean
accuracy, precision, recall, Cohen’s Kappa, and F1-score calculated
as performance metrics, as detailed in Table 5. This study compared
the performance differences of four machine-learning classifiers
(RE, KNN, XGBoost, and GBDT) when using all HRV features vs.
filtered statistically selected HRV features.

The findings indicate that feature selection significantly
enhances model performance, with all classifiers demonstrating
marked improvements in metrics (Accuracy, Precision, Recall, F1,
and Cohen’s Kappa) after adopting selected HRV features. The
XGBoost model demonstrated the most substantial enhancement
in performance, with accuracy increasing from 50.09% to 66.67%
(4+16.58%), and the Fl-score improving from 37.63% to 58.33%
(4+20.70%). A subsequent analysis of the selected features revealed
that the model performance was ranked as XGBoost > GBDT
> KNN > RF. The findings demonstrate that XGBoost attained
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optimal values for accuracy (66.67%), recall (66.95%), and F1-score
(58.33%), thereby evidencing its superior robustness in the context
of high-dimensional, small-sample HRV data analysis. The Cohen’s
Kappa coeflicient approached moderate agreement, significantly
outperforming other models, indicating an enhanced capability to
mitigate misclassification risks (e.g., categorizing high workload
as moderate).

The feature selection process was undertaken to optimize
the model input space by eliminating redundant noise (e.g.,
time-domain statistic SDNN), while retaining autonomic nervous
This
been shown to alleviate the so-called “curse of dimensionality,”

system-related features. dimensionality reduction has
particularly with regard to the improvement of generalization in
KNN (+43.06% accuracy) and XGBoost (+16.58% accuracy). The
superior performance of XGBoost is attributed to its regularization
and second-order derivative

which
overfitting and accelerate convergence (Ferndndez-Morales et al.,

mechanisms (L1/L2 penalties)
optimization (Hessian matrix), effectively ~suppress
2022). Furthermore, its tree-based feature interaction modeling
has been shown to better capture non-linear relationships
between HRV metrics and workload levels in comparison to
other classifiers.

Table 6 presents the mean values of the HRV features across
distinct flight phases, along with the average flight performance
ratings. These metrics reflect the dynamic associations between
ANS activity and pilot workload. Min_HR was highest during
landing and lowest during cruise. This is due to the fact
that workload (both physical and cognitive) activates the
sympathetic nervous system, elevating overall heart rates and
sustaining Min_HR above baseline levels due to persistent
sympathetic activation. The lower Min_HR during cruise
state). SD2
(long-term variability in Poincaré plots) exhibited a peak

indicates parasympathetic dominance (resting
during cruise and a decline to its lowest level during landing,
indicating stronger long-term autonomic regulation during
cruise and diminished adaptive capacity under acute stress
during landing. Concurrently, SDNN (overall HRV) exhibited
a similar trend, peaking during cruise and reaching its nadir
during landing, thereby aligning with the reduced global HRV
observed under conditions of elevated workload, attributable to
vagal tone inhibition and sympathetic activation (Gilboa et al,
2008).

Combined with the HRV features and flight performance
scores in Table 6, the workload differences across phases are
further verified: the takeoff phase has a relatively high Min_HR
(76.85 bpm) and low SDNN (29.54ms), corresponding to
an average flight performance score of 85.4, reflecting high
workload; the landing phase has the highest Min_HR (78.75
bpm) and lowest SDNN (21.49 ms), with the lowest performance
score (82.9), confirming it as the highest workload phase—
consistent with existing research that landing requires the most
information processing.

Modified_csi was the highest during cruise and the lowest
during landing. Modified_csi values during cruise may reflect
residual sympathetic activity from prior high-stress phases (e.g.,
takeoff). A low workload during cruise promotes parasympathetic
dominance (high SDNN/SD2), facilitating physiological recovery.
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TABLE 5 Comparison of classifier results.

10.3389/fnrgo.2025.1672492

Classifier All HRYV features Selected HRV features

Performance KNN XGBoost KNN XGBoost

Accuracy 0.4829 0.5658 0.5009 0.4883 0.5874 0.5964 0.6667 0.6216
Precision 0.4737 0.5568 0.4984 0.4857 0.5770 0.5787 0.6587 0.6177
Recall 0.4813 0.5713 0.5091 0.4924 0.5802 0.5974 0.6695 0.6259
Cohen’s Kappa 0.4829 0.5658 0.5009 0.4883 0.5874 0.5964 0.6667 0.6216
F1 Score 0.3536 0.4572 0.3763 0.3606 0.4843 0.4956 0.5833 0.5270

TABLE 6 Average values of selected HRV features in different flight phases.

