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Emergent functions of
noise-driven spontaneous
activity: homeostatic
maintenance of criticality and
memory consolidation

Narumitsu lkeda?, Dai Akita! and Hirokazu Takahashi?*

!Department of Mechano-Informatics, Graduate School of Information Science and Technology, The
University of Tokyo, Tokyo, Japan, ?International Research Center for Neurointelligence (WPI-IRCN),
UTIAS, The University of Tokyo, Tokyo, Japan

Unlike digital computers, the brain exhibits spontaneous activity even during
complete rest, despite the evolutionary pressure for energy efficiency. Inspired by
the critical brain hypothesis, which proposes that the brain operates optimally near
a critical point of phase transition in the dynamics of neural networks to improve
computational efficiency, we postulate that spontaneous activity plays a homeostatic
role in the development and maintenance of criticality. Criticality in the brain is
associated with the balance between excitatory and inhibitory synaptic inputs (El
balance), which is essential for maintaining neural computation performance. Here,
we hypothesize that both criticality and El balance are stabilized by appropriate
noise levels and spike-timing-dependent plasticity (STDP) windows. Using spiking
neural network (SNN) simulations and in vitro experiments with dissociated neuronal
cultures, we demonstrated that while repetitive stimuli transiently disrupt both
criticality and El balance, spontaneous activity can develop and maintain these
properties and prolong the fading memory of past stimuli. Our findings suggest that
the brain may achieve self-optimization and memory consolidation as emergent
functions of noise-driven spontaneous activity. This noise-harnessing mechanism
provides insights for designing energy-efficient neural networks, and suggest a
potential link between the emergent function of spontaneous activity and sleep
function in maintaining homeostasis and consolidating memory.

KEYWORDS

spiking neural network (SNN), self-organized criticality, El balance, fading memory,
reservoir computing, dissociated neuronal culture

1 Introduction

The brain differs significantly from a digital computer in that it displays spontaneous
activity, even in a state of complete rest. Why does the brain not eliminate spontaneous activity
even under strong evolutionary selection pressure for an energy-efficient system? As a possible
explanation, we propose that spontaneous activity serves a crucial function: helping the brain
reach and maintain a critical state. This is based on the critical brain hypothesis, which states
that neural networks in the brain operate near a critical point of phase transition between
ordered (inactive) and chaotic (overactive) states to achieve computational efficiency (Turing,
1950; Beggs, 2007; Chialvo, 2010; Hesse and Gross, 2014; Brochini et al., 2016). Supporting
this hypothesis is evidence of self-organized criticality (SoC) in the brain, characterized by
specific patterns of neural activity known as “neuronal avalanche,” which display spatial and
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temporal self-similarity with power-law correlations (Beggs and Plenz,
2003; Beggs and Plenz, 2004; Beggs, 2007; Plenz and Thiagarajan,
2007). This SoC is likely to enable a balance between excitatory and
inhibitory synaptic inputs (EI balance) (Shew et al., 2011; Sprekeler,
2017; Tkeda et al., 2023; Liang et al., 2024), which is essential for the
generation of temporally irregular spike patterns (Vreeswijk and
Sompolinsky, 1996; Vogels et al., 2005; Vogels et al., 2011) and the
maintenance of neural computation performance (Froemke et al.,
2007; Froemke, 2015; Denéve and Machens, 2016; Hennequin et al.,
2017; Sadeh and Clopath, 2021).

In the critical state, the population of active neurons neither
decays nor grows over time, in contrast to the subcritical and
supercritical states (Brochini et al., 2016; Mufioz, 2018; Plenz et al.,
2021). This stability enables critical neural networks to maintain a
longer fading memory —preserving influences from past inputs and
allowing interaction with network dynamics (Boyd and Chua, 1985;
Maass et al., 2002; Bertschinger and Natschlager, 2004; Maass and
Markram, 2004; Buonomano and Maass, 2009)- and achieve higher
computational performance than non-critical networks in information
transmission (Beggs and Plenz, 2003; Shew et al.,, 2011), encoding and
storage (Beggs and Plenz, 2004; Haldeman and Beggs, 2005; Shew
etal., 2009; Stoop and Gomez, 2016; Wilting and Priesemann, 2018).
However, questions remain regarding how SoC persists amidst the
inevitable disruptions caused by learning and plasticity.

Dissociated neuronal cultures —simplified neural networks created
in vitro- have long served as experimental models for understanding
how SoC emerges in neural systems (Beggs and Plenz, 2003; Beggs,
2007; Pasquale et al., 2008a; Yada et al., 2017; Plenz et al., 2021),
whereas repeated external stimuli induce plasticity in neuronal
cultures in an activity-dependent manner and modify the network
topology (Jimbo et al., 1999; Tateno and Jimbo, 1999; Ruaro et al.,
2005; Zhang et al., 2020). Plasticity can strengthen the memory trace
of repeated inputs in the neuronal network, but in turn disrupts the
critical state. To our knowledge, no study to date has combined these
two important research topics in dissociated neuronal culture.

Our recent work demonstrated that SoC development in
dissociated neuronal cultures can be reproduced by simulations of
spiking neural networks (SNNs) (Yada et al., 2017; Ikeda et al., 2023).
In these simulations, we found that appropriate noise levels and time
windows of spike-timing-dependent plasticity (STDP) were sufficient
for developing and maintaining both the critical state and EI balance
in SNNs (Ikeda et al., 2023). This finding is consistent with the
emerging notion that criticality and EI balance serve as homeostatic
set points in cortical neuronal dynamics (Shew and Plenz, 2013; Shew
et al,, 2015; Stepp et al., 2015; Ma et al., 2019; Xu et al., 2024). Given
that criticality and EI balance are regulated by noise and STDP,
we hypothesized that this homeostatic mechanism also enables neural
networks to better encode traces of past input stimuli.

In this study, we tested our hypothesis by using both SNNs and
dissociated neuronal cultures. Our hypothesis predicts that repeated
stimuli to the network will induce stimulus-specific plasticity in a
Hebbian fashion, thereby disrupting the critical state. However,
spontaneous activity following this period of repetitive stimulation is
expected to restore the critical state with prolonged stimulus-specific
fading memory. Our results confirmed these predictions: in both the
SNN and neuronal cultures, repeated stimulation initially disrupted
the critical state. However, spontaneous activity soon restored this
balance, with the criticality index of the SNN returning to baseline
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within 2 h. In addition, both systems showed prolonged, stimulus-
specific fading memory after this recovery period, with dissociated
cultures displaying heightened stimulus-specific responses following
spontaneous activity.

