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1mBrainTrain LLC, Belgrade, Serbia, 2School of Food Science and Environmental Health, Technological
University Dublin, Dublin, Ireland

The literature features a variety of tasks and methodologies to induce mental
workload (MWL) and to assess the performance of MWL estimation models.
Because no standardized benchmark task or set of tasks exists, the comparison
of different machine learning (ML) solutions in this field is difficult, as their
performance is significantly dependent on these factors. In this paper, we
present the first comprehensive examination of ML models’ performance in
EEG-based MWL classification across task types. To achieve this, we categorized
ML studies based on the task type used in their experiments and compared
models’ performances across these categories. Notably, a significant drop
in MWL classification accuracy was observed among the best-performing
models in multitasking studies where MWL was rated based on quantitative
task load, compared to those in single-tasking studies and studies where
MWL was subjectively rated. This points to the inherent challenges associated
with estimating MWL in more complex tasks such as multitasking. This is
particularly relevant for practical applications, as real-world tasks typically involve
some degree of multitasking. By comparing ML models’ performances across
task types, this review provides valuable insights into the state-of-the-art of
EEG-based MWL estimation, highlights existing gaps in the field, and points to
open questions for further research.

KEYWORDS

mental workload, electroencephalogram (EEG), machine learning, deep learning,
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1 Introduction

1.1 Background

Mental workload is a multifaceted concept that refers to the extent of the cognitive
resources utilized by an individual to perform certain tasks. Many cognitive processes
contribute to it, including attention, perception, memory, information processing, as well
as planning and task switching for more complex tasks and multitasking. It interacts with
and overlaps with different factors such as stress, fatigue, motivation, etc. It is influenced
by intra individual factors such as cognitive capacity and training, as well as task-specific
and environmental factors.
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1.1.1 MWL assessment methods and the role of
EEG

The complex nature of MWL makes it hard to isolate it from
the interfering factors. Besides, there is no universal standard
for measuring MWL. Instead, there are different assessment
methods that are usually categorized into three main categories:
subjective (self-rating questionnaires such as NASA-TLX (NASA
Task Load Index)), performance-based (error rates, reaction
times, etc.), and physiological methods [Electroencephalography
(EEG), Heart Rate Variability (HRV), Pupil Dilation, Functional
Magnetic Resonance Imaging (fMRI), Functional Near-Infrared
Spectroscopy (fNIRS), etc.].

EEG plays a pivotal role in this field because of its unique
advantages over other methods: high temporal resolution (with
millisecond precision) and real-time and direct brain monitoring,
while being non-invasive and portable, making it well-suited for
various environments. Importantly, a notable insight from some
studies is that EEG signals inherently contain more information
about MWL than other physiological measures (Wilson and
Russell, 2003; Coffey et al., 2012; Hogervorst et al., 2014; Aghajani
et al., 2017; Liu et al., 2017; Cao et al., 2022). To come to this
conclusion, authors developed different machine learning/deep
learning (ML/DL) models to classify MWL levels using different
physiological signals and compared classification performances.
They reported higher accuracies for models trained with EEG
data, indicating that EEG encodes more MWL-related information
compared to other physiological signals.

1.1.2 EEG correlates of MWL and cognitive
mechanisms across task types

Traditionally, EEG spectral features have been used as
indicators of MWL, as certain EEG spectral components have been
found to correlate with the objective cognitive demands of various
tasks. For instance, it has been observed that as task demands
increase, frontal theta power (4–7 Hz) increases (So et al., 2017;
Pergher et al., 2019), while the parietal alpha power (8–12 Hz)
decreases (Pergher et al., 2019). However, despite the correlation
demonstrated in many task settings, EEG spectral features lack
the necessary precision to differentiate between intermediate MWL
levels – those between the lowest and the highest load (Bjegojević
et al., 2024). Another issue is that some spectral bands behave
differently in different contexts. For example, increased theta band
is typically an indicator of a heightened cognitive load, but in
some settings it can be an indicator of increased drowsiness (Lin
et al., 2008; Awais et al., 2014). However, the same research (Awais
et al., 2014) has shown that not all individuals exhibit an increase
in theta band, highlighting variability in physiological responses
across different people.

Importantly, different tasks at hand engage distinct neural
mechanisms and elicit characteristic EEG responses. For
example, memory tasks engage mechanisms of maintenance
and manipulation of information over short durations. These
cognitive demands are associated with increased frontal-midline
theta activity in EEG, reflecting enhanced mental effort (Gevins
and Smith, 2000). Visual cognitive tasks, including spatial attention
and search, involve visuo-spatial attention and top-down control,
and are typically marked by alpha-band desynchronization over

parieto-occipital regions, particularly contralateral to the attended
visual field (Sauseng et al., 2005). Similarly, arithmetic tasks engage
frontal-parietal networks for numerical reasoning and mental
calculation. Increasing arithmetic difficulty induces stronger theta-
band synchronization, particularly over frontal regions (Sammer
et al., 2007). On the other hand, multitasking involves handling
more than one task simultaneously. It requires splitting attention
across multiple tasks and switching between them, introducing
specific cognitive challenges. Namely, splitting attention reduces
the cognitive capacity available for each task, potentially leading
to decreased efficiency, as no single task receives full cognitive
focus (Strayer et al., 2017). Additionally, task switching involves
extra mental effort to disengage from one task and engage with
another, incurring so called “switch costs” that can temporarily
impair performance (Monsell, 2003). It heavily relies on cognitive
control processes supported by the lateral prefrontal cortex
(Dove et al., 2000). These processes are consistently associated
with increased frontal midline theta activity, reflecting elevated
cognitive control demands during task switching (Cavanagh and
Frank, 2014). Also, there is significant variability in how individuals
handle multitasking, with differences in efficiency and strategic
approaches (Crews and Russ, 2020; Morgan et al., 2013). Unlike the
more straightforward nature of single-tasking, multitasking often
demands a dynamic and flexible cognitive strategy, introducing a
layer of complexity that is not present in single-tasking.

As discussed above, different EEG spectral bands correlate
with different aspects of MWL and vary across task types
and conditions. Hence, defining a universal EEG-based MWL
metric remains a challenge. Literature suggests that integrating
information from multiple frequency bands provides a more
accurate estimation of MWL than relying on a single band. For
example, the ratio of frontal theta and parietal alpha power
(Kartali et al., 2019; Pušica et al., 2023), and ratio of beta and
alpha power (Caiazzo et al., 2023) have been shown to correlate
with objective task load measures for many tasks. These metrics
indicate the complex relationships among different spectral bands.
However, modeling these relationships with traditional rule-based
approaches is challenging.

1.1.3 Machine learning approaches and
methodological variability in EEG-based MWL
estimation

Machine learning comes as a solution to handling the
complexity and variability in EEG data—learning from large
datasets to decode the intricate patterns that correlate with
MWL. Unlike traditional rule-based metrics (spectral power
bands), ML algorithms can adapt to non-linear and context-
specific patterns, making them better suited for generalizing
across diverse conditions. Numerous models have been used
for MWL classification, including classical machine learning
methods such as support vector machines, k-nearest neighbors,
and random forests, as well as deep learning architectures like
convolutional and recurrent neural networks (Zhou et al., 2022).
Various EEG preprocessing techniques and feature extraction
methods have also been employed (Zhou et al., 2022). Although
research in this field is expanding (Demirezen et al., 2024), the
methodologies used in the studies vary considerably. According
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to Demirezen et al., 73% of studies used their own datasets,
and they also often exhibit reproducibility issues. ML/DL models
for EEG-based MWL estimation are trained and evaluated on
different datasets that utilize different tasks to induce MWL.
Also, these models vary in terms of robustness against inter-
session, inter-subject, and inter-task variations. Besides, data
collection varies across studies, employing different number of
electrodes, electrode layouts, and signal-to-noise ratios. As a result,
performance metrics are challenging to compare due to these key
methodological differences.

