
Signal propagation in small
networks of Hodgkin-Huxley
neurons

Tatiana R. Bogatenko*, Konstantin S. Sergeev and
Galina I. Strelkova

Department of Radiophysics and Nonlinear Dynamics, Institute of Physics, Saratov State University,
Saratov, Russia

The study of neuron models and their networks is a riveting topic for many
researchers worldwide because it allows to glimpse the fundamental processes
using accessible methodology. The paper considers dynamics of small networks
of Hodkin-Huxley neurons, namely a chain of three neurons and a small-world-
like network of seven neurons. The ensembles of neurons are represented by
systems of ordinary differential equations, so the research has been conducted
numerically. It has been found that complex quasi-periodic and chaotic regimes
may arise in the systems, and the existense of such regimes is caused by the inner
parameters of the systems, such as individual currents of the neurons and the
coupling between them. This research contributes to the fundamental
understanding of signal propagation in networks of neuron models and may
provide insight into the physiology of real neuronal systems.
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1 Introduction

Specialists from a wide range of scientific fields are interested in the processes occurring
in the brain. Attempts to understand the human brain’s functioning increasingly
incorporate concepts from physics, mathematics, computer science, mathematical
biology, and related disciplines. So, the development of synergetic approaches (Haken,
1977) has provided a new perspective which can advance the investigation of
such processes.

A significant number of fundamental interdisciplinary studies have been conducted by
Hermann Haken, one of the founders of synergetics. A general description of the brain’s
operational principles from a synergetics standpoint is detailed in (Haken, 2013) and the
works cited therein, while there is a number of works that inquire about specific
phenomena. For instance, some works cover the issue of spontaneous synchronization
of neuronal spiking (Haken, 1977; Osipov et al., 2007), and the work (Haken, 1983) is
devoted to the competition between oscillatory modes in neural networks and the
emergence of a dominant mode.

Synergetics’ methodology and approaches have evolved significantly over the past
decades, and modern science has come closer to understanding the functioning
principles of the brain. However, the brain is a very complex object, and often we can
only model a small part of it or are forced to be restricted with general small-world models
(Watts and Strogatz, 1998).
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Many research groups suggest phenomenological brain models
of different complexity in order to understand its general behavior
(Dimulescu et al., 2025; Cakan and Obermayer, 2020; Rosenblum,
2024). However, because these models are not directly grounded in
the macroscopic characteristics of real neurons, key dynamical
differences may exist between the numerical models and actual
biological neurons.

Many studies exploring the dynamics of complex brain networks
tend to utilize abstract neuron models, for example FitzHugh–Nagumo
or integrate-and-fire models, as their partial elements (Rybalova et al.,
2023; Wang et al., 2021; Anesiadis and Provata, 2022; Tyloo, 2024;
Augustin and Obermayer, 2017). This preference is generally motivated
by the relative simplicity of such systems: they often incorporate no
more than three dynamic variables, are dimensionless, and are therefore
easier to solve numerically.

In contrast, the Hodgkin–Huxley neuron (Hodgkin and Huxley,
1952) is a physiologically plausible model of spike generation, as it is
founded on a macroscopic description of the neuronal membrane’s
dynamics, which allows the researcher to draw parallels with
parameters from real systems. This leads us to believe that the
dynamics of networks constructed with Hodgkin–Huxley neurons
are worthy of their own study.

Many works about the Hodgkin–Huxley networks consider
random coupling structures (Majhi et al., 2025), which clearly have
a high degree of similarity to the structures in a real brain. However,
studying such structures poses a number of challenges, both technical
and interpretative: such topology requires a large number of
calculations and it is unclear which characteristics of the resulting
system are suitable for drawing parallels with the real brain. In the
presented paper we consider small, elementary structures consisting of
only a few Hodgkin-Huxley neuron models with diffusive coupling
(Sun et al., 2008). This topology is similar to the so-called ”small world
network” concept with short distanse between the nodes, high
clustering coefficient and connections through hub.