A Dbetter understanding of the functional role of spontaneous
activity may inform the development of neuromorphic computation
that not only tolerates, but also utilizes noise to achieve system self-
optimization. From a physiological perspective, our findings suggest
a potential link between the emergent function of spontaneous activity
homeostatic ~maintenance and

and sleep function in

memory consolidation.

2 Materials and methods

This section consists of two principal subsections: 2.1 SNN (in
silico experiments) and 2.2 Neuronal culture (in vitro experiments).
Each subsection includes a description of the model, stimulation
protocol, and evaluation metrics.

2.1 SNN (in silico experiment)

SNN used in this study is based on our previous work (Ikeda et al.,
2023) and follows the stochastic escape-noise formulation of spiking
neurons (Stepp et al., 2015). The network consists of excitatory and
inhibitory neurons with conductance-based synapses and incorporates
both short-term plasticity (STP) and spike-timing-dependent
plasticity (STDP). Synaptic weights are initialized to zero and evolve
through STP and STDP in the SNN with all-to-all connectivity.

2.1.1 Model description

2.1.1.1 Neuron model with escape noise

Each neuron obeys the leaky integrate-and-fire (LIF) dynamics for
the subthreshold membrane potential. The membrane potential v
without noise is given by:

d
de_:=(vrest —V)grest +(Eexc _V)gexc +(Einh _v)ginh (1)

where 7,, is the membrane time constant, v, is the resting potential,
and E and g are the reversal potentials and sum of the conductance for
the excitatory synapse (exc), inhibitory synapse (inh), and resting state
(rest), respectively. The equation was normalized by g e, i.€., grest=1,
and g, and g;,j, attenuate with their time constant 7 4prp4 and 7Gapa
until a presynaptic spike occurs:

d

TAMPA ietxc =—8exc (2)
do:

TGABA ‘Z:h =—ginh (3)

The membrane potential is determined deterministically
according to the differential equation until the neuron fires. Spike
generation is stochastic under the escape-noise model, where the
instantaneous firing probability of a neuron is given by
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where 7 and b are parameters and vy, is the firing threshold. Since p is
instantaneous probability, we need to integrate it to obtain actual
probability for simulation. Let S (t) denote the probability where no
spike occurs in [O»t] then S’(t) = —p(t)S(t), which gives

S(t):exp(—j;p(t')dt')

We can confirm that in general,
Prab(no spike in [t,t + At]) =exp (—J?Atp(t')dt')

With time discretization by time step At, the probability of firing
within a given time step is given by subtracting no spike
probability from 1:

Prob(spike in[t’t+At:I)=1_exp(_Ji+Atp(t')dtI)

With a first-order approximation for small At, the actual
calculation is performed by the following formula:

Prob(spike in [t,t + At]) ~min [ﬂexp[v(t)—_m],l] (4)
T

At -
— = frestAtexp| — Prest ~ Vih
T b

with the parameters as shown in Table 1, At/z ~ 0.005%4 (7 ~ 16.8),
which is close to the corresponding parameter of the pyramidal neuron
at layer 51in the rat somatosensory cortex, i.e., 0.1 ms/19 ms ~ 0.00526.

When a neuron fires, v is reset to v, with refractory periods Ter,f{
and Tl;e{ for the excitatory and inhibitory neurons, respectively. In
addition, a synaptic input is given to postsynaptic neurons with a delay
of 1.5 ms for excitatory-to-excitatory synapses and 0.8 ms for others.
Upon delayed arrival, postsynaptic conductances are incremented

as follows:
8exc < Bexc T waggcix (5)
8inh € ginh + Ung;::Zx (6)

where U is a parameter corresponding to the fraction of resources
used in a spike, w is the synaptic weight, and geye- and g;i™ are the
maximum synaptic conductances of the excitatory and inhibitory
neurons, respectively. Variable x corresponds to the available resource

in a presynaptic neuron, which recovers to 1 with a time constant 7,

dx
Trec i =l-x @)
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TABLE 1 Spiking neural network parameters.

Parameter Value

At 0.1 ms
T 30 ms
Vyest —74 mV
Vi —54mV
E,. 0mV
Ei, —80 mV
Srest 0.4 Hz
b 4mV
3ms
184
2 ms
T8¢
Tampa 2 ms
TGABA 4 ms
Trec 150 ms
U 0.4
o e
4.0
Iinhy"
Ag 0.02
A, 0.02
Tg 20 ms
n 10 ms
T 20 ms

The variables x and w are modulated by short-term plasticity
(STP) and STDP on a spike event, as described in the next section.

2.1.1.2 Synaptic dynamics and plasticity

Synaptic plasticity mechanisms are modeled as in our previous
study (Ikeda et al., 2023). STP modulates the instantaneous
synaptic efficacy in response to recent presynaptic activity (Loebel
et al., 2009). In the model, each presynaptic spike consumes a
fraction U of the available resource (neurotransmitter) x of the
presynaptic neuron:

X« x—Ux (8)

And x recovers between spikes according to Equation 7. Thus,
closely spaced presynaptic spikes transiently depress x and reduce the
increment in postsynaptic conductance defined in Equations 5, 6,
whereas with longer interspike intervals x recovers and synaptic
efficacy returns toward baseline.

Long-term plasticity is modeled as STDP, which adjusts the
synaptic weight w in Equations 5, 6 as a function of the pre-post
spike-time difference. Operationally, w is updated on both pre- and
postsynaptic spike events. When a presynaptic spike is generated
at time .,
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weClipl w+ > F(tpost —tpre )01 9)
Epou ETP”“ (tlm )

Where T,(t,) is the set of postsynaptic spike times before £,
and F(¢) is a synapse-type-dependent function, and Clip is a clipping
function given by

Clip(w,a,b)=min(max(w,a),b) (10)
When a postsynaptic spike is generated at #,,,
weClip w+ 3 F(tpost —tpre)-01 (11)

by €T, (tP"S' )

Where T),.(,0) is the set of presynaptic spike times before .
When a presynaptic neuron is excitatory (E-STDP), F(t) is given by

Afg exp(—:],t >0,
E

Fp(t)= (12)

—AEﬂEexp( \J,t<0.

t
TE

When a presynaptic neuron is inhibitory (I-STDP), F; (t) is
given by

FI(t):iAI exp _H ~ L g exp _ (13)
1- g, m) 12

12

The parameters Ag and Aj (>0) regulate the intensity of plasticity.
TE, 711, and 77, are time constants assuming that

1
In <min (,1)
(253 Pr

Parameters f; and f; determine the balance between potentiation

(14)

and depression (Figure 1A).