1.1.4 Research gap and motivation for the review
Among the various sources of methodological variability, one

key factor that remains largely unexplored is how task type
and design influence the discernibility of MWL levels through
EEG. This constitutes a critical gap in the field. Researchers
generally overlook this question focusing mainly on achieving high
accuracies. To the best of our knowledge, this literature review is
the first to address this important question.

The objective of this study is to review and analyze the
performance of EEG-based ML/DL models for MWL classification
across different task types, highlight some flawed methodologies in
the literature, and identify open questions in the field.

1.2 Paper structure

The paper is structured as follows:

• Section 2 describes the methods used to conduct this
systematic literature review, including the protocol for
selecting relevant papers.

• Section 3 provides a statistical overview of the selected papers
and presents the categorization of papers.

• Section 4 delves into detailed analysis within the categories
of single-tasking, multitasking, and cross-task MWL
classification studies. It primarily focuses on evaluation
of ML/DL models within these categories with the goal
of comparing MWL classification performance across the
categories. Additionally, experimental design flaws identified
in the literature are systematized in Section 4.3.

• Section 5 concludes the paper by summarizing the main
findings, highlighting limitations of the review, and
identifying open questions for future research.

2 Materials and methods

The review of the state of the art was carried out in a systematic–
structured, predefined, and transparent way, minimizing the risk of
bias in the paper selection process.

2.1 Databases selection

The selection of databases was carefully considered to ensure
a comprehensive capture of the relevant literature. Four extensive

databases were searched: Web of Science, IEEE Xplore, PubMed,
and Scopus. This selection of databases was guided by the objective
to compile a diverse and exhaustive set of literature that spans
across the technical, engineering, biomedical, psychological, and
human factors domains, which are all relevant to the estimation of
MWL through EEG using machine learning.

2.2 PRISMA protocol and keywords

The literature search and review process were guided by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) method (Moher et al., 2010). PRISMA is
a widely recognized framework that outlines a set of items to
include when reporting a systematic review, promoting clarity,
transparency, and rigor.

The search strategy was designed to capture papers on MWL
estimation from EEG using machine learning. The search key
combined EEG terms with a variety MWL descriptors in paper
titles and included ML/DL-related terms, along with terms like
estimation and classification in the abstracts. The time span for
the publication date extended from the earliest recorded date to
August 2024. Due to their strong emphasis on indexing only peer-
reviewed papers, Web of Science and PubMed were searched for all
publications, while IEEE Xplore and Scopus were limited to journal
articles. The specific key syntax was dependent on each database,
but the semantics was the same. The search term was structured
as follows:

Title: (“EEG” OR “Electroencephalography”) AND (“Mental
Workload” OR “Cognitive Load” OR “Cognitive Workload”
OR “Mental Load” OR “Task Load” OR “Task Demand”
OR “Workload”); Title/Abstract: (“Machine Learning” OR
“Deep Learning” OR “feature” OR “signature” OR “Neural
Network” OR “Transformer” OR “Supervised Learning”)
AND (“estimation” OR “classification” OR “assessment” OR
“recognition” OR “prediction”).

The inclusion criteria included peer-reviewed papers written
only in English language. The exclusion criteria ruled out any
papers where:

• The experiment was not described with sufficient clarity to
understand how the task difficulty levels were adjusted in
the experiment. This was identified as an issue affecting the
reproducibility of studies in a review by Demirezen et al.
(2024).

• Numerical results of MWL classification were not provided.
• Results were from the same dataset as already included papers

authored by the same research group, unless they provided
new insights relevant to the research question.

• The paper was a review paper where experimental design of
included papers was not given in detail.

The systematic literature review flow diagram, guided by the
PRISMA methodology, is illustrated in Figure 1. Initially, the search
found 250 records. After the removal of duplicate records, 105
records were retrieved and underwent screening based on exclusion
criteria. The selection led to 83 articles to be included in the
research. These articles underwent a detailed full-text analysis.
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FIGURE 1

Flow-chart of papers selection.

3 Results

3.1 Bibliometric analyses

A bibliometric analysis was conducted to evaluate the
contributions from countries and the number of papers published
per year that were included and analyzed in this review. Over 85%
(72 out of 83) of the analyzed studies have been conducted since the
year 2017. As depicted in Figure 2, publications on this topic show
a consistent upward trend over the years.

Figure 3 presents the contributing countries in this field. The
highest number of studies (32) were conducted in China, followed
by the USA (10), and India (8). The rest of the countries had 5 or
less publications per country.

3.2 Statistical analysis

Distribution of ML/DL models (percentage of analyzed studies
that employed certain models) is visually presented in Figure 4.

Classical ML models such as SVMs, KNNs, and RFs are
the most frequently used, while deep learning models remain in
the minority—indicating that most studies still rely on feature
generation for MWL classification.

Studies employed different EEG acquisition devices with
various layouts. Numbers of channels used across studies are
presented in Figure 5.

Models classified EEG segments of various lengths and various
numbers of classes (MWL levels). As we can see in Figure 6, most
studies used EEG segment lengths below 2 s, opting for higher
temporal resolution of predictions. Also, the decreasing trend in
Figure 7 shows that less studies opted for higher classification
resolution (more MWL levels), with the majority of them using
only two classes.

3.3 Classification of studies

Despite the growing interest in EEG-based MWL estimation
in recent years, the field still lacks an established benchmark or
theoretical constructs against which different MWL estimation
models could be evaluated (Longo and Leva, 2021). There is
no standardized dataset or experimental task for benchmarking
MWL estimation models, like in other fields of machine learning
applications such as image recognition (Deng et al., 2009) or speech
recognition (Panayotov et al., 2015). Consequently, researchers
do not have standardized protocols or guidelines for the design
of experiment for MWL estimation. This practice results in
the utilization of a wide variety of tasks in experiments and
numerous ways MWL levels are adjusted within experiments. This
makes it challenging to consistently and effectively compare the
performance of different models across studies.

With this gap in mind, our research focused on examining
machine learning models’ MWL classification performance for
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FIGURE 2

Numbers of publications across years.

FIGURE 3

Geographical distribution of published papers.

different task types and ways MWL levels were adjusted and
rated (labeled) in experiments. To systematically explore this, we
categorized the studies based on these factors. Our objective was to
analyze how different ML/DL models, as reported in various papers,
perform across these categories.

Based on the task type, studies were categorized into two
big groups: single-tasking and multitasking. Additionally, a third
category was included to analyze papers that examined cross-task
MWL estimation—training models on one task and evaluating
them on different tasks.

Further division was based on the specific task employed. In
the single-tasking category, we identified: memory tasks, arithmetic
tasks, multimedia comprehension tasks, visual cognitive tasks,
and other tasks. In the multitasking category, we identified more
complex tasks including systems control, flight/drive simulation,
MATB, and SIMKAP.