According to the principles of synergetics, the foundation of self-
organization is the emergence of a new order and the increase in
complexity of systems through random deviations in the states of
their elements and subsystems. Such fluctuations are usually
neutralized through negative feedback loops, which ensure the
preservation of the structure and the system’s near-equilibrium
state. However, in more complex open systems, due to the influx
of energy from outside, deviations increase over time causing the
effect of collective behavior of elements and subsystems. Ultimately,
this process leads either to the destruction of the previous structure
or to the emergence of a new order. In this work, we set the goal of
understanding how simple neuron-like structures of Hodgkin-
Huxley models behave, in order to further generalize the
acquired knowledge to more complex nonequilibrium systems
and move on to nonequilibrium ensembles composed of such
elementary subnetworks. So, we dedicate this article to the
memory of Hermann Haken, the founder of the Synergetics, who
was actively involved in the study of the most complex processes
occurring in the brain.

The paper is organised as follows. Section 2 introduces the
model under consideration, explains its characteristics and describes
the design of the numerical experiments. Section 3 presents the
results of the experiments in full detail. Its Subsection 3.1 describes
the results of the experiments for a chain of three coupled Hodgkin-

Huxley neurons, while the Subsection 3.2 provides insight into the
dynamics of a small network of seven coupled Hodgkin-Huxley
neurons. Section 4 discusses the weaknesses and the prospects of the
research, and Section 5 summarizes the findings.

2 Model and methods

This paper focuses on the regime formation and signal
propagation in small ensembles of Hodgkin-Huxley neurons
(Hodgkin and Huxley, 1952). The ensembles are defined by the
following set of equations:

dxi

dt
� 1
Cm

�gKn
4 xi − xK( ) + �gNam

3h xi−Na( )+(
+ �gl xi − xl( ) + Iexti) + ∑N

j�0,j≠i
wij xj − xi( ),

dni
dt

� αni xi( ) 1 − ni( ) − βni xi( )ni.
dmi

dt
� αmi xi( ) 1 −mi( ) − βmi

xi( )mi,

dhi
dt

� αhi xi( ) 1 − hi( ) − βhi xi( )hi.

(1)

Here, the first equation describes the dynamics of the neuron
membrane potential x, dependent on the ion current flowing
through ion channels in the membrane. The next three equations
are responsible for the amount of open ion channels, regulating the
ion currents. The α(x) and β(x) functions along with all the other
parameters (Cm � 1 μF/cm2, xK � +12 mV, xNa � −115 mV, xl �
−10.63 mV, �gK � 36 mmho/cm2, �gNa � 120 mmho/cm2 and �gl �
0.3 mmho/cm2) are taken directly from the original paper (Hodgkin
and Huxley, 1952).

The sum ∑N
j≠iwij(xj − xi) in (Equation 1) introduces linear

electric coupling with wij determining coupling strength. The
terms wij are portrayed as elements of coupling matrix W, which
allows one to determine any kind of network topology with ease.

It is well-known that the value of the external current density Iext
affects the change of the regime in a solitary Hodgkin-Huxley system
(Hodgkin and Huxley, 1952; Rinzel and Miller, 1980), and the
neuron can switch to one of three regimes. In the original
Hodgkin-Huxley system, at values of Iext ≤ 0μA/cm2 oscillations
are hindered and the neuron is silent; at 0< Iext < 8μA/cm2 the
system shows the excitatory regime and there is a stable focus on the
projection of the phase portrait in the x(n) plane (Figure 1a). But at
Iext � 8μA/cm2, a supercritical Andronov-Hopf bifurcation occurs
and the neuron demonstrates self-oscillations, so a stable limit cycle
arises on the projection of the phase space in the x(n)
plane (Figure 1b).

In this paper we aim to establish the influence of external current
densities Iext and values of coupling strength w on the formation of
various dynamical regimes and their propagation within a chain of
three and a small ensemble of seven Hodgkin-Huxley neurons.
Thereby, the initial conditions had to be fixed at certain values
described in the following sections in order to exclude their influence
on the dynamics of the considered ensembles. For an ensemble of
two Hodgkin-Huxley neurons it has been shown that the regime can
depend on the x0 initial conditions, while the other initial conditions
n0, m0 and h0 have no influence on the regime formation in the
system (Bogatenko et al., 2025).
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In order to estimate the synchrony in a chain of three elements,
Pearson correlation coefficient (Equation 2) (Pearson, 1896; Dunn
and Clark, 1986; Rodgers and Nicewander, 1988) has been used:

ρ � ∑ x1i − x1( ) x2i − x2( )��������������������∑ x1i − x1( )2∑ x2i − x2( )2
√ (2)

where x1i and x2i are the elements of the compared series x1 and x2,
and x1 and x2 are the mean values of the series x1 and x2. The Pearson
correlation coefficient takes values in the range [−1; 1], where 1 means
perfect positive or in-phase correlation, −1 means perfect out-of-phase
correlation, and 0 means no correlation between the variables. The
computation of the correlation coefficient was carried out for complete
time realizations. Transient time periods were included in the
calculations because they may contain critical information about the
regime, for instance, single spikes in excitatory regime.

The research is conducted numerically utilising Runge-Kutta
4th order method (Runge, 1895; Kutta, 1901) over a time interval
T � 40000 with a step of 0.01 for each time realisation. A set of
programs in C was used to carry out numerical integration, and the
graphs were plotted with Gnuplot.

3 Results

3.1 Dynamical effects in a chain of three
coupled Hodgkin-Huxley neurons

In this section a chain of three coupledHodgkin-Huxley neurons of
the topology shown in Figure 2 is under consideration. Here, the first

neuron x1 receives Iext1 � 12μA/cm2 and self-oscillates, the second one
x2 shows excitatory mode for Iext2 � 3μA/cm2, and Iext3 for the third
neuron x3 is varied. Also, the second neuron x2 always influences the
neurons x1 and x3 with a deliberately low value of coupling strength
wout � 0.1, while w21 � w23 � w are varied. Thus, we analyze the
influence of external current density Iext3 and coupling strength w
on the dynamical regimes and their synchrony in this chain. Iext3 were
changed in the interval [-15; 15] μA/cm2, and w took values in [0; 4].
Initial conditions are the same for all the neurons:
x01 � x02 � x03 � 10, n01 � n02 � n03 � 0.1,
m01 � m02 � m03 � 0.01, h01 � h02 � h03 � 0.01, which allows us to
exclude their influence on the system’s dynamics.

Figure 3 shows the Pearson correlation coefficient maps for each
of the three pairs of neurons in the chain, while Figures 4–6 show
some typical time realizations of x(t) and projections of the phase
portraits onto the (x, n) plane. In general, one can note that the
absolute value of correlation coefficient ρ is equal or close to one for

FIGURE 1
Dynamical regimes in a solitary Hodgkin-Huxley neuron, projections of the phase space on the (x,n) plane (left column) and x(t) time realisations
(right column). Excitatory regime for Iext3 = 3 μA/cm2 (a) and self-oscillating regime for Iext3 = 12 μA/cm2 (b).

FIGURE 2
Schematic image of an ensemble of three Hodgkin-Huxley
neurons under consideration.
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x1 and x2 on the most of the considered parameter plane, while it is
generally closer to 0 for the other pairs. It means that the neurons x1

and x2 often show correlated behaviour, however, the negative value
of the coefficient indicates antiphase oscillations. In all, the presence
of areas with negative correlation coefficient values on the three
maps is caused by a delay occurring in the neurons (Figure 4).

Besides, on each of the maps in Figure 3a vertical region of
complete positive correlation (ρ � 1) is noticeable for Iext3 = 12 μA/
cm2, in which the neurons are completely synchronous. The
presence of this region precisely at the value Iext3 = 12 μA/cm2 is
due to the fact that the first neuron receives an external current of
exactly this magnitude: Iext1 = 12 μA/cm2, and the self-oscillations
arising in it suppress the excitable mode of the second neuron
(Iext2 = 3 μA/cm2). Note that the suppression of the excitable mode
occurs smoothly in terms of the coupling strength w: in the absence
of coupling, as well as at small coupling strength values w≪ 1, the
correlation coefficient is close to zero and the neurons are not
synchronous. Then, with an increase in the coupling strength, the
correlation coefficient begins to increase and at w ≈ 1.5 it becomes
equal to 1 (Figure 3). This effect has been shown earlier for two
coupled Hodgkin-Huxley neurons (Bogatenko et al., 2025). On the
correlation map of neurons x1 and x3 (Figure 3c), the coefficient ρ

equals to 1 for all the values of coupling strength in the considered
range at Iext3 = 12 μA/cm2, since in this case these two neurons show
the same regime throughout the experiment.