2.1.1.3 Network architecture and parameters

The SNN consisted of 80 excitatory neurons and 20 inhibitory
neurons that were fully connected with an initial weight of 0, as in the
dissociated neuronal cultures. Each neuron has state variables v, oy,
Zinh» and x; each synapse has a weight w. As described in 2.1.1 and
2.1.2, these variables evolve according to Equations (1-3, 7), and
spikes are generated stochastically with probability given by
Equation 4, followed by event-driven updates. Thus, neurons in the
initial state are activated only by noise and the SNN evolves through
synaptic plasticity. For each condition, the simulations were run 30
times with different random seeds of v in the initial state. Simulations
were performed using Brian 2 (Stimberg et al., 2019).

The parameters were based on previous studies (Maass et al., 2002;
Stepp et al., 2015; Deperrois and Graupner, 2020) and are summarized
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in Table 1. These values were chosen to approximate physiological
properties of cortical pyramidal neurons: the membrane time constant
7,, =30ms, firing threshold v, =—54mV, a resting firing rate
fret =0.4Hz, and the synaptic decay constants (z,yps =2 ms,
Teapa = 4 ms). The STP parameters (U = 0.4, 7,,. = 150 ms) follow the
Tsodyks-Markram The
(gexc™ax =4.0, ginh™ax =4.0) were adjusted to yield membrane

model. maximal  conductances
potential dynamics comparable to those measured in layer 5 pyramidal
neurons. The intensities and time constants of the STDP windows (Ag,
Ay, T, Tny, Tr) Were adopted from Stepp et al. (2015). These parameters
produce persistent asynchronous background activity (Stepp et al.,
2015) and span subcritical, critical, and supercritical networks by

varying the STDP parameters S and f; (Ikeda et al., 2023).

2.1.2 Stimulation protocol

For stimulation, 4 different spatial stimulus patterns were created
for each SNN. In each stimulus pattern, the membrane potentials of
six different excitatory neurons were increased by 30 mV. Because the
resting membrane potential and firing threshold were —74 mV and
—54 mV, respectively, neurons with membrane potentials near or
above the resting membrane potential generated a spike
upon stimulation.

Stimulus patterns were applied repeatedly to induce stimulus-
specific plasticity in each SNN. Each stimulus pattern was applied 900
times at 1 Hz, for a total of 3,600 stimuli. Stimulation patterns were
presented in random order. After repeated stimulation, SNNs were
allowed to spontaneously run for 12 h. Spontaneous activity was
measured every hour for 10 min to characterize the neural avalanche
and

and monitor synaptic weights, membrane potentials,

synaptic conductance.
2.1.3 Evaluation metrics in simulation

2.1.3.1 Neuronal avalanche

Based on our previous studies (Yada et al., 2017; Ikeda et al., 2023)
neural avalanches are characterized by 10-min spontaneous activities.
The spike times of all the neurons were obtained as a single series {¢,,
t), ...}. A neural avalanche is defined as a separate set of spikes {t;, ...,
tiyna} (for any jE[i+1,i+n—1],tj —tj_1 <At ), where Af is the
average spike interval of the spike time series and the avalanche size n
is defined as the number of spikes in the avalanche.

The criticality of the SNN was evaluated using the index ACr
(Tkeda et al., 2023), which was modified from the index Ap by Tetzlaff
etal. (2010). Let s be the size of the neural avalanche and pj(s) be the
power-law distribution estimated from linear regression on the log-
log plot of the empirical neural avalanche distribution p,,,(s), Ap is
given by

Sma)(
Ap= 3 pemp (s)= P (5)

S:Smm

(15)

Where s,,;,, and s,,., are the minimum and maximum avalanche
size, respectively. The parameter s, was set to 100, that is, the total
number of neurons, for the SNN simulations, and the number of
recording electrodes for the in vitro experiments of neuronal
dissociated cultures. The parameter s,,,, is determined to minimize the
sum of the squared errors of the linear fit because small avalanche
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FIGURE 1
SNN simulation. (A) STDP windows for excitatory (Awg) and inhibitory synapses (Aw;). Parameters p: and f, determine the balance between LTP and LTD
in excitatory and inhibitory neurons, respectively. (B) Representative networks in the critical, subcritical, and supercritical states (Crt, Sub, and Sup). The
dots arranged in a circle represent neurons: red, excitatory; and blue, inhibitory. The thickness of the line between neurons represents the synaptic
weights. (C) The criticality index (ACr) as a function of ¢ and f. (D) Representative results for (i) critical, (i) subcritical, and (iii) supercritical SNNs. For
each SNN, the upper left, lower left, and right insets show a raster plot, synaptic currents (red, excitatory input; blue, inhibitory input), and neuronal
avalanche size distribution, respectively.

sizes often deviate from the power law fitting (Clauset et al., 2009).
ACr was used instead of Ap to avoid false criticality judgment by Ap
when the deviation from the power-law distribution was large but
symmetrical. Considering both the upper and lower deviation, i.e.,

S,

‘max

Aupper =, max( Pemp () = it (5),0) (16)
S=S1in
smdx
Alower = z min(pemp (s)—pﬁ, (5),0) 17)
S=Snin
ACr is given by

2 |Alower | >

< |Alower | .

Aupper > |Aupper

ACr = (18)

Alower» |Aupper

Frontiers in Neural Circuits

The SNN is considered subcritical, critical, and supercritical when
ACr <0, ACr = 0 and ACr > 0, respectively. For each SNN, the mean
and standard deviation of ACr were derived from 30 initial seeds.

2.1.3.2 El balance

To examine how excitatory and inhibitory synaptic inputs to each
neuron are coupled in time, synaptic currents from excitatory (E) and
inhibitory (I) neurons, i.e., (Eexc —v) Zexe and (Emh - v) ginh In
Equation 1, were measured for 2 s during spontaneous activity, and
their cross-correlation was quantified to evaluate the EI balance. The
mean synaptic currents from excitatory and inhibitory neurons were
averaged and the ratio of inhibitory input to excitatory input (I/E)
was calculated.

2.1.3.3 Fading memory

To quantify the hidden memory in a neural network, a decoder of
sparse logistic regression (SLR) was constructed to predict which
stimulus out of the four test stimuli was used from a spatial firing
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pattern within a given bin. Evoked responses to each of the four test
stimuli were obtained in 40 trials, each with a different random seed
to generate stochastic firing in Equation 8. As evoked responses also
depend on the membrane potential in each neuron and the
conductance in each synapse at the moment of stimulation, a 10-s free
run with each random seed was given before stimulation. The
stimulus-evoked firing rate of each neuron was then obtained to
construct a 100-dimensional firing-rate vector for each bin. Using the
firing rate vectors for each bin, the SLR classification accuracy was
quantified using 10-segment stratified shuffle cross-validation.
Friedman’s chi-square test was used to test a significant difference in
classification accuracies before and after repeated stimuli in each bin.