Based on how MWL was rated (labeled), we
distinguish between:

• task load-based (dependent on the predetermined
experimental design)

• subjective MWL-based (dependent on the participants’
subjective MWL assessment after completing parts of the task)

• performance-based (dependent on task performance, e.g.,
error rate)

It is important to say that, even though MWL can be affected
by various factors like stress, noise, temperature, interruptions, and
distractions, our study specifically concentrated on the impact of
task load. Task load can be changed in different ways, depending
on the type of the task. In single-tasking scenarios, task load
levels are typically manipulated by modifying the complexity of
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FIGURE 4

ML/DL models distribution: SVM (Support Vector Machine); KNN
(K-Nearest Neighbors); RF (Random Forest); MLP (Multi-Layer
Perceptron); CNN (Convolutional NN); LR (Linear/Logistic
Regression); Hybrid (hybrid models-combinations of convolutional,
recurrent, and transformer models); LDA (Linear Discriminative
Analysis); Boosting models; RNN (Recurrent NN); Transformers; DT
(Decision Trees).

the task (e.g., in memory task–changing the number of symbols
to be remembered). On the other hand, multitasking scenarios are
different in the sense that task load levels can be modified in various
ways—we identified two subcategories:

• Quantitative task load adjustment: Increasing/decreasing
frequencies of occurrences of subtasks participants had to
manage, keeping the same set of subtasks across different load
levels. This adjustment ensures that while participants engage
with the same subtasks, subtasks’ frequency increases at higher
levels, requiring more frequent and rapid interactions.

• Qualitative task load adjustment: Adding/removing subtasks
at higher/lower levels. This method introduces additional
subtasks at higher levels that are not present at lower levels,
thus expanding the set of subtasks that participants must
manage as the workload intensifies.

• Invariant task load: Task load remains unchanged across the
experiment, hence there are no task load levels. Instead,
MWL levels are derived from subjective ratings (subjective
perception of the task load across participants).

Table 1 summarizes the categorization of the reviewed papers.
The table illustrates where each study fits into the defined
categories, providing a clear overview of the research landscape
concerning task types, MWL rating methods, and task load
adjustment.

Several task names are abbreviated in the table (MATB: Multi-
Attribute Task Battery, ACAMS: Automation-enhanced Cabin
Air Management System, SIMKAP: Simultaneous Capacity, etc.).
Readers are referred to the original studies for detailed descriptions
of each task.

Distribution of task types and subtypes in the review is visually
presented in Figure 8.

4 Discussion

4.1 Evaluation criteria for studies

In the following Sections, EEG-based MWL classification
within the above defined categories will be discussed. The
primary criterion for evaluating these models will be their
classification accuracy. However, other important characteristics
will also be discussed to provide a comprehensive overview of
models’ performance:

• Number of MWL levels: A higher number of levels
enhances the granularity of model predictions but also makes
classification more challenging, potentially reducing accuracy
(Moral et al., 2022).

• EEG segment length: Defines the model’s temporal resolution,
with shorter segments providing higher resolution. However,
too short segments may not capture sufficient information for
accurate MWL classification, potentially reducing accuracy.
The optimal length should be determined based on the
estimated dynamics of MWL fluctuations throughout the
experiment (Maarouf et al., 2024).

• Model robustness: This indicates the model’s performance
consistency across sessions, subjects, or tasks—a key feature
for practical applicability, with higher robustness allowing for
broader usability. We define the following robustness levels in
ascending order, from least to most robust:

◦ Random data split model training/testing: This method
randomly distributes EEG segments between training and
test sets. The problem with this training approach is
data leakage, as segments from the same session or close
temporal proximity may end up in both the training and
test sets, leading to overestimated performance results and
compromising its ability to generalize [Brookshire et al.,
2024; Yin C. et al., 2024 (preprint)].

◦ Cross-session robustness (session-independent
training/testing): Indicates the model’s ability to maintain
performance across different sessions for the same subject.
It indicates robustness against variations that occur in
different experimental sessions, like intrapersonal states
such as fatigue, stress or circadian rhythm, slight changes
in sensor placement or environmental conditions. Studies
that addressed this problem have had participants perform
multiple experiment sessions—the sessions used in the test
set were not used in the training set.

◦ Cross-subject robustness (subject-independent
training/testing): In this case, a model is trained to
generalize across individuals, meaning that it predicts
MWL without being tailored to the unique characteristics
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FIGURE 5

Numbers of EEG channels used in the analyzed papers.

FIGURE 6

Lengths of EEG segments used in the analyzed papers.

of a particular subject. The test set consists of EEG data
from individuals excluded from training.

◦ Cross-task robustness: The model is trained on one task
but tested on a different one. Making model effective
across various types of tasks is particularly valuable
for real-world applications where the model needs to
handle diverse cognitive demands without retraining
for each new task type. However, achieving this level
of robustness is particularly hard due to substantial
differences in brain activation patterns across tasks,
which may not be interpretable or detectable by a
single model (Penaranda and Baldwin, 2012; Walter
et al., 2013). Furthermore, tasks differ in cognitive
load dimensions, such as memory, attention, problem-
solving, and motor skills—each influencing distinct neural
activations. Adapting a model to generalize across such
diverse conditions presents a major challenge in MWL
estimation today.

Percentages of the training/testing procedures used in the
analyzed studies are visually presented in Figure 9, showing that a
significant proportion of studies (37%) employed the random data
split model training/testing procedure which is susceptible to data
leakage issue explained above.

The subsequent Sections will concentrate on analyzing the
categories of studies listed in Table 1, evaluating them based on the
models’ performance criteria and characteristics given above.

4.2 Assessing MWL classification across
different task categories

This Section delves into the assessment of MWL classification
across various task categories, with a primary focus on
differentiating between single-tasking and multitasking settings,
along with a separate category of studies addressing cross-task
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FIGURE 7

Percentage of studies (out of all included) that used a given number of MWL levels for classification (models’ output dimension).

MWL classification. The first two categories inherently impose
different task management approaches: single-tasking allows
individuals to focus on one task at a time, while multitasking
requires frequent attention splitting and task switching, which
potentially triggers distinct MWL-related EEG patterns.

Our focus will be on task load levels that remain within the
cognitive limits of individuals. The main reason for this is that in
scenarios where many errors occur (overload state), it is difficult to
ascertain the participants’ MWL, as they are no longer adhering to
the task requirements. Another reason is that we are interested in
manageable task loads, concentrating on realistic and sustainable
work. This approach enhances the applicability of our findings:
in practical scenarios, it is important that MWL monitoring and
management systems can recognize and respond to incremental
changes in workload (Lagomarsino et al., 2022). This capability
ensures that interventions or adjustments can be made before an
individual reaches a state of overload, promoting efficiency and
preventing burnout.

4.2.1 Single-tasking
Single-tasking refers to task management in which an

individual concentrates on one task at a time, allowing for
sustained and focused cognitive engagement. These tasks can be
further categorized based on their specific type. Categories we
will discuss include memory tasks, arithmetic tasks, multimedia
comprehension tasks, visual cognitive tasks, and other tasks.

4.2.1.1 Overview of single-tasking studies
4.2.1.1.1 Memory tasks

This is the most numerous category, including n-back tasks,
modified n-back tasks and Sternberg tasks. These tasks are
designed to assess and engage the working memory capabilities
of individuals. Participants are presented with a series or group
of stimuli (such as letters, numbers, symbols, images, or sounds)
and are required to recall the stimulus under varying task load

levels. Task load is adjusted by changing task parameters in the
following way:

• n-back: the “n” value, which indicates how many previous
stimuli the participant must remember and recognize, can be
increased to enhance complexity.

• Sternberg: the size of the memory set (the number of items to
be memorized) is adjusted.

