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Efficient and effective teaming between humans and autonomous systems
requires the establishment and maintenance of trust to maximize team task
performance. Despite advances in autonomous systems, human expertise
remains critical in tasks fraught with deviations from procedures or plans
that cannot be pre-programmed. As autonomous systems become more
sophisticated, they will possess the ability to positively influence interactions
with their human partners, provided the autonomous systems have a real-time
estimation of their human partner’s cognitive state (including trust). In this paper,
we report our results in ascertaining a human’s trust in an autonomous system
via electroencephalogram (EEG) measurements. We report that trust can be
measured continuously and unobtrusively, and that using analysis techniques
which account for interactions among brain regions shows benefits compared
to more traditional methods which use only EEG signal-power. Inter-channel
connectivity network-metrics, which measure dynamic changes in synchronous
behavior between distant brain regions, appear to better capture cognitive
activities that correlate with a human'’s trust in an autonomous system.

KEYWORDS

human-robot interaction, human-autonomy teaming, autonomous robots, intelligent
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1 Introduction

Human-autonomy teams are expected to provide solutions in a wide range of
applications, such as human directed search and rescue (Bashyal and Venayagamoorthy,
2008), hazard containment and mobilization (Nagatani et al., 2013), and space exploration
(Fong et al.,, 2013). These teams consist of autonomous agents that coordinate their actions
with the human partner to achieve a common goal (Mingyue Ma et al., 2018). Despite
the advancements of current autonomous systems, it is the human’s ability to engage their
knowledge and experience that makes human-autonomy teams especially effective in tasks
dominated by dynamic and uncertain conditions.

As autonomous systems become more sophisticated, the interaction between humans
and these systems can be accurately described in terms of human-human teaming.
Teammates must have a shared intent (Lyons et al.,, 2021), confidence in each other’s
capabilities, and similar focus of attention (Schaefer et al., 2017). Therefore, a broader
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investigation of human-autonomy interaction requires an
examination of human factors such as workload, situational
awareness (Musi¢ and Hirche, 2017), and trust. Trust is a complex
and multifaceted construct, yet one in which all humans are
inherently familiar and capable of assessing qualitatively. It
is commonly viewed as a latent variable that is not directly
observable but must be inferred from other measures (Kohn
et al., 2021). Within the context of a team-task, trust is established
and maintained through the bi-directional interaction between
one who evaluates the level of trust (a trustor) and one who
impacts the level of trust (a trustee). Two key elements within
the trusting interaction are the need for risk and the option for
the trustor to be vulnerable. Trust is as a mental attitude or belief
that evolves throughout the interaction, and is dependent on the
interplay between analytic, analogical, and affective processes
(Lee and See, 2004), especially emotional responses to violations
or confirmations of expectations. The trustor continuously
evaluates the trustee’s desire and capability of acting benevolently
to accomplish the team’s task objective. As the task proceeds, each
team member re-evaluates their trust in the other. Trust may
change due to variation of task complexity, the transparency of the
teammate, or a perception of their capability (Mayer and Davis,
1995). Therefore, trust is a dynamic process that is evaluated and
updated constantly.

Humans teammates can establish trust both verbally, but more
importantly non-verbally, through behaviors such as gestures and
cues. However, when a human works with an autonomous system,
the bi-directional interaction is effectively severed. Despite the
universally accepted notion of trust, there is no universally agreed
upon definition (Razin and Feigh, 2023). The human-autonomy
literature frequently defines trust as “the attitude that an agent
will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability” (Lee and See, 2004). The factors
affecting human trust in autonomy have been separated into
three groups: human related, robot related, and environmental
(Hancock et al., 2011). Human trust is initialized by their abilities
such as competency and expertise, and personal characteristics
such as attitudes or propensity to trust robots. Environmental
factors establish the context and complexity of the team task.
However, without the ability to interrogate their partners, the
human’s (trustor) subjective assessment toward the robot (trustee)
is affected by the perception of competence as evidenced by the
robot’s behaviors, reliability, predictability, and the transparency of
its actions.

Studies have shown that a human’s miscomprehension of an
autonomous system’s state, decisions, or course of action can result
in misuse or disuse of the agent, causing a reduction in team-task
proficiency (Parasuraman and Riley, 1997). The correspondence
between a human’s trust in the agent and it’s capabilities is known
as trust calibration (Lee and Moray, 1994). Failures in human
autonomy teaming can be the consequence of trust that exceeds,
or is less than the system’s capabilities. This degradation can be
mitigated if trust between the human and autonomous agent (Chen
and Barnes, 2014) is appropriately calibrated (de Visser et al., 2020).
Furthermore, when the trust in autonomy is negatively impacted,
it can be difficult for the human to regain it (Muir and Moray,
1996; Esterwood and Jr, 2023). Trust changes accordingly with the
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repeated interaction between the human and autonomous system
(Schaefer et al., 2021; Tenhundfeld et al., 2022; Alhaji et al., 2025).
Just as it is critical for the human to comprehend and predict the
behaviors of an autonomous agent, it is equally critical for the
autonomous agent to understand the cognitive state of the human
in order to determine when, or potentially how, to communicate
their own intentions or clarify their behavior (Dehkordi et al,
2021; Scheutz et al., 2022). Therefore, effective and efficient human-
autonomy team-task performance can be significantly augmented
if the autonomous agent has direct access to the internal cognitive
state of the human both unobtrusively, and in real-time.

Neurophysiological correlates of human cognitive state have
been studied using the electrical signals recorded directly from
the surface of the scalp, known as an electroencephalogram (EEG)
(Klimesch, 1999). EEG is a common, non-invasive measure of
brain activity. Scalp voltages, on the order of 100V, correspond
to average local neural activity. Typical EEG measures can be
categorized into time domain features, frequency domain features,
and functional connectivity metrics. Among these features, event-
related potential (ERP) components are commonly used to
understand subjects’ neural responses toward specific task cues.
Recent studies have explored how ERP components are correlated
with trust (De Visser et al., 2018; Dong et al., 2015). The latter study
highlighted that the two ERP components: Observational Error-
related Negativity and Observational Error Positivity can combine
the trust-relevant neural response with the subjects’ assessment of
autonomous performance. However, signal-power is this research
area’s most used frequency domain feature. Historical studies using
EEG primarily investigate the magnitude and spatial distribution
of signal-power within well established bandwidths: Delta (0.5-4
Hz, depth of sleep); Theta (4-8 Hz, working memory and cognitive
fatigue); Alpha (8-13 Hz, relaxation and wakefulness); Beta (13-
30 Hz, attention and motor execution); Gamma (>30 Hz, sensory
integration) (Harmony, 2013). However, it is widely believed that
cognition manifests through interactions between brain regions
over a variety of spatial scales (Nikolaidis and Barbey, 2018).
Synchronization of brain oscillations have been proposed as a key
concept in neural processes underlying cognition (Gregoriou et al.,
2015). Regions of the brain that exhibit statistical interactions in the
absence of established neural pathways are known as “functionally
connected regions.” The location of such brain regions and the
statistical correlations between them establishes a topological
network that can be succinctly described using elements of graph
theory. Descriptive measures of network topology have been widely
applied to EEG data. These analyses reveal non-random topological
aspects, such as high clustering (Bullmore and Sporns, 2009), and
metrics of dynamic functional connectivity may indicate changes
in macroscopic neural activity patterns underlying critical aspects
of cognition (Srivastava et al., 2022; Bales and Kong, 2022; Bales,
2023).

