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Introduction: Motor tasks require the flexible selection and coordination

of multiple muscles, which may be achieved through the organization and

combination of muscle synergies. Although multiple muscles may receive a

shared neural drive, and each muscle may also receive distinct neural inputs,

there is ongoing debate about whether synergies accurately reflect shared

neural drives. This study aimed to compare the spectral characteristics of the

common drive shared among muscles within the same synergy to those shared

among muscles belonging to different synergies.

Methods: Electromyographic signals were recorded from upper limb muscles

during an isometric multi-directional force generation task. Synergies were

identified using non-negative matrix factorization (NMF), and coherence analysis

was conducted to evaluate common drives among muscles within and across

synergies. A methodological limitation of previous studies was to segment

muscle activity into standard frequency bands. Here, we overcome it by

proposing to automatically detect subject-specific and physiologically relevant

frequency layers. The application of NMF on the coherence spectra of muscle

pairs as a method for automatically detecting physiologically relevant frequency

bands sheds light into the neural basis of muscle coordination.

Results: Six frequency layers were identified, and muscle recruited within the

same synergy showed a higher coherence within layers in the delta, alpha, and

low-beta bands.

Discussion: Our findings enhance the understanding of physiological

mechanisms of motor coordination by elucidating the relationship between

muscle synergies and the spectral characteristics of intermuscular coherence.

KEYWORDS

motor modules, tri-dimensional force, alpha band, low-beta band, muscle-muscle
coherence, muscle coordination, frequency layers, non-negative matrix factorization
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1 Introduction 

A long-standing hypothesis suggests that muscle activations 
are coordinated through the organization of muscle synergies. 
The existence of muscle synergies has been supported by the 
observation of low dimensionality in the muscle patterns during 
several tasks including reaching and grasping (D’Avella et al., 2006; 
Overduin et al., 2008), postural control (Ting and Macpherson, 
2005; Torres-Oviedo and Ting, 2007), locomotion (Ivanenko et al., 
2004; Dominici et al., 2011; Rimini et al., 2017), and isomeric 
force generation (Borzelli et al., 2013; Gentner et al., 2013), 
and muscle synergies may be aected by neurological lesions 
(Zhao et al., 2023; Borzelli et al., 2024a). Yet, dierent aspects 
of synergistic organization may emerge at dierent neural levels, 
including spinal (Takei and Seki, 2010), cortical (Overduin et al., 
2012), and cerebellar (Berger et al., 2020) circuits. While the 
neural origin of muscle synergies has been supported through 
dierent approaches (Tresch and Jarc, 2009; Overduin et al., 2012; 
Berger et al., 2013, 2022; Bizzi and Cheung, 2013; Cheung and 
Seki, 2021), the neural mechanisms underlying the coordination 
of multiple muscles at dierent levels are still unclear. While the 
synergy hypothesis focuses on how the central nervous system 
coordinates groups of muscles to cope with the redundancy of 
the musculoskeletal system, studies on common synaptic input 
investigate the neural implementation of this coordination through 
shared inputs to motoneuron pools. Several studies support the 
existence of common synaptic inputs that drive dierent muscles 
(De Luca and Mambrito, 1987; Kilner et al., 1999; Laine et al., 
2015; Hug et al., 2022; Borzelli et al., 2024b). Although both 
frameworks posit a common command driving multiple muscles, 
they operate at dierent descriptive levels and lead to distinct 
empirical predictions: the synergy hypothesis predicts a functional 
invariant activation ratio among muscles, whereas the common-
input framework predicts correlated neural activity, measurable 
as intermuscular coherence. Therefore, to link the two levels, it 
is reasonable to hypothesize that the coordinated activation of 
multiple muscles within synergies depends on the existence of 
common synaptic inputs. Indeed, recent studies demonstrated that 
the activity of the muscles recruited within the same synergy 
shows a significant synchronous modulation (Danna-Dos-Santos 
et al., 2014; De Marchis et al., 2015; Frère, 2017; Laine et al., 
2021). However, these studies examined the activity of only a few 
muscles during a limited set of conditions (Danna-Dos-Santos 
et al., 2014) or investigated the occurrence of synchronization 
only in the 8 – 16 Hz band (Laine et al., 2021), thus limiting the 
understanding of the neural architecture underlying the synergistic 
recruitment of muscles. Although low-frequency components of 
the common inputs to motor neurons represent the eective drive 
that controls the exertion of force (Farina et al., 2014), a synaptic 
input from corticospinal neurons may occur at higher frequencies 
(Farmer et al., 1997). In fact, significant cortico-synergy coherence 
was recently identified in high-frequency bands (Zandvoort et al., 
2019; Ortega-Auriol et al., 2023). Moreover, studies performed 
on a dynamic task (De Marchis et al., 2015) demonstrated high-
frequency synchronous modulation but only between a few pairs 
of muscles recruited by the same synergies, and only when a 
functional force production was required. Previous work, therefore 
indicates that muscle coordination relies on frequency-specific 

neural drives, but the precise functional role and consistency of 
these frequency bands across individuals remain unclear. 

An essential factor in determining the role of physiological 
frequency bands is the identification of their limits. Unfortunately, 
there is no consensus in the literature on the definition of band 
limits. The upper limit of the alpha band was set in dierent studies 
to 12 Hz (Mehrkanoon et al., 2014), 13 Hz (Yavuz et al., 2015; 
Leonardi et al., 2022), or 15 Hz (De Marchis et al., 2015). The 
boundary between low- to high-beta bands was set to 20 Hz (Shim 
et al., 2021), 21 Hz (van Wijk et al., 2017), or 25 Hz (Witte et al., 
2007), while the beta upper limit was set to 25 Hz (Brinkman et al., 
2014), 30 Hz (De Marchis et al., 2015; Farina and Negro, 2015) 
or 35 Hz (Del Vecchio et al., 2019). These inconsistencies make it 
diÿcult to interpret how specific frequency components contribute 
to muscle coordination and to compare results across studies. 

To address this gap, we aimed to investigate whether muscles 
grouped within the same synergy exhibit stronger synchronization 
across physiologically relevant frequency bands than muscles 
belonging to dierent synergies. In particular, we adopted a data-
driven, subject-specific approach to define frequency bands based 
on intermuscular coherence structure (Boonstra et al., 2015), which 
may help clarify how shared neural drives at dierent frequencies 
shape synergistic muscle activations. This data-driven approach 
may improve the alignment of spectral features across subjects 
and enable applications to patient populations, where frequency 
content may be shifted or distorted (Houston et al., 2021). This 
approach was tested during the generation of submaximal isometric 
force at the hand in multiple directions, while collecting the 
electromyographic activity from multiple muscles acting on the 
shoulder and elbow joints. 

We hypothesized that if muscle synergies are implemented 
through common neural inputs, muscles within the same synergy 
must show higher intermuscular coherence than those recruited in 
dierent synergies, especially within frequency bands relevant for 
isometric force generation. Therefore, investigating changes in the 
intermuscular coherence at specific frequency bands would reveal 
functional neural mechanisms 

This work therefore provides new insight into the neural 
organization of muscle synergies by disentangling the frequency-
specific components of shared motor input while avoiding a priori 
assumptions about fixed frequency band limits. 

2 Materials and methods 

Participants, experimental setup, and experimental protocols 
are briefly described below. More details can be found in a previous 
paper (Borzelli et al., 2013) presenting a dierent analysis of the 
same data set. 

2.1 Participants 

Nine right-handed participants (four females, mean age 
29.6 ± 4.4 years, age range 24–39) took part in the experiment 
after giving written informed consent. All procedures were 
approved by the Ethical Review Board of Fondazione 
Santa Lucia (Prot. CE/AG4-PROG.222-34). All participants 
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had no known neuromuscular disorder or recent injury 
of the right arm. 

One participant was excluded from the analysis after realizing 
the occurrence of muscle activity also when he was asked to relax his 
muscles (i.e., during the relaxation phase at the beginning of each 
trial, see section “2.3 Experimental protocol”), with the consequent 
reduction of the performance likely due to fatigue. 