The classification accuracy was close to 1 immediately after the
stimulus onset and gradually decreased over time (Figure 2). The
decay time for each SNN was defined as the time after the stimulus
when the accuracy first became the chance rate. A binomial test in the
leave-one-out cross-validation was used to determine whether the
number of correct responses was significantly higher than the chance
rate for each bin (p < 0.05). The Wilcoxon signed-rank test was used
to determine whether the decay time changed before and after the
repetitive stimulation session.

The classification accuracies varied depending on the bin width
used to calculate the firing rate, but the accuracies and decay times
were similar for bin widths between 10 and 50 ms (Fig. S3). Therefore,
we used a 20-ms bin width in the main analyses. The classification
accuracy and decay time were also characterized as a function of the
total number of repetitive stimuli, ranging from 400 to 3,600. Each
stimulus pattern was presented equally frequently.

2.2 Neuronal culture (in vitro experiments)
2.2.1 Experimental protocol

2.2.1.1 Culture preparation

The experimental protocol was approved by the Committee on the
Ethics of Animal Experiments at the Graduate School of Information
Science and Technology, the University of Tokyo (Permit number:
JA19-1).

Eight dissociated neuronal cultures at 28-37 days in vitro were
used in the experiments. Dissociated neuronal cultures were prepared
on a high-density CMOS array as previously reported (Bakkum et al.,
2013a; Yada et al., 2016; Tajima et al., 2017; Yada et al., 2017; Bakkum
etal,, 2019; Yada et al., 2021). Briefly, cortical tissue was dissected from
E18 Wistar rats (Jcl: Wistar, CLEA Japan, Japan) and dissociated in
0.25% trypsin-EDTA solution (Thermo Fisher Scientific Inc., MA,
USA) at 37 °C in a thermostatic chamber for 20 min. The dissociated
cortical cells were plated on CMOS microelectrode arrays (MEAs)
(MaxOne High-Density Microelectrode Array System, MaxWell
Biosystems AG, Switzerland) (Miiller et al., 2015) at a concentration
of 38 K cells over the recording area of 3.85 x 2.10 mm®. The cells were
maintained for 24 h in an incubator at 36.5 °C and 5.0% CO, with
plating medium prepared by mixing 450 mL of NeuroBasal (Thermo
Fisher Scientific Inc.), 50 mL of horse serum (Cytiva, MA), 10 mL of
B27 (Thermo Fisher Scientific Inc.), and 1.25 mL of GlutaMAX
(Thermo Fisher Scientific Inc.). Half of the medium in the MEA
chambers was replaced with the same amount of growth medium
prepared by mixing 450 mL of DMEM (Thermo Fisher Scientific Inc.),
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50 mL of horse serum, 5 mL of sodium pyruvate (Thermo Fisher
Scientific Inc.), and 1.25 mL of GlutaMAX (Thermo Fisher Scientific
Inc.). After plating, the MEAs were kept in an incubator, and half of
the medium was replaced with fresh growth medium twice a week
throughout the study period.

2.2.1.2 Electrode selection and recording

The signals were filtered using a 300-3,000 Hz bandpass. The
action potential was detected by crossing the threshold, which was set
at —5 times the standard deviation of the measurement noise at each
electrode (Quiroga et al., 2004), and the time at which the action
potential waveform fell below the threshold was recorded as the onset
time of the action potential.

The CMOS MEA was able to simultaneously record neural signals
from 1,024 of the 26,400 electrodes. Prior to the main experiments, all
26,400 measurement electrodes were scanned for 1 min to detect
action potentials. A maximum of 1,024 electrodes were selected in the
order of the negative peak amplitude of the action potentials, and
these electrodes were used in the main experiments.

As in the SNN simulations, excitatory neurons were the
stimulation targets. Because inhibitory neurons have more potassium
channels, Kv3.1 and Kv3.2, than excitatory cells (Martina et al., 1998;
Chow et al,, 1999), the action potential waveforms from excitatory
neurons were different from those from inhibitory neurons in that the
time from the negative peak of depolarization to the positive peak of
hyperpolarization was longer in excitatory neurons than in inhibitory
neurons (Tajima et al., 2017). To identify excitatory neurons,
we aligned action potentials with the negative peak of depolarization,
calculated the median value of the potential at each time step, and
obtained a positive peak. Electrodes with a peak-to-peak time of
0.5 ms or longer were considered below excitatory neurons. Twenty-
four electrodes below putative excitatory neurons were randomly
selected for stimulation under the condition that these stimulating
electrodes were spatially arranged in a circle throughout the entire test
area with an inter-electrode distance of 100 pm or more. Each pattern
consisted of six stimulation electrodes in the vicinity where electric
pulses were applied simultaneously. The electric pulse was a positive
first biphasic waveform with a width of 200 ps for each phase and an
intensity of £200 mV.

2.2.2 Electrical stimulation

As in the simulation above, fading memory was characterized in
dissociated cultures of neurons. The medium was changed half a day
before the start of the experiment and retained during the experiments.

The four stimulation patterns were repetitively applied 900 times,
each at 1-s intervals, in a random order, to induce plasticity in
neuronal cultures. Decoding accuracy and decay time of fading
memory were characterized before the repetitive stimulation and 0.5,
3,24, and 48 h after the repetitive stimulation from evoked responses
to each stimulus were presented 20 times at 17-34 s intervals in a
random order.

Because electrical stimulation generates artifacts in the
measurements, data within 1 ms of stimulation and data from
electrodes saturated by stimulation were excluded from the analyses.
After removing artifacts, firing rates were quantified at each
measurement electrode with 20-ms bins, and firing rate vectors were
constructed at each bin to characterize the classification accuracy and
decay time by SLR, as in the SNN simulation.
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2.2.3 Evaluation metrics in physiological
experiments

From the spike trains detected on the selected electrodes, firing
rates were computed in 20 ms bins to form firing-rate vectors
analogous to the simulation. Fading memory (SLR classifier accuracy
and decay time) were quantified exactly as in Section 2.1.3.3. This
alignment between simulation and experiment facilitates direct
comparisons between modelling and empirical results.

3 Results

3.1 Noise-driven activity promotes
criticality and El balance

To examine how noise-driven spontaneous activity might
influence criticality and EI balance in a neural network, we designed
an SNN comprising 80 excitatory and 20 inhibitory neurons with
leaky integrated-and-fire (LIF) dynamics. We implemented short-
term plasticity (STP) and STDP in the network. Each neuron was fully
connected to all others, with synaptic weights modified by the
excitatory and inhibitory STDP rules.

Neuronal firing was stochastic and determined by an
exponential function of the difference between the membrane
potential and firing threshold. The firing rate at rest was set to
0.4 Hz, introducing noise-driven spontaneous activity into the
system. This activity drove the SNN to either a subcritical (criticality
index ACr < 0), critical (ACr = 0), or supercritical (ACr > 0) state,
depending on the parameters of the STDP windows.