As there is no universally agreed upon definition of trust, there
is also no universal way of measuring it. Much like a human-
human interaction, it is assumed that the actual state of trust the
human has in the autonomy is continuous. Typical methods of
trust measurement are performed using surveys that are applied
at various intervals (Yagoda and Gillan, 2012). These methods
cannot adequately capture the continuous nature of trust. The
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human must remove themselves from the task and attend to the
survey itself. Depending on the specific scenario, attending to a
survey can range from inconvenient to absolutely detrimental to
task performance, which in turn can have substantial impacts on
trust. Similarly, surveys administered at the end of the task may
only capture the human’s net evaluation of trust over the length
of the interaction. These methods lack the ability to measure trust
both dynamically and unobtrusively. There has been substantial
work attempting to indirectly measure trust continuously or semi-
continuously through the use of physiological signals such as
skin conductivity (Walker et al., 2019), heart rate (Waytz et al,
2014), and behaviors such as gaze (Hergeth et al., 2016), and
interaction time (Akash et al., 2020). Nevertheless, behaviors are
proxy measures and specific to the tasks for which they were
measured. Trust is dependent on both cognitive and affective
processes, and as a result, should be reflected in EEG. Cognitive
state determined from EEG is specific to the human’s physiological
response and should generalize across a variety tasks more readily.
In addition, it is possible that relevant changes in internal cognitive
state precede changes in observed behaviors. Future autonomous
system could use cognitive state estimates as soon as they become
operationally relevant to communicate their intent to the human to
support team task effectiveness (Lyons et al., 2021).

Existing work has investigated the neural correlates of trust
by examining how average spectral band power relates to trust
in various autonomous team settings (Wang et al, 2018; Oh
et al,, 2020, 2022; Akash et al., 2018). However, models utilizing
only local neural activity do not address the possibility that
communication between brain regions contributes to cognition,
and that such contributions may occur even in the absence of
changes in regional neural activity (Misi¢ and Sporns, 2016). We
hypothesize that a properly selected set of network-metric features
derived from EEG measurements can predict human trust in an
autonomous system with a higher accuracy than that of EEG signal-
power features. Several studies have explored variations in EEG
functional connectivity as it relates to levels of trust in automated
driving scenarios (Xu et al,, 2022; Seet et al., 2022). However,
these studies did not incorporate network-metrics into models for
trust prediction.

To test our hypothesis, we conducted a human subject
experiment to evoke changes in a human’s trust in an autonomous
system as they perform a team-task. Participants were instructed
to self report their state of trust whenever they wish. We assume
that when a participant chooses to self-report, a change in trust has
occurred. The self report of trust allows the focus on the potential
relevant cognitive processes that occur along with it. This method
contrasts with existing studies in three ways: (1) The participant
is allowed to guide us when to look for potential relevant changes
in trust; (2) The participant is not disengaged from the task to fill
out specific trust surveys at discrete times; (3) There is no aggregate
evaluation of trust upon completion of the task. In addition, there
have been appeals within the neuroscience community to treat the
more peculiar aspects of “inter-subject diversity as signal, not as
noise” (Viola, 2021). We compared the trust prediction accuracy
of multivariate linear regression models using both EEG power
and inter-channel functional connectivity features derived from a
62 channel EEG timeseries. In this study we do not hypothesize
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any mechanisms of EEG generation a-priori, and how specific
EEG features change with trust will vary between individuals.
Consequently, our study is within subject and the models generated
are personalized.

To the best of our knowledge, this is one of the first studies
to incorporate EEG inter-channel connectivity network based
features in the prediction of dynamic changes of trust in a
human-autonomy-team task.

2 Materials and methods

2.1 Experiment

2.1.1 Ethics statement

This experiment was approved by the University of California,
Davis Institutional Review Board. All participants were briefed
on the experimental procedure and provided written informed
consent prior to participating in the experiments.

2.1.2 Participants

Ten students participated in this study: 6 males and 4 females,
aged 21 to 31 years old, (M = 27, SD =
were right handed and reported to have received 5 to 8 h
71, SD = 36).
All completed the full experiment of 20 trials as described in

3). All participants
of sleep the previous night, mean (M =

Section 2.1.3. Each participant was briefed on the function of the
instrumentation and testing procedure. Prior to the experiment,
participants filled out a demographics survey which included
questions regarding consumption of caffeine, prior experience with
robotic or autonomous systems, and video gaming experience. All
participants were compensated at a rate of $20 per hour.

2.1.3 Task

This experiment investigated how changing levels of human
trust in autonomous systems are reflected in brain activity,
specifically, scalp voltages measured with an EEG headset. We
designed our screen based experiment using a ROS simulation
shown in Figure IA. Our custom interaction panel allowed the
human participant to remotely oversee the placement of stowage
onto an equipment rack by a UR5e robotic arm, ostensibly located
on the International Space Station (ISS). Each participant was
introduced to the fictional scenario whereby a critical maintenance
task was to be performed by crew members onboard the ISS.
The complete maintenance task was segregated to create a sense
of interdependancey between individual elements of a broader
team: (1) a procedure planning portion of the ground crew;
(2) the human-robot team, comprised of the participant and
the simulated robot; and (3) the onboard crew. The participant
worked in collaboration with the robot to ensure the proper
placement of stowage required for the onboard crew to perform
the repair/maintenance task. Participants were instructed that the
proper stowage placement was critical to the effective performance
of the maintenance task.

Within the simulation, specific articles of stowage were
represented as colored cubes. The cube colors were designed to

frontiersin.org


https://doi.org/10.3389/fnrgo.2025.1627483
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org

Bales et al.

be maximally distinguishable by participants with colorblindness.
Participants were informed that the procedure planning team had
developed a maintenance plan which required a sequence of cubes
to be placed onto a rack. The sequence was communicated to the
participant through the Placement Request panel. Using a mouse,
the participant would sort the cubes from a Tool Bin by selecting
the proper colored cube and placing it into the Robot Command
queue. Once the queue was full, the participant clicked a button to
start the robot placement sequence. The participant was informed
that a planning algorithm decided how the cubes would be placed
onto the rack. As a means to elicit changes in the participants
trust, the capability of proper stowage placement was modulated
between two levels of placement accuracy: 90% and 30%. These
levels were randomized and unknown to the participant. The
two levels of accuracy ensured that each participant was exposed
to the approximately the same number of correct and incorrect
placements over the course of the experiment. As the robot
performed the placement task, the participant was instructed to
self-report their trust in the robot via a horizontal slider located
directly under the On Board Camera panel. High trust was reported
by positioning the slider to the right, whereas low trust was reported
by positioning to the left. Trust values vary from 0 (no trust)
to 1 (complete trust). Each participant was allowed to determine
when, and by how much they decided to report their level of trust.
Once the robot was finished placing the 4 cubes, the window was
reset and a new sequence of cubes was displayed in the Placement
Request panel.

