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Introduction: Motor tasks require the flexible selection and coordination
of multiple muscles, which may be achieved through the organization and
combination of muscle synergies. Although multiple muscles may receive a
shared neural drive, and each muscle may also receive distinct neural inputs,
there is ongoing debate about whether synergies accurately reflect shared
neural drives. This study aimed to compare the spectral characteristics of the
common drive shared among muscles within the same synergy to those shared
among muscles belonging to different synergies.

Methods: Electromyographic signals were recorded from upper limb muscles
during an isometric multi-directional force generation task. Synergies were
identified using non-negative matrix factorization (NMF), and coherence analysis
was conducted to evaluate common drives among muscles within and across
synergies. A methodological limitation of previous studies was to segment
muscle activity into standard frequency bands. Here, we overcome it by
proposing to automatically detect subject-specific and physiologically relevant
frequency layers. The application of NMF on the coherence spectra of muscle
pairs as a method for automatically detecting physiologically relevant frequency
bands sheds light into the neural basis of muscle coordination.

Results: Six frequency layers were identified, and muscle recruited within the
same synergy showed a higher coherence within layers in the delta, alpha, and
low-beta bands.

Discussion: Our findings enhance the understanding of physiological
mechanisms of motor coordination by elucidating the relationship between
muscle synergies and the spectral characteristics of intermuscular coherence.

KEYWORDS

motor modules, tri-dimensional force, alpha band, low-beta band, muscle-muscle
coherence, muscle coordination, frequency layers, non-negative matrix factorization
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1 Introduction

A long-standing hypothesis suggests that muscle activations
are coordinated through the organization of muscle synergies.
The existence of muscle synergies has been supported by the
observation of low dimensionality in the muscle patterns during
several tasks including reaching and grasping (ID’Avella et al., 20065
Overduin et al., 2008), postural control (Ting and Macpherson,
2005; Torres-Oviedo and Ting, 2007), locomotion (Ivanenko et al.,
2004; Dominici et al., 2011; Rimini et al., 2017), and isomeric
force generation (Borzelli et al, 2013; Gentner et al, 2013),
and muscle synergies may be affected by neurological lesions
(Zhao et al., 2023; Borzelli et al., 2024a). Yet, different aspects
of synergistic organization may emerge at different neural levels,
including spinal (Takei and Seki, 2010), cortical (Overduin et al.,
2012), and cerebellar (Berger et al, 2020) circuits. While the
neural origin of muscle synergies has been supported through
different approaches (Tresch and Jarc, 2009; Overduin et al., 2012;
Berger et al.,, 2013, 2022; Bizzi and Cheung, 2013; Cheung and
Seki, 2021), the neural mechanisms underlying the coordination
of multiple muscles at different levels are still unclear. While the
synergy hypothesis focuses on how the central nervous system
coordinates groups of muscles to cope with the redundancy of
the musculoskeletal system, studies on common synaptic input
investigate the neural implementation of this coordination through
shared inputs to motoneuron pools. Several studies support the
existence of common synaptic inputs that drive different muscles
(De Luca and Mambrito, 1987; Kilner et al., 1999; Laine et al,,
2015; Hug et al, 2022; Borzelli et al, 2024b). Although both
frameworks posit a common command driving multiple muscles,
they operate at different descriptive levels and lead to distinct
empirical predictions: the synergy hypothesis predicts a functional
invariant activation ratio among muscles, whereas the common-
input framework predicts correlated neural activity, measurable
as intermuscular coherence. Therefore, to link the two levels, it
is reasonable to hypothesize that the coordinated activation of
multiple muscles within synergies depends on the existence of
common synaptic inputs. Indeed, recent studies demonstrated that
the activity of the muscles recruited within the same synergy
shows a significant synchronous modulation (Danna-Dos-Santos
et al., 2014; De Marchis et al., 2015; Frére, 2017; Laine et al.,
2021). However, these studies examined the activity of only a few
muscles during a limited set of conditions (Danna-Dos-Santos
et al, 2014) or investigated the occurrence of synchronization
only in the 8 - 16 Hz band (Laine et al., 2021), thus limiting the
understanding of the neural architecture underlying the synergistic
recruitment of muscles. Although low-frequency components of
the common inputs to motor neurons represent the effective drive
that controls the exertion of force (Farina et al., 2014), a synaptic
input from corticospinal neurons may occur at higher frequencies
(Farmer et al., 1997). In fact, significant cortico-synergy coherence
was recently identified in high-frequency bands (Zandvoort et al.,
2019; Ortega-Auriol et al, 2023). Moreover, studies performed
on a dynamic task (De Marchis et al., 2015) demonstrated high-
frequency synchronous modulation but only between a few pairs
of muscles recruited by the same synergies, and only when a
functional force production was required. Previous work, therefore
indicates that muscle coordination relies on frequency-specific
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neural drives, but the precise functional role and consistency of
these frequency bands across individuals remain unclear.