The excitatory STDP window with the parameter fz was temporally
asymmetric, whereas the inhibitory STDP window with f; was symmetric
(Figure 1A). Parameters P and f; determined the ratio of long-term
depression (LTD) to long-term potentiation (LTP) in excitatory and
inhibitory synapses, respectively. SNNs with large B and p; values, that is,
LTD more dominant than LTP, became subcritical, whereas SNNs with
small B and p; values became supercritical (Figures 1B,C). Simulations
were run for 72 h with different random seeds to sufficiently stabilize
SNNs before the main experiments.

In the critical SNN, raster plots of spontaneous activity revealed
neuronal avalanches of various sizes corresponding to the number of
simultaneously activated neurons. These avalanches exhibit a
power-law size distribution, which is a hallmark of criticality
[Figure 1D (i) Upper left and right]. The critical SNN also exhibited
EI balance [Figure 1D (i) lower left]. Bursts were driven by
simultaneous input from excitatory and inhibitory synapses with a
high cross-correlation (>0.75). The subcritical SNN did not show
large-scale bursts, and neuronal avalanches were characterized by an
exponential size distribution [Figure 1D (ii)]. These firing patterns are
predominantly driven by excitatory inputs with virtually no inhibitory
inputs. The supercritical SNN exhibited more large-scale bursts with
fewer small-scale avalanches than the subcritical SNN, while achieving
the same level of EI balance as the critical SNN [Figure 1D (iii)].

We then examined the robustness of the criticality and EI balance
in the SNN when subjected to external stimulation. As a stimulus,
we simultaneously delivered external inputs to six excitatory neurons,
increasing their membrane potential by 30 mV and eliciting spikes.
We repeatedly applied four different test stimuli to the SNN, each of
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which was applied 900 times at 1 Hz in random order, for a total of
3,600 stimuli over 1 h.

In the critical SNN, the criticality index ACr showed a
transient decrease during the repetitive stimulation session and
returned to the initial level within 2 h, suggesting that criticality
was transiently disrupted by repetitive stimulation and
subsequently restored [Figure 2A (i)]. Interestingly, in a
subcritical SNN, ACr tended to show a transient decrease during
stimulation, followed by an increase, reaching a stable plateau
closer to the critical state than the initial state [Figure 2A (ii)].
Similarly, in a representative supercritical SNN, ACr tended to
change towards zero after the repetitive stimulation session and
a subsequent session of spontaneous activity [Figure 2A (iii)].
This trend was consistently observed within the tested range of
the parameters (Figure 2B); post-stimulus |[ACr | (12 h) was
significantly smaller than pre-stimulus |ACr | (pre) (Wilcoxon
signed rank test, p = 1.9e-11). These results support our main
hypothesis that spontaneous activity is a driving force towards
the critical state, as shown in the development of the SNN, and
that repetitive stimulation and subsequent spontaneous activity
triggers a transition to a more stable and critical state than the
initial state in the SNN.

This transition to criticality is associated with a change in the
baseline level of spontaneous activity (Figure 2C). The baseline
levels decreased immediately after repetitive stimulation (pre vs.
0 h; Wilcoxon signed rank test uncorrected): crt, p = 1.2e-6; sub,
p = 1.7e-06; sup, p = 1.7e-06). During the subsequent session of
spontaneous activity, the baseline level was adjusted; it returned to
the initial level in the critical SNN, increased above the initial level
in the subcritical SNN (pre vs. 12 h, p = 6.9¢-05), and decreased
below the initial level in the supercritical SNN (pre vs. 12 h,
p = 1.7e-06). These results suggest that repetitive stimuli trigger a
state transition in the SNN and that the firing rate set point of
spontaneous activity changes with the critical state in the SNN.

These changes in criticality and spontaneous activity were also
associated with changes in the EI balance and synaptic inputs
(Figure 2D). In the critical SNN, EI balance (cross-correlation between
E and I) was transiently disrupted immediately after repetitive
stimulation (Wilcoxon signed rank test (uncorrected): pre vs. 0 h,
p = 1.7e-06) but was restored after 12 h of spontaneous activity (0 h vs.
12 h, p = 1.5e-05). Both the E and I inputs showed transient decreases
after repetitive stimulation (E, p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06
for 0h vs. 12 h; I, p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs.
12 h), whereas the I/E ratio remained constant. In both subcritical and
supercritical SNNG, the EI balance changed with repetitive stimulation
(sub, p = 5.2e-04; sup, p = 3.2e-06) and did not return to the original
level, whereas E, I, and I/E showed transient changes (E in sub,
p=17e-06 for pre vs. 0h, p=1.7e-06 for Oh vs. 12h; I in sub,
p=1.7e-06 for pre vs. 0h, p =1.7e-06 for 0 h vs. 12 h; I/E in sub,
p=17e-06 for pre vs. 0h, p=1.7e-06 for Oh vs. 12h; E in sup,
p=17e-06 for pre vs. 0h, p=1.7e-06 for Oh vs. 12h; I in sup,
p =1.7¢-06 for pre vs. 0 h, p =3.2e-06 for 0 h vs. 12 h; I/E in sup,
p =2.6e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h). These results are
consistent with our hypothesis that the baseline firing rate level,
criticality, and EI balance are the set points of SNNs, which are driven
by noise and self-organized by a temporally asymmetric excitatory
STDP window and a symmetric inhibitory STDP window.
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FIGURE 3

Physiological validation in dissociated neuronal cultures. (A) Representative configuration of the neurons in the microelectrode array. (i) Recording was
performed at 1024 of 26,400 sites (dots), and stimulation was provided at 24 sites on a red line. These electrodes were selected in the order of the
negative peak amplitude of the action potentials (Supplementary Figure S7). (i) For stimulation patterns, six sites in the vicinity were combined.

(B) Representative evoked responses at each recording site. Raster plots were obtained before and 24 h after the repetitive stimulation sessions.

(C) Decoding accuracy at the indicated times after repetitive stimulation. (D) Fading memory decay time after repetitive stimulation. Asterisks indicate
statistical significance (see the main text for statistics). (E) Baseline spontaneous firing rate.