It was necessary that our simulated robot was perceived by
participants as an individual agent and a teammate, occupying a
distinct role (Wynne and Lyons, 2018) that it performed uniquely,
with capabilities that could be evaluated subjectively. In this way,
the human and robot arm would be working interdependently
toward the common goal. To enforce this, our simulation
ensured that each placement trajectory experienced by participants
throughout the experiment was unique. Each four block placement
was planned independently. While placement accuracy was used
to determine how many cubes would be placed in their proper
positions, the order of cube placement and the trajectories of the
robotic arm were calculated prior to the presentation of the cubes
in the Tool Bin. Each of these trajectories were determined using a
probabalistic roadmap motion planning algorithm, PRM* (Kavraki
et al., 1996) via waypoints assigned above the start and finish
position of each cube. No two trajectories were ever the same. As
a result, participants had to rely on the robot based on both its
performance and behaviors.

Participants self-report changes in trust based upon their
perception of risk, task importance, and capability of the robot.
Changes in self-reported trust are important in both direction
and magnitude compared to previously reported levels. Previous
works have similarly obtained dynamic reports of trust via periodic
prompts to cue participants for a response of an increase, decrease,
or no change in trust compared to the previous response (Desai,
20125 Desai et al.,, 2013). We assume self-report occurs when the
participant has accumulated enough information about the state of
the system and made the decision to report a change trust. If there is
no self-report, we cannot impute a correspondence between a level
of trust and EEG signal versus any other external or internal stimuli
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of brain activity. Self-reported trust is only a single dimensional
measure of a complex concept. We do not claim that self-report
trust levels are comparable between participants. The models
constructed from our data are personalized, and the analysis that
follows is within-subject. Despite limited research exploring the
correlation between the trust slider and other established subjective
trust reporting methods, it has been acknowledged (Kohn et al,
2021) that the likert or sliding scale is functionally similar to
the trust item used in Lee and Moray’s trust and self-confidence
measure for measuring trust in automation (Lee and Moray, 1994).

2.1.4 Apparatus

A detail of the experimental setup is shown in Figure 1A.
Electrophysiological data were collected from each participant
using a EEG recording suite manufactured by g.tec. The system
was comprised of the g.Hlamp amplifier and 62 channels of active
electrodes mounted into a single flexible cap. Gaze position and
pupil diameter were measured using a Tobii Nano Pro screen
based gaze tracker. The gaze tracker captured pixel position of
gaze, pupil diameter and blinks at a sample rate of 60Hz and
is optimized for screen based experiments. In addition, mouse
position and button clicks were recorded. Both the gaze and mouse
data were used to observe the participants’ interaction with the
screen-based task. Additionally, gaze was used during baseline
measurements that preceded each test block, and was crucial in
identifying myoelectrical artifacts in the EEG signal due to blinking.
All data were synchronized and recorded using Lab Streaming
Layer at their native sample rates.

2.1.5 Procedure

Prior to the experiment, all participants received guidance on
executing the human-robot collaborative task using the screen
based interface in Figure 1B. In addition, a training session was
provided that introduced the background of the study including
the scene, where the study took place, and the goal of the
task. Furthermore, detailed instructions on how to evaluate trust
according to the given task was highlighted to the participants. The
instructions included two major constructs: (1) We want you to
report your trust as your attitude that the autonomous system will
help you achieve your goals given the uncertainty and vulnerability
associated with this task (and this task only) (Lee and See, 2004) and
(2) Your trust may include aspects related to the performance of the
autonomous system and also may include your feelings toward the
autonomous system. Thus, the participants were assumed to report
their trust based on the same standard.

After receiving instructions, each participant was outfitted with
the 62 channel EEG headset. The active electrodes were filled with
conductive gel and electrode impedance was verified to be below
5k<2 using the g.tec data acquisition software. Next, the eye tracking
device was calibrated for the particular participant. A complete
experiment consisted of 5 GROUPs* of 4 trials for a total of 20
placement trials as shown in Figure 1C. Prior to the first GROUP

1 Capitalization is used to specify a 4 trial section. A GROUP is shown by

horizontal bars in Figure 1C
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REMOTE HUMAN-ROBOT INTERACTION PANEL

Headset Interaction Panel

Instructions

Move items from the tool bin into the placement queue.

ON BOARD CAMERA

©

FIGURE 1

hour.

TOOL BIN
0000060
00000
PLACEMENT REQUEST ROBOT COMMAND : - [
Please rate your trus uing th scale below
®
. . TRUST SLIDER
Using the mouse, the subject can
et Cubes | Stot Sortin continuously self report their
level of trust in the robot
(A) (B)
Demographic GROUP 1
Surve . i
rest
AICP Survey
... GROUPs 2 through 4 ...

GROUP 5

Details of the experiment (A) an image of the remote test panel used in this study. Each participant interacts with the system via the Tool Bin,
Placement Request, and Robot Command panels. Cube placement is viewed through the On Board Camera panel. The participant signals changes in
their level of trust using the Trust Slider. (B) Each participant was seated in front of a screen displaying the remote interaction panel. Brain activity was
measured using an EEG device. In addition, gaze and mouse clicks were recorded. (C) Detail of the trials performed by each participant during the
experiment. Each participant began with a baseline period, then moved through 5 GROUPs of 4 block placements. After each GROUP, participants
were given an option to take a 5 min rest. Each new GROUP began with a new baseline recording. The total experiment lasted approximately one

a baseline measure of EEG activity was recorded for approximately
4 min: 2 min with eyes open while fixating on a crosshair, and 2
min with eyes closed. The following four GROUPs starting with a
similar baseline measure, but with eyes open/closed periods of 45
seconds each. After each GROUP, a 5 min rest period was provided.
The total experiment lasted approximately one hour. A short video
of a single trial is available (UC Davis CHPS Lab, 2022).

2.2 Methods

We tested our hypothesis by comparing the trust prediction
performance of linear models using regressors selected from two
separate feature types derived from the EEG timeseries: (1) EEG
signal-powers (SP); (2) EEG network-metrics (NM). In this section,
we describe the methods used to generate our data and prepare it
for analysis. The data analysis pipeline is shown in Figure 2.