What the correlation maps in Figure 3 do not show is boundaries
between oscillation modes. However, as shown in some representative
examples, the neurons tend to exhibit oscillations of varying complexity
throughout the entire parameter plane under consideration. Self-
oscillations of classical spikes can be synchronized with high
accuracy (ρ � 1) (Figure 5b), but there also are oscillations that
resemble spikes in shape but have a much smaller amplitude of up
to 5 mV (Figure 5a). Also, quasi-periodic oscillation regimes of varying
degrees of complexity can be realized in the system (Figure 6).

3.2 Signal propagation in a network of seven
coupled Hodgkin-Huxley neurons

Now let us construct a larger network of Hodgkin-Huxley
neurons, consisting of two smaller chains connected
unidirectionally via a hub (Figure 7). Within the chains, the
neurons are connected bidirectionally, and the connection values
between them remain fixed in all numerical experiments.

FIGURE 3
Pearsoncorrelationcoefficientmapson theplane(Iext3 ,w) of the threepairsof neurons in achain: x1 and x2 (a), x2 and x3 (b), x1 and x3 (c).Otherparameters and
initial conditions: Iext1 � 12μA/cm2, Iext2 � 3μA/cm2, x01 � x02 � x03 � 10, n01 � n02 � n03 � 0.1, m01 � m02 � m03 � 0.01, h01 � h02 � h03 � 0.01.

FIGURE 4
An example of delay in a chain of three coupled Hodgkin-Huxley neurons for Iext3 � 1.0μA/cm2 andw � 0.2: x(t) time realisations and projections of
the phase space on the (x,n) plane of the neurons x1 (blue), x2 (red) and x3 (green). Other parameters and initial conditions: Iext1 � 12μA/cm2, Iext2 � 3μA/
cm2, x01 � x02 � x03 � 10, n01 � n02 � n03 � 0.1, m01 � m02 � m03 � 0.01, h01 � h02 � h03 � 0.01.
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At the beginning of each experiment, in the first chain one of the
outer neurons is in the self-oscillation mode (Iext1 = 12 μA/cm2),
and the other two show the excitatory mode, but with a small
detuning in the value of the external current density: Iext2 = 3 μA/

cm2, Iext3 = 2 μA/cm2. Also, the outer neurons intentionally exert a
weak influence on the central neuron (w21 � w23 � 0.1), while in the
opposite direction, the coupling strength is deliberately set
high – w12 � w32 � 2.5. Such a combination of external currents

FIGURE 5
An example of self-oscillating regimes in a chain of three coupled Hodgkin-Huxley neurons for Iext3 � −14.0μA/cm2, w � 0.2 (a) and Iext3 � 12.0μA/
cm2, w � 0.7 (b). x(t) time realisations and projections of the phase space on the (x,n) plane of the neurons x1 (blue), x2 (red) and x3 (green). Other
parameters and initial conditions: Iext1 � 12μA/cm2, Iext2 � 3μA/cm2, x01 � x02 � x03 � 10, n01 � n02 � n03 � 0.1, m01 � m02 � m03 � 0.01, h01 � h02 � h03 �
0.01.

FIGURE 6
An example of quasiperiodic regimes in a chain of three coupled Hodgkin-Huxley neurons for Iext3 � 1.0μA/cm2, w � 0.4 (a) and Iext3 � 1.0μA/cm2,
w � 0.9 (b). x(t) time realisations and projections of the phase space on the (x,n) plane of the neurons x1 (blue), x2 (red) and x3 (green). Other parameters
and initial conditions: Iext1 � 12μA/cm2, Iext2 � 3μA/cm2, x01 � x02 � x03 � 10, n01 � n02 � n03 � 0.1, m01 � m02 � m03 � 0.01, h01 � h02 � h03 � 0.01.
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and coupling strength values forces a certain regime to establish in
this layer: all the three neurons are nearly synchronous in the
excitatory mode (Figures 8a–c).