An essential factor in determining the role of physiological
frequency bands is the identification of their limits. Unfortunately,
there is no consensus in the literature on the definition of band
limits. The upper limit of the alpha band was set in different studies
to 12 Hz (Mehrkanoon et al,, 2014), 13 Hz (Yavuz et al., 2015;
Leonardi et al.,, 2022), or 15 Hz (De Marchis et al., 2015). The
boundary between low- to high-beta bands was set to 20 Hz (Shim
et al., 2021), 21 Hz (van Wijk et al., 2017), or 25 Hz (Witte et al,,
2007), while the beta upper limit was set to 25 Hz (Brinkman et al.,
2014), 30 Hz (De Marchis et al., 2015; Farina and Negro, 2015)
or 35 Hz (Del Vecchio et al., 2019). These inconsistencies make it
difficult to interpret how specific frequency components contribute
to muscle coordination and to compare results across studies.

To address this gap, we aimed to investigate whether muscles
grouped within the same synergy exhibit stronger synchronization
across physiologically relevant frequency bands than muscles
belonging to different synergies. In particular, we adopted a data-
driven, subject-specific approach to define frequency bands based
on intermuscular coherence structure (Boonstra et al., 2015), which
may help clarify how shared neural drives at different frequencies
shape synergistic muscle activations. This data-driven approach
may improve the alignment of spectral features across subjects
and enable applications to patient populations, where frequency
content may be shifted or distorted (Houston et al., 2021). This
approach was tested during the generation of submaximal isometric
force at the hand in multiple directions, while collecting the
electromyographic activity from multiple muscles acting on the
shoulder and elbow joints.

We hypothesized that if muscle synergies are implemented
through common neural inputs, muscles within the same synergy
must show higher intermuscular coherence than those recruited in
different synergies, especially within frequency bands relevant for
isometric force generation. Therefore, investigating changes in the
intermuscular coherence at specific frequency bands would reveal
functional neural mechanisms

This work therefore provides new insight into the neural
organization of muscle synergies by disentangling the frequency-
specific components of shared motor input while avoiding a priori
assumptions about fixed frequency band limits.

2 Materials and methods

Participants, experimental setup, and experimental protocols
are briefly described below. More details can be found in a previous
paper (Borzelli et al., 2013) presenting a different analysis of the
same data set.

2.1 Participants

Nine right-handed participants (four females, mean age
29.6 * 4.4 years, age range 24-39) took part in the experiment
after giving written
approved by the
Santa Lucia (Prot.

informed consent. All procedures were
Ethical Review Board of Fondazione
CE/AG4-PROG.222-34). All participants
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had no known neuromuscular disorder or recent injury
of the right arm.

One participant was excluded from the analysis after realizing
the occurrence of muscle activity also when he was asked to relax his
muscles (i.e., during the relaxation phase at the beginning of each
trial, see section “2.3 Experimental protocol”), with the consequent

reduction of the performance likely due to fatigue.

2.2 Experimental setup

Participants sat on a racing car seat with their torso
immobilized by safety belts and their right hand and forearm
immobilized by a splint rigidly connected to a six-axis force
transducer (Delta F/T Sensor, ATI Industrial Automation, Apex,
NC, United States). In this posture (Figure 1A), the center of
the palm was aligned with the body midline at the height of the
sternum, and the elbow was flexed approximately by 90°. The
force transducer was mounted under a desktop, whose height and
distance from the participants could be adjusted according to the
participants’ body size. Participants had the view of their right
hand occluded by a mirror reflecting the image displayed by a 21-
inch LCD monitor (Syncmaster 2233, Samsung Electronics Italia
S.p.A., Cernusco sul Naviglio, MI, Italy), parallel to the desktop
(Figure 1A). During the experiments, participants wore 3D shutter
glasses (3DVision P854, NVIDIA Corporation, Santa Clara, CA,
United States) to stereoscopically view a virtual desktop matching
the real desktop and a spherical cursor whose displacement from
an initial position was proportional to the three-dimensional
force collected by the force transducer. The virtual scene was
rendered by a 3D graphics card (QuadroFx3800, NVIDIA) and
updated at 60 Hz. Cursor motion was simulated in real time
as a mass accelerated by the force applied by the participant
on the splint and adjusted adaptively in the range of 15-140 g
as a sigmoidal function of the rate of change in the magnitude
of the recorded force (Berger et al, 2013), a viscous force,
and an elastic force proportional to the distance from the rest
position.