2.2.1 EEG features
Our EEG headset recorded 62 channels of scalp voltages at a
sample rate of 512 Hz. Two electrode clips were attached to the
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right and left earlobes with an additional ground electrode required
for active impedance control. All EEG signals were referenced to
the right earlobe. The EEG data were filtered with a zero lag 4th-
order bandpass filter (2-100Hz) with an additional notch filter (58—
62Hz) for AC line noise. To reduce the impact of field spread, the
EEG voltage data was transformed to current source density (1 V/
cm?) based on a spherical spline surface Laplacian method (Perrin
etal., 1989). We performed a time-frequency decomposition using
Morlet wavelets (Sanei and Chambers, 2007) over a set Q of 34
frequencies between 9.5 and 83 Hz. The time-frequency transform
yielded a temporal sequence of complex values given by:

W(t, @) = A(t, w;)el? ) 1)

where w; € Q. We extracted frequency dependent power P = A2
(uV?/cm*) and phase ¢ (rad) directly from Equation 1 for each of
the 62 channels in the EEG headset.

As we describe in Section 2.2.1.2, functional connectivity values
are based on EEG inter-channel phase difference. For the sake
of longer term fidelity of EEG signal phase, we chose not to use
independent component analysis (ICA) to identify and remove
myoelectrical artifacts (Makeig and Onton, 2011) due to blink
events, which occurred infrequently. ICA can have indeterminate
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FIGURE 2

Data conditioning pipeline. EEG datawere recorded along with self reported trust. Features derived from network-metrics and single channel powers
were selected as regressors. Linear models were constructed from the regressor sets and the results are compared.

impacts on the phase content of a signal over the long time course
(Thatcher et al., 2020). Additionally, the separate gaze data allowed
us to specifically identify the occurrence of blinks and analyze
their impact on the EEG signal. As a result, we ultimately chose
to exclude frequencies below 9.5 Hz due to the excessive artifacts
generated from blinking.

2.2.1.1 EEG power

Figure 3A shows the 62 channels in our EEG headset and their
locations over the four major lobes of the human brain: Frontal,
Temporal (left and right), Parietal, and Occipital. We segregated
the 62 EEG channels into five non-overlapping subsets located over
these brain lobes. Details of each power-region is given in Table 1
including the names and abbreviations that will be used for the
remainder of this paper. As described in Section 2.2.1, the channel
powers were extracted directly from the time-frequency transform.
Signal-power values for each region were determined as the average
power over all channels in the region subset.

2.2.1.2 Functional connectivity

In this investigation, we used phase synchrony (PS) as the
measure of interaction between EEG electrode pairs. PS values
describe the stability in signal phase difference between two
electrodes over a given period of time. We calculated this quantity
from the instantaneous phase difference between electrode pairs /

Frontiersin Neuroergonomics

and m
A = ¢l — " ®

where ¢ is given by Equation 1. Two electrodes are considered

synchronized over a time period At = t; —ty if | A‘f’rm A¢g"| <C
for an angular threshold C. Rather than using a radian measure of
A¢, we described synchronous behavior using the PS v,,,, formally
defined as follows:

A bl
&"

1
Vim =35 3)

where N7 is the number of discrete time points within a period At.
PS values vary from 0 to 1.

2.2.1.3 Dynamic network-metrics

A network is defined as a binary undirected graph G = (V, E)
comprised of a set of nodes V € (1,2, ..., N¢) with N¢ total nodes,
and an edge set E C {(x,»)|(x,y) € V,x # y}. Each network
node is mapped directly to an EEG electrode. For the remained of
this paper, each electrode/node will be referred to as a channel.?

Hence, inter-channel connectivity refers to the PS values between

2 The term channel is derived from the use of the 10-20 International
Standard for EEG electrode placement and is commonly used for EEG

recording systems.
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TABLE 1 Signal-power and network-metric feature details.

Power region  Associated function

Frontal Fp Behavior, emotions, judgment, planning, problem

solving, concentration, and self awareness.

Frontal central FCp Motor control and sensory perception.

Temporal Tp memory, hearing, sequencing, and organization.

Centroparietal CPp Interpretation of language and words, interpretation
and integration of sensory information, visual, and
spatial perception.

Occipitoparietal OPp | Location integration and visual processing.

Network-metric Description

Assortativity Ay A global correlation between nodes of high degree to
nodes of low degree. Positive values indicate a network
of mutually coupled high degree nodes, whereas
negative values imply high degree nodes couple more

with low degree nodes.

Density Dy The number of existing network edges as a fraction of

the total number of possible edges.

Efficiency Ex A measure of the average inter-connectivity between

different nodes in the network.

Modularity My A global measure of how the network forms separate,

non-overlapping clusters.

Transitivity Ty A measure of the average tendency for nodes to group

together into triangular clusters.

electrode/node pairs. The network can be described via a symmetric
square adjacency matrix A € RNc*Nc_ Elements of A are given as

1 Y > 8ps
Alm = " . (4)
0 otherwise

where V,, is the PS between channels | and m as described in
Equation 3, and the parameter §ps encodes the maximum allowable
change in phase difference. PS values between individual EEG
channels were calculated over a sliding temporal window of At
= 0.4 s (Yoshinaga et al., 2020). PS values were thresholded at
Sps = 0.89, yielding the adjacency matrix as shown by Equation 4.
The presence of a network edge between two channels indicates the
stability in their phase difference. The number of edges connected
to a given node is known as the degree.

The distribution of edges and nodes can be summarized using
global metrics that capture the structure, integration, and resilience
of the entire network. Metrics of assortativity (An), density
(D), transitivity (T), efficiency (Tn), and modularity (My)
were calculated using the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010) in MATLAB. Properties of each individual
metric are outlined in Table 1. Values of network-metrics do not
have unique one-to-one associations with specific distributions of
network edges. Rather, they capture average properties of the entire
network. The resulting time series represented the dynamic changes
in network properties throughout the human-robot team task.

2.2.1.4 Region-networks

The 62 channel EEG system provided an opportunity to
explore complex interconnections between distant brain regions.
In addition to the full 62 channel ensemble, we analyzed six
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region-networks as shown in Figure 3B which lists the names
and abbreviations that will used for the remainder of this paper.
Region-networks were comprised of channel subsets located over
particular brain lobes that are known to functionally interact.
The region-networks shown in Figure 3B are complete graphs and
represent the total number of possible edges that could exist in
that region-network.

2.2.1.5 Feature counts

For a direct comparison of model results between feature types,
the number of features generated from the signal-powers and
network-metrics were identical. The SP features were frequency
dependent powers over the five separate EEG regions. Likewise,
the NM features were the five frequency dependent metrics. Both
sets of EEG derived measures were defined for each of the 34
frequencies in Q for a total of 170 features. The signal-power
regressor set will be denoted as Xgp, and network-metric regressor
set as X]]‘VM, where k is one of the seven region-networks listed in
Figure 3B.