In the second chain, there is a similar balance of connection
strengths as in the first one, but here the central neuron acts on the
outer neurons with a weaker coupling strength compared with the

first layer: w54 � w56 � 0.1, w45 � w65 � 0.3. Here, similar regimes
are realized in the neurons: Iext4 = 12 μA/cm2, Iext5 = 3 μA/cm2,
Iext6 = 7 μA/cm2, however, we note that the current density Iext6
received by neuron x6 is of a prethreshold value for the Andronov-
Hopf bifurcation. Now, self-oscillating regime establishes in this
chain at the beginning of every experiment (Figures 8d–f).

Here we aspire to establish the influence of the coupling strength
between the layers through the hub and the hub’s regime on the
dynamics that is translated to the second chain. This goal motivates
the choice of constant values of the coupling strength and the
current density values within the chains. For the initial
conditions in the system in all the experiments described in this
section, a single set of values with a uniform distribution over the
intervals [9.5; 10.5] was chosen for the set of seven variables x,
[0.095; 0.105] for the set of seven variables n, and [0.0095; 0.0105]
for the sets of variables m and h (seven values each). The initial
conditions were chosen in this way in order to introduce a degree of
dissimilarity and bring the numerical experiment closer to
real systems.

FIGURE 7
Schematic image of an ensemble of seven Hodgkin-Huxley
neurons under consideration.

FIGURE 8
Structures in the first (green) and the second (blue) layer of the considered network of seven Hodgkin-Huxley neurons in each experiment: x(t) time
realisations of x1 (a), x2 (b), x3 (c), x4 (d), x5 (e), and x6 (f). Parameters: Iext1 = Iext4 = 12 μA/cm2, Iext2 = Iext5 = 3 μA/cm2, Iext3 = 2 μA/cm2, Iext6 = 7 μA/cm2;
w21 � w23 � 0.1, w12 � w32 � 2.5; w54 � w56 � 0.1, w45 � w65 � 0.3.
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Figure 9 shows the regime map for the hub neuron on the
parameter plane (Ihub,w). One can see that the hub neuron can show
one of three regimes: excitatory, single burst, and period-1 self-
oscillations. Self-oscillations are observed in a limited parameter
range with low coupling strength w< 0.5 and current density values
greater than 7 μA/cm2 (Figure 10a). As the coupling strength
increases, the region of self-oscillations decreases—here one can
see how the regime established in the first chain suppresses the self-
oscillation regime in the hub neuron. The excitatory regime

predominates over most of the plane under consideration
(Figure 10c). The boundary between these regimes is expressed
in the regime of single burst generation (Figure 10b).

Regime maps for the neurons in the second layer on the same
parameter plane are shown in Figure 11. Within the considered
parameter ranges, neurons can exhibit a variety of simpler and more
complex regimes: excitatory regime (EXC), single burst with
subsequent silence (BUR), single burst of low-amplitude
oscillations (up to 5 mV) (LA BUR), period-1 self-oscillations
(P1), low-amplitude self-oscillations (up to 5 mV) (LA P1),
period-2 self-oscillations (P2), quasi-periodic (QUA), and chaotic
(CH) oscillations.

The regimemaps for neurons of the second chain x5 and x6 have
a more complex structure than the map for the hub neuron. Here,
for small values of the coupling strength with the hub neuron
w< 0.3, the self-oscillation mode of period 1 prevails in the
system - for these parameter values neuron x4 transmits its self-
oscillation mode to neurons x5 and x6 (Figure 12). In the range of
values w ∈ [0.3, 0.5], there is a region of transient modes, when the
value of the coupling strength with the hub neuron w becomes
greater than the value of the coupling strength within the chain
w45 � w65 � 0.3. Here we can observe various complex regimes:
period-2 oscillations, quasi-periodic and chaotic
oscillations (Figure 13).

With further increase in the coupling strength with the hub
neuron w, the regime map becomes more regular. Here, one can
see the predominance of two modes: period-1 self-oscillations of
low amplitude (Figure 14) and single burst with subsequent
silence (Figure 14). Low-amplitude period-1 self-oscillations
occur with an amplitude smaller than in the classical self-
oscillatory mode of the system and are approximately 5 mV.