2.2 Experimental setup 

Participants sat on a racing car seat with their torso 
immobilized by safety belts and their right hand and forearm 
immobilized by a splint rigidly connected to a six-axis force 
transducer (Delta F/T Sensor, ATI Industrial Automation, Apex, 
NC, United States). In this posture (Figure 1A), the center of 
the palm was aligned with the body midline at the height of the 
sternum, and the elbow was flexed approximately by 90◦ . The 
force transducer was mounted under a desktop, whose height and 
distance from the participants could be adjusted according to the 
participants’ body size. Participants had the view of their right 
hand occluded by a mirror reflecting the image displayed by a 21-
inch LCD monitor (Syncmaster 2233, Samsung Electronics Italia 
S.p.A., Cernusco sul Naviglio, MI, Italy), parallel to the desktop 
(Figure 1A). During the experiments, participants wore 3D shutter 
glasses (3DVision P854, NVIDIA Corporation, Santa Clara, CA, 
United States) to stereoscopically view a virtual desktop matching 
the real desktop and a spherical cursor whose displacement from 
an initial position was proportional to the three-dimensional 
force collected by the force transducer. The virtual scene was 
rendered by a 3D graphics card (QuadroFx3800, NVIDIA) and 
updated at 60 Hz. Cursor motion was simulated in real time 
as a mass accelerated by the force applied by the participant 
on the splint and adjusted adaptively in the range of 15–140 g 
as a sigmoidal function of the rate of change in the magnitude 
of the recorded force (Berger et al., 2013), a viscous force, 
and an elastic force proportional to the distance from the rest 
position. 

Active surface bipolar electrodes (DE2.1, DelsysInc., Boston, 
MA) recorded the electromyographic (EMG) activity from 17 
muscles acting on the right shoulder and elbow: teres major 
(TeresMaj), infraspinatus (InfraSp), latissimus dorsi (LatDorsi), 
inferior trapezius (TrapInf), middle trapezius (TrapMid), superior 
trapezius (TrapSup),brachioradialis (BracRad), biceps brachii long 
head (BicLong) and short head (BicShort), triceps brachii lateral 
head (TriLat), long head (TriLong), and medial head(TriMed), 
anterior deltoid (DeltA), middle deltoid (DeltM), posterior deltoid 
(DeltP), and pectoralis major clavicular (PectClav), and sternal 
(PectStern). Electrodes were placed in correspondence to the 
muscle belly (Hermens et al., 1999), and their correct placement 
was verified by observing the activation of each muscle during 
specific maneuvers. Force and EMG data were digitilized at 1kHz 
through an A/D PCI board (PCI-6229, National Instrument, 
Austin, TX, United States). Only force components (Fx lateral 
direction on the horizontal plane, positive to the right; Fy 
frontal direction on the horizontal plane, positive away from the 
chest; Fz vertical direction, positive up) were used during this 
experiment. 

2.3 Experimental protocol 

After an initial familiarization, each participant was instructed 
to exert a maximal force along 20 directions, two repetitions each, 
corresponding to the vertices of a dodecahedron centered in the 
origin. The mean value among the maximum force collected during 
each trial was identified as the Maximum Voluntary Force (MVF) 
value and used to scale the force required to reach the targets 
in the following block. The maximum activation of each muscle, 
identified during this block, was also retained as the Maximum 
Voluntary Contraction (MVC). 

Then, participants were instructed to exert isometric forces 
to displace a virtual spherical cursor from an initial rest position 
to a target (Figure 1B). Targets, arranged on horizontal planes at 
dierent heights (Figures 1C, D), were approximately uniformly 
distributed on the surface of a sphere with a radius of 0.2 MVF 
and required the generation of forces along 32 directions, five 
repetitions each for a total of 160 trials. After an initial phase, in 
which participants were instructed to relax their muscles without 
exerting force (rest phase, 0.3 s), a target, indicated by a gray 
transparent sphere with a radius larger than the cursor sphere 
radius by 2% MVF, was displayed in one of the 32 locations. 
Therefore, participants were instructed to move and maintain the 
cursor within the target for 3s (hold phase) to successfully end the 
trial. 

2.4 Data analysis 

Electromyographic data were visually inspected to exclude 
those trials with signal artifacts. Trials in which the participant 
could not reach or remain within the target were also excluded 
from the analysis. 

For each participant, NMF was first applied to EMG signals 
to identify muscle synergies. Then, NMF was also applied 
to the coherence between all pairs of muscles to determine 
the frequency bands at which muscles showed synchronous 
modulation (Boonstra et al., 2015). Coherence between muscles 
recruited within the same synergy and coherence between pairs 
of muscles that were never recruited within the same synergy 
were analyzed separately and compared within each subject-specific 
frequency band. 

2.4.1 Muscle synergies extraction 
Raw EMG data were rectified, digitally low-pass filtered (2nd 

order Butterworth, 5 Hz cuto), and re-sampled at 100 Hz to 
reduce data size. Mean EMG activity recorded during the rest 
phase of each trial was subtracted from data collected during 
the hold phase and EMG signals were normalized to the MVC. 
Muscle synergies of each participant were identified by the NMF 
algorithm (Lee and Seung, 1999), implemented in Matlab, from 
the pre-processed EMG signals averaged over time samples within 
the hold phase of each trial. Therefore, each muscle activation 
sample mm(t) was reconstructed as the combination of a unique 
set of spatial or time-invariant synergies Wm scaled by time-varying 
synergy activation coeÿcients cm(t). Subscript m refers to the use of 
non-negative matrix factorization on muscle activation samples to 
extract muscle synergies, in contrast with subscript c that refers to 
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FIGURE 1 

(A) Experimental setup. Participants sat on an isometric setup, with the right hand fixed in an orthosis rigidly connected to a force transducer. The 
red, green, and blue arrows represent the directions of the force axes, as collected from the transducer. Participants, wearing 3D glasses, look 
through a mirror at a 3D scene projected by a monitor, placed at the height of their eyes, and can control the displacement of a virtual cursor by 
applying force at the force transducer. (B) Task description. Participants were instructed to perform a center-out reaching task in which they had to 
maintain the cursor in a central start location for 3 s (rest phase), then reach a target and maintain the cursor within the target for 3 s (static phase). 
(C,D) Force targets. Positions of the 32 targets in the tri-dimensional force space (C) and their elevation and the azimuth angles (D). 

the use of non-negative matrix factorization on coherence spectra 
between muscles to separate coherence between muscle pairs into 
frequency layers (see below). 

The extraction algorithm was repeated 10 times for each 
number of synergies (1–17, i.e., the number of muscles) and 
the repetition with the highest fraction of total data variation 
explained by the synergy model, calculated as R2 = 1−SSE/SST, 
where SSE is the squared model residual and SST is the squared 
residual with respect to the mean EMG vector, was retained. The 
number of synergies N was chosen considering (i) the smallest N 
for which the R2 was larger than 0.9, (ii) as the point at which 
the R2 vs. N curve had a change in slope (detected as the first 
N at which MSE error of linear fit from N to 17, the number 
of muscles, was below 10−4), (iii) in case of mismatch between 
the number of synergies selected according to the two criteria, 
we chose the set of synergies with a more uniform distribution 
of preferred directions of the synergy activation coeÿcients (the 
direction of the maximum of the cosine function best fitting the 
directional tuning). 

2.4.2 Intermuscular coherence 
The preprocessing for coherence calculation did not include 

any bandpass filtering of the EMG signal to avoid eects in the 
coherence analysis (Castronovo et al., 2018). The rectified raw EMG 
signal was initially demodulated by removing the slow-varying 
amplitude components to assure the stationarity requirement 
of coherence estimation (Carter, 1987). The demodulation was 
based on the Hilbert transform (Boonstra and Breakspear, 2012; 
Castronovo et al., 2018) for which the instantaneous frequency was 
calculated as in Equation 1: 

ϑ (t) = tan−1
[ 
xH (t) 
x(t) 

] (1) 

where x (t) was the EMG signal and xH (t) its Hilbert transform, 
while the demodulated EMG signal was calculated as in Equation 2: 

xD (t) = cos[ϑ(t)] (2) 

Then the mean activity was subtracted by the demodulated EMG 
signal of each muscle. 
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Since spurious contributions may occur in the absence of 
signals, for each trial, the coherence analysis was only calculated 
on pairs of muscles that were simultaneously active. The baseline 
noise was calculated as the variance of the EMG signal during the 
rest phase, when all muscles were expected to be relaxed. Then, a 
moving time window, lasting as the rest phase (i.e., 3 s), was used 
to determine the variance of the signal collected during the static 
phase. At each time step of the static phase, a muscle showing a 
variance at least 50 % higher than the variance calculated during the 
rest phase was identified as active during that time step. A muscle 
that was active in at least 75% of the time steps of the static phase 
was considered to be recruited during that trial. 

