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Emergent functions of 
noise-driven spontaneous 
activity: homeostatic 
maintenance of criticality and 
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Unlike digital computers, the brain exhibits spontaneous activity even during 
complete rest, despite the evolutionary pressure for energy efficiency. Inspired by 
the critical brain hypothesis, which proposes that the brain operates optimally near 
a critical point of phase transition in the dynamics of neural networks to improve 
computational efficiency, we postulate that spontaneous activity plays a homeostatic 
role in the development and maintenance of criticality. Criticality in the brain is 
associated with the balance between excitatory and inhibitory synaptic inputs (EI 
balance), which is essential for maintaining neural computation performance. Here, 
we hypothesize that both criticality and EI balance are stabilized by appropriate 
noise levels and spike-timing-dependent plasticity (STDP) windows. Using spiking 
neural network (SNN) simulations and in vitro experiments with dissociated neuronal 
cultures, we demonstrated that while repetitive stimuli transiently disrupt both 
criticality and EI balance, spontaneous activity can develop and maintain these 
properties and prolong the fading memory of past stimuli. Our findings suggest that 
the brain may achieve self-optimization and memory consolidation as emergent 
functions of noise-driven spontaneous activity. This noise-harnessing mechanism 
provides insights for designing energy-efficient neural networks, and suggest a 
potential link between the emergent function of spontaneous activity and sleep 
function in maintaining homeostasis and consolidating memory.
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1 Introduction

The brain differs significantly from a digital computer in that it displays spontaneous 
activity, even in a state of complete rest. Why does the brain not eliminate spontaneous activity 
even under strong evolutionary selection pressure for an energy-efficient system? As a possible 
explanation, we propose that spontaneous activity serves a crucial function: helping the brain 
reach and maintain a critical state. This is based on the critical brain hypothesis, which states 
that neural networks in the brain operate near a critical point of phase transition between 
ordered (inactive) and chaotic (overactive) states to achieve computational efficiency (Turing, 
1950; Beggs, 2007; Chialvo, 2010; Hesse and Gross, 2014; Brochini et al., 2016). Supporting 
this hypothesis is evidence of self-organized criticality (SoC) in the brain, characterized by 
specific patterns of neural activity known as “neuronal avalanche,” which display spatial and 
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temporal self-similarity with power-law correlations (Beggs and Plenz, 
2003; Beggs and Plenz, 2004; Beggs, 2007; Plenz and Thiagarajan, 
2007). This SoC is likely to enable a balance between excitatory and 
inhibitory synaptic inputs (EI balance) (Shew et al., 2011; Sprekeler, 
2017; Ikeda et al., 2023; Liang et al., 2024), which is essential for the 
generation of temporally irregular spike patterns (Vreeswijk and 
Sompolinsky, 1996; Vogels et al., 2005; Vogels et al., 2011) and the 
maintenance of neural computation performance (Froemke et al., 
2007; Froemke, 2015; Denève and Machens, 2016; Hennequin et al., 
2017; Sadeh and Clopath, 2021).

In the critical state, the population of active neurons neither 
decays nor grows over time, in contrast to the subcritical and 
supercritical states (Brochini et al., 2016; Muñoz, 2018; Plenz et al., 
2021). This stability enables critical neural networks to maintain a 
longer fading memory –preserving influences from past inputs and 
allowing interaction with network dynamics (Boyd and Chua, 1985; 
Maass et al., 2002; Bertschinger and Natschlager, 2004; Maass and 
Markram, 2004; Buonomano and Maass, 2009)– and achieve higher 
computational performance than non-critical networks in information 
transmission (Beggs and Plenz, 2003; Shew et al., 2011), encoding and 
storage (Beggs and Plenz, 2004; Haldeman and Beggs, 2005; Shew 
et al., 2009; Stoop and Gomez, 2016; Wilting and Priesemann, 2018). 
However, questions remain regarding how SoC persists amidst the 
inevitable disruptions caused by learning and plasticity.

Dissociated neuronal cultures –simplified neural networks created 
in vitro– have long served as experimental models for understanding 
how SoC emerges in neural systems (Beggs and Plenz, 2003; Beggs, 
2007; Pasquale et  al., 2008a; Yada et  al., 2017; Plenz et  al., 2021), 
whereas repeated external stimuli induce plasticity in neuronal 
cultures in an activity-dependent manner and modify the network 
topology (Jimbo et al., 1999; Tateno and Jimbo, 1999; Ruaro et al., 
2005; Zhang et al., 2020). Plasticity can strengthen the memory trace 
of repeated inputs in the neuronal network, but in turn disrupts the 
critical state. To our knowledge, no study to date has combined these 
two important research topics in dissociated neuronal culture.

Our recent work demonstrated that SoC development in 
dissociated neuronal cultures can be reproduced by simulations of 
spiking neural networks (SNNs) (Yada et al., 2017; Ikeda et al., 2023). 
In these simulations, we found that appropriate noise levels and time 
windows of spike-timing-dependent plasticity (STDP) were sufficient 
for developing and maintaining both the critical state and EI balance 
in SNNs (Ikeda et  al., 2023). This finding is consistent with the 
emerging notion that criticality and EI balance serve as homeostatic 
set points in cortical neuronal dynamics (Shew and Plenz, 2013; Shew 
et al., 2015; Stepp et al., 2015; Ma et al., 2019; Xu et al., 2024). Given 
that criticality and EI balance are regulated by noise and STDP, 
we hypothesized that this homeostatic mechanism also enables neural 
networks to better encode traces of past input stimuli.

In this study, we tested our hypothesis by using both SNNs and 
dissociated neuronal cultures. Our hypothesis predicts that repeated 
stimuli to the network will induce stimulus-specific plasticity in a 
Hebbian fashion, thereby disrupting the critical state. However, 
spontaneous activity following this period of repetitive stimulation is 
expected to restore the critical state with prolonged stimulus-specific 
fading memory. Our results confirmed these predictions: in both the 
SNN and neuronal cultures, repeated stimulation initially disrupted 
the critical state. However, spontaneous activity soon restored this 
balance, with the criticality index of the SNN returning to baseline 

within 2 h. In addition, both systems showed prolonged, stimulus-
specific fading memory after this recovery period, with dissociated 
cultures displaying heightened stimulus-specific responses following 
spontaneous activity.

A better understanding of the functional role of spontaneous 
activity may inform the development of neuromorphic computation 
that not only tolerates, but also utilizes noise to achieve system self-
optimization. From a physiological perspective, our findings suggest 
a potential link between the emergent function of spontaneous activity 
and sleep function in homeostatic maintenance and 
memory consolidation.

2 Materials and methods

This section consists of two principal subsections: 2.1 SNN (in 
silico experiments) and 2.2 Neuronal culture (in vitro experiments). 
Each subsection includes a description of the model, stimulation 
protocol, and evaluation metrics.

2.1 SNN (in silico experiment)

SNN used in this study is based on our previous work (Ikeda et al., 
2023) and follows the stochastic escape-noise formulation of spiking 
neurons (Stepp et al., 2015). The network consists of excitatory and 
inhibitory neurons with conductance-based synapses and incorporates 
both short-term plasticity (STP) and spike-timing-dependent 
plasticity (STDP). Synaptic weights are initialized to zero and evolve 
through STP and STDP in the SNN with all-to-all connectivity.