Active surface bipolar electrodes (DE2.1, DelsysInc., Boston,
MA) recorded the electromyographic (EMG) activity from 17
muscles acting on the right shoulder and elbow: teres major
(TeresMaj), infraspinatus (InfraSp), latissimus dorsi (LatDorsi),
inferior trapezius (TrapInf), middle trapezius (TrapMid), superior
trapezius (TrapSup),brachioradialis (BracRad), biceps brachii long
head (BicLong) and short head (BicShort), triceps brachii lateral
head (TriLat), long head (TriLong), and medial head(TriMed),
anterior deltoid (DeltA), middle deltoid (DeltM), posterior deltoid
(DeltP), and pectoralis major clavicular (PectClav), and sternal
(PectStern). Electrodes were placed in correspondence to the
muscle belly (Hermens et al., 1999), and their correct placement
was verified by observing the activation of each muscle during
specific maneuvers. Force and EMG data were digitilized at 1kHz
through an A/D PCI board (PCI-6229, National Instrument,
Austin, TX, United States). Only force components (Fx lateral
direction on the horizontal plane, positive to the right; Fy
frontal direction on the horizontal plane, positive away from the
chest; Fz vertical direction, positive up) were used during this
experiment.
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2.3 Experimental protocol

After an initial familiarization, each participant was instructed
to exert a maximal force along 20 directions, two repetitions each,
corresponding to the vertices of a dodecahedron centered in the
origin. The mean value among the maximum force collected during
each trial was identified as the Maximum Voluntary Force (MVF)
value and used to scale the force required to reach the targets
in the following block. The maximum activation of each muscle,
identified during this block, was also retained as the Maximum
Voluntary Contraction (MVC).

Then, participants were instructed to exert isometric forces
to displace a virtual spherical cursor from an initial rest position
to a target (Figure 1B). Targets, arranged on horizontal planes at
different heights (Figures 1C, D), were approximately uniformly
distributed on the surface of a sphere with a radius of 0.2 MVF
and required the generation of forces along 32 directions, five
repetitions each for a total of 160 trials. After an initial phase, in
which participants were instructed to relax their muscles without
exerting force (rest phase, 0.3 s), a target, indicated by a gray
transparent sphere with a radius larger than the cursor sphere
radius by 2% MVE was displayed in one of the 32 locations.
Therefore, participants were instructed to move and maintain the
cursor within the target for 3s (hold phase) to successfully end the
trial.

2.4 Data analysis

Electromyographic data were visually inspected to exclude
those trials with signal artifacts. Trials in which the participant
could not reach or remain within the target were also excluded
from the analysis.

For each participant, NMF was first applied to EMG signals
to identify muscle synergies. Then, NMF was also applied
to the coherence between all pairs of muscles to determine
the frequency bands at which muscles showed synchronous
modulation (Boonstra et al., 2015). Coherence between muscles
recruited within the same synergy and coherence between pairs
of muscles that were never recruited within the same synergy
were analyzed separately and compared within each subject-specific
frequency band.

2.4.1 Muscle synergies extraction

Raw EMG data were rectified, digitally low-pass filtered (2nd
order Butterworth, 5 Hz cutoff), and re-sampled at 100 Hz to
reduce data size. Mean EMG activity recorded during the rest
phase of each trial was subtracted from data collected during
the hold phase and EMG signals were normalized to the MVC.
Muscle synergies of each participant were identified by the NMF
algorithm (Lee and Seung, 1999), implemented in Matlab, from
the pre-processed EMG signals averaged over time samples within
the hold phase of each trial. Therefore, each muscle activation
sample m,, () was reconstructed as the combination of a unique
set of spatial or time-invariant synergies W, scaled by time-varying
synergy activation coeflicients ¢, (¢). Subscript m refers to the use of
non-negative matrix factorization on muscle activation samples to
extract muscle synergies, in contrast with subscript ¢ that refers to
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FIGURE 1

(A) Experimental setup. Participants sat on an isometric setup, with the right hand fixed in an orthosis rigidly connected to a force transducer. The
red, green, and blue arrows represent the directions of the force axes, as collected from the transducer. Participants, wearing 3D glasses, look
through a mirror at a 3D scene projected by a monitor, placed at the height of their eyes, and can control the displacement of a virtual cursor by
applying force at the force transducer. (B) Task description. Participants were instructed to perform a center-out reaching task in which they had to
maintain the cursor in a central start location for 3 s (rest phase), then reach a target and maintain the cursor within the target for 3 s (static phase).
(C,D) Force targets. Positions of the 32 targets in the tri-dimensional force space (C) and their elevation and the azimuth angles (D).

the use of non-negative matrix factorization on coherence spectra
between muscles to separate coherence between muscle pairs into
frequency layers (see below).