2.2.2.Linear model

In this study, we assumed that the state of trust was based
upon the participants’ perception of risk, task importance, and
capability of the robot to properly perform the placement task.
We additionally assume that both trust and EEG features were
continuous. Therefore, our predictive models assume a consistent
correlation between the m independent variables, EEG features x;,
and the dependent variable, trust T, of the form shown in Equation
5. Regressors were selected from the complete feature sets for each
feature type: x; € Xgp for the SP model, and x; € Xﬁ,M for
the seven region-networks. We constructed a series of multivariate
linear models from each feature set as follows:

m
" =a0—|—2aix? +e (5)

i=1

where T7 is the trust estimate using regressors from one of the eight
feature types, m is the total number of regressors in the model, ag
is a bias term, «; are the coefficients of each regressor xf-‘, and € is
a random noise term. We additionally assumed that interactions
between features were negligible. Personalized linear models were
generated for each participant using regressors selected from the SP
feature set Xsp and seven NM feature sets XII‘\,M for a total of eight
regressor sets for each participant.

2.2.2.1 Feature selection

Selection of the features xf in Equation 5 was accomplished
using a greedy feed-forward search approach implemented using
the MATLAB function sequentialfs.m with root mean squared
(RMS) estimation error as the loss function (MATLAB, 2022).
The algorithm begins with a constant term ay and sequentially
adds regressors until the relative reduction in RMS error met a
selected threshold (Kuhn and Johnson, 2013). Feature selection
was performed for each of the eight feature sets, Xsp and XK, as
described in Section 2.2.1.5. The total number of regressors used for
all models in this study wa m = 30.
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FIGURE 3

Signal-powers and network-metric feature types are generated from the regions shown. (A) The four primary brain lobes, and the five non
overlapping EEG power-regions along with the 62 channels in our EEG device. (B) The seven region-networks analyzed in this study. Region nodes
are shown with larger black markers while network edges are indicated by lines. Each headmap illustrates the complete number of edges that can

exist in each region-network.

2.2.3 Participant trust levels

A major assumption in this study was that elicited changes in
trust occurred over large timescales such they may be captured
by examining average EEG measures at discrete points in time.
Our participants self reported their trust from 0 (no trust) to 1
(complete trust), Ty, € [0, 1]. We use the temporal characteristics
of T, to define a discrete set of time points #,, from which to build
our models. Each participant’s self reported trust over the entire
experiment was collected into a single ensemble.

2.2.4 Model generation

Our method of building and testing the performance of the
linear models was based on N-fold cross validation. Sample points
for each participant over an entire experiment were collecting into
a single ensemble. All sampled points were randomly assigned
., s10). A 10%
holdout, Sy, of data was set aside testing while the remaining
90% Sirain Was used for model building. If we define the set B =
{b1,b2, b3, ..., by, } where b; = {Sirain,Sﬁest}, there are Np = (%)
unique, non-overlapping sets in B. We built and evaluated linear

to one of ten equally sized bins: S = {s1,52,53,..

models using 1,000 randomly selected train/test sets b; € B using
the MATLAB function fitlm.m. For each set b;, we constructed
n = 8 models from the ranked regressor sets: one model for signal-
power, and seven models for the region-networks. Prior to model
construction, all trust and EEG data were temporally aligned to
ensure common time stamps between signals of different sampling
rates. During the model building phase, normality of the residuals
was verified using a Shapiro-Wilk test.
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2.2.5 Statistical analysis

The regressor types, whether SP or NM, are derived from
EEG signals that measure neural activity arising from the same
stimulus. Consequently, we assumed that model performance for
all regressor types represents an ensemble of possible predictive
performance using EEG for each individual participant.

Trust prediction accuracy was evaluated using the root mean
squared error between the self reported and model predicted values
of trust using the test set S, that was unseen during the model
building phase. The root mean squared trust prediction error using
models built from the n" regressor set will be denoted as El} and is
given by

E} Ly " — T2
P= N 1;( "—T) ©6)
where YA"I" is the trust estimate, T; is the true self reported trust,
and Ny is the number of points in the test set. The EY. is the
standard deviation of the trust prediction error. Given the range
of Ty, = [0,1], a value of E'. = 0.25 for example, would indicate
that estimated trust could differ from the actual trust by 25%.
Additionally, we compared adjusted R? to determine how well
regressor types capture the variability in self reported trust.
Despite the presence of normally distributed residuals during
the training phase, there was a high incidence of skewed
distributions of E’ in the prediction results. This trend was also
present for the adjusted R?. Consequently, we compared the
medians of E%. and adjusted R? between SP and NM feature types
using a non-parametric Wilcoxon rank-sum test for equal medians
with a significance level of « = 0.05.
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3 Results

This study proposed that personalized predictive models of a
human’s trust in an autonomous system would perform better using
inter-channel EEG network-metrics over traditional EEG signal-
powers. In this section we present the results as they pertain to
the two feature types. Personalized models were developed for
each of the 10 participants in our cohort. We compared the trust
prediction errors for the SP model type against those of the seven
region-network model types for a total of 70 comparisons.

3.1 Trust response

The characteristics of each participant’s trust reports are
highlighted in Figure 4. The distribution of trust reports is given in
Figure 4A with units of Ty, € [0, 1]. Figure 4B shows the numeric
derivative of trust (ATT[”), which we defined as the change in T},
divided by change in report time. Black dots represent the median
values and the interquartile range (IQR) is denoted by the lower and
upper bars. These distributions highlight the differences between
each participant’s trust reporting preferences. The number of trust
reports for each of the participants is given in Table 2. The number
of reports range from 66 to 281 (M = 158, SD = 69) over the
course of each experiment.

From Figure 4A, we see that each participant’s trust reports
cluster about their own personal medians. Eight of the ten
participants reported T}, over the full span of [0, 1], while Subjects
9 and 10 did not report T}, above 0.6 and 0.8 respectively. Subjects
1 and 7 report much higher T,, while Subjects 6, 8 and 9 report
much lower. Subjects 2 through 5 have median T}, between 0.48 to
0.60. The highest median T, was reported by Subject 1 at 0.74. All
Subjects reported values of T,, = 0, while only Subjects 1 through
8 reported values up to T,,, = 1. Subject 9 and 10 did not report T,
greater than 0.6 and 0.78 respectively.

Figure 4B shows that all participants had relatively symmetric
distributions of AA—T;” centered about 0. The IQR values of ATT;”
vary from minimum values of 0.004 and 0.006 for Subjects 4 and
9 respectively, to maximum values of 0.085 and 0.040 for Subjects 1
and 7 respectively.