‘ Featuress Takeoff Climb Cruise Descent Landing ‘
Min_HR (bpm) 76.85 59.98 41.86 71.88 78.75
SD2 (ms) 37.57 117.01 357.82 54.52 26.51
SDNN (ms) 29.54 89.09 263.42 43.12 21.49
Modified_csi 333.08 1,365.78 5,595.56 489.07 212.40
Average scores 854182 90.5+7.6 929+ 8.4 879473 829+6.9

Conversely, the sympathetic surge during landing (high Min_HR,
low SDNN/SD2) correlates with cognitive overload and degrades
the decision-making accuracy.

4 Discussions

This study examined the relationship between heart rate
variability (HRV) features and pilot workload across the A320
traffic pattern. The findings confirm HRV as a sensitive workload
indicator. During high-workload landing phases, Min_HR
increased while SDNN and SD2 decreased, reflecting sympathetic
activation and parasympathetic withdrawal (Tulppo et al., 2005).
Conversely, during low-workload cruise, Min_HR decreased and
SDNN/SD2 increased, indicating stronger autonomic regulation.
Moreover, Modified_csi peaked in cruise and dropped in landing,
further verifying the suppressive effect of workload on sympathetic
tone regulation (Jeppesen et al., 2014).

The XGBoost model achieved 66.67% accuracy, which is
lower than results reported in studies focusing on isolated phases
(Wilson, 2002). Three factors likely contributed: (1) the small
sample (20 cadets) limited training data, particularly for high-
workload samples, and residual class imbalance persisted despite
SMOTE (Chawla et al., 2002); (2) workload transitions across
the traffic pattern are continuous, complicating classification
compared with binary contrasts (e.g., emergency vs. cruise); (3)
HRV features are sensitive to individual baseline differences,
and the absence of individualized correction may have reduced
feature discriminability.

Despite these limitations, this study contributes in two
important ways. First, it systematically examined dynamic HRV
changes across the entire traffic pattern, offering a more
comprehensive understanding of workload fluctuations in realistic
operations. Second, it introduced Modified_csi, rarely applied in
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aviation studies, which demonstrated discriminative potential for
workload assessment.

Three main limitations must be acknowledged. The small
and homogeneous sample (male cadets) restricts generalizability;
future studies should include larger, more diverse groups to
validate findings. The simulator-based setting, while controlled,
lacks ecological stressors such as turbulence and ATC demands; in-
flight studies are necessary for external validity. Finally, the reliance
on HRV alone may be insufficient; multi-modal data (e.g., EEG,
eye tracking) should be integrated to improve model accuracy (Jap
et al., 2009).

Building on these findings, this study proposes a real-time
workload monitoring framework. Integrated into cockpit warning
systems, wearable HRV devices can continuously extract features
and feed them into the model, triggering alerts when sustained
high workload is detected. Integration into simulator training could
also provide cadets with real-time workload feedback, helping them
adjust operation rhythm and enhance training efficiency.

5 Conclusions

A systematic assessment of the pilot workload across different
flight phases (takeoff, climb, cruise, descent, and landing) was
conducted using a simulated A320 traffic-pattern flight experiment.
This assessment integrates HRV features, machine learning
methods, and flight performance scores. Thirty HRV features
were extracted from the raw PPI data, and four key features
(Min_HR, SD2, SDNN, and Modified_csi) were identified using the
Kruskal-Wallis test and random forest algorithm to reflect intensity
differences across flight phases. Four machine learning classifiers—
RE KNN, GBDT, and XGBoost—were employed to predict
workload levels based on all HRV features and selected key features,
and their performances were compared. Major conclusions:
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(1) During high-workload phases (e.g., landing), HRV was
significantly suppressed, resulting in the lowest performance scores.
In contrast, HRV recovery and peak performance scores were
observed during low-workload phases (e.g., cruises). This indicates
that HRV features effectively reflect changes in the pilot workload.

(2) The XGBoost model demonstrated the best performance
after feature selection, with an accuracy improvement of 16.58%
and an Fl-score improvement of 20.70% compared with using all
features. This highlights XGBoost’s superior robustness in handling
high-dimensional, small-sample HRV data, and its ability to reduce
misclassification risks.

(3) The workload intensity, operational complexity, and time
pressure of different flight phases significantly impact the pilot
performance in terms of flight control, navigation, communication,
and decision-making. A negative correlation exists between high
workload and overall performance, confirming the hypothesis that
high workload reduces operational efficiency.
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