The extraction algorithm was repeated 10 times for each
number of synergies (1-17, i.e., the number of muscles) and
the repetition with the highest fraction of total data variation
explained by the synergy model, calculated as R? = 1—SSE/SST,
where SSE is the squared model residual and SST is the squared
residual with respect to the mean EMG vector, was retained. The
number of synergies N was chosen considering (i) the smallest N
for which the R? was larger than 0.9, (ii) as the point at which
the R? vs. N curve had a change in slope (detected as the first
N at which MSE error of linear fit from N to 17, the number
of muscles, was below 10—4), (iii) in case of mismatch between
the number of synergies selected according to the two criteria,
we chose the set of synergies with a more uniform distribution
of preferred directions of the synergy activation coefficients (the
direction of the maximum of the cosine function best fitting the
directional tuning).
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2.4.2 Intermuscular coherence

The preprocessing for coherence calculation did not include
any bandpass filtering of the EMG signal to avoid effects in the
coherence analysis (Castronovo et al., 2018). The rectified raw EMG
signal was initially demodulated by removing the slow-varying
amplitude components to assure the stationarity requirement
of coherence estimation (Carter, 1987). The demodulation was
based on the Hilbert transform (Boonstra and Breakspear, 2012;
Castronovo et al., 2018) for which the instantaneous frequency was
calculated as in Equation I:

xy(t)
x(t)

where x (t) was the EMG signal and xy (¢) its Hilbert transform,
while the demodulated EMG signal was calculated as in Equation 2:

9 () = tan"![ ] 1)

xp (t) = cos[d(1)] 2

Then the mean activity was subtracted by the demodulated EMG
signal of each muscle.
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Since spurious contributions may occur in the absence of
signals, for each trial, the coherence analysis was only calculated
on pairs of muscles that were simultaneously active. The baseline
noise was calculated as the variance of the EMG signal during the
rest phase, when all muscles were expected to be relaxed. Then, a
moving time window, lasting as the rest phase (i.e., 3 s), was used
to determine the variance of the signal collected during the static
phase. At each time step of the static phase, a muscle showing a
variance at least 50 % higher than the variance calculated during the
rest phase was identified as active during that time step. A muscle
that was active in at least 75% of the time steps of the static phase
was considered to be recruited during that trial.

The coherence was then calculated for all pairs of recruited
muscles during the static phase as follows. The Welch’s power
spectral density of each signal (pxy and py,) and the cross-power
spectral density between the two signals (pyy,), were calculated in a
Hamming time window of 0.2 s with 50% overlap, as proposed in
the literature (Boonstra et al., 2015). The Matlab functions “pwelch”
and “cpsd” were implemented to calculate Welch’s power spectral
density and the cross-power spectral density, respectively. The
coherence was calculated as in Equation 3:

*
P Pxy 'pxy
y = ————

7 Pxx * Pyy

3)

where [ -] indicates the conjugate. The coherence contributions
were then normalized by the Fischer transformation to allow for
comparisons among different participants and it was calculated as
in Equation 4:

Zy = /2Nstanh™'(Cyy) (4)

where N; was the number of windowed segments used for the
estimation of the coherence profile.

The significance of the estimated coherence spectra between
each pair of muscles was assessed by employing a bootstrapping
approach to the complex-valued cross-spectral density through
phase randomization (Hurtado et al., 2004). Surrogates of the
demodulated EMG signal of a muscle were generated by calculating
the Fourier transform of the signal, independently shuffling the
phase components, and then calculating the inverse Fourier
transform back. This procedure ensures the preservation of
the power spectrum of each signal but makes the two series
completely uncorrelated in the frequency domain. For each
trial, 100 surrogates were calculated for each active muscle,
to calculate a set of coherence spectra expected from chance.
Frequency bins showing lower coherence than the significance
threshold, established at the 95% percentile of the bootstrap
distribution, were set to zero. The coherence between pairs of
muscles that were not simultaneously active was also set to
zero.

The coherence spectra across the frequency range of 1-60 Hz
(f frequency bins), over trials (t) and muscle pairs (m pairs), were
concatenated to obtain a matrix with f rows and t x m columns,
which was decomposed by NMF algorithm, assuming k modes
with k = 1, - - f, where the number of frequency bins f in which
the coherence spectra were separated depends on the window
length and was 15 in this study. The decomposition defined two
matrices: W, and C.. The matrix W. (f rows and k columns)
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represented the coherence patterns, and C. (k rows and t x m
columns) represented the edge weights. The k modes separated the
frequencies into different layers. In this study, different W¢ and C
matrices were separately calculated from the data collected from
each participant.

Previous studies identified the number of frequency layers
by assuming a threshold in the data explained by the model.
However, such thresholds were arbitrary (Kerkman et al., 2020;
Houston et al, 2021), and the identified number of layers was
influenced by the data pre-processing (Santuz et al, 2017).
Therefore, in this study, we selected the number of layers by
identifying the local minimum in the standard deviation of
the coherence patterns W, across participants, which we used
as a criterion to determine the optimal number of layers. This
approach is physiologically motivated: a local minimum indicates
a frequency separation that is most consistent across individuals,
reflecting stable, participant-independent spectral features likely
corresponding to functionally relevant neural drives. By using
this criterion, we reduce the influence of inter-subject variability
and avoid arbitrary thresholds, thus identifying layers that better
capture the underlying physiological organization of muscle
coordination.