Performance metrics like accuracy and reaction time are
utilized. Importantly, the experiments with these tasks are highly
controlled with minimal physical movements. As the task flow
in this case was well segmented, with predefined time slots for
symbols memorization and recall prompts, as well as other task
flow elements, EEG signal window (segment) for classification
was positioned around the stimuli presentation time (symbols
memorization and recall time). This alignment ensures that the
time of the window corresponds to the respective engagement time
with the task, matching the MWL levels precisely. As each task trial
(memorization and recall) lasted only a few seconds, the EEG signal
window length varied from a fraction of a second (0.1–0.5 s) to a
few seconds (up to 4 s). Alternatively, some studies (Aghajani et al.,
2017; Cao et al., 2022; Hernández-Sabaté et al., 2022) opted for
longer window lengths of 20 s or even 40 s, aggregating multiple
trials of the same MWL level. However, better classification
accuracies were generally achieved with shorter windows, lasting
up to a few seconds. Interestingly, the highest reported accuracy
(98.18%) was achieved using a subject-independent (cross-subject
robust) model with four task load levels (Jiménez-Guarneros and
Gómez-Gil, 2020), even though it is generally easier to achieve
similar accuracy with less robust models and fewer classification
levels. The study employed the Sternberg memory task with four
levels, where participants were shown 2, 4, 6, and 8 letters to
memorize. It involved 13 participants, using a 3.5 s EEG window
length, and a recurrent residual neural network architecture and a
domain adaptation method.
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TABLE 1 Classification of papers.

Single/Multi
Tasking

MWL Rating Method Task Type Task Subtype Publications

n-back

Gevins et al., 1998 Grissmann et al., 2020

Brouwer et al., 2012 Gupta et al., 2021

Mühl et al., 2014 Cao et al., 2022

Aghajani et al., 2017 Aksu et al., 2024

Dai et al., 2017 Beiramvand et al., 2024

Samima and Sarma, 2019

Memory task
Modified n-back

Kutafina et al., 2021 Hernández-Sabaté et al.,
2022

Sternberg task

Roy et al., 2016 Jiménez-Guarneros and
Gómez-Gil, 2020

Jiao et al., 2018 Kwak et al., 2020

Zhang et al., 2019 Zhou et al., 2023

Qiao and Bi, 2020 Havugimana et al., 2024

Single-tasking Task load-based Sarailoo et al., 2022 Yoo et al., 2023

Mazher et al., 2022
Multimedia comprehension

Intelligence test Friedman et al., 2019

Yu et al., 2015 Liu Y. et al., 2023

Visual cognitive task Ladekar et al., 2021 Pušica et al., 2024a

Sahin Sadik et al., 2022 Li H. et al., 2024

Dimitriadis et al., 2015 Sharma et al., 2021

Spüler et al., 2016 Yedukondalu and
Sharma, 2023

Arithmetic Plechawska-Wójcik
et al., 2019

Yan et al., 2023

Lu, 2024 Hemakom et al., 2024

Ramaswamy et al., 2021

Performance-based Xiong et al., 2020

Single/Multi
Tasking MWL Rating Method

Task Load
Adjustment

Method

Task Subtype
Publications

MATB Zhou et al., 2023 Chen Y. et al., 2024

Systems control

Yin and Zhang, 2017 Yang et al., 2019

Qualitative task
load adjustment:
adding/removing

subtasks

Tao et al., 2019

Ling et al., 2001 Zanetti et al., 2022

Task load-based Blanco et al., 2018 Pei et al., 2021

Flight/drive simulation Dehais et al., 2019 Liu X. et al., 2023

Becerra-Sánchez et al.,
2020

Wang Y. et al., 2024

Memory and typing Chiang et al., 2023

Multitasking Quantitative task
load adjustment:

increasing/decreasing
frequency of

subtasks

MATB

Chandra et al., 2015 Qu et al., 2022

(Continued)
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TABLE 1 (Continued)

Single/Multi
Tasking MWL Rating Method

Task Load
Adjustment

Method

Task Subtype Publications

Hefron et al., 2018 Ke et al., 2023

Salaken et al., 2020 Salvan et al., 2023

Qu et al., 2020 Yan et al., 2023

Ke et al., 2021 Jin et al., 2024

Albuquerque et al., 2022 Pušica et al., 2024b

Systems control Li H. et al., 2024

Flight/drive simulation Fan et al., 2018

Das Chakladar et al.,
2020

Shao et al., 2024

Zhu et al., 2021 Yan et al., 2023,

Subjective MWL Invariant task load SIMKAP Fan et al., 2022 Wang Z. et al., 2024

Raufi and Longo, 2022 Raufi and Longo, 2024

Yedukondalu and
Sharma, 2023

MWL rating
method

Publications

Baldwin and Penaranda,
2012 (memory ↔
memory ↔ memory),

Cabañero Gómez et al.,
2021 (memory ↔
Stroop)

Ke et al., 2015 (memory
↔ memory)

Hernández-Sabaté et al.,
2022 (memory ↔ flight
simulation)

Cross-task studies Task load-based Dimitrakopoulos et al.,
2017 (memory ↔
arithmetic)

Guan et al., 2023
(memory ↔ memory)

Zhang et al., 2019
(memory ↔ arithmetic)

Yin Z. et al., 2024
(SIMKAP ↔ ACAMS ↔
arithmetic)

Kakkos et al., 2021
(memory ↔ arithmetic)

Chen J. et al., 2024
(MATB ↔ memory)

4.2.1.1.2 Mental arithmetic tasks
These tasks are designed to test participants‘ ability to perform

basic arithmetic operations mentally. Typically, participants are
shown a simple arithmetic expression, usually addition or
subtraction of two integers and must calculate the answer in
their heads and then decide if a presented number matches
the solution to the expression. To adjust the task load, task
parameters such as the number of digits in the numbers are
varied. For instance, the number of digits in numbers can be
increased to enhance complexity (e.g., level one could be the
addition of two one-digit numbers, level two could be the addition
of two two-digit numbers, etc.). As with memory tasks, these
arithmetic tasks are conducted under controlled conditions to
minimize physical movement. Performance metrics like accuracy
and reaction time are utilized. The task flow was structured,
with predefined intervals for calculating expressions and other
task-related activities. Accordingly, the EEG signal window for

classification was aligned with the period of expression calculation,
ensuring that the window timing matches the actual engagement
time with the task and corresponds accurately with the MWL
levels. Typically, these time windows ranged from 0.5 s to 5.5 s.
Dimitriadis et al. (2015) implemented five task load levels of an
addition task, where participants added two numbers with varying
total digit counts and obtained a high classification accuracy of
96%. However, the model was trained individually for each of 16
participants, and the task trials (EEG segments) were randomly
split between training and test sets. This random training/test
data partitioning approach led to data leakage, undermining the
reliability of the reported accuracy. On the other hand, Xiong
et al. (2020) reported a very high subject-independent classification
accuracy (97.2%) classifying two MWL levels based on subjects’
error rates (low vs. high error rate) using SVM model. The
task consisted of subtraction of two-digit numbers from four-
digit numbers.
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FIGURE 8

Distribution of task types among analyzed papers.