FIGURE 9
Regimemap of the hub neuron xhub of the considered network of
seven Hodgkin-Huxley neurons on the parameter plane (Ihub ,w).
Regime scale: EXC–excitatory regime, BUR–single burst with
subsequent silence, P1 – periond-1 oscillations. Parameters are
stated in Section 3.2.

FIGURE 10
An example of typical regimes in the hub neuron xhub of the considered network of seven Hodgkin-Huxley neurons: x(t) time realisations and
projections of the phase space on the (x,n) plane. Period-1 oscillations (a) (Ihub = 14 μA/cm2, w � 0.2), single burst (b) (Ihub = 14 μA/cm2, w � 0.6), and
excitatory regime (c) (Ihub = 14 μA/cm2, w � 1.4) are shown. Other parameters are stated in Section 3.2.
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Interestingly, the boundary between these two modes has the
form of a hyperbolic or exponential function and is expressed by
the mode of generating a low-amplitude burst (Figure 14). It is
also interesting to note that for neuron x6, this mode of
generating a small-amplitude spike train is not only transient,
as for neuron x5, but also a stable mode, which is realized at
negative values of the current density Ihub (Figure 9).

4 Discussion

The obtained results demonstrate that elementary Hodgkin-
Huxley neuronal networks, renowned for their physiological fidelity,
are capable of generating a rich repertoire of complex dynamics
based solely on their internal structure and connectivity, without the
need for complex external driving forces. Our study of two different
topologies reveals several fundamental principles that govern the
emergence of this complexity.

A key limitation of the current study is its deliberate focus on a
set of specific, predetermined network topologies, which, while

providing a controlled framework for analysis, may not fully
capture the architectural diversity found in biological neural
systems. Future research must therefore prioritize scaling these
investigations to larger, more complex networks to determine if
the observed dynamics–such as the interplay between sodium-
channel persistence and delayed-rectifier potassium currents in
shaping burst termination–are preserved or fundamentally
altered. It will be crucial to examine how these dynamics are
influenced by other overarching network characteristics. For
instance, introducing a hierarchical organization, where clusters
of neurons with specific firing properties are nested within larger
functional modules, could reveal novel emergent computational
states. Furthermore, the inclusion of adaptive, plastic synapses
based on spike-timing-dependent plasticity (STDP) rules would
transform the model from a static circuit into a dynamic,
learning system. This would allow us to investigate whether the
intrinsic neuronal properties governed by the Hodgkin-Huxley
formalism interact synergistically or competitively with
experience-dependent synaptic changes to guide network
development and stability.

FIGURE 11
Regime map of the neurons x5 (a) and x6 (b) of the second layer of the considered network of seven Hodgkin-Huxley neurons on the parameter
plane (Ihub ,w). Regime scale: BUR–single burst with subsequent silence, LA BUR–single burst of low-amplitude oscillations (up to 5 mV), P1 – periond-1
oscillations, LA P1 – low-amplitude self-oscillations (up to 5 mV), P2 – period-2 self-oscillations, QUA–quasi-periodic oscillations, CH–chaotic
oscillations. Parameters are stated in Section 3.2.

FIGURE 12
An example of a self-oscillating regime in the second layer of the considered network of seven Hodgkin-Huxley neurons for Ihub = 6 μA/cm2 and
w � 0.1: x(t) time realisations and projections of the phase space on the (x,n) plane of the neurons x4 (blue), x5 (red) and x6 (green). Other parameters are
stated in Section 3.2.
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The choice of coupling in the model, presented in Equation 1, is
also in line with maintaining the scalability of our research to larger
and complex networks and is due to two main reasons. Firstly, its
mathematical simplicity and well-defined properties provide a clear
and interpretable framework for isolating the effects of network
topology on the emergent dynamics of intrinsically bursting
neurons. This allows us to distinguish effects stemming from the
network architecture from those arising from the complexities of
synaptic transmission. Secondly, for the purpose of a qualitative
analysis of mode generation in elementary neuromorphic structures,
diffusion coupling offers a computationally efficient yet biologically
grounded foundation. While models incorporating detailed
chemical synapses are essential for simulating specific cortical
circuits, their complexity would obscure the primary focus of this
study: the interplay between topology and intrinsic neuronal
dynamics. Certainly, there are numerous ways to introduce
coupling between Hodgkin-Huxley neurons [see (Rossoni et al.,
2005; Ma and Tang, 2017; Petousakis et al., 2023; Catterall et al.,
2012) and many others], including special software (Hines and
Carnevale, 1997; Carnevale and Hines, 2006; Bologna et al., 2022;
Willms, 2002), all of which are biologically justified to varying
degrees. More complex models of coupled Hodgkin-Huxley
neurons are typical primarily for modeling specialized cortical