2.4.3 Coherence within synergistic and
non-synergistic muscles

Our goal was to determine whether muscles recruited within
the same synergy, which are extracted from the EMG activations,
showed a higher synchronous modulation than muscles that were
never recruited within the same synergy.

The muscle weights (W,,,) were normalized across synergies,
such that the squared sum of the contribution of each muscle to
all synergies was set to one. Two muscles were considered to be
recruited within the same synergy, and defined “synergistic muscle
pair,” if they both contributed to that synergy with a normalized
weight higher than 75% (Figure 2), i.e., they were both highly
recruited by the same synergy. The 75% threshold was chosen to
ensure that each muscle was associated with only one synergy.
In contrast, two muscles were considered not to be recruited
within the same synergy, and defined “non-synergistic muscle
pair,” if one muscle contributed to a synergy with a normalized
weight higher than 75% and the other with a normalized weight
lower than 25%, or vice-versa. As the normalization approach
used in this study ensured that the total contribution of each
muscle across all synergies summed to 1, a muscle could exceed
the 75% threshold in only one synergy. Therefore, if a pair of
muscles met the “non-synergistic” criterion in one synergy, they
could not be considered “synergistic” in any of the others, since
the threshold condition could not be simultaneously satisfied
in multiple synergies. The 25% threshold was set according
to a previous study (De Marchis et al., 2013). Therefore, the
intermuscular coherences calculated between all muscle pairs
were assigned to the “synergistic muscle pair” category if both
muscles contributed to the same synergy, or to the ‘non-synergistic
muscle pair’ category if they contributed to different synergies.
Pairs that did not fit either definition, e.g., cases where neither
muscle showed a contribution higher than 75%, or where one
muscle contributed more than 75% while the other fell between
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FIGURE 2
Definition of synergistic and non-synergistic muscles. Two synergies, selected in the set extracted from data collected from participant eight
(synergies W3 and W6 in Figure 3), are represented. Muscles with the same color (blue vs. blue or magenta vs. magenta) are synergistic because they
are exclusively recruited by the same synergy (i.e., contribution higher than 75%, dashed line). Muscles with different colors are non-synergistic (blue
vs. magenta) because they are not exclusively recruited by the same synergy (i.e., if the contribution of a muscle to a synergy is higher than 75%, the
contribution of the other muscle to the same synergy is lower than 25%, dash-point line).

25% and 75%, were excluded to avoid potential confounding
effects.

2.4.4 Subject-specific frequency layers

As the decomposition of intermuscular coherence through
NMEF identified different subject-specific frequency layers, i.e., the
coherence patterns W, coherence between pairs of active muscles,
was analyzed within these layers. An average Z-coherence value I
was calculated for each spectrum was calculated as in Equation 5
(De Marchis et al., 2015):

fo
I (fL6) = —— / 2 ()df (5)

T h-f Jy
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Where f; and f, are the lower and upper bounds of each
layer. The bounds of layer k were identified as the frequency
interval in which layer k showed the highest coherence with
respect to the other layers, and they were subject-specific.
Although W, may exhibit multiple peaks and a non-unique
frequency interval, our results, consistent with previous literature,
revealed a single peak, and therefore, a unique definition of the
frequency interval.

We emphasize that the muscle synergy extraction and the
cross-muscle coherence were not related measures. In fact,
while muscle synergies described the instantaneous relative

contribution in the amplitude of different muscles along different
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time-steps, cross-muscle coherence described the phase locking
between muscles.

2.4.5 Statistical analysis

We used a linear mixed model to test the effect of
task and synergy on intermuscular coherence. The model
included target direction (coded as separate dummy variables),
repetition, and recruitment of the muscle pair by the same
or different synergies as fixed factors, and participant
index as a random factor. Coherence values were averaged
across layers for each muscle pair. Only pairs showing
significant coherence in at least one frequency bin in the
(1.60) Hz interval were included, to avoid inactive muscles
masking the effects. Statistical significance was assessed at

p < 0.05.

3 Results

On average, 6.0 £ 4.2 trials (mean + SD across participants)
out of 160 were excluded due to EMG artifacts. All participants
successfully performed the task, reaching and maintaining
the required force level within a 2% MVF tolerance for 3
seconds in the vast majority of trials (number of retained
trials: 152.4 4 5.0).

3.1 Muscle synergies

To investigate how participants coordinated their muscles
during the task, we extracted muscle synergies from the
activation patterns using non-negative matrix factorization
(NMF) (Lee and Seung, 1999). On average, 5.9 + 0.6 synergies
were identified across participants, which accounted for
91.4 & 1.1% of the total data variation (R?), indicating a low-
dimensional control strategy. An example of the extracted
from a shown in

synergies representative participant is

Figure 3.