4.2.1.1.3 Multimedia comprehension tasks
Significant due to their widespread occurrence in everyday

life. Namely, audio and visual stimuli are present in both leisure
and work activities, ranging from movie watching and video
games playing to engaging with educational materials and
online meetings. Substantial potential for practical applications
include adaptable educational material for optimal knowledge
acquisition and student engagement, evaluation of lecture
understandability, or assessing the effectiveness of presentation
styles or designs. Steps in this direction have been made by
Sarailoo et al., 2022, who classified EEG segments from 30
participants watching multimedia educational videos of two
categories: videos adhering to optimal educational design
principles and those that violated them. An accuracy of 84.5%
was achieved using SVM. Similarly, Yoo et al., 2023 classified
educational video materials labeled as more and less complicated,
attaining an accuracy of 87% for binary classification using a
bidirectional Long Short-Term Memory (LSTM) architecture
with an attention mechanism. However, the models used in these
studies were trained with a random data split between training
and test sets, which compromises the robustness necessary for
practical relevance.

4.2.1.1.4 Virtual tasks
Many everyday activities include visual cognition: reading,

navigation, visual search, etc. Possible applications include
optimizing user interface designs and improving human-computer
interaction by adapting visual complexity to cognitive capacity.
An interesting task designed by Li Z. et al. (2024) tested image
recognition with different levels of blurriness. The paper reported
88.13% accuracy for subject-independent 3-level classification of 1 s
EEG segments. However, the highest accuracy (96%) was reported

FIGURE 9

Percentages of the training/testing procedures used in the analyzed
studies.

by Sahin Sadik et al. (2022), employing a well-known Stroop
test (naming colors of the shown words), classifying 5 s EEG
segments into 5 levels using subject-independent model training.
However, the paper does not specify whether feature selection
was performed in subject-independent way or on the full dataset
(potential data leakage).

4.2.1.1.5 Other tasks
An experiment that closely mimics a common industry setting

was conducted in a simulated manual assembly line environment,
where 23 participants assembled hand-sized items while following
visual instructions of different complexity (Pušica et al., 2024a).
An accuracy of 90.8% was achieved for subject-independent binary
classification using CNN model and 10 s EEG segments. It is
also worth mentioning a non-standard type of task utilized for
MWL assessment in the form of an intelligence test, involving
many task load levels. Namely, Friedman et al. (2019) applied an
intelligence test comprising 36 tasks (levels) of increasing difficulty
and performed classification using the XGBoost algorithm. They
achieved a surprisingly high classification accuracy of 70%, despite
the large number of classes. However, similar to the multimedia
comprehension studies, they used the same random data split
strategy, leading to issues with model robustness that compromised
the relevance of the results.

4.2.1.2 Summary of single-tasking studies
In this Section, we have explored various task categories

within the single-tasking framework, focusing on tasks’ design,
different levels of robustness, number of MWL levels, and MWL
classification accuracy. Here, we highlight the most relevant
solutions across categories, based on their robustness and
classification accuracy:

• Memory task: 98.18% accuracy, 4 levels, subject-independent,
64 EEG channels, 1–45 Hz bandpass filter, topographically
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mapped time-frequency power features, recurrent-residual
NN with custom domain adaptation (Jiménez-Guarneros and
Gómez-Gil, 2020).

• Mental arithmetic task: 97.2% accuracy, 2 levels, subject-
independent, 23 EEG channels, 0.5–45 Hz bandpass filter,
spectral band power features, SVM model (Xiong et al., 2020).

• Visual task: 96% accuracy, 5 levels, subject-independent, 16
EEG channels, 50 Hz notch filter, spectral power band features,
classification and regression tree model (Sahin Sadik et al.,
2022).

4.2.2 Multitasking
4.2.2.1 Criteria for categorization of studies

To assess the effectiveness of models in multitasking scenarios,
we apply similar criteria used in single-tasking studies: classification
accuracy, model robustness, and number of MWL levels classified.

However, given the complex nature of multitasking, studies will
be categorized based on the task load levels adjustment method and
MWL rating (labeling) method. As explained in Section 3.3:

• Based on how task load levels were adjusted, we identified
two methods:

◦ Adding/removing subtasks
◦ Increasing/decreasing the frequency of occurrences of a
constant set of subtasks

• Based on how MWL was rated (labeled), we
identified three methods:

◦ Task load-based
◦ Subjective MWL-based
◦ Performance-based

4.2.2.2 Issue of indirect learning: models recognizing
subtasks instead of MWL

An important consideration is the risk of models learning to
recognize subtasks instead of actual workload levels, which can
compromise the validity of MWL classification. Namely, it has
been shown that EEG can differentiate between various cognitive
activities (Gysels and Celka, 2004; Millan, 2004; Lee and Tan,
2006; Tavakolian et al., 2006; Pušica et al., 2024b). This feature
allows ML/DL models to detect the presence or absence of specific
subtasks in multitasking scenarios. Consequently, if task load levels
are adjusted by adding or omitting subtasks (qualitative task load
adjustment), models trained for MWL classification may indirectly
learn to recognize subtasks, rather than actual MWL levels. Hence,
models may use the learned information about subtasks’ presence
to deduce about task load (MWL) level.

Obviously, we want to avoid this situation, as we specifically
want to estimate MWL levels. However, in the model training
phase, there is no way to prevent ML/DL models from inferring
MWL levels in this indirect way. The most effective way to address
this issue is by focusing on experimental design—specifically, by
adjusting task load levels through increasing or decreasing the
frequency of occurrences of a constant set of subtasks (quantitative
task load adjustment). This way, as the only difference between

levels is the frequency of the subtasks, and each level maintains the
same set of active subtasks, we can be certain that any variability
in EEG is solely due to the actual MWL imposed by the task load.
For this reason, we will focus on studies that have followed this
experimental design approach (quantitative task load adjustment).

4.2.2.3 Overview of multitasking studies
Despite the fact that there are many different tasks within

the multitasking category, a common characteristic they all share
is the composition of multiple subtasks, which allows us to
analyze them collectively. Some widely used tasks in this category
found in the literature include Multi-Attribute Task Battery
(MATB) (The multi-attribute task battery for human operator
workload and strategic behavior research—NASA Technical
Reports Server (NTRS), 1992), Simultaneous Capacity/Multi-
Tasking task (SIMKAP) (Bratfisch et al., 2019), driving/flying
simulations, systems control simulations, etc.

4.2.2.3.1 MATB
Task description

MATB is a simulation tool developed by NASA, designed
to assess and research human performance and workload in a
controlled multitasking environment. The task is designed in a way
that it mirrors the demands faced by operators in settings such as
aviation and spaceflight. The MATB consists of four subtasks that
simulate different activities:

• Tracking: a continuous task where the user must keep a
randomly moving target aligned with the center of the screen
using a joystick.

• System Monitoring: the user monitors a panel of instruments
that occasionally require the user to respond to changes or
anomalies by pressing specific buttons.

• Resource Management: a process control task designed
to simulate emergencies, allowing for various problem-
solving strategies. The user must maintain the liquid levels
within specific boundaries by controlling valves. Valves may
malfunction, requiring a strategic adjustment in the tank
system. Deviations from the designated liquid levels in either
tank are considered errors.

• Communications: The user must respond to radio
communications by listening for specific call signs
and responding by entering appropriate input via the
task interface.

The battery is adaptable, allowing researchers to adjust the
difficulty of the task to match various study needs.