3.2 Spontaneous activity enhances

stimulus-specific memory through critical

dynamics

We hypothesized that critical dynamics maintained by
spontaneous activity would prolong the fading memory of experienced

Frontiers in Neural Circuits

stimuli. To test this hypothesis, we first quantified the networK’s ability
to maintain stimulus-specific information. Following external
stimulation, the SNN showed a transient increase in firing rate with a
distinct spatiotemporal pattern and returned to baseline levels of
spontaneous firing rate (Figures 3A,B). To confirm that this transient
activity was stimulus specific, we constructed a decoder to predict
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which of the four test stimuli was presented, based on the spatial firing
pattern within a given 20-ms bin. As expected, decoding accuracy
decayed over time following the stimulus. To quantify the fading
memory strength, we measured the decay time within which the
decoding accuracy was above chance level (0.25) (Figure 3C). The
decay time was approximately equal to the time during which the
firing rate was temporarily increased by the test stimulus
(Figures 3B,C). The subcritical SNN had a slightly longer decay time
of fading memory than either the critical or supercritical SNN
(Wilcoxon signed rank test (uncorrected): crt vs. sub, p = 0.0014; crt
vs. sup, p =0.062; sub vs. sup, p =1.9e-5). The decay time was
consistent across the different test bins, ranging between 5 and 100 ms
(Supplementary Figure S1).

Next, we reasoned that the evoked responses and fading memory
would change after repeated stimulation and subsequent spontaneous
activity. We repeatedly applied the four test stimuli to the SNN, each
of which was applied 900 times at 1 Hz in random order, and
examined how repeated stimulation and subsequent spontaneous
activity affected fading memory. After 12 h of spontaneous activity
following the stimulation session, we found that evoked responses
were enhanced with longer decay times of fading memory
(Figures 3C,D) (Wilcoxon signed rank test (uncorrected) for pre vs.
12h: crt, p=1.7e-6; sub, p=17e-6; sup, p=8.4e-3). This
enhancement was most pronounced in the critical SNN and virtually
negligible in the supercritical SNN. Interestingly, although the fading
memory of the first stimulation lasted longer in the subcritical SNN
than in the critical SNN, the fading memory of the repeated
stimulation became longer in the critical SNN than in the subcritical
SNN after the 12-h spontaneous activity session (Wilcoxon signed
rank test (uncorrected), p = 4.1e-6), suggesting that criticality possibly
maintained by spontaneous activity plays an important role in this
type of memory consolidation.

To confirm the functional role of spontaneous activity,
we examined how the stimulus-evoked response and fading memory
in the critical SNN changed with spontaneous activity after repetitive
stimulation sessions. We found that the evoked firing rates gradually
increased over the first hour and then rapidly escalated in a step-like
manner (Figure 3E). The decay time of the fading memory exhibited
a similar pattern (Figure 3F; Wilcoxon signed rank test (uncorrected):
pre vs. 12h, p=1.7e-06). This spontaneous activity-driven
prolongation of fading memory was observed at an adequate level of
spontaneous activity (Supplementary Figure 2A). In contrast, the
subcritical SNN exhibited more gradual increases in evoked firing
rates and fading memory without the abrupt transitions seen in the
critical SNN, whereas the supercritical SNN showed minimal changes
(Supplementary Figure S3). We also confirmed that these changes
were dependent on the number of stimulus repetitions during the
stimulation session (Figure 3G). Both the evoked responses and the
decay time of the fading memory were expressed as a sigmoid-like
function of the number of repetitions (Figure 3H; Kruskal-Wallis test,
df = 179, Chi-sq = 93.5, p = 1.2e-18). These findings indicate that both
the plasticity directly induced in the repetitive stimulation session and
the subsequent self-organization during spontaneous activity play
important roles in enhancing evoked responses to repeated stimuli
and prolonging fading memory. Similar to the change in criticality and
baseline firing rate, a sharp, step-like change in evoked responses and
fading memory during spontaneous activity after a repetitive
stimulation session could represent a state transition.
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Long-term repetitive stimulation-induced changes in evoked
responses and fading memory are likely to be driven by excitatory
synaptic plasticity. Following repetitive stimulation, 6% of wy; and 2%
of wg; in the critical SNN increased from near zero to near one, of
which 85 and 58%, respectively, were maintained at 0.5 or higher for
12 h (Supplementary Figure 54); and in the subcritical SNN, 9% of the
wge and 10% of the wy; increased, of which 91 and 85% were
maintained for 12 h (Supplementary Figure S5). The plasticity of
inhibitory synapses was transient, suggesting that inhibitory synapses
play a modulatory role: 28% of wy in the critical SNN, 79% of wyg, and
94% of wy in the subcritical SNN were strengthened by repetitive
stimulation, but almost none of them was maintained for 12 h
(Supplementary Figures S4, S5). The synaptic plasticity in the
supercritical SNN was less distinct than that in the critical and
subcritical SNNs (Supplementary Figure S6): Repetitive stimulation
strengthened 5% of wgz, 98% of which was maintained for 12 h, but
virtually no plasticity was observed in wg;, wig, and wy;. This synaptic
strengthening and maintenance also depended on the noise level; at
high noise levels, excitatory synaptic weights were more likely to
be temporarily strengthened but less likely to be maintained in the
long term, whereas inhibitory synaptic weights were more likely to
be maintained in the long term (Supplementary Figures S2B,C).

3.3 Spontaneous activity enhances
stimulus-specific memory in dissociated
neuronal cultures

To validate our computational predictions in a biological context,
we examined whether fading memory was prolonged by spontaneous
activity after repeated stimulation of test patterns in dissociated
neuronal cultures. Previous studies have shown that these cultures
exhibit stimulus-specific plasticity (Jimbo et al., 1999; Tateno and
Jimbo, 1999; Ruaro et al, 2005; Zhang et al., 2020), but have
overlooked the functional role of spontaneous activity in this type
of learning.

We recorded spatiotemporal neural activity using a high-density
CMOS microelectrode array (Bakkum et al., 2013b; Yada et al., 20165
Yada et al., 2017). Of 26,400 sites, 1,024 electrodes were selected for
recording in the order of the negative peak amplitude of the action
potentials (Supplementary Figure S7) and 24 for stimulation
[Figure 4A (i)]. Of the 24 stimulation electrodes arranged in a circle
in the test area, we grouped six neighboring electrodes to create four
distinct stimulus patterns [Figure 4A (ii)]. Each stimulus pattern was
delivered 900 times at 1 Hz in random order, replicating the protocol
used in our SNN simulations.