2.1.1 Model description

2.1.1.1 Neuron model with escape noise
Each neuron obeys the leaky integrate-and-fire (LIF) dynamics for 

the subthreshold membrane potential. The membrane potential v 
without noise is given by:

	
( ) ( ) ( )τ = − + − + −m rest rest exc exc inh inh

dv v v g E v g E v g
dt 	

(1)

where τm is the membrane time constant, vrest is the resting potential, 
and E and g are the reversal potentials and sum of the conductance for 
the excitatory synapse (exc), inhibitory synapse (inh), and resting state 
(rest), respectively. The equation was normalized by restg , i.e., restg =1, 
and excg  and inhg  attenuate with their time constant τAMPA and τGABA 
until a presynaptic spike occurs:

	
τ = −exc

AMPA exc
dg g

dt ,	
(2)

	
τ = −inh

GABA inh
dg g

dt ,	
(3)

The membrane potential is determined deterministically 
according to the differential equation until the neuron fires. Spike 
generation is stochastic under the escape-noise model, where the 
instantaneous firing probability of a neuron is given by
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( ) ( )

ρ
τ

 −
=   

 

1 exp thv t v
t

b 	

where τ and b are parameters and vth is the firing threshold. Since ρ  is 
instantaneous probability, we need to integrate it to obtain actual 
probability for simulation. Let ( )S t  denote the probability where no 
spike occurs in   0,t  then ( ) ( ) ( )ρ= −′S t t S t , which gives

	
( ) ( )ρ ′ = − 


′

 ∫0
exp

t
S t t dt

	

We can confirm that in general,

	
( ) ( )ρ

+∆ + ∆ = −     ′ ′
 ∫ , exp

t t

t
Prob no spike in t t t t dt

	

With time discretization by time step Δt, the probability of firing 
within a given time step is given by subtracting no spike 
probability from 1:

	
( ) ( )t t

t
Prob spike in t t t t dt , 1 exp ρ

+∆ + ∆ = − −     
′ ′

∫
	

With a first-order approximation for small t∆ , the actual 
calculation is performed by the following formula:

	
( ) ( ) thv t vtProb spike in t t t

b
 , min exp ,1

τ

  −∆
+ ∆ ∼            	

(4)

	

rest th
rest

t v vf t
b

exp
τ
∆ − = ∆ − 

  	

with the parameters as shown in Table 1, Δt/τ ~ 0.00594 (τ ~ 16.8), 
which is close to the corresponding parameter of the pyramidal neuron 
at layer 5 in the rat somatosensory cortex, i.e., 0.1 ms/19 ms ~ 0.00526.

When a neuron fires, v is reset to vrest with refractory periods ref
excT  

and ref
inhT  for the excitatory and inhibitory neurons, respectively. In 

addition, a synaptic input is given to postsynaptic neurons with a delay 
of 1.5 ms for excitatory-to-excitatory synapses and 0.8 ms for others. 
Upon delayed arrival, postsynaptic conductances are incremented 
as follows:

	 ← + max
exc exc excg g Uxwg 	 (5)

	 ← + max
inh inh inhg g Uxwg 	 (6)

where U  is a parameter corresponding to the fraction of resources 
used in a spike, w is the synaptic weight, and max

excg  and max
inhg  are the 

maximum synaptic conductances of the excitatory and inhibitory 
neurons, respectively. Variable x corresponds to the available resource 
in a presynaptic neuron, which recovers to 1 with a time constant τrec:

	
τ = −1rec

dx x
dt 	

(7)

The variables x and w are modulated by short-term plasticity 
(STP) and STDP on a spike event, as described in the next section.

2.1.1.2 Synaptic dynamics and plasticity
Synaptic plasticity mechanisms are modeled as in our previous 

study (Ikeda et  al., 2023). STP modulates the instantaneous 
synaptic efficacy in response to recent presynaptic activity (Loebel 
et al., 2009). In the model, each presynaptic spike consumes a 
fraction U  of the available resource (neurotransmitter) x  of the 
presynaptic neuron:

	 ← −x x Ux 	 (8)

And x recovers between spikes according to Equation 7. Thus, 
closely spaced presynaptic spikes transiently depress x and reduce the 
increment in postsynaptic conductance defined in Equations 5, 6, 
whereas with longer interspike intervals x  recovers and synaptic 
efficacy returns toward baseline.

Long-term plasticity is modeled as STDP, which adjusts the 
synaptic weight w in Equations 5, 6 as a function of the pre-post 
spike-time difference. Operationally, w is updated on both pre- and 
postsynaptic spike events. When a presynaptic spike is generated 
at time tpre,

TABLE 1  Spiking neural network parameters.

Parameter Value

Δt 0.1 ms

τm 30 ms

vrest −74 mV

vth −54 mV

Eexc 0 mV

Einh −80 mV

frest 0.4 Hz

b 4 mV

ref
excT

3 ms

ref
excT

2 ms

τAMPA 2 ms

τGABA 4 ms

τrec 150 ms

U 0.4

max
excg

4.0

max
inhg

4.0

AE 0.02

AI 0.02

τE 20 ms

τI1 10 ms

τI2 20 ms
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	 ( )
( )

∈

 
 ← + −
 
 

∑Clip ,0,1
post post pre

post pre
t T t

w w F t t

	

(9)

Where Tpost(tpre) is the set of postsynaptic spike times before tpre, 
and F(t) is a synapse-type-dependent function, and Clip is a clipping 
function given by

	 ( ) ( )( )=Clip , , min max , ,w a b w a b 	 (10)

When a postsynaptic spike is generated at tpost,

	 ( )
( )

∈

 
 ← + −
 
 

∑Clip ,0,1
pre pre post

post pre
t T t

w w F t t

	

(11)

Where Tpret(tpost) is the set of presynaptic spike times before tpost. 
When a presynaptic neuron is excitatory (E-STDP), F(t) is given by

	

( ) τ

β
τ

  
− ≥  

  = 
 − <   

exp , 0,

exp , 0.

E
E

E

E E
E

tA t
F t

tA t
	

(12)

When a presynaptic neuron is inhibitory (I-STDP), ( )IF t  is 
given by

	

( ) τ β
τ τ τ τβ
τ

    
= − − −            −

1

1 1 2 2
2

exp exp
1

I I
I I

I I I II
I

t tAF t

	

(13)

The parameters EA  and IA  (>0) regulate the intensity of plasticity. 
τE, τ 1I , and τ 2I  are time constants assuming that

	

τ
τ β

 
<  

 
1

2

1min ,1I

I I 	
(14)

Parameters βE and βI determine the balance between potentiation 
and depression (Figure 1A).

2.1.1.3 Network architecture and parameters
The SNN consisted of 80 excitatory neurons and 20 inhibitory 

neurons that were fully connected with an initial weight of 0, as in the 
dissociated neuronal cultures. Each neuron has state variables v, excg , 

inhg , and x ; each synapse has a weight w. As described in 2.1.1 and 
2.1.2, these variables evolve according to Equations (1–3, 7), and 
spikes are generated stochastically with probability given by 
Equation 4, followed by event-driven updates. Thus, neurons in the 
initial state are activated only by noise and the SNN evolves through 
synaptic plasticity. For each condition, the simulations were run 30 
times with different random seeds of v in the initial state. Simulations 
were performed using Brian 2 (Stimberg et al., 2019).