3.2 Model performance

To visualize the trust prediction behavior for the different
feature types, Figure 5 details the results for two of the participants
in our cohort. Prediction results from SP and NM regressor
based model are shown for both the highest (FCy) and lowest
performing (AFCy) region-networks. The diagonal black line in
each plot represents perfect prediction. Vertical deviations from
the line are trust prediction errors. These plots highlight some of
the individual differences in trust prediction accuracy that are not
necessarily captured in the E. values. Most notably, Subject 1 has
a large number of reports close to T, = 1, and models using
both feature types performed poorly for high values of trust. In
contrast, models for Subject 4 predict trust well over the entire
trust range.
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3.2.1 Trust prediction performance

Our study investigates the difference in trust prediction
accuracy between linear models using SP and NM regressors.
We evaluated model predictive power by comparing the RMS
trust prediction errors as defined by Equation 6. Data in
Table 3 is given as the difference in median E'. between the SP
model and seven NM models for the region-networks: AE’} =
EF — B}
prediction errors for NM based models and consequently improved

. Positive values of AE’} indicate a smaller trust

trust prediction accuracy. The resulting p values are given for
comparisons that failed the statistical test. Figure 6 illustrates our
main findings. The percent change in trust prediction error, defined
NM,

as %, is given in Figure 6A. Figure 6B shows how many
participants’ models yielded improved trust prediction accuracy
when using NM features. Counts are given for each of the seven
NM region-networks.

Participants with lowest improvement were Subject 3 at 1%-
5%, Subject 5 at 3%-4%, Subject 7 at 3%-7%, and finally Subject
8 at 2%-8%. The greatest improvement was Subject 6 at 55%—
67% followed by Subject 9 at 19%-35%. Of the seven region-
networks, only Fy showed a decrease in RMS trust prediction
error for all ten participants. This was followed by CPOy
and TPOy, which showed decreases in nine participants; FNy
and AFCy in eight participants; and FPOy and FTPOy in
seven participants.

3.2.2 Adjusted R?

In addition to trust prediction error, we calculated the
coeflicient of determination (adjusted R?) (Kuhn and Johnson,
2013) to compare the proportion of variance in self reported trust
that was captured by models using SP and NM regressors. These
results are also shown in Figure 6. Figure 6C gives the difference
in median adjusted R?> between the SP model and seven NM
models for the region-networks: ARi = RiN M= R%p. A positive
value of AR} indicates that NM based regressors better capture
variability in the self reported trust. All median differences were
statistically significant with p < 0.001. Figure 6D shows how
many participants models produced higher adjusted R?> values
when using NM features. Counts are given for each of the seven
NM regions.

Participants that showed positive increases in adjusted R? for
all seven of the region-networks were Subjects 2, 6, 7, and 8.
Subjects 4 and 10 had a single region that yielded a reduction
in adjusted R?> while Subjects 1, 5, and 9 had two regions that
produced a reduction. Subject 3 had the poorest performance with
five of the seven region-networks showing a reduction in adjusted
R?. The participants with the greatest improvements were Subjects
2, 4, and 6, with AR? of 0.2 to 0.45. The participants with the
smallest improvements were Subjects 5, 7, and 8 with 0.05 to
0.10. Subject 3 had only two regions that showed an increase in
adjusted R? at 0.05.

Of the seven region-networks, FCy and TPOy showed
improvements in nine participants. The AFCy region-network
showed improvements in seven participants, while the remaining
region-networks showed improvements in eight participants.

frontiersin.org


https://doi.org/10.3389/fnrgo.2025.1627483
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org

Bales et al. 10.3389/fnrgo.2025.1627483
& N ®
e e . L4
-==Te+4
g 1
(| : °
4 5 6 7 8 9 10
Subjects Subjects
(A) B)
FIGURE 4
Trust reporting details for all participants. (A) Distributions of self reported trust, T,,. (B) Distributions of trust derivative, %.

TABLE 2 Detail of trust reports.

Subject
Variable Statistic
T Count 66 192 219 78 208 104 281 150 178 108
T Median 0.74 0.48 0.52 0.60 0.56 0.31 0.70 0.39 0.21 0.33
% IQR 0.085 0.009 0.034 0.004 0.012 0.011 0.040 0.016 0.006 0.008
Signal Powers FC Network AFC Network
@ Subject 1
A Subject 4
(H‘E _______
©
wn
E
=
B
§ 0.5
e [
o)
—
Ay
0
0 0.5 10 0.5 i
Reported Trust 7,
FIGURE 5
Trust prediction results for two of the participants in our cohort. The results are shown for the SP models, as well as the highest (FCy), and lowest
(AFCp) performing region-networks. The maximum possible trust report at T, = 1 is marked with the horizontal dotted line while the diagonal line
represents perfect prediction.

3.2.3 Patterns in performance and trust reporting
behavior

Patterns in trust reporting behavior and model performance
are summarized in Table 4. The first row orders participants based
upon their average ARMS trust prediction errors across all region-
networks from lowest to highest. Similarly, the second row orders
participants by their average AR? across all region-networks from
lowest to highest. Finally the third row orders the participants by
their % IQR from highest to lowest. Subjects 3, 5, 7, and 8 are
in the bottom half of ranked performance measures. In addition,
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Subjects 3, 5, 7, and 8 are in the top half of ranked ATTt”'.

who reported trust more frequently and with larger magnitudes

Participants
had the lowest performing models using EEG-derived features of
both types.

3.3 Ranking the feature types

In this study we generated personalized predictive models
of trust and quantitatively compared the results within-subject.
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TABLE 3 ARMS trust prediction errors: AEX = ESP —

NMy,
[

Subject

Region-network? 5

Fy -0.014 0.023 0.010 0.063 -0.003 0.425 0.018 0.004 0.052 0.018
FCuP 0.071 0.028 0.001 0.105 0.010 0.523 0.013 0.011 0.059 0.034
CPOL® 0.025 0.026 0.012 0.078 0.007 0.515 0.018 0.019 0.045 -0.017
TPON® 0.091 0.045 -0.005 0.031 0.006 0.462 0.016 0.009 0.070 0.023
FPOy 0.059 0.051 p=0.91 0.011 -0.004 0.491 p=0.32 0.010 0.054 0.020
FTPOy p=0.92 0.053 p=0.07 0.023 -0.003 0.481 0.008 0.011 0.064 0.017
AFCy 0.014 0.023 -0.013 0.051 p=0.46 0.490 0.011 0.004 0.035 0.036

? Unless otherwise stated, all p < 0.001
bThese are the highest performing region-networks as discussed in Section 3.0.3.
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FIGURE 6
Trust prediction error results. (A) Percent changes in RMS trust prediction error between SP and NM model types. Data is shown for each participant
across all region-networks. Positive values indicate that NM features more accurately predict trust. (B) Number of participants with reduction in trust
prediction error using NM features by region-network. (C) AR,% = RENM - Rgp. Data is shown for each participant across all region-networks. Positive
values indicate that NM features more adequately describe the variability in self reported trust. (D) Number of participants with increase in adjusted R?
using NM features by region-network.

TABLE 4 Subject rankings of model performance and behavior.