Analyzed studies
Ke et al. (2023) used a combination of three out of four MATB

subtasks—system monitoring, tracking, and resource management
to set two task load levels—low and high. In the high-level
block, the frequency of the three subtasks was increased compared
to the low-level. A rest block was also recorded as a third
level. A Support Vector Machine (SVM) model was trained in a
session-independent way, classifying EEG segments of 10 s into
three classes—rest, low, and high. Results revealed significant
classification overlap between low and high levels, with notably
poorer accuracies for these levels compared to the rest level and
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the overall accuracy of 59%. This indicated the model’s difficulty
in distinguishing between the two levels that varied only in
subtask frequencies. Similar conclusions can be drawn from the
study of Salvan et al. (2023), which also used three out of four
MATB subtasks in two MWL levels, with frequencies of subtasks
varying between the levels. They trained seven ML models with
spectral EEG features and found that random forest model achieved
the highest accuracy for subject-independent classification (76%).
Pušica et al. (2024b) presented similar problem with distinguishing
two highest task load levels that varied only in frequencies of
all four MATB subtasks. 50 participants were involved and a
CNN model was used to classify 10 s EEG segments, achieving 4-
class classification accuracy of 66.2% in session-independent case.
Although satisfactory accuracies were obtained for resting level
and low level, confusion matrix showed high confusion between
medium and high levels. Another study in this category was
conducted by Albuquerque et al. (2022), that used MATB with
two difficulty levels, with the same principle applied to the design
of the two levels, but with all four subtasks active. A random
forest estimator was trained in the subject-independent way. The
experimental setup included an interesting additional variation:
some participants performed the task running on a treadmill
and some performed it cycling on a static bike, introducing
physical component. The model classified 4 s EEG segments into
the two classes, achieving an accuracy of 70.8% for the treadmill
participants and 56.7% for the static cycle participants. This big
disparity in accuracies suggests the impact of the physical load
on the detectability of MWL through EEG. It is noteworthy, also,
that some studies have achieved higher accuracies by configuring
task levels within the zone of task overload. For instance, Hefron
et al. (2018) specifically adjusted high task level for each individual,
so that the error rate at this level was statistically significantly
higher than the rate in the low level. They used MATB with all
subtasks active, but adjusted subtasks’ frequencies in the high-
level block so that individuals, previously trained to the asymptotic
performance, make more errors, pushing them toward an overload
state. They trained a subject-independent model and achieved
accuracies of over 80% for EEG segment lengths of 10, 20, and 30
seconds. Similar results have been reported by Jin et al. (2024), who
designed task difficulty levels so that they were drastically different.
Specifically, MATB subtasks in the high-level block have been
activated 24 times more frequently than in the low-level block. They
also compromised the temporal resolution of MWL predictions by
opting for lengthy EEG segments of 3.5 m, which resulted in the
highest accuracy (92%). On the other hand, some studies adapted
a different approach to designing task load levels. Namely, Zhou
et al. (2023) designed three difficulty blocks by combining different
MATB subtasks. In their experiment, the low level involved only
the system monitoring and tracking subtasks, the medium level
added the resource management subtask, while the hard level had
all four subtasks active. This approach made the levels not only
quantitatively, but also qualitatively different, as higher blocks
had some activities that were not present in the lower levels.
For example, hard level engaged participants’ auditory capacity
with communications subtask, while it was not the case for
low and medium levels. As already explained in Section 4.2.2.2,
this undermines relevance of the classification results, as models

may learn to recognize blocks by detecting specific subtasks,
rather than by actual MWL levels. In their study, the model
was trained in a subject-independent manner and classified 2 s
EEG segments with an accuracy of 75%, using a deep domain
adaptation method.

4.2.2.3.2 SIMKAP
Task description

SIMKAP is a commercial psychological assessment tool
developed to evaluate an individual’s multitasking capabilities and
stress tolerance. Primarily used to screen individuals for roles
that demand high multitasking skills, the test is also utilized in
various research settings focused on multitasking. The SIMKAP
multitasking test involves tasks where participants need to identify
and mark identical items across two separate panels, while
concurrently, they must answer auditory questions that could
involve arithmetic calculations, comparisons, or data lookup.
Certain auditory questions are given to be answered later, requiring
participants to keep track of time using a clock displayed in the
upper right corner. The sequence of questions and tasks is the
same for all participants. The studies we analyzed used the public
Simultaneous Task EEG Workload Data Set (STEW) (Lim et al.,
2018) that involved 48 participants. The dataset comprised 2.5 m.
of active task engagement and the resting (baseline) part of each
of 48 participants. Upon task completion, participants were asked
to separately rate their perceived MWL on a scale of 1 to 9 for
both the resting state and active engagement with the task. These
subjective rates were taken as the ground truth for MWL models
training. Differently from the studies that used MATB and that
modified task load levels to impose different MWL levels, here the
task load was constant while the perceived MWL, which varied
among participants, served as the measure of MWL.

Analyzed studies
Raufi and Longo, 2024 applied feature extraction alongside

ML models, using subject-independent training, to classify EEG
segments into two MWL classes. They mapped the 1–9 self-rated
MWL scale into two levels, labeling scores 1–4 as low MWL
and 6–9 as high MWL, achieving an accuracy of 90%. However,
clustering the dataset this way reduced the MWL classification
problem to simply differentiating task condition from the resting
condition. Indeed, in the STEW experiment, scores of 1–4 were
predominantly assigned to the resting condition, while scores of 6–
9 were assigned to the task condition. On the other hand, Fan et al.
(2022) mapped the 1–9 scale into three levels, in the following way:
1–3 labeled as low, 4–6 as medium, and 7–9 as high. They used a
recurrent CNN with raw EEG as input to classify EEG segments
into the three classes, trained the model in subject-independent
way, and achieved an accuracy of 66.8%. Lim et al. (2018) reported
similar results, with high classification accuracy for low MWL
class (which mainly included resting condition segments) and
big overlapping between medium and high classes. It is worth
mentioning that Fan et al. (2022) also explored training the same
model architecture in a subject-dependent manner, achieving a very
high classification accuracy (99%). However, this training approach
led to serious data leakage issues. Specifically, each participants
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in the study was involved in just one task block and one resting
block, resulting in only one label for the task and one for the
resting condition per participant. This is problematic because EEG
patterns are known to be distinctive enough to identify individuals
(Ma et al., 2015; Valizadeh et al., 2019). So, in subject-dependent
classification, where the model is trained and tested on data from
the same subject, the model could inadvertently learn to recognize
a subject (and the associated MWL rating) based on subject’s
unique EEG signature, rather than accurately estimate MWL from
EEG. This leads to drastically overestimated high classification
accuracy. Yedukondalu and Sharma (2023) also reported high
classification accuracy of 4 s EEG segments of 98.1% with the same
dataset. However, the training approach they used was random
split of segments between training and test sets, raising the same
concerns as found in subject-dependent case of Fan et al. (2022) and
undermining the validity of the results. On the other hand, a study
by Wang Z. et al. (2024) reported exceptional accuracy for cross-
subject robust classification using an attention-based recurrent
fuzzy network. Similar to Fan et al. (2022) they clustered the 1–
9 scale into three levels, but achieved a much higher accuracy of
94.4%. Overall, among the papers that focused on the classification
of self-assessed MWL levels, this paper stands out with its best-
performing model.