The coherence was then calculated for all pairs of recruited 
muscles during the static phase as follows. The Welch’s power 
spectral density of each signal (pxx and pyy) and the cross-power 
spectral density between the two signals (pxy), were calculated in a 
Hamming time window of 0.2 s with 50% overlap, as proposed in 
the literature (Boonstra et al., 2015). The Matlab functions “pwelch” 
and “cpsd” were implemented to calculate Welch’s power spectral 
density and the cross-power spectral density, respectively. The 
coherence was calculated as in Equation 3: 

cxy = 
pxy · p∗ 

xy 

pxx · pyy 
(3) 

where [ · ]
∗ 

indicates the conjugate. The coherence contributions 
were then normalized by the Fischer transformation to allow for 
comparisons among dierent participants and it was calculated as 
in Equation 4: 

Zxy = 
p 

2Nstanh−1(Cxy) (4) 

where Ns was the number of windowed segments used for the 
estimation of the coherence profile. 

The significance of the estimated coherence spectra between 
each pair of muscles was assessed by employing a bootstrapping 
approach to the complex-valued cross-spectral density through 
phase randomization (Hurtado et al., 2004). Surrogates of the 
demodulated EMG signal of a muscle were generated by calculating 
the Fourier transform of the signal, independently shuing the 
phase components, and then calculating the inverse Fourier 
transform back. This procedure ensures the preservation of 
the power spectrum of each signal but makes the two series 
completely uncorrelated in the frequency domain. For each 
trial, 100 surrogates were calculated for each active muscle, 
to calculate a set of coherence spectra expected from chance. 
Frequency bins showing lower coherence than the significance 
threshold, established at the 95% percentile of the bootstrap 
distribution, were set to zero. The coherence between pairs of 
muscles that were not simultaneously active was also set to 
zero. 

The coherence spectra across the frequency range of 1–60 Hz 
(f frequency bins), over trials (t) and muscle pairs (m pairs), were 
concatenated to obtain a matrix with f rows and t × m columns, 
which was decomposed by NMF algorithm, assuming k modes 
with k = 1,· · · ,f, where the number of frequency bins f in which 
the coherence spectra were separated depends on the window 
length and was 15 in this study. The decomposition defined two 
matrices: Wc and Cc. The matrix Wc (f rows and k columns) 

represented the coherence patterns, and Cc (k rows and t × m 
columns) represented the edge weights. The k modes separated the 
frequencies into dierent layers. In this study, dierent Wc and Cc 

matrices were separately calculated from the data collected from 
each participant. 

Previous studies identified the number of frequency layers 
by assuming a threshold in the data explained by the model. 
However, such thresholds were arbitrary (Kerkman et al., 2020; 
Houston et al., 2021), and the identified number of layers was 
influenced by the data pre-processing (Santuz et al., 2017). 
Therefore, in this study, we selected the number of layers by 
identifying the local minimum in the standard deviation of 
the coherence patterns Wc across participants, which we used 
as a criterion to determine the optimal number of layers. This 
approach is physiologically motivated: a local minimum indicates 
a frequency separation that is most consistent across individuals, 
reflecting stable, participant-independent spectral features likely 
corresponding to functionally relevant neural drives. By using 
this criterion, we reduce the influence of inter-subject variability 
and avoid arbitrary thresholds, thus identifying layers that better 
capture the underlying physiological organization of muscle 
coordination. 

2.4.3 Coherence within synergistic and 
non-synergistic muscles 

Our goal was to determine whether muscles recruited within 
the same synergy, which are extracted from the EMG activations, 
showed a higher synchronous modulation than muscles that were 
never recruited within the same synergy. 

The muscle weights (Wm) were normalized across synergies, 
such that the squared sum of the contribution of each muscle to 
all synergies was set to one. Two muscles were considered to be 
recruited within the same synergy, and defined “synergistic muscle 
pair,” if they both contributed to that synergy with a normalized 
weight higher than 75% (Figure 2), i.e., they were both highly 
recruited by the same synergy. The 75% threshold was chosen to 
ensure that each muscle was associated with only one synergy. 
In contrast, two muscles were considered not to be recruited 
within the same synergy, and defined “non-synergistic muscle 
pair,” if one muscle contributed to a synergy with a normalized 
weight higher than 75% and the other with a normalized weight 
lower than 25%, or vice-versa. As the normalization approach 
used in this study ensured that the total contribution of each 
muscle across all synergies summed to 1, a muscle could exceed 
the 75% threshold in only one synergy. Therefore, if a pair of 
muscles met the “non-synergistic” criterion in one synergy, they 
could not be considered “synergistic” in any of the others, since 
the threshold condition could not be simultaneously satisfied 
in multiple synergies. The 25% threshold was set according 
to a previous study (De Marchis et al., 2013). Therefore, the 
intermuscular coherences calculated between all muscle pairs 
were assigned to the “synergistic muscle pair” category if both 
muscles contributed to the same synergy, or to the ‘non-synergistic 
muscle pair’ category if they contributed to dierent synergies. 
Pairs that did not fit either definition, e.g., cases where neither 
muscle showed a contribution higher than 75%, or where one 
muscle contributed more than 75% while the other fell between 
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FIGURE 2 

Definition of synergistic and non-synergistic muscles. Two synergies, selected in the set extracted from data collected from participant eight 
(synergies W3 and W6 in Figure 3), are represented. Muscles with the same color (blue vs. blue or magenta vs. magenta) are synergistic because they 
are exclusively recruited by the same synergy (i.e., contribution higher than 75%, dashed line). Muscles with different colors are non-synergistic (blue 
vs. magenta) because they are not exclusively recruited by the same synergy (i.e., if the contribution of a muscle to a synergy is higher than 75%, the 
contribution of the other muscle to the same synergy is lower than 25%, dash-point line). 

25% and 75%, were excluded to avoid potential confounding 
eects. 

2.4.4 Subject-specific frequency layers 
As the decomposition of intermuscular coherence through 

NMF identified dierent subject-specific frequency layers, i.e., the 
coherence patterns Wc, coherence between pairs of active muscles, 
was analyzed within these layers. An average Z-coherence value IZ 

was calculated for each spectrum was calculated as in Equation 5 
(De Marchis et al., 2015): 

IZ 
� 
f1, f2 

 
= 

1 

f2−f1 

Z f2 

f1 

Zxy(f )df (5) 

Where f1 and f2 are the lower and upper bounds of each 

layer. The bounds of layer k were identified as the frequency 

interval in which layer k showed the highest coherence with 

respect to the other layers, and they were subject-specific. 
Although Wc may exhibit multiple peaks and a non-unique 

frequency interval, our results, consistent with previous literature, 
revealed a single peak, and therefore, a unique definition of the 

frequency interval. 
We emphasize that the muscle synergy extraction and the 

cross-muscle coherence were not related measures. In fact, 
while muscle synergies described the instantaneous relative 

contribution in the amplitude of dierent muscles along dierent 
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time-steps, cross-muscle coherence described the phase locking 
between muscles. 

2.4.5 Statistical analysis 
We used a linear mixed model to test the eect of 

task and synergy on intermuscular coherence. The model 
included target direction (coded as separate dummy variables), 
repetition, and recruitment of the muscle pair by the same 
or dierent synergies as fixed factors, and participant 
index as a random factor. Coherence values were averaged 
across layers for each muscle pair. Only pairs showing 
significant coherence in at least one frequency bin in the 
(1.60) Hz interval were included, to avoid inactive muscles 
masking the eects. Statistical significance was assessed at 
p < 0.05. 

3 Results 

On average, 6.0 ± 4.2 trials (mean ± SD across participants) 
out of 160 were excluded due to EMG artifacts. All participants 
successfully performed the task, reaching and maintaining 
the required force level within a 2% MVF tolerance for 3 
seconds in the vast majority of trials (number of retained 
trials: 152.4 ± 5.0). 

3.1 Muscle synergies 

To investigate how participants coordinated their muscles 
during the task, we extracted muscle synergies from the 
activation patterns using non-negative matrix factorization 
(NMF) (Lee and Seung, 1999). On average, 5.9 ± 0.6 synergies 
were identified across participants, which accounted for 
91.4 ± 1.1% of the total data variation (R2), indicating a low-
dimensional control strategy. An example of the extracted 
synergies from a representative participant is shown in 
Figure 3. 

3.2 Intermuscular coherence: 
comparison within and across synergies 

To assess whether muscles recruited within the same 
synergy share more common neural input than muscles 
recruited in dierent synergies, we computed the intermuscular 
coherence across muscle pairs and compared synergistic 
vs. non-synergistic combinations. The linear mixed-
eects model revealed significantly higher coherence for 
synergistic muscle pairs in frequency bins below 25 Hz 
(Figure 4). 

However, comparing these results across studies is challenging 
due to dierences in the definition of frequency ranges and 
methodological choices. To address this variability, in the following 
section, we applied a data-driven approach to identify subject-
specific frequency layers. 