Subject ranking

%AE~ Low — High 3 5 8 7 10 2 1 4 9 6
AAdjusted R? Low — High 3 5 9 8 7 1 10 4 2 6
2Tn JQR High — Low 1 7 3 8 5 6 2 10 9 4

Bold values indicate subjects with the lowest model performance and highest trust derivative.
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Ranking the performance of each regressor type over all participants. Each participant’s £7 and adjusted R? values are ranked according the
performance of their 8 model types. Higher ranks for adjusted R? indicate better model performance, while lower ranks for E7 indicate better model
performance. (A) E7 ranked for each participant from lowest to highest. The top three performing regions with the lowest ranked E7 are highlighted.
(B) Adjusted R? ranked for all participants from lowest to highest. The top three performing regions with the highest ranked Adjusted R? are
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Regardless of the absolute values of E. and adjusted R2, we assigned
a numeric rank to those values within each participant’s ensemble,
from 1 to 8 for lowest to highest. Ranks for each of the regressor
types were summed across all participants. The summed ranks are
shown in Figure 7 as a stacked bar plots. Summed ranks for E7. are
given in Figure 7A, where lower values for a given regressor type
indicate lower individual E, and therefore, better trust prediction
accuracy. Summed ranks of R2 are given in Figure 7B. Higher
values of ranked R show higher values of R? per participant, and
consequently, models that better capture the variance in T),.

The top three ranked feature types in terms of lower E’, and
higher adjusted R2 are network-metrics generated from the FCy;,
CPOy, and TPOy region-networks.

3.4 Feature importance

The feature selection algorithm described in Section Section
2.2.2.1 added regressors to the model only if they increased trust
prediction accuracy. In this section, we report the number of
occurrences of each feature type within the selected set of 30
ranked regressors. Features were separated into the two main types
described in Table 1. Figure 8 illustrates the distribution of features
types for all participants regardless of frequency. Signal-power
feature counts are shown in Figure 8A. Network-metric feature
counts are given in Figure 8B. Metrics capture the same qualities of
a network regardless of the number of nodes/channels. Therefore,
feature counts for all region-networks were collected together.
Median values of each feature type are given by black dots and the
interquartile range is denoted by the lower and upper bars.

In Figure9, the feature counts are further broken down
into four separate frequency bands: Alpha (9.5-13Hz), Beta (13-
30Hz), Lower Gamma (30-48Hz), and Upper Gamma (48-83Hz).
Frequency bands are labeled at the bottom of each figure, while
the specific features are given at the top. Signal-power feature
counts are shown in Figure 9A, and network-metric feature
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counts are given in Figure 9B. Unlike Figure 9B, the network-
metric feature counts are further separated into the three top
ranked region-networks.

3.4.1 EEG signal-powers

From Figure 8A, the power region with the highest number
of regressors is the CPp at 28%, followed by the Fp at 22%,
OPp at 18%, and then the FCp and Tp regions at 15% and 10%,
respectively. As shown in Figure 9A, when power features are
separated by frequency band, the CPp and Fp regions remain the
top contributors, accounting for 20%-26% of regressors across the
Alpha through Lower Gamma bands. In the Upper Gamma band,
however, the most important regressors shift to the OPp region,
followed by the CPp.

3.4.2 Network-metrics

In Figure 8A, the network-metric types with the highest count
are Ay at 28% followed by Ty at 24% and Ey at 20%. Modularity
(My) and Density (Dy) were selected at 16% and 12% respectively.
When additionally separating the metrics by frequency among
the highest performing region-networks, Ay and Ty are within
the top three selected metrics for all regions and bands with
the exception of CPOy in the Alpha band as seen in Figure 8B.
Similarly, Efficiency is within the top three for all but the FCy in
Lower Gamma, and the CPOy in Beta and Upper Gamma.

4 Discussion

This study investigated methods for predicting dynamic
changes in human trust in autonomy using EEG-based metrics
derived from network science, with the goal of enhancing human-
autonomy interaction in team-task scenarios. Previous work in the
fields of psychology and neuroscience has indicated that cognition
arises through complex interactions between neural regions of the
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Signal-power and network-metric feature importance for all participants. (A) EEG signal-power feature importance. (B) Network-metric feature
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participants are the Ay and Ty.

Signal-power and network-metric feature importance for all participants separated into the frequency bands of Alpha (9.5-13Hz), Beta (13-30Hz),
Lower Gamma (30-48Hz), and Upper Gamma (48-83Hz). (A) EEG power feature importance. The most common signal-power regions selected
among all participants are the Fp and CPp regions. (B) Network-metric feature importance. The most common network-metrics selected among all
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brain, and that these interactions can be reflected in inter-channel
synchrony of EEG timeseries. We posited that features derived from
dynamic inter-channel EEG networks contain information that
would predict a human’s trust in an autonomous system better than
traditional measures of neural activity based on local EEG powers.
We developed linear regression models to predict participants’ trust
levels as they engaged in a joint sorting task with a simulated
robot. Unlike previous work, our analysis focused not on feature
magnitudes, but on their correlation with changes in trust. In this
section we discuss our findings.

We compared the performance between trust models using
SP features, and NM features derived from seven separate region-
networks. Both RMS trust prediction error and adjusted R?
were used to evaluate model performance. Unlike other studies,
participants were allowed to report changes in trust freely,
leading to individual assessments of the autonomous system
that varied across participants. Models were personalized, based
on each individual’s unique experience with the system. Our
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findings indicate that each participant’s trust reporting behavior
ultimately limited the predictive performance of EEG-derived
features. Nevertheless, network-metrics generated from the FCy;,
CPOy, and TPOy outperformed signal-power models regardless
of variations in trust patterns. Furthermore, certain feature types
were consistently selected across all participants.

Signal-power features selected as having the greatest predictive
performance were located in the Fp and CPp regions across the
Alpha through lower Gamma frequency bands, and the OPp region
in the upper Gamma band. Our results are congruent with other
studies that have identified neural correlates of trust in similar brain
regions. For example, Alpha and Beta band power in the frontal
lobe (Oh et al., 2022), and a broad wave band from the frontal and
occipital lobes (Wang et al., 2018). Another study found a reduction
in Alpha power over parietal electrodes predicted decisions to trust
(Blais et al., 2019). We will not interpret the meaning of these
signal-power feature types as this has been explored in many other
studies regarding trust (Hopko and Mehta, 2021).
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Network-metrics selected as having the greatest predictive
performance were Ay, Ty, and to a lesser extent Ey, across
all frequency bands. Several studies have explored changes in
metric values with high and low trust in autonomous driving
scenarios. For example, Seet et al. (2022) found that the Alpha
band clustering coefficient (similar to transitivity) in the right
frontal lobe was greater for more trustworthy system behavior.
Similarly, Xu et al. (2022) found a decrease local efficiency and
small-worldness (impacted by global efficiency) in the Beta band
during less trustworthy system behavior. However, there is little
research that investigates the potential implications of the specific
network-metric values as they pertain to trust prediction. Outside
of the trust literature, the dense functional inter-connectivity in the
frontal lobe, and the dynamic reconfiguration of these connections
has been shown to predict performance in a working memory task
(Braun et al., 2015). In other studies, network-metrics have been
utilized to predict general cognitive ability (Molloy et al., 2025;
Popp et al., 2024).