The parameters were based on previous studies (Maass et al., 2002; 
Stepp et al., 2015; Deperrois and Graupner, 2020) and are summarized 

in Table 1. These values were chosen to approximate physiological 
properties of cortical pyramidal neurons: the membrane time constant 
τm  = 30 ms, firing threshold vth  = −54 mV, a resting firing rate 
frest  = 0.4 Hz, and the synaptic decay constants (τAMPA  = 2 ms, 
τGABA = 4 ms). The STP parameters (U = 0.4, τrec = 150 ms) follow the 
Tsodyks–Markram model. The maximal conductances 

= =( 4.0, 4.0)m m
e ig xc ax g nh ax  were adjusted to yield membrane 

potential dynamics comparable to those measured in layer 5 pyramidal 
neurons. The intensities and time constants of the STDP windows (AE, 
AI, τE, τI1, τI2) were adopted from Stepp et al. (2015). These parameters 
produce persistent asynchronous background activity (Stepp et al., 
2015) and span subcritical, critical, and supercritical networks by 
varying the STDP parameters βE and βI  (Ikeda et al., 2023).

2.1.2 Stimulation protocol
For stimulation, 4 different spatial stimulus patterns were created 

for each SNN. In each stimulus pattern, the membrane potentials of 
six different excitatory neurons were increased by 30 mV. Because the 
resting membrane potential and firing threshold were −74 mV and 
−54 mV, respectively, neurons with membrane potentials near or 
above the resting membrane potential generated a spike 
upon stimulation.

Stimulus patterns were applied repeatedly to induce stimulus-
specific plasticity in each SNN. Each stimulus pattern was applied 900 
times at 1 Hz, for a total of 3,600 stimuli. Stimulation patterns were 
presented in random order. After repeated stimulation, SNNs were 
allowed to spontaneously run for 12 h. Spontaneous activity was 
measured every hour for 10 min to characterize the neural avalanche 
and monitor synaptic weights, membrane potentials, and 
synaptic conductance.

2.1.3 Evaluation metrics in simulation

2.1.3.1 Neuronal avalanche
Based on our previous studies (Yada et al., 2017; Ikeda et al., 2023) 

neural avalanches are characterized by 10-min spontaneous activities. 
The spike times of all the neurons were obtained as a single series {t1, 
t2, …}. A neural avalanche is defined as a separate set of spikes {ti, …, 
ti + n-1} (for any j jj i i n t t t11, 1 , −∈ + + − − < ∆   ), where Δt is the 
average spike interval of the spike time series and the avalanche size n 
is defined as the number of spikes in the avalanche.

The criticality of the SNN was evaluated using the index ΔCr 
(Ikeda et al., 2023), which was modified from the index Δp by Tetzlaff 
et al. (2010). Let s be the size of the neural avalanche and pfit(s) be the 
power-law distribution estimated from linear regression on the log–
log plot of the empirical neural avalanche distribution pemp(s), Δp is 
given by

	
( ) ( )

s

emp fit
s s

p p s p s
max

min=
∆ = −∑

	
(15)

Where smin and smax are the minimum and maximum avalanche 
size, respectively. The parameter smax was set to 100, that is, the total 
number of neurons, for the SNN simulations, and the number of 
recording electrodes for the in  vitro experiments of neuronal 
dissociated cultures. The parameter smin is determined to minimize the 
sum of the squared errors of the linear fit because small avalanche 
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sizes often deviate from the power law fitting (Clauset et al., 2009). 
ΔCr was used instead of Δp to avoid false criticality judgment by Δp 
when the deviation from the power-law distribution was large but 
symmetrical. Considering both the upper and lower deviation, i.e.,

	
( ) ( )( )

=
= −∑

max

min

max ,0
s

upper emp fit
s s

A p s p s
	

(16)

	
( ) ( )( )

=
= −∑

max

min

min ,0
s

lower emp fit
s s

A p s p s
	

(17)

ΔCr is given by

	

upper upper lower

lower upper lower

A A A

A A A

, ,
Cr

, .

 ≥∆ = 
< 	

(18)

The SNN is considered subcritical, critical, and supercritical when 
ΔCr < 0, ΔCr ≈ 0 and ΔCr > 0, respectively. For each SNN, the mean 
and standard deviation of ΔCr were derived from 30 initial seeds.

2.1.3.2 EI balance
To examine how excitatory and inhibitory synaptic inputs to each 

neuron are coupled in time, synaptic currents from excitatory (E) and 
inhibitory (I) neurons, i.e., ( )−exc excE v g  and ( )−inh inhE v g  in 
Equation 1, were measured for 2 s during spontaneous activity, and 
their cross-correlation was quantified to evaluate the EI balance. The 
mean synaptic currents from excitatory and inhibitory neurons were 
averaged and the ratio of inhibitory input to excitatory input (I/E) 
was calculated.

2.1.3.3 Fading memory
To quantify the hidden memory in a neural network, a decoder of 

sparse logistic regression (SLR) was constructed to predict which 
stimulus out of the four test stimuli was used from a spatial firing 

FIGURE 1

SNN simulation. (A) STDP windows for excitatory (ΔwE) and inhibitory synapses (ΔwI). Parameters βE and βI determine the balance between LTP and LTD 
in excitatory and inhibitory neurons, respectively. (B) Representative networks in the critical, subcritical, and supercritical states (Crt, Sub, and Sup). The 
dots arranged in a circle represent neurons: red, excitatory; and blue, inhibitory. The thickness of the line between neurons represents the synaptic 
weights. (C) The criticality index (ΔCr) as a function of βE and βI. (D) Representative results for (i) critical, (ii) subcritical, and (iii) supercritical SNNs. For 
each SNN, the upper left, lower left, and right insets show a raster plot, synaptic currents (red, excitatory input; blue, inhibitory input), and neuronal 
avalanche size distribution, respectively.
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pattern within a given bin. Evoked responses to each of the four test 
stimuli were obtained in 40 trials, each with a different random seed 
to generate stochastic firing in Equation 8. As evoked responses also 
depend on the membrane potential in each neuron and the 
conductance in each synapse at the moment of stimulation, a 10-s free 
run with each random seed was given before stimulation. The 
stimulus-evoked firing rate of each neuron was then obtained to 
construct a 100-dimensional firing-rate vector for each bin. Using the 
firing rate vectors for each bin, the SLR classification accuracy was 
quantified using 10-segment stratified shuffle cross-validation. 
Friedman’s chi-square test was used to test a significant difference in 
classification accuracies before and after repeated stimuli in each bin.

The classification accuracy was close to 1 immediately after the 
stimulus onset and gradually decreased over time (Figure 2). The 
decay time for each SNN was defined as the time after the stimulus 
when the accuracy first became the chance rate. A binomial test in the 
leave-one-out cross-validation was used to determine whether the 
number of correct responses was significantly higher than the chance 
rate for each bin (p < 0.05). The Wilcoxon signed-rank test was used 
to determine whether the decay time changed before and after the 
repetitive stimulation session.

The classification accuracies varied depending on the bin width 
used to calculate the firing rate, but the accuracies and decay times 
were similar for bin widths between 10 and 50 ms (Fig. S3). Therefore, 
we used a 20-ms bin width in the main analyses. The classification 
accuracy and decay time were also characterized as a function of the 
total number of repetitive stimuli, ranging from 400 to 3,600. Each 
stimulus pattern was presented equally frequently.