3.3 A data-driven approach to define 
physiologically meaningful frequency 
bands 

To address this issue, we decomposed intermuscular coherence 
into subject-specific frequency layers. Across participants, the 
coherence patterns showed a consistent organization into six main 
layers (Figures 5A, B). Higher numbers of layers (≥11) resulted in 
over-discretization, splitting the spectrum into excessively narrow, 
physiologically meaningless bins. The subject-specific frequency 
boundaries identified six bands, each corresponding to a coherence 
layer with relatively higher intra-layer coherence (mean ± SD 
across participants; Figure 5B): Layer 1: [1.0 (0.0)–8.7 (1.1)] Hz; 
Layer 2: [8.7 (1.1)–16.9 (2.0)] Hz; Layer 3: [16.9 (2.0)–25.7 (2.9)] Hz; 
Layer 4: [25.7 (2.9)–35.8 (2.5)] Hz; Layer 5: [35.8 (2.5)–48.6 (2.8)] 
Hz; Layer 6: [48.6 (2.8)–60.0 (0.0)] Hz. 

3.4 Coherence differences across layers 
for synergistic and non-synergistic 
muscle pairs 

Finally, using these automatically identified layers, we re-
evaluated coherence dierences between synergistic and non-
synergistic muscle pairs within each frequency band. The analysis 
included 9,486 muscle pairs (mean ± SD across participants: 
1,186 ± 229, see Table 1) classified as synergistic and 45,512 as 
non-synergistic (5,689 ± 1,160). The linear mixed-eects model 
confirmed significantly higher coherence for synergistic pairs in 
the first three layers (p-values: < 0.01 for all three bands), while 
no significant dierences were found in the higher frequency 
layers (p > 0.05 for layers 4–6; see Figure 6). These results 
support the hypothesis that low-frequency coherence is a marker 
of shared neural input within muscle synergies and demonstrate 
that the proposed frequency decomposition yields physiologically 
interpretable findings. 

4 Discussion 

We demonstrated that, during a submaximal multidirectional 
isometric force generation task, pairs of muscles recruited within 
the same synergy show a higher degree of coherence with respect 
to pairs of muscles recruited by dierent synergies, in the delta-
theta (1st layer), alpha (2nd layer), and low-beta (3rd layer) 
frequency bands. 

4.1 A novel approach to determine 
functionally relevant frequency layers 

The automatic separation, obtained with the decomposition 
of intermuscular coherence, identified spectral layers that 
are consistent with functional frequency bands reported 
in the literature. 

Dierent EMG frequency components are known to reflect 
distinct sources of common drives to the motor neurons and 
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FIGURE 3 

Example of muscle synergies extracted from data collected from participant eight (six synergies with R2 
= 0.92). 

FIGURE 4 

Coherence between synergistic (blue) and non-synergistic (red) muscles (mean ± standard error among participants). Results of the linear mixed 
model analysis identified a statistical effect (p < 0.05) at specific frequencies identified with a *. 

to dierent functional roles in motor control (MacKay, 1997; 
Brittain and Brown, 2014; Ramos-Murguialday and Birbaumer, 
2015; Leonardi et al., 2022), and our findings are consistent with 
this framework. The low-frequency components of the neural drive, 
i.e., delta and alpha bands, are likely of spinal origin (Farina and 
Negro, 2015) and represent the eective drive to muscles for force 
generation (Negro et al., 2009; Farina et al., 2014). Contrarily, 
higher frequency components are eectively filtered by the muscle 

dynamic (Negro et al., 2009), but are found in cortico-muscular 
coherence, thus suggesting to derive from the rhythmic discharges 
of the corticospinal neurons projecting to the spinal motoneurons 
(Farmer et al., 1997; Mima and Hallett, 1999). Significant cortico-
muscular coherence has been identified in the beta band during 
isometric force production tasks (Kristeva-Feige et al., 2002), and 
in higher frequency bands, i.e., the gamma band, during dynamic 
conditions (Omlor et al., 2007). Importantly, the present results 
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FIGURE 5 

Coherence patterns. (A) A local minimum in the variability of the coherence pattern among participants was identified for six layers (dashed line). 
(B) The identified layers (mean ± std across participants) are plotted with different colors. The dashed lines identified the mean separation between 
layers. 

FIGURE 6 

Comparison between the coherence identified on different layers between synergistic (blue) and non-synergistic (red) muscle pairs. The linear mixed 
model analysis identified a statistical effect of the recruitment of pairs of muscles by the same synergy in layers 1, 2, and 3. ***, p < 0.001; **, p = 0.01. 

support and extend this view by identifying frequency layers that 

partially overlap with these functional subdivisions. In the last 

decade, a further functional subdivision of the beta band into a 

low- and high-frequency range hinted at a contribution of the 

cortico-basal ganglia indirect pathway to low-beta oscillations and 

the hyperdirect pathway for high-beta oscillations (Oswal et al., 

2016; Milardi et al., 2019), leading to the separate investigation 

of these bands (van Wijk et al., 2017; Plate et al., 2021). Notably, 

our decomposition revealed finer substructure within the beta 

range, consistent with this functional split, thus suggesting that 
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the identified coherence layers may reflect dierent sources of 
cortical modulation. Similarly, the gamma band was separated 
into its low- and high-frequency components (Hermer-Vazquez 
et al., 2007; Uhlhaas et al., 2011), and our approach may further 
help distinguish these subcomponents in a subject-specific manner. 
This data-driven identification of frequency layers therefore bridges 
the gap between conventional, literature-based frequency bands 
and subject-specific spectral organization. Thus, this approach 
would improve comparability across subjects and may prove 
advantageous in patient studies where spectral content is altered 
(Houston et al., 2021). 

Unlike previous studies that relied on predefined frequency 
boundaries, e.g., alpha up to 12–15 Hz, low-/high-beta split around 
20–25 Hz, or beta–gamma transitions up to 35 Hz (Mehrkanoon 
et al., 2014; De Marchis et al., 2015; Del Vecchio et al., 2019; 
Leonardi et al., 2022), our approach derives such divisions directly 
from participant data. Intriguingly, the frequency layers identified 
by decomposing the intermuscular coherence with NMF were in 
line with the physiologically meaningful frequency bands reported 
in previous literature, such as those representing the eective drive 
for force generation (Negro et al., 2009) or those hypothesized 
to have a cortical origin as identified in the cortico-muscular 
coherence (Mima and Hallett, 1999). In particular, the 1st layer 
(mean (std) ([1.0 (0.0) 8.7 (1.1)] Hz) resampled the delta and theta 
bands, the 2nd layer ([8.7 (1.1) 16.9 (2.0)] Hz) the alpha band, 
the 3rd layer ([16.9 (2.0) 25.7 (2.9) Hz]) the low-beta band, the 
4th layer ([25.7 (2.9) 35.8 (2.5)] Hz) the high-beta band, the 5th 
layer ([35.8 (2.5) 48.6 (2.8)] Hz) the low-gamma band, and the 6th 
layer [48.6 (2.8) 60.0 (0.0)] Hz) the high-gamma band. The use 
of subject-specific bands detected from participant data, on one 
hand, overcomes the lack of a unique separation of relevant bands, 
and on the other hand, enables the study of neurological patients 
with altered muscle activation patterns, such as stroke survivors 
(Houston et al., 2021). 

4.2 Muscles recruited within the same 
synergy show higher coherence in the 
delta, alpha, and low-beta frequency 
bands 

The present findings extend previous attempts to link the 
muscle synergy framework with the concept of common synaptic 
input to motoneurons (Danna-Dos-Santos et al., 2014; De Marchis 
et al., 2015; Frère, 2017; Ortega-Auriol et al., 2019; Laine et al., 
2021; Borzelli et al., 2024b). By characterizing coherence patterns 
across a wide range of frequencies and a large set of muscles, 
we demonstrated that synergistic structures are reflected in 
frequency-specific common drives, bridging functional and neural 
descriptions of motor coordination. This supports the view that 
muscle synergies may emerge from shared neural inputs distributed 
across multiple motoneuron pools. 

In line with previous evidence, we demonstrated that muscles 
recruited within the same synergy (synergistic muscle pairs) 
showed a higher coherence with respect to muscles recruited 
by dierent synergies (non-synergistic muscle pairs) in the low-
frequency layers, likely involved in force generation (i.e., the 1st and 

2nd layers representing the delta-theta and alpha bands) (Ortega-
Auriol et al., 2019; Laine et al., 2021). However, we also identified 
a higher coherence between synergistic muscles compared to non-
synergistic muscles even in the 3rd layer, representing the low-beta 
band (Laine et al., 2015; Borzelli et al., 2024b), which is likely to be 
of cortical origin. 