Interpretation of the network features must begin with the
definition of network edges (Faskowitz et al., 2021). In this study,
edges represent stable phase difference between channels/nodes. In
the sense of an abstract graph, any pair of nodes can be “connected
through” other nodes and edges. However, our edges do not
represent paths of information flow, and the synchronous quality
of oscillations does not exist between channels separated by more
than a single edge. For example, Ey should not be interpreted as
reflecting the shortest paths of communication. Rather, it captures
the small-world characteristics of the network. More specifically,
that clusters of highly connected nodes may be separated by just
one or a few edges. In this way, the combination of Ey along
with our specific edge definition reflects aspects of the network’s
structural organization. On the other hand, groups of edges capture
higher order levels of connectivity. The density of connectivity
within highly connected clusters of nodes is described by Ty while
the type of connectivity between clusters is encapsulated by Ay.
A clique is subset of n network nodes for which every node is
directly connected to every other node, and the existence of a
clique implies that all # channels have a stable phase difference. In
Figure 10 we show examples of the real data that generated the Ay
and Ty values used for trust prediction for one of our participants.
Edge distributions for each of the three top performing region-
networks are given. We used the Bron-Kerbosch Algorithm (Bron
and Kerbosch, 1973) to extract network cliques consisting of three
or more channels. Cliques are color coded and noted by Kj,, where
is nis the degree. In Figure 10A we see a high degree of connectivity
between the central and left frontal channels in Kg. Likewise,
Figure 10B shows dense connectivity between the occipital and left
parietal channels in both K3 and Ks. Finally, Figure 10C illustrates
substantial connectivity between the parietal and right temporal
channel in K7 as well as the occipital and right temporal channels
in K4 and Ks. The presence of any clique implies that the regions
under the EEG electrodes are synchronously integrated and a
strong indication of the distributed nature of brain function. Both
Ay and Ty are greatly impacted by the formation and dissolution
of cliques within the network. In turn, both Ay and Ty have
the greatest impact on trust prediction. Therefore, we see a link
between the reorganization of dense clusters of inter-regional brain
interaction and trust in an autonomous system.
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4.1 Limitations

One limitation of this study is the exclusion of EEG data in
the delta, theta, and lower alpha bands. This decision was not
taken lightly as there is ample evidence that many important
characteristics of EEG activity lie in the theta and alpha bands
(Hopko and Mehta, 2021). Changes in blink frequency that co-
occur with trust report would induce a confound, and we believe
the inclusion of data in these band would have biased the results.
There were individual variations between both blink frequency, and
artifact magnitude among the participants. A major assumption
underlying both the feature selection and linear regression methods
we utilized is the relative orthogonality between features. Allowing
artifacts to remain in the data would have substantially increased
the probability of high feature correlations among EEG channels
located near the front of the head.

Second, the evolution of trust is dynamic and has been shown to
depend on past experience with the system (Rodriguez Rodriguez
et al., 2023). Our assumption of a static relationship between
trust level and EEG measures represents a first order attempt
at modeling what is ultimately a dynamic system. Some of the
biggest performance differences were due to the over report of a
particular trust level, or the rapid cycling between trust reports.
Our assumption was that self-report would occur when participants
had adequately assessed the scenario and made a determination of
their trust level. It is likely that several participants reported trust
while still making the decision about its level. This was apparent in
their trust reporting behavior as values would oscillate until finally
reaching a stable value. Despite this, there was a relative consensus
on which EEG features contained the best predictive information
across all participants. However, the ultimate performance of our
models appeared to rest on how the participants reported trust.
A dynamic model would be better suited at incorporating these
variations into trust prediction.

Finally, similar to many studies, our sample size may not have
been large enough to capture the variability in EEG characteristics
due to age. Future studies should include a larger sample size and
participants from more diverse age groups.

4.2 Implications and future work

In summary, using an EEG recording device to measure
neural activity during a human-autonomy team task, we find
that measures of brain integration, rather than the independent
activity of individual regions, more effectively capture the cognitive
processes that correlate with trust in an autonomous system. We
have shown that meaningful patterns may be found within the
elicited EEG response, and support the proposition that EEG
features can capture cognitive activities that correlate with trust.
However, we did not set out to determine if a specific metric,
bandwidth, or combination of metrics would generalize as a robust
trust measure for our cohort, which would require a significantly
broader study. A wider investigation could also explore the trade-
off between feature stability and model performance. The removal
of certain nodes could have a significant impact on metric values
dependent upon their relative importance within the network
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FIGURE 10
Examples of the networks that generated the metrics selected. Each headmap shows the inter-channel connections that generated the Ay, Tn, En,

and Dy values shown. (A) FCy network and cliques (B) CPOy network and
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cliques (C) TPOy network and cliques.

topology. This type of investigation could only be performed
by studying the topological significance of specific nodes using
granular measures such as centrality or local efficiency (Yu et al,
2018). For real time estimation of trust, models using network-
metrics may be more robust. Myoelectric artifacts will saturate both
power and network-metric values, rendering models much less
effective. Networks comprised of channels in the posterior part of
the head are much less impacted by blinks and other eye and facial
movements. Furthermore, a dynamic model of trust estimation
would likely capture some of the differences in trust reporting
behavior and improve trust prediction accuracy.

Our results indicate that the topology of interactions not only
within the frontal lobe, but also between the temporal, parietal
and occipital regions are effective at predicting trust in autonomy.
In addition, research in the field of cognitive neuroscience has
found evidence to suggest that cognitive control capacity may be
supported by whole-brain network properties and that dynamic
network features may contribute to differences in goal-directed
behavior (Nikolaidis and Barbey, 2018). Consequently, the use
of network-metrics can provide neuroscientific insight into the
mental functions and behaviors that correspond with trust in
human-autonomy team tasks (Medaglia et al, 2015). Future
investigations could investigate how topological properties of the
network change (Bassett et al., 2017; Billings et al., 2021) or identify
brain states (O’Connor et al., 2025) that correlate with trust.

5 Conclusion

This study investigated the performance of EEG-based models
for real time estimation of trust in an autonomous system. We
elicited changes in human trust while recording cognitive activity
throughout a simulated human-robot team task. Participants
were instructed to report changes in trust throughout the
experimental trials. We constructed linear regression models
to predict changes trust using two types of features derived
from the EEG timeseries: (1) Signal-powers over brain regions;
(2) EEG inter-channel functional connectivity network-metrics
derived from signal phase synchrony. Our results show that
measures of neural activity that account for interactions between
brain regions more effectively capture the cognitive processes
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associated with trust than traditional measures of local activity.
In addition, features associated with the dynamic reconfiguration
of tightly coupled connections between the frontal, parietal, and
occipital lobes of the brain had the greatest impact on trust
prediction accuracy.
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