2.2 Neuronal culture (in vitro experiments)

2.2.1 Experimental protocol

2.2.1.1 Culture preparation
The experimental protocol was approved by the Committee on the 

Ethics of Animal Experiments at the Graduate School of Information 
Science and Technology, the University of Tokyo (Permit number: 
JA19-1).

Eight dissociated neuronal cultures at 28–37 days in vitro were 
used in the experiments. Dissociated neuronal cultures were prepared 
on a high-density CMOS array as previously reported (Bakkum et al., 
2013a; Yada et al., 2016; Tajima et al., 2017; Yada et al., 2017; Bakkum 
et al., 2019; Yada et al., 2021). Briefly, cortical tissue was dissected from 
E18 Wistar rats (Jcl: Wistar, CLEA Japan, Japan) and dissociated in 
0.25% trypsin–EDTA solution (Thermo Fisher Scientific Inc., MA, 
USA) at 37 °C in a thermostatic chamber for 20 min. The dissociated 
cortical cells were plated on CMOS microelectrode arrays (MEAs) 
(MaxOne High-Density Microelectrode Array System, MaxWell 
Biosystems AG, Switzerland) (Müller et al., 2015) at a concentration 
of 38 K cells over the recording area of 3.85 × 2.10 mm2. The cells were 
maintained for 24 h in an incubator at 36.5 °C and 5.0% CO2 with 
plating medium prepared by mixing 450 mL of NeuroBasal (Thermo 
Fisher Scientific Inc.), 50 mL of horse serum (Cytiva, MA), 10 mL of 
B27 (Thermo Fisher Scientific Inc.), and 1.25 mL of GlutaMAX 
(Thermo Fisher Scientific Inc.). Half of the medium in the MEA 
chambers was replaced with the same amount of growth medium 
prepared by mixing 450 mL of DMEM (Thermo Fisher Scientific Inc.), 

50 mL of horse serum, 5 mL of sodium pyruvate (Thermo Fisher 
Scientific Inc.), and 1.25 mL of GlutaMAX (Thermo Fisher Scientific 
Inc.). After plating, the MEAs were kept in an incubator, and half of 
the medium was replaced with fresh growth medium twice a week 
throughout the study period.

2.2.1.2 Electrode selection and recording
The signals were filtered using a 300–3,000 Hz bandpass. The 

action potential was detected by crossing the threshold, which was set 
at −5 times the standard deviation of the measurement noise at each 
electrode (Quiroga et al., 2004), and the time at which the action 
potential waveform fell below the threshold was recorded as the onset 
time of the action potential.

The CMOS MEA was able to simultaneously record neural signals 
from 1,024 of the 26,400 electrodes. Prior to the main experiments, all 
26,400 measurement electrodes were scanned for 1 min to detect 
action potentials. A maximum of 1,024 electrodes were selected in the 
order of the negative peak amplitude of the action potentials, and 
these electrodes were used in the main experiments.

As in the SNN simulations, excitatory neurons were the 
stimulation targets. Because inhibitory neurons have more potassium 
channels, Kv3.1 and Kv3.2, than excitatory cells (Martina et al., 1998; 
Chow et al., 1999), the action potential waveforms from excitatory 
neurons were different from those from inhibitory neurons in that the 
time from the negative peak of depolarization to the positive peak of 
hyperpolarization was longer in excitatory neurons than in inhibitory 
neurons (Tajima et  al., 2017). To identify excitatory neurons, 
we aligned action potentials with the negative peak of depolarization, 
calculated the median value of the potential at each time step, and 
obtained a positive peak. Electrodes with a peak-to-peak time of 
0.5 ms or longer were considered below excitatory neurons. Twenty-
four electrodes below putative excitatory neurons were randomly 
selected for stimulation under the condition that these stimulating 
electrodes were spatially arranged in a circle throughout the entire test 
area with an inter-electrode distance of 100 μm or more. Each pattern 
consisted of six stimulation electrodes in the vicinity where electric 
pulses were applied simultaneously. The electric pulse was a positive 
first biphasic waveform with a width of 200 μs for each phase and an 
intensity of ±200 mV.

2.2.2 Electrical stimulation
As in the simulation above, fading memory was characterized in 

dissociated cultures of neurons. The medium was changed half a day 
before the start of the experiment and retained during the experiments.

The four stimulation patterns were repetitively applied 900 times, 
each at 1-s intervals, in a random order, to induce plasticity in 
neuronal cultures. Decoding accuracy and decay time of fading 
memory were characterized before the repetitive stimulation and 0.5, 
3, 24, and 48 h after the repetitive stimulation from evoked responses 
to each stimulus were presented 20 times at 17–34 s intervals in a 
random order.

Because electrical stimulation generates artifacts in the 
measurements, data within 1 ms of stimulation and data from 
electrodes saturated by stimulation were excluded from the analyses. 
After removing artifacts, firing rates were quantified at each 
measurement electrode with 20-ms bins, and firing rate vectors were 
constructed at each bin to characterize the classification accuracy and 
decay time by SLR, as in the SNN simulation.
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FIGURE 2

Homeostatic set points in the SNN. (A) Criticality. The mean and standard deviation of ΔCr from different initial seeds (n = 30) are shown in 
representative critical, subcritical, and supercritical SNNs (Crt, βE = 1 and βI = 1.15; Sub, βE = 1.2, and βI = 1.2; Sup, βE = 1 and βI = 1). Repetitive stimulation 
for 1 h was performed twice (shaded areas in blue). (B) Stimulation-triggered criticality transitions pre- and post-stimulation (with 12-h spontaneous 
activity session) ΔCr were compared in different SNNs with βE and βI, as shown in Figure 1B. Post-stimulus |ΔCr | (12 h) was significantly smaller than 
pre-stimulus |ΔCr | (pre) (see the main text for statistics). (C) Baseline spontaneous firing rate. Data from the representative (I) critical, (II) subcritical, and 
(III) supercritical SNNs are shown. In each boxplot, the central mark indicates the median and the upper and lower edges of the box indicate the 75th 
and 25th percentiles, respectively; whiskers extend to the most extreme data points. The baseline levels at 0 h were significantly smaller than those at 
pre in all of the SNN (see the main text for statistics). The post-stimulus baseline levels increased above the pre-stimulus level in the subcritical SNN, 
and decreased below the pre-stimulus level in the supercritical SNN (see the main text for statistics). (D) EI balance. Pre-stimulus, immediately after 
post-stimulus, and 12 h after post-stimulus sessions were characterized (pre, 0, and 12) for the critical, subcritical, and supercritical SNNs (Crt, Sub, and 
Sup). (i) The cross-correlation (CC) of excitatory and inhibitory inputs is shown in critical, subcritical, and supercritical SNNs. (ii) and (iii) Mean 
amplitudes of excitatory and inhibitory inputs (E and I). (iv) Ratio of I-to-E magnitude. The changes in criticality and spontaneous activity (A-C) were 
associated with the changes in these parameters (see the main text for statistics).
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2.2.3 Evaluation metrics in physiological 
experiments

From the spike trains detected on the selected electrodes, firing 
rates were computed in 20 ms bins to form firing-rate vectors 
analogous to the simulation. Fading memory (SLR classifier accuracy 
and decay time) were quantified exactly as in Section 2.1.3.3. This 
alignment between simulation and experiment facilitates direct 
comparisons between modelling and empirical results.