regions and parts of the nervous system and, therefore, are
beyond the scope of the problem being solved here.

In assessing the biological plausibility of the model, it is
important to consider the key output parameters it generates.
Characteristic current values range from a few to tens of
nanoamperes and fall well within the recognized physiological
range for mammalian neurons (Kole and Stuart, 2012; Stuart and
Sakmann, 1994). Moreover, the temporal dynamics with spike
durations of 1–2 ms accurately reflect those observed in
experimental recordings from various cortical and hippocampal
cell types (McCormick et al., 1985). The firing rates obtained in
our simulations, often in the gamma range (20–80 Hz) under
moderate inputs, are possibly related to oscillations associated
with cognitive processing (Buzsaki and Draguhn, 2004).
Although the model may exhibit higher rates under extreme
forcing forces–a known property of the underlying
Hodgkin–Huxley formalism, this does not detract from its
usefulness for studying the fundamental network dynamics of
spikes initiation, propagation, and synchronization, which was
the primary goal of this work. Therefore, we are confident that
the model provides a physiologically sound platform for
investigating the interaction between the intrinsic properties of
neurons and network topology.

FIGURE 13
Examples of complex transient regimes in the second layer of the considered network of seven Hodgkin-Huxley neurons: x(t) time realisations and
projections of the phase space on the (x,n) plane of the neurons x4 (blue), x5 (red) and x6 (green). Cases for Ihub = 4 μA/cm2,w � 0.4 (a), Ihub = 14 μA/cm2,
w � 0.5 (b), and Ihub = 7 μA/cm2, w � 0.5 (c) are shown. Other parameters are stated in Section 3.2.

Frontiers in Network Physiology frontiersin.org09

Bogatenko et al. 10.3389/fnetp.2025.1729999

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1729999


5 Conclusion

In a small chain of coupled Hodgkin-Huxley neurons, we
observe that the classical self-oscillatory mode, although
dominant, is not exclusive. The emergence of more complex
quasi-periodic oscillations and the observed delay in signal
propagation along the network underscore a key conclusion: the
intrinsic properties of the network itself are the primary source of
complexity. Specifically, it is the precise interplay of three factors
that regulates these dynamic modes: network topology, neurons’
coupling strength, and the combination of individual neuron
current densities. It is important because it suggests that even
relatively simple, localized neural circuits harbor a latent capacity
to form complex temporal patterns, which may be fundamental to
processes such as central pattern generation or sensory processing.

This principle is further reinforced in the small-world ensemble
with a hub. Here, the hub neuron acts as a nonlinear processor and
integrator, enabling the system to generate not only quasi-periodic,
but also chaotic oscillations. Parameter induced transitions between
dynamical regimes (silence, periodic, quasi-periodic, and chaotic)
have well-defined boundaries in the regime maps for the parameters
Ihub and w. But this predictability is non-trivial–it indicates that,
despite the potential for chaos, the system’s behavior is determined
by an underlying order that can be controlled by specific biological
analogs–the excitability of the key neuron and the coupling strength.

More broadly, our results are consistent with the synergetic view
of the brain as a self-organizing system. The spontaneous emergence
and predictable transitions between complex oscillatory modes,
driven by intrinsic network parameters rather than external
stimuli, provide a plausible model for the dynamic switching of
neural ensembles between functional states. The hub-based model,
in particular, offers a mechanistic explanation for how local changes
(e.g., neuromodulation affecting Ihub and w) can lead to global shifts
in network dynamics, which may be important for understanding
the role of highly connected nodes in neural networks.
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