3.2 Intermuscular coherence:
comparison within and across synergies

To assess whether muscles recruited within the same
synergy share more common neural input than muscles
recruited in different synergies, we computed the intermuscular
coherence across muscle pairs and compared
The

effects model revealed significantly higher coherence for

synergistic
vs.  non-synergistic = combinations. linear  mixed-
synergistic muscle pairs in frequency bins below 25 Hz
(Figure 4).

However, comparing these results across studies is challenging
due to differences in the definition of frequency ranges and
methodological choices. To address this variability, in the following
section, we applied a data-driven approach to identify subject-

specific frequency layers.
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3.3 A data-driven approach to define
physiologically meaningful frequency
bands

To address this issue, we decomposed intermuscular coherence
into subject-specific frequency layers. Across participants, the
coherence patterns showed a consistent organization into six main
layers (Figures 5A, B). Higher numbers of layers (>11) resulted in
over-discretization, splitting the spectrum into excessively narrow,
physiologically meaningless bins. The subject-specific frequency
boundaries identified six bands, each corresponding to a coherence
layer with relatively higher intra-layer coherence (mean £ SD
across participants; Figure 5B): Layer 1: [1.0 (0.0)-8.7 (1.1)] Hz;
Layer 2: [8.7 (1.1)-16.9 (2.0)] Hz; Layer 3: [16.9 (2.0)-25.7 (2.9)] Hz;
Layer 4: [25.7 (2.9)-35.8 (2.5)] Hz; Layer 5: [35.8 (2.5)-48.6 (2.8)]
Hz; Layer 6: [48.6 (2.8)-60.0 (0.0)] Hz.

3.4 Coherence differences across layers
for synergistic and non-synergistic
muscle pairs

Finally, using these automatically identified layers, we re-
evaluated coherence differences between synergistic and non-
synergistic muscle pairs within each frequency band. The analysis
included 9,486 muscle pairs (mean + SD across participants:
1,186 + 229, see Table 1) classified as synergistic and 45,512 as
non-synergistic (5,689 £ 1,160). The linear mixed-effects model
confirmed significantly higher coherence for synergistic pairs in
the first three layers (p-values: < 0.01 for all three bands), while
no significant differences were found in the higher frequency
layers (p > 0.05 for layers 4-6; see Figure 6). These results
support the hypothesis that low-frequency coherence is a marker
of shared neural input within muscle synergies and demonstrate
that the proposed frequency decomposition yields physiologically
interpretable findings.

4 Discussion

We demonstrated that, during a submaximal multidirectional
isometric force generation task, pairs of muscles recruited within
the same synergy show a higher degree of coherence with respect
to pairs of muscles recruited by different synergies, in the delta-
theta (1st layer), alpha (2nd layer), and low-beta (3rd layer)
frequency bands.

4.1 A novel approach to determine
functionally relevant frequency layers

The automatic separation, obtained with the decomposition
of intermuscular coherence, identified spectral layers that
are consistent with functional frequency bands reported
in the literature.

Different EMG frequency components are known to reflect

distinct sources of common drives to the motor neurons and
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to different functional roles in motor control (MacKay, 1997;
Brittain and Brown, 2014; Ramos-Murguialday and Birbaumer,
2015; Leonardi et al,, 2022), and our findings are consistent with
this framework. The low-frequency components of the neural drive,
i.e.,, delta and alpha bands, are likely of spinal origin (Farina and
Negro, 2015) and represent the effective drive to muscles for force
generation (Negro et al, 2009; Farina et al., 2014). Contrarily,
higher frequency components are effectively filtered by the muscle

Frontiers in Neural Circuits

dynamic (Negro et al., 2009), but are found in cortico-muscular
coherence, thus suggesting to derive from the rhythmic discharges
of the corticospinal neurons projecting to the spinal motoneurons
(Farmer et al., 1997; Mima and Hallett, 1999). Significant cortico-
muscular coherence has been identified in the beta band during
isometric force production tasks (Kristeva-Feige et al., 2002), and
in higher frequency bands, i.e., the gamma band, during dynamic
conditions (Omlor et al., 2007). Importantly, the present results
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support and extend this view by identifying frequency layers that  the hyperdirect pathway for high-beta oscillations (Oswal et al.,
partially overlap with these functional subdivisions. In the last ~ 2016; Milardi et al., 2019), leading to the separate investigation
decade, a further functional subdivision of the beta band into a  of these bands (van Wijk et al., 2017; Plate et al., 2021). Notably,
low- and high-frequency range hinted at a contribution of the  our decomposition revealed finer substructure within the beta

cortico-basal ganglia indirect pathway to low-beta oscillations and ~ range, consistent with this functional split, thus suggesting that
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the identified coherence layers may reflect different sources of
cortical modulation. Similarly, the gamma band was separated
into its low- and high-frequency components (Hermer-Vazquez
et al., 2007; Uhlhaas et al., 2011), and our approach may further
help distinguish these subcomponents in a subject-specific manner.
This data-driven identification of frequency layers therefore bridges
the gap between conventional, literature-based frequency bands
and subject-specific spectral organization. Thus, this approach
would improve comparability across subjects and may prove
advantageous in patient studies where spectral content is altered
(Houston et al., 2021).