3 Results

3.1 Noise-driven activity promotes 
criticality and EI balance

To examine how noise-driven spontaneous activity might 
influence criticality and EI balance in a neural network, we designed 
an SNN comprising 80 excitatory and 20 inhibitory neurons with 
leaky integrated-and-fire (LIF) dynamics. We  implemented short-
term plasticity (STP) and STDP in the network. Each neuron was fully 
connected to all others, with synaptic weights modified by the 
excitatory and inhibitory STDP rules.

Neuronal firing was stochastic and determined by an 
exponential function of the difference between the membrane 
potential and firing threshold. The firing rate at rest was set to 
0.4 Hz, introducing noise-driven spontaneous activity into the 
system. This activity drove the SNN to either a subcritical (criticality 
index ΔCr < 0), critical (ΔCr ≈ 0), or supercritical (ΔCr > 0) state, 
depending on the parameters of the STDP windows.

The excitatory STDP window with the parameter βE was temporally 
asymmetric, whereas the inhibitory STDP window with βI was symmetric 
(Figure 1A). Parameters βE and βI determined the ratio of long-term 
depression (LTD) to long-term potentiation (LTP) in excitatory and 
inhibitory synapses, respectively. SNNs with large βE and βI values, that is, 
LTD more dominant than LTP, became subcritical, whereas SNNs with 
small βE and βI values became supercritical (Figures 1B,C). Simulations 
were run for 72 h with different random seeds to sufficiently stabilize 
SNNs before the main experiments.

In the critical SNN, raster plots of spontaneous activity revealed 
neuronal avalanches of various sizes corresponding to the number of 
simultaneously activated neurons. These avalanches exhibit a 
power-law size distribution, which is a hallmark of criticality 
[Figure 1D (i) Upper left and right]. The critical SNN also exhibited 
EI balance [Figure  1D (i) lower left]. Bursts were driven by 
simultaneous input from excitatory and inhibitory synapses with a 
high cross-correlation (>0.75). The subcritical SNN did not show 
large-scale bursts, and neuronal avalanches were characterized by an 
exponential size distribution [Figure 1D (ii)]. These firing patterns are 
predominantly driven by excitatory inputs with virtually no inhibitory 
inputs. The supercritical SNN exhibited more large-scale bursts with 
fewer small-scale avalanches than the subcritical SNN, while achieving 
the same level of EI balance as the critical SNN [Figure 1D (iii)].

We then examined the robustness of the criticality and EI balance 
in the SNN when subjected to external stimulation. As a stimulus, 
we simultaneously delivered external inputs to six excitatory neurons, 
increasing their membrane potential by 30 mV and eliciting spikes. 
We repeatedly applied four different test stimuli to the SNN, each of 

which was applied 900 times at 1 Hz in random order, for a total of 
3,600 stimuli over 1 h.

In the critical SNN, the criticality index ΔCr showed a 
transient decrease during the repetitive stimulation session and 
returned to the initial level within 2 h, suggesting that criticality 
was transiently disrupted by repetitive stimulation and 
subsequently restored [Figure  2A (i)]. Interestingly, in a 
subcritical SNN, ΔCr tended to show a transient decrease during 
stimulation, followed by an increase, reaching a stable plateau 
closer to the critical state than the initial state [Figure 2A (ii)]. 
Similarly, in a representative supercritical SNN, ΔCr tended to 
change towards zero after the repetitive stimulation session and 
a subsequent session of spontaneous activity [Figure 2A (iii)]. 
This trend was consistently observed within the tested range of 
the parameters (Figure  2B); post-stimulus |ΔCr | (12 h) was 
significantly smaller than pre-stimulus |ΔCr | (pre) (Wilcoxon 
signed rank test, p = 1.9e-11). These results support our main 
hypothesis that spontaneous activity is a driving force towards 
the critical state, as shown in the development of the SNN, and 
that repetitive stimulation and subsequent spontaneous activity 
triggers a transition to a more stable and critical state than the 
initial state in the SNN.

This transition to criticality is associated with a change in the 
baseline level of spontaneous activity (Figure  2C). The baseline 
levels decreased immediately after repetitive stimulation (pre vs. 
0 h; Wilcoxon signed rank test uncorrected): crt, p = 1.2e-6; sub, 
p = 1.7e-06; sup, p = 1.7e-06). During the subsequent session of 
spontaneous activity, the baseline level was adjusted; it returned to 
the initial level in the critical SNN, increased above the initial level 
in the subcritical SNN (pre vs. 12 h, p = 6.9e-05), and decreased 
below the initial level in the supercritical SNN (pre vs. 12 h, 
p = 1.7e-06). These results suggest that repetitive stimuli trigger a 
state transition in the SNN and that the firing rate set point of 
spontaneous activity changes with the critical state in the SNN.

These changes in criticality and spontaneous activity were also 
associated with changes in the EI balance and synaptic inputs 
(Figure 2D). In the critical SNN, EI balance (cross-correlation between 
E and I) was transiently disrupted immediately after repetitive 
stimulation (Wilcoxon signed rank test (uncorrected): pre vs. 0 h, 
p = 1.7e-06) but was restored after 12 h of spontaneous activity (0 h vs. 
12 h, p = 1.5e-05). Both the E and I inputs showed transient decreases 
after repetitive stimulation (E, p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 
for 0 h vs. 12 h; I, p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 
12 h), whereas the I/E ratio remained constant. In both subcritical and 
supercritical SNNs, the EI balance changed with repetitive stimulation 
(sub, p = 5.2e-04; sup, p = 3.2e-06) and did not return to the original 
level, whereas E, I, and I/E showed transient changes (E in sub, 
p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h; I  in sub, 
p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h; I/E in sub, 
p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h; E in sup, 
p = 1.7e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h; I  in sup, 
p = 1.7e-06 for pre vs. 0 h, p = 3.2e-06 for 0 h vs. 12 h; I/E in sup, 
p = 2.6e-06 for pre vs. 0 h, p = 1.7e-06 for 0 h vs. 12 h). These results are 
consistent with our hypothesis that the baseline firing rate level, 
criticality, and EI balance are the set points of SNNs, which are driven 
by noise and self-organized by a temporally asymmetric excitatory 
STDP window and a symmetric inhibitory STDP window.
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3.2 Spontaneous activity enhances 
stimulus-specific memory through critical 
dynamics

We hypothesized that critical dynamics maintained by 
spontaneous activity would prolong the fading memory of experienced 

stimuli. To test this hypothesis, we first quantified the network’s ability 
to maintain stimulus-specific information. Following external 
stimulation, the SNN showed a transient increase in firing rate with a 
distinct spatiotemporal pattern and returned to baseline levels of 
spontaneous firing rate (Figures 3A,B). To confirm that this transient 
activity was stimulus specific, we constructed a decoder to predict 