This frequency-specific pattern supports the coexistence 
of spinal and cortical contributions to muscle coordination: 
lower frequencies reflecting shared spinal drives for force 
generation, and low-beta coherence suggesting a supraspinal 
descending component. 

Compared to previous studies (Ortega-Auriol et al., 2019; 
Laine et al., 2021), our analysis extends these findings to a larger 
set of muscles and a broader frequency range, revealing a more 
continuous organization across layers rather than discrete bands. 
The subject-specific decomposition thus refines the identification 
of relevant frequencies without imposing arbitrary boundaries, 
enhancing sensitivity to subtle spectral peaks and inter-individual 
variability. 

Together, the coexistence of low-frequency and low-beta 
coherence refines the current view of spinal and cortical drives. 
Specifically, the low-frequency layer likely reflects shared spinal 
inputs coordinating force generation, while the low-beta layer 
indicates a cortical contribution that modulates fine control 
and adaptation. This coexistence suggests that spinal and 
cortical mechanisms may jointly shaping muscle coordination 
within synergies. 

Moreover, the subject-specific frequency-layer approach 
provides an advance over conventional fixed-band analyses 
by aligning the identified coherence peaks across individuals. 
This data-driven segmentation reduces the bias introduced by 
arbitrary frequency boundaries and allows the detection of subtle, 
participant-specific spectral features that would otherwise be 
masked in averaged, pre-defined frequency bins. 

Significant coherence between the activity of dierent muscles 
represents a signature of the common input that drives these 
muscles. While the identified significant low-frequency coherence 
suggests that the spinal drive, which regulates the muscle activation, 
is shared across dierent muscles, the occurrence of a significant 
coherence also in the low-beta band suggests the existence of 
a supraspinal common descending cortico-spinal drive, in line 
with studies on cortico-synergistic coherence (Zandvoort et al., 
2019, 2022; Ortega-Auriol et al., 2023). As multiple joints and 
muscles are coordinated by spinal premotor circuits (Takei and 
Seki, 2010; Takei et al., 2017), we may hypothesize the existence of 
separate cortical inputs, modulating a network of spinal premotor 
interneurons (Song et al., 2022) that, in turn, modulates the 
firings of subpopulations of the MNs of muscles composing a 
synergy (Hug et al., 2022). Further investigations will validate this 
hypothesis. 

4.3 Applications 

These findings have potential translational implications for 
clinical and neuroengineering applications. 

Because neurological patients often exhibit altered 
synergy organization (Roh et al., 2013; Mileti et al., 2020; 
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TABLE 1 Per-participant counts of synergistic and non-synergistic muscle pairs used in the linear mixed-effects analysis. 

Subject id 1 2 3 4 5 6 7 8 Mean ± SD 

Synergistic pairs 1,350 1,179 1,353 966 920 1.451 1.376 891 1.186 ± 229 

Non-synergistic pairs 5.171 4.426 6.296 4.764 4.286 7.151 6.985 6.433 5.689 ± 1.160 

Houston et al., 2021), the identification of distinct low-frequency 
and low-beta layers provides potential biomarkers of spinal and 
cortical contributions to coordination. Quantifying changes in 
these frequency-specific coherence patterns may therefore oer a 
sensitive marker of disease severity and motor recovery. 

Beyond clinical diagnostics, specific frequency bands may also 
be leveraged to enhance the control of myoelectric devices. EMG 
activity has already been explored as a control signal for robotic 
devices (Ajoudani et al., 2012; Song et al., 2023), exoskeletons 
(Durandau et al., 2019; Borzelli et al., 2020; Caggiano et al., 2022), 
prostheses (Cimolato et al., 2022; Yadav and Veer, 2023), and 
motor augmentation systems (Gurgone et al., 2022; Lee et al., 2024; 
Lisini Baldi et al., 2025). Notably, the beta-band firing of individual 
motor units has been successfully implemented in controlling 
virtual cursors for human augmentation (Bräcklein et al., 2021), 
consistent with our identification of a low-beta layer reflecting 
cortical drive, by targeting the frequency components most relevant 
for either spinal (force) or cortical (fine control) drives. Thus, 
the present frequency-layer framework may inform future closed-
loop strategies that adaptively exploit specific coherence bands for 
neurorehabilitation and assistive technologies. 

4.4 Limitations 

In this study, the number of layers was determined according 
to the consistency among participants. While this approach is 
reasonable for healthy individuals, it may not be suitable for 
neurological patients, who often exhibit significant pathological 
variability (Houston et al., 2021). 

Similar issues may arise during complex tasks, e.g., when 
the modulation of limb stiness is required together with a 
force generation task (Borzelli et al., 2018, 2023; Gurgone et al., 
2022). While simple one-degree-of-freedom models based on two 
antagonist muscles have successfully described the relationship 
between coactivation and joint stiness (Borzelli et al., 2017a, b), 
such formulations cannot capture the multidimensional nature 
of muscle coordination and stiness modulation observed in 
multi-muscle, multi-directional tasks. Therefore, dierent muscle 
patterns may be exploited to achieve the same limb stiening level, 
and consistency among participants may not be detected. Further 
studies are needed to investigate the changes in synchronous 
muscle modulation during combined tasks involving force 
generation and limb stiness modulation. 

The coherence analysis requires a static signal, so dynamic tasks 
would require alternative time-frequency analyses (Di Nardo et al., 
2022; Borzelli et al., 2025). However, the availability of a dynamic 
task, e.g., an isotonic task, together with an isometric task, like 
the one presented in this study, would provide a comprehensive 
description of the spectral features of muscles recruited by the same 
synergy. 

A further limitation concerns the disparity in the number 
of synergistic and non-synergistic pairs. Although the two 
groups were unbalanced, the linear mixed-eects model included 
participant index as a random factor, thus controlling for inter-
individual variability and preventing group size dierences from 
biasing the estimated eects. 

Finally, while our subject-specific frequency-layer approach 
improves inter-subject comparability and highlights physiologically 
meaningful coherence bands, future work should test its robustness 
in patient populations with highly variable spectral content. 

5 Conclusion 

We demonstrated that a subject-specific, data-driven 
decomposition of intermuscular coherence reveals physiologically 
relevant frequency bands underlying muscle synergies. 

Compared with classical fixed-band analyses, this approach 
refines the detection of frequency-specific coherence and oers a 
framework to study altered motor coordination in patient groups. 

These findings support the hypothesis that the coordination 
of dierent muscles in muscle synergies is implemented at the 
neural level through shared neural drives at both spinal and 
cortical frequencies. 
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control, eds A. Rodić and T. Borangiu (Cham: Springer International Publishing), 
285–292. doi: 10.1007/978-3-319-49058-8_31 

Bräcklein, M., Ibáñez, J., Barsakcioglu, D. Y., and Farina, D. (2021). Towards human 
motor augmentation by voluntary decoupling beta activity in the neural drive to 
muscle and force production. J. Neural Eng. 18:016001. doi: 10.1088/1741-2552/abcdbf 

Brinkman, L., Stolk, A., Dijkerman, H. C., de Lange, F. P., and Toni, I. (2014). 
Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-
directed actions. J. Neurosci. 34, 14783–14792. doi: 10.1523/JNEUROSCI.2039-14. 
2014 

Brittain, J.-S., and Brown, P. (2014). Oscillations and the basal ganglia: Motor 
control and beyond. NeuroImage 85, 637–647. doi: 10.1016/j.neuroimage.2013.05.084 

Caggiano, V., Wang, H., Durandau, G., Sartori, M., and Kumar, V. (2022). 
“MyoSuite: A contact-rich simulation suite for musculoskeletal motor control,” in 
Proceedings of The 4th Annual Learning for Dynamics and Control Conference, 
(PMLR), (Palo Alto, CA). 