Unlike previous studies that relied on predefined frequency
boundaries, e.g., alpha up to 12-15 Hz, low-/high-beta split around
20-25 Hz, or beta-gamma transitions up to 35 Hz (Mehrkanoon
et al.,, 2014; De Marchis et al.,, 2015; Del Vecchio et al., 2019;
Leonardi et al., 2022), our approach derives such divisions directly
from participant data. Intriguingly, the frequency layers identified
by decomposing the intermuscular coherence with NMF were in
line with the physiologically meaningful frequency bands reported
in previous literature, such as those representing the effective drive
for force generation (Negro et al.,, 2009) or those hypothesized
to have a cortical origin as identified in the cortico-muscular
coherence (Mima and Hallett, 1999). In particular, the 1st layer
(mean (std) ([1.0 (0.0) 8.7 (1.1)] Hz) resampled the delta and theta
bands, the 2nd layer ([8.7 (1.1) 16.9 (2.0)] Hz) the alpha band,
the 3rd layer ([16.9 (2.0) 25.7 (2.9) Hz]) the low-beta band, the
4th layer ([25.7 (2.9) 35.8 (2.5)] Hz) the high-beta band, the 5th
layer ([35.8 (2.5) 48.6 (2.8)] Hz) the low-gamma band, and the 6th
layer [48.6 (2.8) 60.0 (0.0)] Hz) the high-gamma band. The use
of subject-specific bands detected from participant data, on one
hand, overcomes the lack of a unique separation of relevant bands,
and on the other hand, enables the study of neurological patients
with altered muscle activation patterns, such as stroke survivors
(Houston et al., 2021).

4.2 Muscles recruited within the same
synergy show higher coherence in the
delta, alpha, and low-beta frequency
bands

The present findings extend previous attempts to link the
muscle synergy framework with the concept of common synaptic
input to motoneurons (Danna-Dos-Santos et al., 2014; De Marchis
et al.,, 2015; Frere, 2017; Ortega-Auriol et al., 2019; Laine et al,,
2021; Borzelli et al., 2024b). By characterizing coherence patterns
across a wide range of frequencies and a large set of muscles,
we demonstrated that synergistic structures are reflected in
frequency-specific common drives, bridging functional and neural
descriptions of motor coordination. This supports the view that
muscle synergies may emerge from shared neural inputs distributed
across multiple motoneuron pools.

In line with previous evidence, we demonstrated that muscles
recruited within the same synergy (synergistic muscle pairs)
showed a higher coherence with respect to muscles recruited
by different synergies (non-synergistic muscle pairs) in the low-
frequency layers, likely involved in force generation (i.e., the 1st and
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2nd layers representing the delta-theta and alpha bands) (Ortega-
Auriol et al.,, 2019; Laine et al., 2021). However, we also identified
a higher coherence between synergistic muscles compared to non-
synergistic muscles even in the 3rd layer, representing the low-beta
band (Laine et al., 2015; Borzelli et al., 2024b), which is likely to be
of cortical origin.

This frequency-specific pattern supports the coexistence
of spinal and cortical contributions to muscle coordination:
lower frequencies reflecting shared spinal drives for force
generation, and low-beta coherence suggesting a supraspinal
descending component.

Compared to previous studies (Ortega-Auriol et al, 2019;
Laine et al., 2021), our analysis extends these findings to a larger
set of muscles and a broader frequency range, revealing a more
continuous organization across layers rather than discrete bands.
The subject-specific decomposition thus refines the identification
of relevant frequencies without imposing arbitrary boundaries,
enhancing sensitivity to subtle spectral peaks and inter-individual
variability.

Together, the coexistence of low-frequency and low-beta
coherence refines the current view of spinal and cortical drives.
Specifically, the low-frequency layer likely reflects shared spinal
inputs coordinating force generation, while the low-beta layer
indicates a cortical contribution that modulates fine control
and adaptation. This coexistence suggests that spinal and
cortical mechanisms may jointly shaping muscle coordination
within synergies.

Moreover, the subject-specific frequency-layer approach
provides an advance over conventional fixed-band analyses
by aligning the identified coherence peaks across individuals.
This data-driven segmentation reduces the bias introduced by
arbitrary frequency boundaries and allows the detection of subtle,
participant-specific spectral features that would otherwise be
masked in averaged, pre-defined frequency bins.