FIGURE 3

Physiological validation in dissociated neuronal cultures. (A) Representative configuration of the neurons in the microelectrode array. (i) Recording was 
performed at 1024 of 26,400 sites (dots), and stimulation was provided at 24 sites on a red line. These electrodes were selected in the order of the 
negative peak amplitude of the action potentials (Supplementary Figure S7). (ii) For stimulation patterns, six sites in the vicinity were combined. 
(B) Representative evoked responses at each recording site. Raster plots were obtained before and 24 h after the repetitive stimulation sessions. 
(C) Decoding accuracy at the indicated times after repetitive stimulation. (D) Fading memory decay time after repetitive stimulation. Asterisks indicate 
statistical significance (see the main text for statistics). (E) Baseline spontaneous firing rate.
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which of the four test stimuli was presented, based on the spatial firing 
pattern within a given 20-ms bin. As expected, decoding accuracy 
decayed over time following the stimulus. To quantify the fading 
memory strength, we  measured the decay time within which the 
decoding accuracy was above chance level (0.25) (Figure 3C). The 
decay time was approximately equal to the time during which the 
firing rate was temporarily increased by the test stimulus 
(Figures 3B,C). The subcritical SNN had a slightly longer decay time 
of fading memory than either the critical or supercritical SNN 
(Wilcoxon signed rank test (uncorrected): crt vs. sub, p = 0.0014; crt 
vs. sup, p = 0.062; sub vs. sup, p = 1.9e-5). The decay time was 
consistent across the different test bins, ranging between 5 and 100 ms 
(Supplementary Figure S1).

Next, we reasoned that the evoked responses and fading memory 
would change after repeated stimulation and subsequent spontaneous 
activity. We repeatedly applied the four test stimuli to the SNN, each 
of which was applied 900 times at 1 Hz in random order, and 
examined how repeated stimulation and subsequent spontaneous 
activity affected fading memory. After 12 h of spontaneous activity 
following the stimulation session, we found that evoked responses 
were enhanced with longer decay times of fading memory 
(Figures 3C,D) (Wilcoxon signed rank test (uncorrected) for pre vs. 
12 h: crt, p = 1.7e-6; sub, p = 1.7e-6; sup, p = 8.4e-3). This 
enhancement was most pronounced in the critical SNN and virtually 
negligible in the supercritical SNN. Interestingly, although the fading 
memory of the first stimulation lasted longer in the subcritical SNN 
than in the critical SNN, the fading memory of the repeated 
stimulation became longer in the critical SNN than in the subcritical 
SNN after the 12-h spontaneous activity session (Wilcoxon signed 
rank test (uncorrected), p = 4.1e-6), suggesting that criticality possibly 
maintained by spontaneous activity plays an important role in this 
type of memory consolidation.

To confirm the functional role of spontaneous activity, 
we examined how the stimulus-evoked response and fading memory 
in the critical SNN changed with spontaneous activity after repetitive 
stimulation sessions. We found that the evoked firing rates gradually 
increased over the first hour and then rapidly escalated in a step-like 
manner (Figure 3E). The decay time of the fading memory exhibited 
a similar pattern (Figure 3F; Wilcoxon signed rank test (uncorrected): 
pre vs. 12 h, p = 1.7e-06). This spontaneous activity-driven 
prolongation of fading memory was observed at an adequate level of 
spontaneous activity (Supplementary Figure  2A). In contrast, the 
subcritical SNN exhibited more gradual increases in evoked firing 
rates and fading memory without the abrupt transitions seen in the 
critical SNN, whereas the supercritical SNN showed minimal changes 
(Supplementary Figure S3). We also confirmed that these changes 
were dependent on the number of stimulus repetitions during the 
stimulation session (Figure 3G). Both the evoked responses and the 
decay time of the fading memory were expressed as a sigmoid-like 
function of the number of repetitions (Figure 3H; Kruskal-Wallis test, 
df = 179, Chi-sq = 93.5, p = 1.2e-18). These findings indicate that both 
the plasticity directly induced in the repetitive stimulation session and 
the subsequent self-organization during spontaneous activity play 
important roles in enhancing evoked responses to repeated stimuli 
and prolonging fading memory. Similar to the change in criticality and 
baseline firing rate, a sharp, step-like change in evoked responses and 
fading memory during spontaneous activity after a repetitive 
stimulation session could represent a state transition.

Long-term repetitive stimulation-induced changes in evoked 
responses and fading memory are likely to be driven by excitatory 
synaptic plasticity. Following repetitive stimulation, 6% of wEE and 2% 
of wEI in the critical SNN increased from near zero to near one, of 
which 85 and 58%, respectively, were maintained at 0.5 or higher for 
12 h (Supplementary Figure S4); and in the subcritical SNN, 9% of the 
wEE and 10% of the wEI increased, of which 91 and 85% were 
maintained for 12 h (Supplementary Figure S5). The plasticity of 
inhibitory synapses was transient, suggesting that inhibitory synapses 
play a modulatory role: 28% of wIE in the critical SNN, 79% of wIE, and 
94% of wII in the subcritical SNN were strengthened by repetitive 
stimulation, but almost none of them was maintained for 12 h 
(Supplementary Figures S4, S5). The synaptic plasticity in the 
supercritical SNN was less distinct than that in the critical and 
subcritical SNNs (Supplementary Figure S6): Repetitive stimulation 
strengthened 5% of wEE, 98% of which was maintained for 12 h, but 
virtually no plasticity was observed in wEI, wIE, and wII. This synaptic 
strengthening and maintenance also depended on the noise level; at 
high noise levels, excitatory synaptic weights were more likely to 
be temporarily strengthened but less likely to be maintained in the 
long term, whereas inhibitory synaptic weights were more likely to 
be maintained in the long term (Supplementary Figures S2B,C).

3.3 Spontaneous activity enhances 
stimulus-specific memory in dissociated 
neuronal cultures

To validate our computational predictions in a biological context, 
we examined whether fading memory was prolonged by spontaneous 
activity after repeated stimulation of test patterns in dissociated 
neuronal cultures. Previous studies have shown that these cultures 
exhibit stimulus-specific plasticity (Jimbo et  al., 1999; Tateno and 
Jimbo, 1999; Ruaro et  al., 2005; Zhang et  al., 2020), but have 
overlooked the functional role of spontaneous activity in this type 
of learning.

We recorded spatiotemporal neural activity using a high-density 
CMOS microelectrode array (Bakkum et al., 2013b; Yada et al., 2016; 
Yada et al., 2017). Of 26,400 sites, 1,024 electrodes were selected for 
recording in the order of the negative peak amplitude of the action 
potentials (Supplementary Figure S7) and 24 for stimulation 
[Figure 4A (i)]. Of the 24 stimulation electrodes arranged in a circle 
in the test area, we grouped six neighboring electrodes to create four 
distinct stimulus patterns [Figure 4A (ii)]. Each stimulus pattern was 
delivered 900 times at 1 Hz in random order, replicating the protocol 
used in our SNN simulations.