Consistent with our computational findings, we examined the
fading memory of test patterns before and after stimulation with
spontaneous activity. To quantify fading memory, the four stimulus
patterns were delivered 20 times at 17-34 s intervals in a random
order, and the stimulus-evoked responses were measured. Figure 4B
shows representative raster plots of stimulus-evoked activity before
and 24 h after stimulation sessions. Repetitive stimulation and 24 h of
spontaneous activity were effective in increasing the stimulus-evoked
activity in some electrodes. Associated with this stimulus-specific
plasticity, the decoding accuracy of the test stimulus also gradually
increased with the spontaneous activity session, and was maximized
24 h after the stimulation session (chance level = 0.25) (Figure 4C).
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Fading memory in SNN. (A) Representative evoked responses. Raster plots are shown before and 12 h after repetitive stimulation sessions in critical,
subcritical, and supercritical SNNs. (B) Traces of the firing rate after stimuli: dashed line, before repetitive stimulation; solid line, 12 h after repetitive
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Consequently, as in the SNN simulation, we confirmed that the decay
time of the fading memory increased significantly 24 h after the
stimulation session compared to the pre-stimulation session
(Figure 4Dj; p = 0.038, Wilcoxon signed-rank test). In addition to the
decoding-based analysis, information theoretical analysis estimating
mutual information between the firing rates and the stimulus pattern
also supports that spontaneous activity following repetitive
stimulation makes the evoked response more informative
(Supplementary Figure S8) (Yokota et al, 2012). During the
measurements, we did not observe any significant changes in the
baseline levels of spontaneous activity (Figure 4E). These results were
consistent with the SNN simulation, supporting our claim that
spontaneous activity after the stimulation session has returned a
baseline level to near pre-stimulation levels (i.e., pre vs. 12h in
Figure 2C for the in silico experiments and pre vs. 24 h in Figure 4E
for the in vitro experiments) and is crucial for strengthening memory
of past inputs without inducing overall activation of neuronal culture
(Figure 3D and pre vs. 24 h in Figure 4D). On the other hand, the
results are partially inconsistent with the SNN simulation in that the
stimulation session did not induce a transient change in the baseline
firing rate (pre vs. 0 h in Figure 2C and pre vs. 0.5 h in Figure 4E).
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4 Discussion

Both experiments in the SNN and dissociated culture of neurons
showed that spontaneous activity played a crucial role in maintaining
the critical state and EI balance and prolonging the fading memory of
stimuli that have been experienced repeatedly in the past, while
repeated stimuli transiently disrupted criticality. These results support
our hypothesis that the criticality and EI balance in the neural network
are homeostatically maintained by spontaneous activity with
appropriate noise levels and STDP windows and play an important
role in the consolidation of memory for past experiences.

4.1 Homeostatic set points emerging in
SNN with STDP

State transitions were also observed during SoC development. The
developmental stages of the neuronal culture were classified by the
states of criticality (Kamioka et al., 1996; van Pelt et al., 2004;
Chiappalone et al., 2006; Wagenaar et al., 2006; Pasquale et al., 2008b;
Sun et al., 2010; Yada et al., 2017): (i) “subcritical state” in immature

frontiersin.org


https://doi.org/10.3389/fncir.2025.1585087
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Ikeda et al.

culture exhibiting asynchronous activity pattern with an exponential
size distribution of neuronal avalanche; (ii) “supercritical state” in
developing culture characterized as regularly synchronized bursts and
a bimodal distribution; and (iii) “critical state” exhibiting diverse size
of avalanches with a power-law distribution. The mechanism
underlying these state transitions is analogous to that observed in the
stimulus-induced reorganization of the network investigated in
this study.

In our model, noise-driven stochastic discharges are the driving
force of SoC (Ikeda et al., 2023). Under noise, excitatory STDP with
temporally asymmetric windows dichotomizes strong versus weak
synapses and high- versus low-firing neurons, thereby destabilizing
the network towards the supercritical, synchronized state.
Subsequently, inhibition stabilizes the synchronized state towards the
critical state and balances excitation because synchronized bursts are
more effective on temporally symmetric inhibitory STDP windows
than on asymmetric excitatory STDP windows. Thus, inhibition
stabilization is likely the key mechanism of SoC (Ma et al., 2019), in
addition to efficient coding and nonlinear computation, as discussed
in the past (Froemke et al., 2007; Vogels et al., 2011; Froemke, 2015;
Deneve and Machens, 2016; Hennequin et al., 2017; Sadeh and
Clopath, 2021). This study further emphasizes the functional role of
spontaneous activity and STDP windows in the regulation of
inhibitory tone.

In simulation of spontaneously developed SNNs, EI balance (high
CC between E and I inputs) was observed in the critical state and
supercritical state (CC=0.9), but not in the subcritical state (CC < 0.5)
(Figure 1B). The subcritical state had fewer synaptic inputs than the
critical and supercritical states did. Furthermore, the I/E ratio in the
subcritical state was close to zero, indicating that virtually no
inhibitory synapses were formed. Because the symmetric STDP
window of inhibitory synapses is effective for burst activities for LTP
induction, subcritical states with fewer bursts were unable to grow
more inhibitory synapses than the critical and supercritical states. The
supercritical state achieved an EI balance but exhibited less diversity
of burst sizes than the critical state, according to the definition of the
neuronal avalanche distribution. The bursts in the supercritical state
were more homogeneous than those in the critical state because the
excitatory input strengths varied less. Furthermore, bursts in the
supercritical state tended to terminate more quickly than those in the
critical state because of the higher I/E ratio; this trend was more
obvious in stimulus-evoked activity (Figure 2A).

The test indices of synaptic activity in Figure 2D depend on the
noise level and the STDP window. In all of these networks, the test
indices transiently changed in response to repeated external stimuli
(pre vs. 0 h) but tended to return to their original state after 12-h of
spontaneous activity (pre vs. 12h). The baseline level of the
spontaneous firing rate also transiently decreased immediately after
the repeated stimuli but tended to return to the original level after
spontaneous activity (Figure 2D). These results suggest that the
baseline level of synaptic activity and spontaneous firing rate depend
on the noise level and the STDP window. Interestingly, however, after
repeated stimuli and subsequent spontaneous activity sessions, the
baseline level of spontaneous firing rate slightly increased in the
subcritical state and decreased in the supercritical state. Associated
with these baseline shifts (Figure 2D), the subcritical and supercritical
networks become more critical than the original states (Figures 2A,B).
Stimulus-induced plasticity likely caused the non-critical networks to
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escape from their locally stable states, and the subsequent spontaneous
activity brought the networks closer to the critical state. Thus, even
under suboptimal conditions, the noise and STDP in our SNN
configuration act as pressures that drive neural networks to a
critical state.

4.2 Stimulus-specific fading memory

Both the SNN and dissociated culture of neurons showed that the
decay time of the fading memory of stimuli that were repeatedly
exposed and consolidated through sufficient spontaneous activity
became longer in the critical state than in either the subcritical or
supercritical states (Figures 3, 4). Furthermore, the SNN simulation
showed that the more often a stimulus was repeated, the stronger their
fading memory (Figures 3G,H), suggesting that fading memory
depended on the direct modification of the network topology during
the stimulation session rather than the subsequent spontaneous
activity. However, this lengthening of fading memory was less obvious
in the supercritical state because the stimulus-evoked activity ended
up in a burst, which was quickly terminated by strong inhibition
(Figures 3A,B). These results support our hypothesis that the
homeostatic set point of criticality has the advantage of encoding
input stimuli experienced in the past in neural networks.