Carter, G. C. (1987). Coherence and time delay estimation. Proc. IEEE 75, 236–255. 
doi: 10.1109/PROC.1987.13723 

Castronovo, A. M., De Marchis, C., Schmid, M., Conforto, S., and Severini, G. 
(2018). Eect of task failure on intermuscular coherence measures in synergistic 
muscles. Appl. Bionics Biomechan. 2018:4759232. doi: 10.1155/2018/4759232 

Cheung, V. C. K., and Seki, K. (2021). Approaches to revealing the neural basis 
of muscle synergies: A review and a critique. J. Neurophysiol. 125, 1580–1597. doi: 
10.1152/jn.00625.2019 

Cimolato, A., Driessen, J. J. M., Mattos, L. S., De Momi, E., Laranchi, M., and 
De Michieli, L. (2022). EMG-driven control in lower limb prostheses: a topic-based 
systematic review. J. NeuroEng. Rehabil. 19:43. doi: 10.1186/s12984-022-01019-1 

Frontiers in Neural Circuits 12 frontiersin.org 

https://doi.org/10.3389/fncir.2025.1675012
https://doi.org/10.1109/ICRA.2012.6224904
https://doi.org/10.1152/jn.00356.2021
https://doi.org/10.1152/jn.00356.2021
https://doi.org/10.1523/JNEUROSCI.0122-13.2013
https://doi.org/10.1152/jn.00657.2018
https://doi.org/10.1152/jn.00657.2018
https://doi.org/10.3389/fncom.2013.00051
https://doi.org/10.1152/jn.00066.2011
https://doi.org/10.1038/srep17830
https://doi.org/10.3389/fncom.2013.00186
https://doi.org/10.1088/1741-2552/ab6d88
https://doi.org/10.1371/journal.pone.0205911
https://doi.org/10.3390/bioengineering11080793
https://doi.org/10.1152/jn.00199.2023
https://doi.org/10.1016/j.bspc.2024.106802
https://doi.org/10.1016/j.bspc.2024.106802
https://doi.org/10.3390/s23020673
https://doi.org/10.1007/978-3-319-48375-7_8
https://doi.org/10.1007/978-3-319-49058-8_31
https://doi.org/10.1088/1741-2552/abcdbf
https://doi.org/10.1523/JNEUROSCI.2039-14.2014
https://doi.org/10.1523/JNEUROSCI.2039-14.2014
https://doi.org/10.1016/j.neuroimage.2013.05.084
https://doi.org/10.1109/PROC.1987.13723
https://doi.org/10.1155/2018/4759232
https://doi.org/10.1152/jn.00625.2019
https://doi.org/10.1152/jn.00625.2019
https://doi.org/10.1186/s12984-022-01019-1
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-19-1675012 November 4, 2025 Time: 18:47 # 13

Borzelli et al. 10.3389/fncir.2025.1675012 

Danna-Dos-Santos, A., Boonstra, T. W., Degani, A. M., Cardoso, V. S., Magalhaes, 
A. T., Mochizuki, L., et al. (2014). Multi-muscle control during bipedal stance: An 
EMG-EMG analysis approach. Exp. Brain Res. 232, 75–87. doi: 10.1007/s00221-013-
3721-z 

D’Avella, A., Portone, A., Fernandez, L., and Lacquaniti, F. (2006). Control of fast-
reaching movements by muscle synergy combinations. J. Neurosci. 26, 7791–7810. 
doi: 10.1523/JNEUROSCI.0830-06.2006 

De Luca, C. J., and Mambrito, B. (1987). Voluntary control of motor units in 
human antagonist muscles: Coactivation and reciprocal activation. J. Neurophysiol. 58, 
525–542. doi: 10.1152/jn.1987.58.3.525 

De Marchis, C., Schmid, M., Bibbo, D., Bernabucci, I., and Conforto, S. (2013). Inter-
individual variability of forces and modular muscle coordination in cycling: A study 
on untrained subjects. Hum. Movem. Sci. 32, 1480–1494. doi: 10.1016/j.humov.2013. 
07.018 

De Marchis, C., Severini, G., Castronovo, A. M., Schmid, M., and Conforto, S. 
(2015). Intermuscular coherence contributions in synergistic muscles during pedaling. 
Exp. Brain Res. 233, 1907–1919. doi: 10.1007/s00221-015-4262-4 

Del Vecchio, A., Germer, C. M., Elias, L. A., Fu, Q., Fine, J., Santello, M., et al. (2019). 
The human central nervous system transmits common synaptic inputs to distinct 
motor neuron pools during non-synergistic digit actions. J. Physiol. 597, 5935–5948. 
doi: 10.1113/JP278623 

Di Nardo, F., Morano, M., Strazza, A., and Fioretti, S. (2022). Muscle co-contraction 
detection in the time–frequency domain. Sensors 22:4886. doi: 10.3390/s22134886 

Dominici, N., Ivanenko, Y. P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., 
et al. (2011). Locomotor primitives in newborn babies and their development. Science 
334, 997–999. doi: 10.1126/science.1210617 

Durandau, G., Farina, D., Asín-Prieto, G., Dimbwadyo-Terrer, I., Lerma-Lara, S., 
Pons, J. L., et al. (2019). Voluntary control of wearable robotic exoskeletons by patients 
with paresis via neuromechanical modeling. J. NeuroEng. Rehabil. 16:91. doi: 10.1186/ 
s12984-019-0559-z 

Farina, D., and Negro, F. (2015). Common synaptic input to motor neurons, motor 
unit synchronization, and force control. Exerc. Sport Sci. Rev. 43, 23–33. doi: 10.1249/ 
JES.0000000000000032 

Farina, D., Negro, F., and Dideriksen, J. L. (2014). The eective neural drive to 
muscles is the common synaptic input to motor neurons. J. Physiol. 592, 3427–3441. 
doi: 10.1113/jphysiol.2014.273581 

Farmer, S. F., Halliday, D. M., Conway, B. A., Stephens, J. A., and Rosenberg, J. R. 
(1997). A review of recent applications of cross-correlation methodologies to human 
motor unit recording. J. Neurosci. Methods 74, 175–187. doi: 10.1016/S0165-0270(97) 
02248-6 

Frère, J. (2017). Spectral properties of multiple myoelectric signals: new insights 
into the neural origin of muscle synergies. Neuroscience 355, 22–35. doi: 10.1016/j. 
neuroscience.2017.04.039 

Gentner, R., Edmunds, T., Pai, D. K., and d’Avella, A. (2013). Robustness of muscle 
synergies during visuomotor adaptation. Front. Comp. Neurosci. 7:120. doi: 10.3389/ 
fncom.2013.00120 

Gurgone, S., Borzelli, D., Pasquale, P., de, Berger, D. J., Baldi, T. L., et al. (2022). 
Simultaneous control of natural and extra degrees of freedom by isometric force and 
electromyographic activity in the muscle-to-force null space. J. Neural Eng. 19:016004. 
doi: 10.1088/1741-2552/ac47db 

Hermens, H., Freriks, B., Merletti, R., Hägg, G., Stegeman, D., Blok, J., et al. (1999). 
European recommendations for surface electromyography, deliverable of the SENIAM 
project. Enschede: SENIAM. 

Hermer-Vazquez, R., Hermer-Vazquez, L., Srinivasan, S., and Chapin, J. K. (2007). 
Beta- and gamma-frequency coupling between olfactory and motor brain regions 
prior to skilled, olfactory-driven reaching. Exp. Brain Res. 180, 217–235. doi: 10.1007/ 
s00221-007-0850-2 

Houston, M., Li, X., Zhou, P., Li, S., Roh, J., and Zhang, Y. (2021). Alterations 
in muscle networks in the upper extremity of chronic stroke survivors. IEEE Trans. 
Neural Syst. Rehabil. Eng. 29, 1026–1034. doi: 10.1109/TNSRE.2021.3075907 

Hug, F., Avrillon, S., Sarcher, A., Del Vecchio, A., and Farina, D. (2022). Correlation 
networks of spinal motor neurons that innervate lower limb muscles during a multi-
joint isometric task. J. Physiol. 601, 3201–3219. doi: 10.1113/JP283040 

Hurtado, J. M., Rubchinsky, L. L., and Sigvardt, K. A. (2004). Statistical method for 
detection of phase-locking episodes in neural oscillations. J. Neurophysiol. 91, 1883– 
1898. doi: 10.1152/JN.00853.2003/ASSET/IMAGES/LARGE/Z9K0040437640008. 
JPEG 

Ivanenko, Y. P., Poppele, R. E., and Lacquaniti, F. (2004). Five basic muscle 
activation patterns account for muscle activity during human locomotion. J. Physiol. 
556, 267–282. doi: 10.1113/jphysiol.2003.057174 

Kerkman, J. N., Bekius, A., Boonstra, T. W., Daertshofer, A., and Dominici, 
N. (2020). Muscle synergies and coherence networks reflect dierent modes of 
coordination during walking. Front. Physiol. 11:751. doi: 10.3389/fphys.2020.00751 

Kilner, J. M., Baker, S. N., Salenius, S., Jousmäki, V., Hari, R., and Lemon, R. N. 
(1999). Task-dependent modulation of 15-30 Hz coherence between rectified EMGs 

from human hand and forearm muscles. J. Physiol. 516, 559–570. doi: 10.1111/j.1469-
7793.1999.0559v.x 