Consistent with our computational findings, we examined the 
fading memory of test patterns before and after stimulation with 
spontaneous activity. To quantify fading memory, the four stimulus 
patterns were delivered 20 times at 17–34 s intervals in a random 
order, and the stimulus-evoked responses were measured. Figure 4B 
shows representative raster plots of stimulus-evoked activity before 
and 24 h after stimulation sessions. Repetitive stimulation and 24 h of 
spontaneous activity were effective in increasing the stimulus-evoked 
activity in some electrodes. Associated with this stimulus-specific 
plasticity, the decoding accuracy of the test stimulus also gradually 
increased with the spontaneous activity session, and was maximized 
24 h after the stimulation session (chance level = 0.25) (Figure 4C). 
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Consequently, as in the SNN simulation, we confirmed that the decay 
time of the fading memory increased significantly 24 h after the 
stimulation session compared to the pre-stimulation session 
(Figure 4D; p = 0.038, Wilcoxon signed-rank test). In addition to the 
decoding-based analysis, information theoretical analysis estimating 
mutual information between the firing rates and the stimulus pattern 
also supports that spontaneous activity following repetitive 
stimulation makes the evoked response more informative 
(Supplementary Figure S8) (Yokota et  al., 2012). During the 
measurements, we  did not observe any significant changes in the 
baseline levels of spontaneous activity (Figure 4E). These results were 
consistent with the SNN simulation, supporting our claim that 
spontaneous activity after the stimulation session has returned a 
baseline level to near pre-stimulation levels (i.e., pre vs. 12 h in 
Figure 2C for the in silico experiments and pre vs. 24 h in Figure 4E 
for the in vitro experiments) and is crucial for strengthening memory 
of past inputs without inducing overall activation of neuronal culture 
(Figure 3D and pre vs. 24 h in Figure 4D). On the other hand, the 
results are partially inconsistent with the SNN simulation in that the 
stimulation session did not induce a transient change in the baseline 
firing rate (pre vs. 0 h in Figure 2C and pre vs. 0.5 h in Figure 4E).

4 Discussion

Both experiments in the SNN and dissociated culture of neurons 
showed that spontaneous activity played a crucial role in maintaining 
the critical state and EI balance and prolonging the fading memory of 
stimuli that have been experienced repeatedly in the past, while 
repeated stimuli transiently disrupted criticality. These results support 
our hypothesis that the criticality and EI balance in the neural network 
are homeostatically maintained by spontaneous activity with 
appropriate noise levels and STDP windows and play an important 
role in the consolidation of memory for past experiences.

4.1 Homeostatic set points emerging in 
SNN with STDP

State transitions were also observed during SoC development. The 
developmental stages of the neuronal culture were classified by the 
states of criticality (Kamioka et  al., 1996; van Pelt et  al., 2004; 
Chiappalone et al., 2006; Wagenaar et al., 2006; Pasquale et al., 2008b; 
Sun et al., 2010; Yada et al., 2017): (i) “subcritical state” in immature 

FIGURE 4

Fading memory in SNN. (A) Representative evoked responses. Raster plots are shown before and 12 h after repetitive stimulation sessions in critical, 
subcritical, and supercritical SNNs. (B) Traces of the firing rate after stimuli: dashed line, before repetitive stimulation; solid line, 12 h after repetitive 
stimulation. (C) Decoding accuracy of the test stimulus from a spatial activity pattern within a given 20-ms bin. (D) Decay time of fading memory 
before and 12 h after repetitive stimulation. Asterisks indicate statistical significance (see the main text for statistics). (E) Traces of firing rate and 
decoding accuracy at the indicated times after repetitive stimulation. (F) Traces of the fading memory decay time after repetitive stimulation. 
(G) Decoding accuracy as a function of number of stimulus repetitions. (H) Decay time of fading memory as a function of the number of stimulus 
repetitions.
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culture exhibiting asynchronous activity pattern with an exponential 
size distribution of neuronal avalanche; (ii) “supercritical state” in 
developing culture characterized as regularly synchronized bursts and 
a bimodal distribution; and (iii) “critical state” exhibiting diverse size 
of avalanches with a power-law distribution. The mechanism 
underlying these state transitions is analogous to that observed in the 
stimulus-induced reorganization of the network investigated in 
this study.

In our model, noise-driven stochastic discharges are the driving 
force of SoC (Ikeda et al., 2023). Under noise, excitatory STDP with 
temporally asymmetric windows dichotomizes strong versus weak 
synapses and high- versus low-firing neurons, thereby destabilizing 
the network towards the supercritical, synchronized state. 
Subsequently, inhibition stabilizes the synchronized state towards the 
critical state and balances excitation because synchronized bursts are 
more effective on temporally symmetric inhibitory STDP windows 
than on asymmetric excitatory STDP windows. Thus, inhibition 
stabilization is likely the key mechanism of SoC (Ma et al., 2019), in 
addition to efficient coding and nonlinear computation, as discussed 
in the past (Froemke et al., 2007; Vogels et al., 2011; Froemke, 2015; 
Denève and Machens, 2016; Hennequin et  al., 2017; Sadeh and 
Clopath, 2021). This study further emphasizes the functional role of 
spontaneous activity and STDP windows in the regulation of 
inhibitory tone.

In simulation of spontaneously developed SNNs, EI balance (high 
CC between E and I inputs) was observed in the critical state and 
supercritical state (CC≓0.9), but not in the subcritical state (CC < 0.5) 
(Figure 1B). The subcritical state had fewer synaptic inputs than the 
critical and supercritical states did. Furthermore, the I/E ratio in the 
subcritical state was close to zero, indicating that virtually no 
inhibitory synapses were formed. Because the symmetric STDP 
window of inhibitory synapses is effective for burst activities for LTP 
induction, subcritical states with fewer bursts were unable to grow 
more inhibitory synapses than the critical and supercritical states. The 
supercritical state achieved an EI balance but exhibited less diversity 
of burst sizes than the critical state, according to the definition of the 
neuronal avalanche distribution. The bursts in the supercritical state 
were more homogeneous than those in the critical state because the 
excitatory input strengths varied less. Furthermore, bursts in the 
supercritical state tended to terminate more quickly than those in the 
critical state because of the higher I/E ratio; this trend was more 
obvious in stimulus-evoked activity (Figure 2A).

The test indices of synaptic activity in Figure 2D depend on the 
noise level and the STDP window. In all of these networks, the test 
indices transiently changed in response to repeated external stimuli 
(pre vs. 0 h) but tended to return to their original state after 12-h of 
spontaneous activity (pre vs. 12 h). The baseline level of the 
spontaneous firing rate also transiently decreased immediately after 
the repeated stimuli but tended to return to the original level after 
spontaneous activity (Figure  2D). These results suggest that the 
baseline level of synaptic activity and spontaneous firing rate depend 
on the noise level and the STDP window. Interestingly, however, after 
repeated stimuli and subsequent spontaneous activity sessions, the 
baseline level of spontaneous firing rate slightly increased in the 
subcritical state and decreased in the supercritical state. Associated 
with these baseline shifts (Figure 2D), the subcritical and supercritical 
networks become more critical than the original states (Figures 2A,B). 
Stimulus-induced plasticity likely caused the non-critical networks to 

escape from their locally stable states, and the subsequent spontaneous 
activity brought the networks closer to the critical state. Thus, even 
under suboptimal conditions, the noise and STDP in our SNN 
configuration act as pressures that drive neural networks to a 
critical state.