The decay times of stimulus-evoked firing rate (Figures 3A,B) did
not always behave as those of decoding accuracy (Figure 3C); for
example, before repeated stimulation, the firing rates in the critical
state lasted longer than those in the subcritical state, but the decoding
accuracy in the critical state decayed faster than that in the subcritical
state. Furthermore, prolonged fading memory, or transient activity
increase and its decay, after repeated stimulation was stimulus specific.
These observations suggest that the decoding accuracy is not directly
related to a general (i.e., stimulus-unspecific, network-intrinsic) time
constant of neural dynamics, e.g., autocorrelation times.

Unintuitively, fading memory before repeated stimulation was
longer in the subcritical state than in the critical state (Figures 2C,D).
The subcritical state, characterized by weak coupling between
excitatory and inhibitory inputs, produces a highly redundant
response from different neurons in response to external stimuli
(Ostojic, 2014). Such evoked responses in the subcritical state are
likely to be more readily decodable than those in the critical state, but
in turn, may limit complex information propagation. Furthermore,
considering the trade-off between the sensitivity and specificity of
neural representation, the subcritical SNN may better represent the
stimulus than the critical SNN when the stimulus is sufficiently
distinct (Gollo, 2017).

The simulation in the SNN and physiological experiments in
dissociated cultures of neurons differed in several respects. First, as
predicted by our hypothesis, repeated stimulation temporarily
transitioned the critical SNN to the subcritical state with a reduced
baseline firing rate, and subsequent spontaneous activity restored the
critical state. However, such two-step state transitions were not
observed in neuronal cultures. Second, in neuronal culture, the decay
time of the fading memory was lengthened after 24-h of spontaneous
activity but returned to the original level after 48 h, while the fading
memory in the SNN remained high for the entire test period. Further
experiments both in silico and in vitro are needed to determine
whether our SNN missed a key parameter or whether large variations
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between neuronal cultures in our physiological experiments caused
limited agreement between i silico and in vitro experiments.

4.3 Limitations

Although our model was effective in simultaneously capturing the
essential characteristics of the SoC and memory consolidation, it was
minimal, particularly in terms of the network size, and ignored many
important aspects of the brain. For example, the diversity of ion
channels, such as slow NMDA and GABA; receptors, might produce
richer dynamics and plasticity than our simple model (Malenka and
Bear, 2004; Nabavi et al., 2013; Sanders et al., 2013; Lisman, 2017).
Although our model consists of only two types of neurons, excitatory
and inhibitory neurons, the cerebral cortex in mice consists of at least
41 types of excitatory neurons and 34 types of inhibitory neurons (Shi
et al., 2023) with distinct motifs of local microcircuits (Bastos et al.,
20125 Markov et al., 2013; Campagnola et al., 2022). STDP windows
depend on the cell type and dendritic location (Froemke et al., 2005;
Dan and Poo, 2006) under the control of neuromodulation and glial
activity (Zhang et al., 2009; Yagishita et al., 2014; Foncelle et al., 2018).
The EI balance is controlled not only by STDP but also by transcellular
chemical signaling (Spiegel et al., 2014; Okur et al., 2024). Further
studies are required to elucidate how these factors contribute to the
development of SoC and memory consolidation.

4.4 Physiological implications

We propose that the neural mechanisms discussed here may
be implemented in the brain to maintain criticality during sleep
because criticality is likely to be restored during sleep and
progressively disrupted during waking experience (Meisel et al.,
2013; Meisel et al., 2017; Xu et al., 2024), as we demonstrated that
criticality is restored by spontaneous activity and disrupted by
external stimuli. Sleep could be the price that the brain has to pay for
plasticity during the waking experience (Tononi and Cirelli, 2014);
therefore, sleep pressure increases when the brain deviates from the
critical state, indicated by slow wave activity (Borbély, 2001;
Achermann and Borbély, 2003), intermittent activity (Vyazovskiy
etal., 2009), low complexity of activity (Abdsolo et al., 2015), activity
level (Turrigiano and Nelson, 2004; Thomas et al., 2020), synaptic
scaling (Aton et al., 2009; Cirelli, 2017; de Vivo et al., 2017; Diering
et al., 2017; Sawada et al., 2024) and EI balance (Bridi et al., 2020),
many of which could be explained by criticality. Our model suggests
that the brain reestablishes a critical state through a push-pull
mechanism between the subcritical and supercritical states when
deviating from the critical state. This mechanism is different from
prior modeling, suggesting that sleep plays an essential role to make
a margin from the supercritical state (Pearlmutter and Houghton,
2009). In addition to maintaining criticality as a homeostatic
property, sleep is also critical for memory consolidation and
integration (Born et al., 2006; Stickgold and Walker, 2007; Cirelli and
Tononi, 2008), which is consistent with our finding that spontaneous
activity after repeated stimuli prolongs stimulus-specific fading
memory. Based on our simulation, we speculate that oscillation, or
synchronous population activity, distinctly observed during sleep
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(e.g., ripples and spindles) has the same function as bursts in our
configuration, which selectively strengthens inhibitory synapses and
develop an EI balance (Steriade and Steriade, 1999; Borbély, 2001).
Unlike our stimulation experiments, the firing rates sometimes
increased by learning (cf. Hengen et al., 2016). In such case, our
observation in the network development simulation predicts that the
increase of firing rates is associated with transient increase of burst
activity, which in turn, developed the inhibitory synapses due to the
temporally symmetric STDP window and EI balance (ie.,
inhibition stabilization).

5 Conclusion

Our findings suggest that the brain may achieve self-optimization
and memory consolidation as emergent functions of noise-driven,
spontaneous activity. Noise-harnessing computation represents an
evolutionary adaptation of the brain (Maass, 2014), which has been
destined to be as energy-eflicient as possible and to operate in harsh
biochemical environments with low signal-to-noise ratios. Other
examples of emergent neural mechanisms utilizing noise include
stochastic resonance (Gammaitoni et al., 1998; Noda and Takahashi,
2023), simulated annealing (Kirkpatrick et al, 1983) and noise-
induced chaos-order transitions (Matsumoto and Tsuda, 1983;
Gassmann, 1997). In contrast, a standard digital computer requires
more energy than the brain because of the presence of a significant
margin between high and low levels, that is, 0 V vs. 5V, which is
necessary to maintain an adequate signal-to-noise ratio (Furber, 2016;
Roy et al., 2019; Mehonic and Kenyon, 2022). This evolutionary trait
in the brain offers valuable insight into the design principles of energy-
efficient large-scale SNNs.
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