Kristeva-Feige, R., Fritsch, C., Timmer, J., and Lücking, C. H. (2002). Eects of 
attention and precision of exerted force on beta range EEG-EMG synchronization 
during a maintained motor contraction task. Clin. Neurophysiol. 113, 124–131. doi: 
10.1016/S1388-2457(01)00722-2 

Laine, C. M., Cohn, B. A., and Valero-Cuevas, F. J. (2021). Temporal control of 
muscle synergies is linked with alpha-band neural drive. J. Physiol. 599, 3385–3402. 
doi: 10.1113/JP281232 

Laine, C. M., Martinez-Valdes, E., Falla, D., Mayer, F., and Farina, D. (2015). 
Motor neuron pools of synergistic thigh muscles share most of their synaptic input. 
J. Neurosci. 35, 12207–12216. doi: 10.1523/JNEUROSCI.0240-15.2015 

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative 
matrix factorization. Nature 401, 788–791. doi: 10.1038/44565 

Lee, M.-J., Eden, J., Gurgone, S., Berger, D. J., Borzelli, D., d’Avella, A., et al. (2024). 
Control limitations in the null-space of the wrist muscle system. Sci. Rep. 14:20634. 
doi: 10.1038/s41598-024-69353-z 

Leonardi, G., Ciurleo, R., Cucinotta, F., Fonti, B., Borzelli, D., Costa, L., et al. (2022). 
The role of brain oscillations in post-stroke motor recovery: An overview. Front. Syst. 
Neurosci. 16:947421. doi: 10.3389/fnsys.2022.947421 

Lisini Baldi, T., D’Aurizio, N., Gaudeni, C., Gurgone, S., Borzelli, D., d’Avella, 
A., et al. (2025). Exploiting body redundancy to control supernumerary robotic 
limbs in human augmentation. Int. J. Robot. Res. 44, 291–316. doi: 10.1177/ 
02783649241265451 

MacKay, W. A. (1997). Synchronized neuronal oscillations and their role in motor 
processes. Trends Cogn. Sci. 1, 176–183. doi: 10.1016/S1364-6613(97)01059-0 

Mehrkanoon, S., Breakspear, M., and Boonstra, T. W. (2014). The reorganization 
of corticomuscular coherence during a transition between sensorimotor states. 
NeuroImage 100, 692–702. doi: 10.1016/j.neuroimage.2014.06.050 

Milardi, D., Quartarone, A., Bramanti, A., Anastasi, G., Bertino, S., Basile, G. A., 
et al. (2019). The cortico-basal ganglia-cerebellar network: past. present and future 
perspectives. Front. Syst. Neurosci. 13:61. doi: 10.3389/fnsys.2019.00061 

Mileti, I., Zampogna, A., Santuz, A., Asci, F., Del Prete, Z., Arampatzis, A., 
et al. (2020). Muscle synergies in Parkinson’s disease. Sensors 20:3209. doi: 10.3390/ 
s20113209 

Mima, T., and Hallett, M. (1999). Corticomuscular coherence: A review. J. Clin. 
Neurophysiol. 16, 501–511. doi: 10.1097/00004691-199911000-00002 

Negro, F., Holobar, A., and Farina, D. (2009). Fluctuations in isometric muscle force 
can be described by one linear projection of low-frequency components of motor unit 
discharge rates. J. Physiol. 587, 5925–5938. doi: 10.1113/jphysiol.2009.178509 

Omlor, W., Patino, L., Hepp-Reymond, M.-C., and Kristeva, R. (2007). Gamma-
range corticomuscular coherence during dynamic force output. NeuroImage 34, 
1191–1198. doi: 10.1016/j.neuroimage.2006.10.018 

Ortega-Auriol, P., Byblow, W. D., Besier, T., and McMorland, A. J. C. (2023). Muscle 
synergies are associated with intermuscular coherence and cortico-synergy coherence 
in an isometric upper limb task. Exp. Brain Res. 241, 2627–2643. doi: 10.1007/s00221-
023-06706-6 

Ortega-Auriol, P., Byblow, W. D., and McMorland, A. J. (2019). Muscle synergies 
are associated with intermuscular coherence in an isometric upper limb task. bioRxiv 
[Preprint] doi: 10.1101/843797 

Oswal, A., Beudel, M., Zrinzo, L., Limousin, P., Hariz, M., Foltynie, T., et al. (2016). 
Deep brain stimulation modulates synchrony within spatially and spectrally distinct 
resting state networks in Parkinson’s disease. Brain 139, 1482–1496. doi: 10.1093/ 
brain/aww048 

Overduin, S. A., d’Avella, A., Carmena, J. M., and Bizzi, E. (2012). Microstimulation 
activates a handful of muscle synergies. Neuron 76, 1071–1077. doi: 10.1016/j.neuron. 
2012.10.018 

Overduin, S. A., D’Avella, A., Roh, J., and Bizzi, E. (2008). Modulation of muscle 
synergy recruitment in primate grasping. J. Neurosci. 28, 880–892. doi: 10.1523/ 
JNEUROSCI.2869-07.2008 

Plate, A., Hell, F., Mehrkens, J. H., Koeglsperger, T., Bovet, A., Stanslaski, S., et al. 
(2021). Peaks in the beta band of the human subthalamic nucleus: a case for low beta 
and high beta activity. J. Neurosurg. 136, 672–680. doi: 10.3171/2021.3.JNS204113 

Ramos-Murguialday, A., and Birbaumer, N. (2015). Brain oscillatory signatures of 
motor tasks. J. Neurophysiol. 113, 3663–3682. doi: 10.1152/jn.00467.2013 

Rimini, D., Agostini, V., and Knaflitz, M. (2017). Intra-subject consistency during 
locomotion: Similarity in shared and subject-specific muscle synergies. Front. Hum. 
Neurosci. 11:586. doi: 10.3389/fnhum.2017.00586 

Roh, J., Rymer, W. Z., Perreault, E. J., Yoo, S. B., and Beer, R. F. (2013). Alterations 
in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 
109, 768–781. doi: 10.1152/jn.00670.2012 

Santuz, A., Ekizos, A., Janshen, L., Baltzopoulos, V., and Arampatzis, A. 
(2017). On the methodological implications of extracting muscle synergies from 
human locomotion. Int. J. Neural Syst. 27:1750007. doi: 10.1142/S012906571750 
0071 

Frontiers in Neural Circuits 13 frontiersin.org 

https://doi.org/10.3389/fncir.2025.1675012
https://doi.org/10.1007/s00221-013-3721-z
https://doi.org/10.1007/s00221-013-3721-z
https://doi.org/10.1523/JNEUROSCI.0830-06.2006
https://doi.org/10.1152/jn.1987.58.3.525
https://doi.org/10.1016/j.humov.2013.07.018
https://doi.org/10.1016/j.humov.2013.07.018
https://doi.org/10.1007/s00221-015-4262-4
https://doi.org/10.1113/JP278623
https://doi.org/10.3390/s22134886
https://doi.org/10.1126/science.1210617
https://doi.org/10.1186/s12984-019-0559-z
https://doi.org/10.1186/s12984-019-0559-z
https://doi.org/10.1249/JES.0000000000000032
https://doi.org/10.1249/JES.0000000000000032
https://doi.org/10.1113/jphysiol.2014.273581
https://doi.org/10.1016/S0165-0270(97)02248-6
https://doi.org/10.1016/S0165-0270(97)02248-6
https://doi.org/10.1016/j.neuroscience.2017.04.039
https://doi.org/10.1016/j.neuroscience.2017.04.039
https://doi.org/10.3389/fncom.2013.00120
https://doi.org/10.3389/fncom.2013.00120
https://doi.org/10.1088/1741-2552/ac47db
https://doi.org/10.1007/s00221-007-0850-2
https://doi.org/10.1007/s00221-007-0850-2
https://doi.org/10.1109/TNSRE.2021.3075907
https://doi.org/10.1113/JP283040
https://doi.org/10.1152/JN.00853.2003/ASSET/IMAGES/LARGE/Z9K0040437640008.JPEG
https://doi.org/10.1152/JN.00853.2003/ASSET/IMAGES/LARGE/Z9K0040437640008.JPEG
https://doi.org/10.1113/jphysiol.2003.057174
https://doi.org/10.3389/fphys.2020.00751
https://doi.org/10.1111/j.1469-7793.1999.0559v.x
https://doi.org/10.1111/j.1469-7793.1999.0559v.x
https://doi.org/10.1016/S1388-2457(01)00722-2
https://doi.org/10.1016/S1388-2457(01)00722-2
https://doi.org/10.1113/JP281232
https://doi.org/10.1523/JNEUROSCI.0240-15.2015
https://doi.org/10.1038/44565
https://doi.org/10.1038/s41598-024-69353-z
https://doi.org/10.3389/fnsys.2022.947421
https://doi.org/10.1177/02783649241265451
https://doi.org/10.1177/02783649241265451
https://doi.org/10.1016/S1364-6613(97)01059-0
https://doi.org/10.1016/j.neuroimage.2014.06.050
https://doi.org/10.3389/fnsys.2019.00061
https://doi.org/10.3390/s20113209
https://doi.org/10.3390/s20113209
https://doi.org/10.1097/00004691-199911000-00002
https://doi.org/10.1113/jphysiol.2009.178509
https://doi.org/10.1016/j.neuroimage.2006.10.018
https://doi.org/10.1007/s00221-023-06706-6
https://doi.org/10.1007/s00221-023-06706-6
https://doi.org/10.1101/843797
https://doi.org/10.1093/brain/aww048
https://doi.org/10.1093/brain/aww048
https://doi.org/10.1016/j.neuron.2012.10.018
https://doi.org/10.1016/j.neuron.2012.10.018
https://doi.org/10.1523/JNEUROSCI.2869-07.2008
https://doi.org/10.1523/JNEUROSCI.2869-07.2008
https://doi.org/10.3171/2021.3.JNS204113
https://doi.org/10.1152/jn.00467.2013
https://doi.org/10.3389/fnhum.2017.00586
https://doi.org/10.1152/jn.00670.2012
https://doi.org/10.1142/S0129065717500071
https://doi.org/10.1142/S0129065717500071
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-19-1675012 November 4, 2025 Time: 18:47 # 14