4.2.2.3.3 Other tasks
Among the studies that employed other tasks, we highlight two

studies that modified levels in a quantitative manner (by increasing
or decreasing the frequency of subtasks) but rated (labeled) these
levels differently. Firstly, in the experiment by Li H. et al. (2024),
participants engaged in an air traffic management task, where the
two highest levels (out of four) differed in the number of planes
and emergency actions to be managed. The SVM model failed to
distinguish between these two levels, leading to a low accuracy of
55%. Secondly, in the experiment by Fan et al. (2018), participants
participated in a simulated driving task with variable driving
conditions. Although the conditions objectively varied across levels,
the levels were rated and labeled subjectively by a professional.
After assigning a rating to each block of the exam, the ratings
were categorized into two MWL levels based on a predetermined
threshold. Using this approach, the KNN model successfully
distinguished between the levels, achieving a high accuracy of 86%.
Both studies trained models in a subject-independent way and had
quantitatively different task levels. However, the study by Fan et al.
(2018) that rated levels based on subjective ratings achieved much
higher accuracy.

4.2.2.4 Summary of multitasking studies
In this Section, we have examined various tasks within the

multitasking framework. Our discussion covered the design of
tasks, adjustments in task load, alongside assessing different levels
of robustness and MWL classification accuracy. We explained
the influence of task load adjustments on the validity of MWL
classification models. Specifically, we argued that, if task load was
adjusted qualitatively, (i.e.,) by adding/removing different subtasks,
the model may learn to detect presence of the subtasks, and
hence indirectly recognize task level. This practically means that
it may have high MWL classification accuracy while not actually
learning what was expected of it. That is the reason why, for the
purpose of comparison of results across settings, we were interested

in the experiments where task load was adjusted quantitatively,
(i.e.,) by adjusting frequency of occurrences of subtasks, while
they remain active at all levels. We also questioned the validity of
results obtained through subject-dependent model training using
the SIMKAP (STEW) dataset. Namely, models that were trained
and tested with the data of the same subject, may have learned
to identify subjects from EEG and recall their MWL rating, thus
indirectly predict MWL. This issue arises as there was only one task
block and one resting block for each subject and one MWL rating
label for each.

Here, we highlight the most relevant solutions based on their
robustness and classification accuracy, further categorizing them by
the method used for MWL levels rating:

• Task load-based rating of MWL:

◦ MATB: 76% accuracy, 2 levels, subject-independent, 3 EEG
channels, 60 Hz notch filter, spectral band power features,
random forest model (Salvan et al., 2023)

◦ MATB: 66.2% accuracy, 4 levels, session-independent, 24
EEG channels, 1–40 Hz bandpass filter, no features (time
series EEG signal), CNN model (Pušica et al., 2024b)

◦ Air traffic control: 55% accuracy, 4 levels, subject-
independent, 59 EEG channels, 0.5–100 Hz bandpass filter,
spectral band power features, SVM model (Li H. et al.,
2024).

• Subjective rating of MWL:

◦ SIMKAP: 94.4% accuracy, 3 levels, subject-independent, 14
EEG channel, 1 Hz high-pass filter, spectral band power
features, attention-based recurrent fuzzy NN model (Wang
Z. et al., 2024)

◦ Driving simulation: 86% accuracy, 2 levels, subject-
independent, 14 EEG channels, 0.2-45 Hz bandpass filter,
higher order crossings-based features, KNN model (Fan
et al., 2018).

The key takeaway is that studies that used subjective
MWL ratings achieved significantly higher accuracy compared
to studies that rated MWL based on quantitative task load,
that achieved relatively low accuracy. This suggests the high
relevance of subjective MWL ratings in complex task settings such
as multitasking.

4.2.3 Cross-task MWL classification
Here we examine a group of studies that employed multiple

different tasks to evaluate models’ performance across the
tasks. These studies addressed the problem of cross-task (task-
independent) MWL classification, where models are trained on one
task and evaluated on different tasks.

4.2.3.1 Overview of cross-task MWL classification studies
Although satisfactory classification accuracies are often

achievable within individual tasks, accuracy typically drastically
declines when models are applied to cross-task estimation. To
date, no universally effective method has been established for
satisfactory cross-task MWL estimation. However, some studies
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reported promising results. For instance, Zhang et al. (2019),
achieved a 89% accuracy across memory and arithmetic tasks. It is
important to note, though, that several favorable conditions and
task relationships were satisfied. Specifically, their study combined
an n-back task with a simple mathematical addition task that
incorporated a memory component. The memory component
was predominant in the second task, likely allowing the model to
focus on this aspect for making predictions. Moreover, the task
load levels were closely aligned between the two tasks - NASA-TLX
scores indicated roughly equivalent subjective MWL levels for
both low and high task loads across the tasks. This means that
level one was subjectively perceived as equally demanding in both
tasks, and the same holds for level two. Similar consistency was
observed in the error rates. This alignment of tasks’ characteristics
likely contributed to higher cross-task classification accuracy.
Furthermore, Dimitrakopoulos et al. (2017), achieved a binary
classification accuracy of 87%, while Kakkos et al. (2021), reached
an even higher accuracy of 94%, both using the same dataset
involving an n-back task and a mental arithmetic task. In this case,
a favorable condition was that the task levels differed significantly
in both tasks. This means that level one was significantly less
complex than level two in both the first and the second task. Also,
level one was rather undemanding in both tasks. Specifically, the
n-back task included 0-back and 2-back levels, whereas the mental
arithmetic task ranged from additions of 1-digit numbers at the
first level to 3-digit numbers at the second level. This setup created
highly distinct difficulty levels for each task, thereby enabling the
model to learn to distinguish between the levels easier. It would be
intriguing to explore the model’s performance if the task load levels
were closer to each other in terms of difficulty. Another case where
cross-task estimation has shown promising results is when the
tasks were highly similar. For example, Guan et al. (2023), utilized
four types of n-back tasks: verbal, object, space (verbal), space
(object), each with three levels (n-values from 1 to 3), achieving an
accuracy of 81.3%. A key factor here was that all four tasks were
memory tasks of the same format, differing only in the types of
items to be memorized. However, in most cases where the tasks
were sufficiently distinct, cross-task MWL estimation tended to be
unsuccessful. For example, Baldwin and Penaranda (2012), tested
cross-task estimation among three similar but distinct-enough
memory tasks, achieving satisfactory within-task classification
accuracies of 86–89%, but cross-task accuracy was below chance
level. Similarly, Hernández-Sabaté et al. (2022), trained their model
on a hybrid n-back task with three levels and evaluated it on a flight
simulation task, finding that MWL predictions did not correlate
with the actual difficulty levels of the flight simulation task.

4.2.3.2 Summary of cross-task MWL classification studies
Cross-task MWL estimation, to date, has not proven universally

feasible, though it has shown some promising results under certain
conditions. As we have seen, it tends to be more successful when
tasks are more similar and when the MWL levels across those tasks
are aligned in terms of difficulty. This suggests that when tasks
share common cognitive demands and similar intensity levels, it
is easier for the models to generalize MWL estimation from one
task to another. However, in scenarios where the tasks are different-
enough, model performance across such varied conditions is
compromised. This is a critical limitation in the current state-of-
the-art MWL estimation methods, emphasizing the challenge of

developing models that are robust and adaptable across a diverse
range of task types.

4.2.4 Summarizing MWL classification across task
categories

We evaluated MWL classification studies across different task
categories, emphasizing the distinction between single-tasking
and multitasking settings. By exploring these categories and
their subcategories, this analysis examined how the task setting
influences EEG-based MWL estimation using machine learning.
We discussed the way MWL classification models were trained,
discussed validity and interpreted the results. Particularly, we
focused on:

• At least cross-session robust models—for the most indicative
and relevant results, considering data leakage issues (as
explained in Section 4.1).

• MWL levels within cognitive capacities—where individuals
could handle the given task load.