Significant coherence between the activity of different muscles
represents a signature of the common input that drives these
muscles. While the identified significant low-frequency coherence
suggests that the spinal drive, which regulates the muscle activation,
is shared across different muscles, the occurrence of a significant
coherence also in the low-beta band suggests the existence of
a supraspinal common descending cortico-spinal drive, in line
with studies on cortico-synergistic coherence (Zandvoort et al,
2019, 20225 Ortega-Auriol et al., 2023). As multiple joints and
muscles are coordinated by spinal premotor circuits (Takei and
Seki, 20105 Takei et al., 2017), we may hypothesize the existence of
separate cortical inputs, modulating a network of spinal premotor
interneurons (Song et al, 2022) that, in turn, modulates the
firings of subpopulations of the MNs of muscles composing a
synergy (Hug et al., 2022). Further investigations will validate this
hypothesis.

4.3 Applications

These findings have potential translational implications for
clinical and neuroengineering applications.
exhibit altered
Mileti et al., 2020;

often
2013;

Because neurological patients

synergy organization (Roh et al,
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TABLE 1 Per-participant counts of synergistic and non-synergistic muscle pairs used in the linear mixed-effects analysis.

| Supjectid 12 3 4 5 6 7 8  MeanxSD

Synergistic pairs 1,350 1,179 1,353

4
966 920

1.451 1.376 891 1.186 4229

Non-synergistic pairs 5171 4.426 6.296 4.764

4.286 7.151 6.985 6.433 5.689 £ 1.160

Houston et al., 2021), the identification of distinct low-frequency
and low-beta layers provides potential biomarkers of spinal and
cortical contributions to coordination. Quantifying changes in
these frequency-specific coherence patterns may therefore offer a
sensitive marker of disease severity and motor recovery.

Beyond clinical diagnostics, specific frequency bands may also
be leveraged to enhance the control of myoelectric devices. EMG
activity has already been explored as a control signal for robotic
devices (Ajoudani et al., 2012; Song et al., 2023), exoskeletons
(Durandau et al., 2019; Borzelli et al., 2020; Caggiano et al., 2022),
prostheses (Cimolato et al., 2022; Yadav and Veer, 2023), and
motor augmentation systems (Gurgone et al., 2022; Lee et al., 2024;
Lisini Baldi et al., 2025). Notably, the beta-band firing of individual
motor units has been successfully implemented in controlling
virtual cursors for human augmentation (Bricklein et al., 2021),
consistent with our identification of a low-beta layer reflecting
cortical drive, by targeting the frequency components most relevant
for either spinal (force) or cortical (fine control) drives. Thus,
the present frequency-layer framework may inform future closed-
loop strategies that adaptively exploit specific coherence bands for
neurorehabilitation and assistive technologies.

4.4 Limitations

In this study, the number of layers was determined according
to the consistency among participants. While this approach is
reasonable for healthy individuals, it may not be suitable for
neurological patients, who often exhibit significant pathological
variability (Houston et al., 2021).

Similar issues may arise during complex tasks, e.g., when
the modulation of limb stiffness is required together with a
force generation task (Borzelli et al., 2018, 2023; Gurgone et al,,
2022). While simple one-degree-of-freedom models based on two
antagonist muscles have successfully described the relationship
between coactivation and joint stiffness (Borzelli et al., 2017a, b),
such formulations cannot capture the multidimensional nature
of muscle coordination and stiffness modulation observed in
multi-muscle, multi-directional tasks. Therefore, different muscle
patterns may be exploited to achieve the same limb stiffening level,
and consistency among participants may not be detected. Further
studies are needed to investigate the changes in synchronous
muscle modulation during combined tasks involving force
generation and limb stiffness modulation.

The coherence analysis requires a static signal, so dynamic tasks
would require alternative time-frequency analyses (Di Nardo et al.,
2022; Borzelli et al., 2025). However, the availability of a dynamic
task, e.g., an isotonic task, together with an isometric task, like
the one presented in this study, would provide a comprehensive
description of the spectral features of muscles recruited by the same

synergy.
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A further limitation concerns the disparity in the number
of synergistic and non-synergistic pairs. Although the two
groups were unbalanced, the linear mixed-effects model included
participant index as a random factor, thus controlling for inter-
individual variability and preventing group size differences from
biasing the estimated effects.

Finally, while our subject-specific frequency-layer approach
improves inter-subject comparability and highlights physiologically
meaningful coherence bands, future work should test its robustness
in patient populations with highly variable spectral content.

5 Conclusion

We that a
decomposition of intermuscular coherence reveals physiologically

demonstrated subject-specific, data-driven
relevant frequency bands underlying muscle synergies.

Compared with classical fixed-band analyses, this approach
refines the detection of frequency-specific coherence and offers a
framework to study altered motor coordination in patient groups.

These findings support the hypothesis that the coordination
of different muscles in muscle synergies is implemented at the
neural level through shared neural drives at both spinal and

cortical frequencies.
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