Borzelli et al. 10.3389/fncir.2025.1675012 

Shim, M., Choi, G.-Y., Paik, N.-J., Lim, C., Hwang, H.-J., and Kim, W.-S. 
(2021). Altered functional networks of alpha and low-beta bands during upper limb 
movement and association with motor impairment in chronic stroke. Brain Connect. 
13, 487–497. doi: 10.1089/brain.2021.0070 

Song, T., Yan, Z., Guo, S., Li, Y., Li, X., and Xi, F. (2023). Review of sEMG for robot 
control: techniques and applications. Appl. Sci. 13:9546. doi: 10.3390/app13179546 

Song, Y., Hirashima, M., and Takei, T. (2022). Neural network models for spinal 
implementation of muscle synergies. Front. Syst. Neurosci. 16:800628. doi: 10.3389/ 
fnsys.2022.800628 

Takei, T., Confais, J., Tomatsu, S., Oya, T., and Seki, K. (2017). Neural basis for 
hand muscle synergies in the primate spinal cord. Proc. Natl. Acad. Sci. U. S. A. 114, 
8643–8648. doi: 10.1073/pnas.1704328114 

Takei, T., and Seki, K. (2010). Spinal interneurons facilitate coactivation of hand 
muscles during a precision grip task in monkeys. J. Neurosci. 30, 17041–17050. doi: 
10.1523/JNEUROSCI.4297-10.2010 

Ting, L. H., and Macpherson, J. M. (2005). A limited set of muscle synergies for force 
control during a postural task. J. Neurophysiol. 93, 609–613. doi: 10.1152/jn.00681. 
2004 

Torres-Oviedo, G., and Ting, L. H. (2007). Muscle synergies characterizing human 
postural responses. J. Neurophysiol. 98, 2144–2156. doi: 10.1152/jn.01360.2006 

Tresch, M. C., and Jarc, A. (2009). The case for and against muscle synergies. Curr. 
Opin. Neurobiol. 19, 601–607. doi: 10.1016/j.conb.2009.09.002 

Uhlhaas, P. J., Pipa, G., Neuenschwander, S., Wibral, M., and Singer, W. (2011). A 
new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: Function, 

mechanisms and impairment. Prog. Biophys. Mol. Biol. 105, 14–28. doi: 10.1016/j. 
pbiomolbio.2010.10.004 

van Wijk, B. C. M., Neumann, W.-J., Schneider, G.-H., Sander, T. H., Litvak, 
V., and Kühn, A. A. (2017). Low-beta cortico-pallidal coherence decreases during 
movement and correlates with overall reaction time. Neuroimage 159, 1–8. doi: 10. 
1016/j.neuroimage.2017.07.024 

Witte, M., Patino, L., Andrykiewicz, A., Hepp-Reymond, M.-C., and Kristeva, R. 
(2007). Modulation of human corticomuscular beta-range coherence with low-level 
static forces. Eur. J. Neurosci. 26, 3564–3570. doi: 10.1111/j.1460-9568.2007.05942.x 

Yadav, D., and Veer, K. (2023). Recent trends and challenges of surface 
electromyography in prosthetic applications. Biomed. Eng. Lett. 13, 353–373. doi: 
10.1007/s13534-023-00281-z 

Yavuz, U. ¸ S, Negro, F., Falla, D., and Farina, D. (2015). Experimental muscle pain 
increases variability of neural drive to muscle and decreases motor unit coherence in 
tremor frequency band. J. Neurophysiol. 114, 1041–1047. doi: 10.1152/jn.00391.2015 

Zandvoort, C. S., Daertshofer, A., and Dominici, N. (2022). Cortical contributions 
to locomotor primitives in toddlers and adults. iScience 25:105229. doi: 10.1016/j.isci. 
2022.105229 

Zandvoort, C. S., van Dieën, J. H., Dominici, N., and Daertshofer, A. (2019). 
The human sensorimotor cortex fosters muscle synergies through cortico-synergy 
coherence. NeuroImage 199, 30–37. doi: 10.1016/J.NEUROIMAGE.2019.05.041 

Zhao, K., Zhang, Z., Wen, H., Liu, B., Li, J., d’Avella, A., et al. (2023). Muscle 
synergies for evaluating upper limb in clinical applications: A systematic review. 
Heliyon 9:e16202. doi: 10.1016/j.heliyon.2023.e16202 

Frontiers in Neural Circuits 14 frontiersin.org 

https://doi.org/10.3389/fncir.2025.1675012
https://doi.org/10.1089/brain.2021.0070
https://doi.org/10.3390/app13179546
https://doi.org/10.3389/fnsys.2022.800628
https://doi.org/10.3389/fnsys.2022.800628
https://doi.org/10.1073/pnas.1704328114
https://doi.org/10.1523/JNEUROSCI.4297-10.2010
https://doi.org/10.1523/JNEUROSCI.4297-10.2010
https://doi.org/10.1152/jn.00681.2004
https://doi.org/10.1152/jn.00681.2004
https://doi.org/10.1152/jn.01360.2006
https://doi.org/10.1016/j.conb.2009.09.002
https://doi.org/10.1016/j.pbiomolbio.2010.10.004
https://doi.org/10.1016/j.pbiomolbio.2010.10.004
https://doi.org/10.1016/j.neuroimage.2017.07.024
https://doi.org/10.1016/j.neuroimage.2017.07.024
https://doi.org/10.1111/j.1460-9568.2007.05942.x
https://doi.org/10.1007/s13534-023-00281-z
https://doi.org/10.1007/s13534-023-00281-z
https://doi.org/10.1152/jn.00391.2015
https://doi.org/10.1016/j.isci.2022.105229
https://doi.org/10.1016/j.isci.2022.105229
https://doi.org/10.1016/J.NEUROIMAGE.2019.05.041
https://doi.org/10.1016/j.heliyon.2023.e16202
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/

	Frequency-specific intermuscular coherence of synergistic muscles during an isometric force generation task
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Experimental setup
	2.3 Experimental protocol
	2.4 Data analysis
	2.4.1 Muscle synergies extraction
	2.4.2 Intermuscular coherence
	2.4.3 Coherence within synergistic and non-synergistic muscles
	2.4.4 Subject-specific frequency layers
	2.4.5 Statistical analysis


	3 Results
	3.1 Muscle synergies
	3.2 Intermuscular coherence: comparison within and across synergies
	3.3 A data-driven approach to define physiologically meaningful frequency bands
	3.4 Coherence differences across layers for synergistic and non-synergistic muscle pairs

	4 Discussion
	4.1 A novel approach to determine functionally relevant frequency layers
	4.2 Muscles recruited within the same synergy show higher coherence in the delta, alpha, and low-beta frequency bands
	4.3 Applications
	4.4 Limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