4.2 Stimulus-specific fading memory

Both the SNN and dissociated culture of neurons showed that the 
decay time of the fading memory of stimuli that were repeatedly 
exposed and consolidated through sufficient spontaneous activity 
became longer in the critical state than in either the subcritical or 
supercritical states (Figures 3, 4). Furthermore, the SNN simulation 
showed that the more often a stimulus was repeated, the stronger their 
fading memory (Figures  3G,H), suggesting that fading memory 
depended on the direct modification of the network topology during 
the stimulation session rather than the subsequent spontaneous 
activity. However, this lengthening of fading memory was less obvious 
in the supercritical state because the stimulus-evoked activity ended 
up in a burst, which was quickly terminated by strong inhibition 
(Figures  3A,B). These results support our hypothesis that the 
homeostatic set point of criticality has the advantage of encoding 
input stimuli experienced in the past in neural networks.

The decay times of stimulus-evoked firing rate (Figures 3A,B) did 
not always behave as those of decoding accuracy (Figure 3C); for 
example, before repeated stimulation, the firing rates in the critical 
state lasted longer than those in the subcritical state, but the decoding 
accuracy in the critical state decayed faster than that in the subcritical 
state. Furthermore, prolonged fading memory, or transient activity 
increase and its decay, after repeated stimulation was stimulus specific. 
These observations suggest that the decoding accuracy is not directly 
related to a general (i.e., stimulus-unspecific, network-intrinsic) time 
constant of neural dynamics, e.g., autocorrelation times.

Unintuitively, fading memory before repeated stimulation was 
longer in the subcritical state than in the critical state (Figures 2C,D). 
The subcritical state, characterized by weak coupling between 
excitatory and inhibitory inputs, produces a highly redundant 
response from different neurons in response to external stimuli 
(Ostojic, 2014). Such evoked responses in the subcritical state are 
likely to be more readily decodable than those in the critical state, but 
in turn, may limit complex information propagation. Furthermore, 
considering the trade-off between the sensitivity and specificity of 
neural representation, the subcritical SNN may better represent the 
stimulus than the critical SNN when the stimulus is sufficiently 
distinct (Gollo, 2017).

The simulation in the SNN and physiological experiments in 
dissociated cultures of neurons differed in several respects. First, as 
predicted by our hypothesis, repeated stimulation temporarily 
transitioned the critical SNN to the subcritical state with a reduced 
baseline firing rate, and subsequent spontaneous activity restored the 
critical state. However, such two-step state transitions were not 
observed in neuronal cultures. Second, in neuronal culture, the decay 
time of the fading memory was lengthened after 24-h of spontaneous 
activity but returned to the original level after 48 h, while the fading 
memory in the SNN remained high for the entire test period. Further 
experiments both in silico and in  vitro are needed to determine 
whether our SNN missed a key parameter or whether large variations 
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between neuronal cultures in our physiological experiments caused 
limited agreement between in silico and in vitro experiments.

4.3 Limitations

Although our model was effective in simultaneously capturing the 
essential characteristics of the SoC and memory consolidation, it was 
minimal, particularly in terms of the network size, and ignored many 
important aspects of the brain. For example, the diversity of ion 
channels, such as slow NMDA and GABAB receptors, might produce 
richer dynamics and plasticity than our simple model (Malenka and 
Bear, 2004; Nabavi et al., 2013; Sanders et al., 2013; Lisman, 2017). 
Although our model consists of only two types of neurons, excitatory 
and inhibitory neurons, the cerebral cortex in mice consists of at least 
41 types of excitatory neurons and 34 types of inhibitory neurons (Shi 
et al., 2023) with distinct motifs of local microcircuits (Bastos et al., 
2012; Markov et al., 2013; Campagnola et al., 2022). STDP windows 
depend on the cell type and dendritic location (Froemke et al., 2005; 
Dan and Poo, 2006) under the control of neuromodulation and glial 
activity (Zhang et al., 2009; Yagishita et al., 2014; Foncelle et al., 2018). 
The EI balance is controlled not only by STDP but also by transcellular 
chemical signaling (Spiegel et al., 2014; Okur et al., 2024). Further 
studies are required to elucidate how these factors contribute to the 
development of SoC and memory consolidation.

4.4 Physiological implications

We propose that the neural mechanisms discussed here may 
be  implemented in the brain to maintain criticality during sleep 
because criticality is likely to be  restored during sleep and 
progressively disrupted during waking experience (Meisel et  al., 
2013; Meisel et al., 2017; Xu et al., 2024), as we demonstrated that 
criticality is restored by spontaneous activity and disrupted by 
external stimuli. Sleep could be the price that the brain has to pay for 
plasticity during the waking experience (Tononi and Cirelli, 2014); 
therefore, sleep pressure increases when the brain deviates from the 
critical state, indicated by slow wave activity (Borbély, 2001; 
Achermann and Borbély, 2003), intermittent activity (Vyazovskiy 
et al., 2009), low complexity of activity (Abásolo et al., 2015), activity 
level (Turrigiano and Nelson, 2004; Thomas et al., 2020), synaptic 
scaling (Aton et al., 2009; Cirelli, 2017; de Vivo et al., 2017; Diering 
et al., 2017; Sawada et al., 2024) and EI balance (Bridi et al., 2020), 
many of which could be explained by criticality. Our model suggests 
that the brain reestablishes a critical state through a push-pull 
mechanism between the subcritical and supercritical states when 
deviating from the critical state. This mechanism is different from 
prior modeling, suggesting that sleep plays an essential role to make 
a margin from the supercritical state (Pearlmutter and Houghton, 
2009). In addition to maintaining criticality as a homeostatic 
property, sleep is also critical for memory consolidation and 
integration (Born et al., 2006; Stickgold and Walker, 2007; Cirelli and 
Tononi, 2008), which is consistent with our finding that spontaneous 
activity after repeated stimuli prolongs stimulus-specific fading 
memory. Based on our simulation, we speculate that oscillation, or 
synchronous population activity, distinctly observed during sleep 

(e.g., ripples and spindles) has the same function as bursts in our 
configuration, which selectively strengthens inhibitory synapses and 
develop an EI balance (Steriade and Steriade, 1999; Borbély, 2001). 
Unlike our stimulation experiments, the firing rates sometimes 
increased by learning (cf. Hengen et al., 2016). In such case, our 
observation in the network development simulation predicts that the 
increase of firing rates is associated with transient increase of burst 
activity, which in turn, developed the inhibitory synapses due to the 
temporally symmetric STDP window and EI balance (i.e., 
inhibition stabilization).

5 Conclusion

Our findings suggest that the brain may achieve self-optimization 
and memory consolidation as emergent functions of noise-driven, 
spontaneous activity. Noise-harnessing computation represents an 
evolutionary adaptation of the brain (Maass, 2014), which has been 
destined to be as energy-efficient as possible and to operate in harsh 
biochemical environments with low signal-to-noise ratios. Other 
examples of emergent neural mechanisms utilizing noise include 
stochastic resonance (Gammaitoni et al., 1998; Noda and Takahashi, 
2023), simulated annealing (Kirkpatrick et  al., 1983) and noise-
induced chaos-order transitions (Matsumoto and Tsuda, 1983; 
Gassmann, 1997). In contrast, a standard digital computer requires 
more energy than the brain because of the presence of a significant 
margin between high and low levels, that is, 0 V vs. 5 V, which is 
necessary to maintain an adequate signal-to-noise ratio (Furber, 2016; 
Roy et al., 2019; Mehonic and Kenyon, 2022). This evolutionary trait 
in the brain offers valuable insight into the design principles of energy-
efficient large-scale SNNs.
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