Therefore, in each task category, the accuracies of the top-
performing models that satisfied the above-defined conditions
were taken as representatives of the corresponding categories.
However, the number of classes (MWL levels) varied across
studies, influencing model accuracies, which needs to be taken into
account when comparing the performances of different models. For
example, a model classifying into five classes that achieves the same
accuracy as one classifying into two classes should be graded higher
due to its greater granularity.

To address this challenge of comparing models with different
accuracies and numbers of classes, we adopted Cohen’s Kappa as a
more informative metric (Cohen, 1960). Cohen’s Kappa measures
the agreement between two classifiers (or in this context, the
agreement between the predictions and the actual labels). It is
calculated using the formula:

κ=p0−pe

1−pe

Where:

• p0 (in this context) is the accuracy of the classifier
• pe is the chance-level accuracy (expected accuracy of a random

classifier considering labels distribution)

Values of κ range from −1 to 1: negative values indicate less
than chance-level accuracy, value 0 indicates chance-level, while
value 1 indicates perfect accuracy. This metric thus provides a
measure of classifier performance that factors in the granularity
of classification, by penalizing classifiers that may have higher
accuracy due to lower number of classes.

The summary of the performance comparison procedure is
as follows:

1. Categorization of studies based on (see Section 3.3):

a. Task type and subtype
b. MWL rating (labeling) method
c. Task load adjustment method (for multitasking)
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FIGURE 10

Highest Cohen’s Kappa scores (classification metric) across task categories.

2. Filtering of studies to include only those that:

a. Performed at least session-independent evaluation
b. Ensured MWL levels remained within cognitive limits

of participants
c. Did not use qualitative task load adjustment (for

multitasking), as explained in Section 4.2.2.2

3. Standardization of performance metric using Cohen’s Kappa, to
account for differing numbers of MWL classes

4. Identification of best-performing models within each task
category (as defined in step 1), based on Cohen’s Kappa

5. Comparison of model performance across task categories

Results of this analysis are shown in Figure 10, where Cohen’s
Kappa of the best-performing models across task categories are
shown. A significant observation from this analysis is the noticeable
drop in MWL classification performance reported in multitasking
studies where MWL was rated based on quantitative task load.

As can be observed from the figure, there is a substantial
Cohen’s Kappa gap between best performing models in
multitasking studies employing task load-based MWL ratings
and best performing models in single-tasking and studies
employing subjective MWL ratings.

4.3 Experimental design flaws in the
literature: insights and recommendations

In this section, we systematized the experimental design flaws
identified in the analyzed literature, providing corresponding
recommendations. The following flaws were commonly identified
across multiple papers:

• Lack of transparency: Sufficient details about the design of
MWL levels, the length of EEG segments used as inputs
to models, explanation of train/test data split, and error
rates (participants’ performance information) were omitted in
some papers.

• Data leakage: Randomly splitting EEG segments between
training and testing sets results in data leakage, as explained in
Section 4.1. To avoid this, experimental sessions (or separate
task blocks, depending on the experimental design) should
not be divided between the train and test sets - all segments
from the same session/block should be assigned to the same
set (either train or test). This ensures session-independent
estimation (note that subject-independent estimation is
inherently session-independent as well). Data leakage leads
to drastically overestimated model performance, which is
misleading when the model is applied to different sessions or
subjects not included in the training set.

• Qualitatively different MWL levels: In multitasking
experiments with different sets of subtasks or single-
tasking experiments with different tasks across MWL levels,
models may learn to detect task-related EEG patterns
rather than MWL-related patterns, as explained in Section
4.2.2.2. This causes the models to classify MWL levels
indirectly, based on task-related patterns. To address this
issue, the same tasks/subtasks should be used across all
MWL levels.

• Too large differences between MWL levels: This issue often
arises when there are only two MWL levels and one of them
is either baseline condition (passive state) or is significantly
easier than the other. In such cases, classification performance
metrics tend to be high because levels with significant
differences are easier to differentiate. A good way to address
this issue is to design multiple MWL levels in the experiment,

Frontiers in Neuroergonomics 16 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1621309
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
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which increases estimation resolution and contributes to the
model’s applicability.

• Overload MWL level: When participants make errors due
to high task load, their actual MWL level cannot be reliably
determined. If the task load exceeds their capacity and they
are unable to handle the task, their MWL may not increase
proportionally. In such cases, participants may experience
low MWL despite a high task load, leading to misleading
interpretations and incorrect dataset labeling. To address this
issue, task error rates (performance on the task) should be
monitored, and MWL levels could be individually adjusted for
each participant based on their performance.

• Lack of subjective evaluations: Incorporating subjective
evaluation methods, such as questionnaires, into experiments
can provide valuable insights into participants’ perceived
MWL. This is particularly important because subjective MWL
levels often differ significantly from objective task load
measures (Pušica et al., 2024b). Furthermore, models trained
on subjective MWL levels have shown promising results in
multitasking scenarios (Wang Z. et al., 2024; Fan et al., 2018),
where task load-based labeling was inadequate. Integrating
subjective evaluations into experimental designs offers a more
comprehensive understanding of MWL and enables more
accurate data labeling.

Finally, as a critical issue, we wanted to highlight the absence
of standardized protocols and guidelines for designing experiments
and the lack of established benchmark datasets for evaluating MWL
estimation models’ performance. This makes the comparison of
results across studies challenging. Therefore, developing guidelines
and protocol for designing experiments and benchmark datasets
would be highly beneficial for the research community. These
standardized frameworks would need to include a diverse range of
task types that engage different cognitive resources. Such diversity
would also enable the evaluation of MWL estimation solutions
across tasks, addressing generalized (task-independent) MWL
estimation as one of the most challenging and significant problems
in the field. Moreover, benchmark datasets would reduce the time
and effort required for experimental design, data collection, and
processing, providing researchers with a common foundation to
build upon.

5 Conclusions

In this review we systematically explored the performance of
machine learning models for EEG-based MWL classification across
different task types and experimental settings.

We focused specifically on machine learning models that
exhibited at least session-independent level of robustness - to
avoid falsely optimistic accuracies that can result from data
leakage. We also concentrated on setups where MWL remained
within the cognitive capacity of participants, (i.e.,) where they
could handle the given task load. Additionally, when analyzing
multitasking scenarios, we focused on cases where MWL levels
were designed by adjusting frequencies of subtasks rather than
by changing sets of subtasks across the levels (quantitative MWL
adjustment). This was to avoid the risk of models merely learning

to detect specific subtasks and hence indirectly predict MWL levels,
rather than genuinely learning to estimate MWL, as explained in
Section 4.2.2.2.

A key finding of this review highlights the challenge of
task load-based MWL estimation (used in the vast majority of
studies) in more complex task categories such as multitasking.
This is particularly relevant for practical applications, as real-world
tasks typically involve at least some degree of multitasking. This
conclusion is supported by the significant drop in classification
accuracy observed in multitasking studies that employed task
load—based MWL ratings. The drop was evident when compared
to the best-performing ML/DL models in single-tasking studies and
those using subjective MWL ratings (Figure 10).

An important limitation of this review is the scarcity of
studies that meet the previously outlined criteria. Therefore,
more studies in this domain are necessary to enhance the
reliability of conclusions. Another limitation is the variability in
MWL levels design across studies. Namely, MWL classification
accuracy is significantly influenced by how distinctly the MWL
levels are designed in experiment—when they are more different,
higher accuracy is expected as the models have a wider margin
for estimation. This complicates the comparison of models’
performances across different experiments.
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